1
|
Murphy BT, O'Halloran KD. Champions of the mountains: superior aerobic performance in Tibetans is not due to enhanced cardiopulmonary traits. J Physiol 2024; 602:3865-3866. [PMID: 39072734 DOI: 10.1113/jp287012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Affiliation(s)
- Ben T Murphy
- Department of Physiology, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Möller FN, Fan JL, Futral JE, Hodgman CF, Kayser B, Lovering AT. Cardiopulmonary haemodynamics in Tibetans and Han Chinese during rest and exercise. J Physiol 2024; 602:3893-3907. [PMID: 38924564 DOI: 10.1113/jp286303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
During sea-level exercise, blood flow through intrapulmonary arteriovenous anastomoses (IPAVA) in humans without a patent foramen ovale (PFO) is negatively correlated with pulmonary pressure. Yet, it is unknown whether the superior exercise capacity of Tibetans well adapted to living at high altitude is the result of lower pulmonary pressure during exercise in hypoxia, and whether their cardiopulmonary characteristics are significantly different from lowland natives of comparable ancestry (e.g. Han Chinese). We found a 47% PFO prevalence in male Tibetans (n = 19) and Han Chinese (n = 19) participants. In participants without a PFO (n = 10 each group), we measured heart structure and function at rest and peak oxygen uptake (V ̇ O 2 peak ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{peak}}}}$ ), peak power output (W ̇ p e a k ${{\dot{W}}_{peak}}$ ), pulmonary artery systolic pressure (PASP), blood flow through IPAVA and cardiac output (Q ̇ T ${{\dot{Q}}_{\mathrm{T}}} $ ) at rest and during recumbent cycle ergometer exercise at 760 Torr (SL) and at 410 Torr (ALT) barometric pressure in a pressure chamber. Tibetans achieved a higherW peak ${W}_{\textit{peak}}$ than Han, and a higherV ̇ O 2 peak ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{peak}}}}$ at ALT without differences in heart rate, stroke volume orQ ̇ T ${{\dot{Q}}_{\mathrm{T}}} $ . Blood flow through IPAVA was generally similar between groups. Increases in PASP and total pulmonary resistance at ALT were comparable between the groups. There were no differences in the slopes of PASP plotted as a function ofQ ̇ T ${{\dot{Q}}_{\mathrm{T}}} $ during exercise. In those without PFO, our data indicate that the superior aerobic exercise capacity of Tibetans over Han Chinese is independent of cardiopulmonary features and more probably linked to differences in local muscular oxygen extraction. KEY POINTS: Patent foramen ovale (PFO) prevalence was 47% in Tibetans and Han Chinese living at 2 275 m. Subjects with PFO were excluded from exercise studies. Compared to Han Chinese, Tibetans had a higher peak workload with acute compression to sea level barometric pressure (SL) and acute decompression to 5000 m altitude (ALT). Comprehensive cardiac structure and function at rest were not significantly different between Han Chinese and Tibetans. Tibetans and Han had similar blood flow through intrapulmonary arteriovenous anastomoses (IPAVA) during exercise at SL. Peak pulmonary artery systolic pressure (PASP) and total pulmonary resistance were different between SL and ALT, with significantly increased PASP for Han compared to Tibetans at ALT. No differences were observed between groups at acute SL and ALT.
Collapse
Affiliation(s)
- Fabian N Möller
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Boston, MA, USA
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
- German Sport University Cologne, Institute for Professional Sport Education and Qualification, Cologne, Germany
| | - Jui-Lin Fan
- Department of Physiology, Manaaki Manawa - The Centre for Heart Research, University of Auckland, Faculty of Medical and Health Sciences, Auckland, New Zealand
| | - Joel E Futral
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
- Oregon Heart & Vascular Institute, Springfield, Oregon, USA
| | - Charles F Hodgman
- Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - Bengt Kayser
- University of Lausanne, Institute of Sports Sciences, Lausanne, Switzerland
| | - Andrew T Lovering
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
3
|
Hsia CCW. Tissue Perfusion and Diffusion and Cellular Respiration: Transport and Utilization of Oxygen. Semin Respir Crit Care Med 2023; 44:594-611. [PMID: 37541315 DOI: 10.1055/s-0043-1770061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
This article provides an overview of the journey of inspired oxygen after its uptake across the alveolar-capillary interface, and the interplay among tissue perfusion, diffusion, and cellular respiration in the transport and utilization of oxygen. The critical interactions between oxygen and its facilitative carriers (hemoglobin in red blood cells and myoglobin in muscle cells), and with other respiratory and vasoactive molecules (carbon dioxide, nitric oxide, and carbon monoxide), are emphasized to illustrate how this versatile system dynamically optimizes regional convective transport and diffusive gas exchange. The rates of reciprocal gas exchange in the lung and the periphery must be well-matched and sufficient for meeting the range of energy demands from rest to maximal stress but not excessive as to become toxic. The mobile red blood cells play a vital role in matching tissue perfusion and gas exchange by dynamically regulating the controlled uptake of oxygen and communicating regional metabolic signals across different organs. Intracellular oxygen diffusion and facilitation via myoglobin into the mitochondria, and utilization via electron transport chain and oxidative phosphorylation, are summarized. Physiological and pathophysiological adaptations are briefly described. Dysfunction of any component across this integrated system affects all other components and elicits corresponding structural and functional adaptation aimed at matching the capacities across the entire system and restoring equilibrium under normal and pathological conditions.
Collapse
Affiliation(s)
- Connie C W Hsia
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
4
|
Joyner MJ, Wiggins CC, Baker SE, Klassen SA, Senefeld JW. Exercise and Experiments of Nature. Compr Physiol 2023; 13:4879-4907. [PMID: 37358508 PMCID: PMC10853940 DOI: 10.1002/cphy.c220027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
In this article, we highlight the contributions of passive experiments that address important exercise-related questions in integrative physiology and medicine. Passive experiments differ from active experiments in that passive experiments involve limited or no active intervention to generate observations and test hypotheses. Experiments of nature and natural experiments are two types of passive experiments. Experiments of nature include research participants with rare genetic or acquired conditions that facilitate exploration of specific physiological mechanisms. In this way, experiments of nature are parallel to classical "knockout" animal models among human research participants. Natural experiments are gleaned from data sets that allow population-based questions to be addressed. An advantage of both types of passive experiments is that more extreme and/or prolonged exposures to physiological and behavioral stimuli are possible in humans. In this article, we discuss a number of key passive experiments that have generated foundational medical knowledge or mechanistic physiological insights related to exercise. Both natural experiments and experiments of nature will be essential to generate and test hypotheses about the limits of human adaptability to stressors like exercise. © 2023 American Physiological Society. Compr Physiol 13:4879-4907, 2023.
Collapse
Affiliation(s)
- Michael J Joyner
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Chad C Wiggins
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah E Baker
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen A Klassen
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Jonathon W Senefeld
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Subedi P, Gasho C, Stembridge M, Williams AM, Patrician A, Ainslie PN, Anholm JD. Pulmonary vascular reactivity to supplemental oxygen in Sherpa and lowlanders during gradual ascent to high altitude. Exp Physiol 2023; 108:111-122. [PMID: 36404588 PMCID: PMC10103769 DOI: 10.1113/ep090458] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022]
Abstract
NEW FINDINGS What is the central question of this study? How does hypoxic pulmonary vasoconstriction and the response to supplemental oxygen change over time at high altitude? What is the main finding and its importance? Lowlanders and partially de-acclimatized Sherpa both demonstrated pulmonary vascular responsiveness to supplemental oxygen that was maintained for 12 days' exposure to progressively increasing altitude. An additional 2 weeks' acclimatization at 5050 m altitude rendered the pulmonary vasculature minimally responsive to oxygen similar to the fully acclimatized non-ascent Sherpa. Additional hypoxic exposure at that time point did not augment hypoxic pulmonary vasoconstriction. ABSTRACT Prolonged alveolar hypoxia leads to pulmonary vascular remodelling. We examined the time course at altitude, over which hypoxic pulmonary vasoconstriction goes from being acutely reversible to potentially irreversible. Study subjects were lowlanders (n = 20) and two Sherpa groups. All Sherpa were born and raised at altitude. One group (ascent Sherpa, n = 11) left altitude and after de-acclimatization in Kathmandu for ∼7 days re-ascended with the lowlanders over 8-10 days to 5050 m. The second Sherpa group (non-ascent Sherpa, n = 12) remained continuously at altitude. Pulmonary artery systolic pressure (PASP) and pulmonary vascular resistance (PVR) were measured while breathing ambient air and following supplemental oxygen. During ascent PASP and PVR increased in lowlanders and ascent Sherpa; however, with supplemental oxygen, lowlanders had significantly greater decrease in PASP (P = 0.02) and PVR (P = 0.02). After ∼14 days at 5050 m, PASP decreased with supplemental oxygen (mean decrease: 3.9 mmHg, 95% CI 2.1-5.7 mmHg, P < 0.001); however, PVR was unchanged (P = 0.49). In conclusion, PASP and PVR increased with gradual ascent to altitude and decreased via oxygen supplementation in both lowlanders and ascent Sherpa. Following ∼14 days at 5050 m altitude, there was no change in PVR to hypoxia or O2 supplementation in lowlanders or either Sherpa group. These data show that both duration of exposure and residential altitude influence the pulmonary vascular responses to hypoxia.
Collapse
Affiliation(s)
- Prajan Subedi
- Division of PulmonaryCritical Care, Sleep, Hyperbaric Medicine and AllergyDept. of MedicineLoma Linda University School of MedicinePulmonary SectionVA Loma Linda Healthcare SystemLoma LindaCaliforniaUSA
| | - Christopher Gasho
- Division of PulmonaryCritical Care, Sleep, Hyperbaric Medicine and AllergyDept. of MedicineLoma Linda University School of MedicinePulmonary SectionVA Loma Linda Healthcare SystemLoma LindaCaliforniaUSA
| | - Michael Stembridge
- Cardiff School of Sport and Health SciencesCardiff Metropolitan UniversityCardiffUK
| | - Alexandra M. Williams
- Department of Cellular and Physiological SciencesFaculty of MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Alexander Patrician
- Centre for Heart, Lung and Vascular HealthFaculty of Health and Social DevelopmentUniversity of British Columbia – OkanaganKelownaBCCanada
| | - Philip N. Ainslie
- Centre for Heart, Lung and Vascular HealthFaculty of Health and Social DevelopmentUniversity of British Columbia – OkanaganKelownaBCCanada
| | - James D. Anholm
- Division of PulmonaryCritical Care, Sleep, Hyperbaric Medicine and AllergyDept. of MedicineLoma Linda University School of MedicinePulmonary SectionVA Loma Linda Healthcare SystemLoma LindaCaliforniaUSA
| |
Collapse
|
6
|
Impact of Zinc on Oxidative Signaling Pathways in the Development of Pulmonary Vasoconstriction Induced by Hypobaric Hypoxia. Int J Mol Sci 2022; 23:ijms23136974. [PMID: 35805984 PMCID: PMC9266543 DOI: 10.3390/ijms23136974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Hypobaric hypoxia is a condition that occurs at high altitudes (>2500 m) where the partial pressure of gases, particularly oxygen (PO2), decreases. This condition triggers several physiological and molecular responses. One of the principal responses is pulmonary vascular contraction, which seeks to optimize gas exchange under this condition, known as hypoxic pulmonary vasoconstriction (HPV); however, when this physiological response is exacerbated, it contributes to the development of high-altitude pulmonary hypertension (HAPH). Increased levels of zinc (Zn2+) and oxidative stress (known as the “ROS hypothesis”) have been demonstrated in the vasoconstriction process. Therefore, the aim of this review is to determine the relationship between molecular pathways associated with altered Zn2+ levels and oxidative stress in HPV in hypobaric hypoxic conditions. The results indicate an increased level of Zn2+, which is related to increasing mitochondrial ROS (mtROS), alterations in nitric oxide (NO), metallothionein (MT), zinc-regulated, iron-regulated transporter-like protein (ZIP), and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-induced protein kinase C epsilon (PKCε) activation in the development of HPV. In conclusion, there is an association between elevated Zn2+ levels and oxidative stress in HPV under different models of hypoxia, which contribute to understanding the molecular mechanism involved in HPV to prevent the development of HAPH.
Collapse
|
7
|
Pulmonary Hypertension in Acute and Chronic High Altitude Maladaptation Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041692. [PMID: 33578749 PMCID: PMC7916528 DOI: 10.3390/ijerph18041692] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/13/2022]
Abstract
Alveolar hypoxia is the most prominent feature of high altitude environment with well-known consequences for the cardio-pulmonary system, including development of pulmonary hypertension. Pulmonary hypertension due to an exaggerated hypoxic pulmonary vasoconstriction contributes to high altitude pulmonary edema (HAPE), a life-threatening disorder, occurring at high altitudes in non-acclimatized healthy individuals. Despite a strong physiologic rationale for using vasodilators for prevention and treatment of HAPE, no systematic studies of their efficacy have been conducted to date. Calcium-channel blockers are currently recommended for drug prophylaxis in high-risk individuals with a clear history of recurrent HAPE based on the extensive clinical experience with nifedipine in HAPE prevention in susceptible individuals. Chronic exposure to hypoxia induces pulmonary vascular remodeling and development of pulmonary hypertension, which places an increased pressure load on the right ventricle leading to right heart failure. Further, pulmonary hypertension along with excessive erythrocytosis may complicate chronic mountain sickness, another high altitude maladaptation disorder. Importantly, other causes than hypoxia may potentially underlie and/or contribute to pulmonary hypertension at high altitude, such as chronic heart and lung diseases, thrombotic or embolic diseases. Extensive clinical experience with drugs in patients with pulmonary arterial hypertension suggests their potential for treatment of high altitude pulmonary hypertension. Small studies have demonstrated their efficacy in reducing pulmonary artery pressure in high altitude residents. However, no drugs have been approved to date for the therapy of chronic high altitude pulmonary hypertension. This work provides a literature review on the role of pulmonary hypertension in the pathogenesis of acute and chronic high altitude maladaptation disorders and summarizes current knowledge regarding potential treatment options.
Collapse
|
8
|
Huang H, Xie S, Gu X, Xiang B, Zhong Z, Huang P, Gao Y, Li P. Higher Circulating miR-199a-5p Indicates Poor Aerobic Exercise Capacity and Associates With Cardiovascular Dysfunction During Chronic Exposure to High Altitude. Front Physiol 2021; 12:587241. [PMID: 33633582 PMCID: PMC7900411 DOI: 10.3389/fphys.2021.587241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Background Hypoxia-induced decline in exercise capacity is ubiquitous among lowlanders who immigrated to high altitudes, which severely reduces their work efficiency and quality of life. Although studies have revealed that hypoxia-induced cardiovascular dysfunction limits exercise capacity at high altitudes, the mechanisms have not been well explored at the molecular level. miR-199a-5p is hypoxia-sensitive and serves as an important regulator in cardiovascular pathophysiology. However, whether miR-199a-5p is involved in cardiovascular dysfunction at high altitudes and contributes to subsequent reductions in exercise capacity remains unknown. Thus, this study aimed at exploring these relationships in a high altitude population. Methods A total of 175 lowlanders who had immigrated to an altitude of 3,800 m 2 years previously participated in the present study. The level of plasma miR-199a-5p and the concentration of serum myocardial enzymes were detected by qRT-PCR and ELISA, respectively. Indices of cardiovascular function were examined by echocardiography. The exercise capacity was evaluated by Cooper’s 12-min run test and the Harvard Step Test. Furthermore, we explored the biological functions of miR-199a-5p with silico analysis and a biochemical test. Results The level of miR-199a-5p was significantly higher in individuals with poor exercise capacity at 3,800 m, compared with those with good exercise capacity (p < 0.001). miR-199a-5p accurately identified individuals with poor exercise capacity (AUC = 0.752, p < 0.001). The level of miR-199a-5p was positively correlated with cardiovascular dysfunction indices (all, p < 0.001). Furthermore, miR-199a-5p was involved in the oxidative stress process. Conclusion In this study, we reported for the first time that the level of circulating miR-199a-5p was positively associated with exercise capacity during chronic hypoxia at high altitudes. Moreover, higher miR-199a-5p was involved in hypoxia-induced cardiovascular dysfunctions, thus contributing to poorer exercise endurance at high altitudes.
Collapse
Affiliation(s)
- He Huang
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,College of High Altitude Military Medicine, Institute of Medicine and Equipment for High Altitude Region, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Shenwei Xie
- Shigatse Branch, Second Affiliated Hospital (Xinqiao Hospital) of Army Medical University (Third Military Medical University), Tibet, China
| | - Xiaolan Gu
- Department of Infectious Diseases, First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Bin Xiang
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Zhifeng Zhong
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Pei Huang
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Yuqi Gao
- College of High Altitude Military Medicine, Institute of Medicine and Equipment for High Altitude Region, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Peng Li
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| |
Collapse
|
9
|
Willie CK, Patrician A, Hoiland RL, Williams AM, Gasho C, Subedi P, Anholm J, Drane A, Tymko MM, Nowak-Flück D, Plato S, McBride E, Varoli G, Binsted G, Eller LK, Reimer RA, MacLeod DB, Stembridge M, Ainslie PN. Influence of iron manipulation on hypoxic pulmonary vasoconstriction and pulmonary reactivity during ascent and acclimatization to 5050 m. J Physiol 2021; 599:1685-1708. [PMID: 33442904 DOI: 10.1113/jp281114] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Iron acts as a cofactor in the stabilization of the hypoxic-inducible factor family, and plays an influential role in the modulation of hypoxic pulmonary vasoconstriction. It is uncertain whether iron regulation is altered in lowlanders during either (1) ascent to high altitude, or (2) following partial acclimatization, when compared to high-altitude adapted Sherpa. During ascent to 5050 m, the rise in pulmonary artery systolic pressure (PASP) was blunted in Sherpa, compared to lowlanders; however, upon arrival to 5050 m, PASP levels were comparable in both groups, but the reduction in iron bioavailability was more prevalent in lowlanders compared to Sherpa. Following partial acclimatization to 5050 m, there were differential influences of iron status manipulation (via iron infusion or chelation) at rest and during exercise between lowlanders and Sherpa on the pulmonary vasculature. ABSTRACT To examine the adaptational role of iron bioavailability on the pulmonary vascular responses to acute and chronic hypobaric hypoxia, the haematological and cardiopulmonary profile of lowlanders and Sherpa were determined during: (1) a 9-day ascent to 5050 m (20 lowlanders; 12 Sherpa), and (2) following partial acclimatization (11 ± 4 days) to 5050 m (18 lowlanders; 20 Sherpa), where both groups received an i.v. infusion of either iron (iron (iii)-hydroxide sucrose) or an iron chelator (desferrioxamine). During ascent, there were reductions in iron status in both lowlanders and Sherpa; however, Sherpa appeared to demonstrate a more efficient capacity to mobilize stored iron, compared to lowlanders, when expressed as a Δhepcidin per unit change in either body iron or the soluble transferrin receptor index, between 3400-5050 m (P = 0.016 and P = 0.029, respectively). The rise in pulmonary artery systolic pressure (PASP) was blunted in Sherpa, compared to lowlanders during ascent; however, PASP was comparable in both groups upon arrival to 5050 m. Following partial acclimatization, despite Sherpa demonstrating a blunted hypoxic ventilatory response and greater resting hypoxaemia, they had similar hypoxic pulmonary vasoconstriction when compared to lowlanders at rest. Iron-infusion attenuated PASP in both groups at rest (P = 0.005), while chelation did not exaggerate PASP in either group at rest or during exaggerated hypoxaemia ( P I O 2 = 67 mmHg). During exercise at 25% peak wattage, PASP was only consistently elevated in Sherpa, which persisted following both iron infusion or chelation. These findings provide new evidence on the complex interplay of iron regulation on pulmonary vascular regulation during acclimatization and adaptation to high altitude.
Collapse
Affiliation(s)
- Christopher K Willie
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Alexander Patrician
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada.,Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexandra M Williams
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher Gasho
- Pulmonary/Critical Care Section, VA Loma Linda Healthcare System and Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Prajan Subedi
- Pulmonary/Critical Care Section, VA Loma Linda Healthcare System and Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - James Anholm
- Pulmonary/Critical Care Section, VA Loma Linda Healthcare System and Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Aimee Drane
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Michael M Tymko
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada.,Neurovascular Health Laboratory, University of Alberta, Edmonton, Alberta, Canada
| | - Daniela Nowak-Flück
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Sawyer Plato
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Emily McBride
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Giovanfrancesco Varoli
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Gordon Binsted
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Lindsay K Eller
- Faculty of Kinesiology and Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Raylene A Reimer
- Faculty of Kinesiology and Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - David B MacLeod
- Human Pharmacology & Physiology Lab, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Michael Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Philip N Ainslie
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
10
|
Richalet JP. [Adaption to chronic hypoxaemia by populations living at high altitude]. Rev Mal Respir 2021; 38:395-403. [PMID: 33541755 DOI: 10.1016/j.rmr.2020.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Permanent life at high altitude induces important physiological stresses linked to the exposure to chronic hypoxia. Various strategies have been adopted by diverse populations living in the Andes, Tibet or East Africa. The main mechanism is an increase in red blood cell production, more marked in Andeans than in Tibetans or Ethiopians. Other changes are observed in the cardiovascular or respiratory systems, as well as in the utero-placental circulation. Sometimes, a de-adaptation process to hypoxia develops, when erythrocytosis becomes excessive and leads to haematological, vascular and cerebral complications (Monge's disease or chronic mountain sickness). Pulmonary hypertension may also appear. Therapeutic options are available but not sufficiently used. Genetic studies have recently been undertaken to try to better understand the evolution of the human genome in populations living in various high altitude regions of the world, as well as the genetic risk factors for chronic diseases. A new model has appeared, intermittent chronic hypoxia, due to the development of economic activities (mainly mining) in desert regions of the Altiplano.
Collapse
Affiliation(s)
- J-P Richalet
- Laboratoire « Hypoxie & Poumon », UMR Inserm U1272, Université Sorbonne Paris Nord 13, 74, rue Marcel-Cachin, 93017 Bobigny cedex, France.
| |
Collapse
|
11
|
Bhandari S, Cavalleri GL. Population History and Altitude-Related Adaptation in the Sherpa. Front Physiol 2019; 10:1116. [PMID: 31555147 PMCID: PMC6722185 DOI: 10.3389/fphys.2019.01116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/12/2019] [Indexed: 12/29/2022] Open
Abstract
The first ascent of Mount Everest by Tenzing Norgay and Sir Edmund Hillary in 1953 brought global attention to the Sherpa people and human performance at altitude. The Sherpa inhabit the Khumbu Valley of Nepal, and are descendants of a population that has resided continuously on the Tibetan plateau for the past ∼25,000 to 40,000 years. The long exposure of the Sherpa to an inhospitable environment has driven genetic selection and produced distinct adaptive phenotypes. This review summarizes the population history of the Sherpa and their physiological and genetic adaptation to hypoxia. Genomic studies have identified robust signals of positive selection across EPAS1, EGLN1, and PPARA, that are associated with hemoglobin levels, which likely protect the Sherpa from altitude sickness. However, the biological underpinnings of other adaptive phenotypes such as birth weight and the increased reproductive success of Sherpa women are unknown. Further studies are required to identify additional signatures of selection and refine existing Sherpa-specific adaptive phenotypes to understand how genetic factors have underpinned adaptation in this population. By correlating known and emerging signals of genetic selection with adaptive phenotypes, we can further reveal hypoxia-related biological mechanisms of adaptation. Ultimately this work could provide valuable information regarding treatments of hypoxia-related illnesses including stroke, heart failure, lung disease and cancer.
Collapse
Affiliation(s)
- Sushil Bhandari
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gianpiero L Cavalleri
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
12
|
Ghosh S, Kiyamu M, Contreras P, León-Velarde F, Bigham A, Brutsaert TD. Exhaled nitric oxide in ethnically diverse high-altitude native populations: A comparative study. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 170:451-458. [PMID: 31396964 DOI: 10.1002/ajpa.23915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/25/2019] [Accepted: 07/18/2019] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Andean and Tibetan high-altitude natives exhibit a high concentration of nitric oxide (NO) in the lungs, suggesting that NO plays an adaptive role in offsetting hypobaric hypoxia. We examined the exhaled NO concentration as well as partial pressure of several additional high-altitude native populations in order to examine the possibility that this putative adaptive trait, that is, high exhaled NO, is universal. METHODS We recruited two geographically diverse highland native populations, Tawang Monpa (TM), a Tibetan derived population in North-Eastern India (n = 95, sampled at an altitude of ~3,200 m), and Peruvian Quechua from the highland Andes (n = 412). The latter included three distinct subgroups defined as those residing at altitude (Q-HAR, n = 110, sampled at 4,338 m), those born and residing at sea-level (Q-BSL, n = 152), and those born at altitude but migrant to sea-level (Q-M, n = 150). In addition, we recruited a referent sample of lowland natives of European ancestry from Syracuse, New York. Fraction of exhaled NO concentrations were measured using a NIOX NIMO following the protocol of the manufacturer. RESULTS Partial pressure of exhaled nitric oxide (PENO) was significantly lower (p < .05) in both high-altitude resident groups (TM = 6.2 ± 0.5 nmHg and Q-HAR = 5.8 ± 0.5 nmHg), as compared to the groups measured at sea level (USA = 14.6 ± 0.7 nmHg, Q-BSL = 18.9 ± 1.6 nmHg, and Q-M = 19.2 ± 1.7 nmHg). PENO was not significantly different between TM and Q-HAR (p < .05). CONCLUSION In contrast to previous work, we found lower PENO in populations at altitude (compared to sea-level) and no difference in PENO between Tibetan and Andean highland native populations. These results do not support the hypothesis that high nitric oxide in human lungs is a universal adaptive mechanism of highland native populations to offset hypobaric hypoxia.
Collapse
Affiliation(s)
- Sudipta Ghosh
- Department of Anthropology, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Melisa Kiyamu
- Departamento de Ciencias Biológicas y Fisiológicas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Paloma Contreras
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan
| | - Fabiola León-Velarde
- Departamento de Ciencias Biológicas y Fisiológicas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Abigail Bigham
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan
| | - Tom D Brutsaert
- Department of Exercise Science, Syracuse University, Syracuse, New York
| |
Collapse
|
13
|
Grocott MPW, Levett DZH, Ward SA. Exercise physiology: exercise performance at altitude. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
The overlooked significance of plasma volume for successful adaptation to high altitude in Sherpa and Andean natives. Proc Natl Acad Sci U S A 2019; 116:16177-16179. [PMID: 31358634 PMCID: PMC6697886 DOI: 10.1073/pnas.1909002116] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In contrast to Andean natives, high-altitude Tibetans present with a lower hemoglobin concentration that correlates with reproductive success and exercise capacity. Decades of physiological and genomic research have assumed that the lower hemoglobin concentration in Himalayan natives results from a blunted erythropoietic response to hypoxia (i.e., no increase in total hemoglobin mass). In contrast, herein we test the hypothesis that the lower hemoglobin concentration is the result of greater plasma volume, rather than an absence of increased hemoglobin production. We assessed hemoglobin mass, plasma volume and blood volume in lowlanders at sea level, lowlanders acclimatized to high altitude, Himalayan Sherpa, and Andean Quechua, and explored the functional relevance of volumetric hematological measures to exercise capacity. Hemoglobin mass was highest in Andeans, but also was elevated in Sherpa compared with lowlanders. Sherpa demonstrated a larger plasma volume than Andeans, resulting in a comparable total blood volume at a lower hemoglobin concentration. Hemoglobin mass was positively related to exercise capacity in lowlanders at sea level and in Sherpa at high altitude, but not in Andean natives. Collectively, our findings demonstrate a unique adaptation in Sherpa that reorientates attention away from hemoglobin concentration and toward a paradigm where hemoglobin mass and plasma volume may represent phenotypes with adaptive significance at high altitude.
Collapse
|
15
|
Naeije R. Pulmonary hypertension at high altitude. Eur Respir J 2019; 53:53/6/1900985. [DOI: 10.1183/13993003.00985-2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 11/05/2022]
|
16
|
Soria R, Egger M, Scherrer U, Bender N, Rimoldi SF. Pulmonary arterial pressure at rest and during exercise in chronic mountain sickness: a meta-analysis. Eur Respir J 2019; 53:13993003.02040-2018. [PMID: 31023845 DOI: 10.1183/13993003.02040-2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/21/2019] [Indexed: 01/22/2023]
Abstract
Up to 10% of the more than 140 million high-altitude dwellers worldwide suffer from chronic mountain sickness (CMS). Patients suffering from this debilitating problem often display increased pulmonary arterial pressure (PAP), which may contribute to exercise intolerance and right heart failure. However, there is little information on the usual PAP in these patients.We systematically reviewed and meta-analysed all data published in English or Spanish until June 2018 on echocardiographic estimations of PAP at rest and during mild exercise in CMS patients.Nine studies comprising 287 participants fulfilled the inclusion criteria. At rest, the point estimate from meta-analysis of the mean systolic PAP was 27.9 mmHg (95% CI 26.3-29.6 mmHg). These values are 11% (+2.7 mmHg) higher than those previously meta-analysed in apparently healthy high-altitude dwellers. During mild exercise (50 W) the difference in mean systolic PAP between patients and high-altitude dwellers was markedly more accentuated (48.3 versus 36.3 mmHg) than at rest.These findings indicate that in patients with CMS PAP is moderately increased at rest, but markedly increased during mild exercise, which will be common with activities of daily living.
Collapse
Affiliation(s)
- Rodrigo Soria
- Dept of Cardiology and Clinical Research, Inselspital, University of Bern, Bern, Switzerland
| | - Matthias Egger
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland.,Division of Epidemiology and Biostatistics, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Urs Scherrer
- Dept of Cardiology and Clinical Research, Inselspital, University of Bern, Bern, Switzerland.,Facultad de Ciencias, Departamento de Biología, Universidad de Tarapacá, Arica, Chile
| | - Nicole Bender
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland.,Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland.,These two authors contributed equally to this work
| | - Stefano F Rimoldi
- Dept of Cardiology and Clinical Research, Inselspital, University of Bern, Bern, Switzerland .,These two authors contributed equally to this work
| |
Collapse
|
17
|
Rieger MG, Nowak-Flück D, Morris LE, Niroula S, Sherpa KT, Tallon CM, Stembridge M, Ainslie PN, McManus AM. UBC-Nepal Expedition: Cerebrovascular Responses to Exercise in Sherpa Children Residing at High Altitude. High Alt Med Biol 2019; 20:45-55. [PMID: 30648898 DOI: 10.1089/ham.2018.0083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Understanding the process of successful adaptation to high altitude provides valuable insight into the pathogenesis of conditions associated with impaired oxygen uptake and utilization. Prepubertal children residing at low altitude show a reduced cerebrovascular response to exercise in comparison to adults, and a transient uncoupling of cerebral blood flow to changes in the partial pressure of end-tidal CO2 (PETCO2); however, little is known about the cerebrovascular response to exercise in high-altitude native children. We sought to compare the cerebral hemodynamic response to acute exercise between prepubertal children residing at high and low altitude. Prepubertal children (n = 32; 17 female) of Sherpa descent (Sherpa children [SC]) at high altitude (3800 m, Nepal) and maturational-matched (n = 32; 20 female) children (lowland children [LLC]) residing at low altitude (342 m, Canada). Ventilation, peripheral oxygen saturation (SpO2), PETCO2, and blood velocity in the middle and posterior cerebral arteries (MCAv and PCAv) were continuously measured during a graded cycling exercise test to exhaustion. At baseline (BL), PETCO2 (-19 ± 4 mmHg, p < 0.001), SpO2 (-6.0% ± 2.1%, p < 0.001), MCAv (-12% ± 5%, p = 0.02), and PCAv (-12% ± 6%, p = 0.04) were lower in SC when compared with LLC. Despite this, the relative change in MCAv and PCAv during exercise was similar between the two groups (p = 0.99). Linear regression analysis demonstrated a positive relationship between changes in PETCO2 with MCAv in SC (R2 = 0.13, p > 0.001), but not in LLC (R2 = 0.03, p = 0.10). Our findings demonstrate a similar increase in intra-cranial perfusion during exercise in prepubertal SC, despite differential BL values and changes in PETCO2 and SpO2.
Collapse
Affiliation(s)
- Mathew G Rieger
- 1 Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, Canada
| | - Daniela Nowak-Flück
- 1 Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, Canada
| | - Laura E Morris
- 1 Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, Canada
| | - Shailesh Niroula
- 2 Institute of Medicine, Tribhuvan University, Kathmandu, Nepal.,3 Khunde Hospital, Khunde, Nepal
| | | | - Christine M Tallon
- 1 Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, Canada
| | - Mike Stembridge
- 4 Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Philip N Ainslie
- 1 Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, Canada
| | - Ali M McManus
- 1 Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, Canada
| |
Collapse
|
18
|
Yang Y, Zha-Xi DJ, Mao W, Zhi G, Feng B, Chen YD. Comparison of Echocardiographic Parameters Between Healthy Highlanders in Tibet and Lowlanders in Beijing. High Alt Med Biol 2018; 19:259-264. [PMID: 30118327 DOI: 10.1089/ham.2017.0094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Yang, Ying, Duo-Ji Zha-Xi, Wei Mao, Guang Zhi, Bin Feng, and Yun-Dai Chen. Comparison of echocardiographic parameters between healthy highlanders in Tibet and lowlanders in Beijing. High Alt Med Biol. 19:259-264, 2018.-The hearts of highlanders exhibit distinct features compared with the hearts of lowlanders. However, previous findings have not been verified in a large-scale Tibetan population study. The aim of this study was to present differences in echocardiography results among healthy native Tibetans, acclimatized Han highlanders, and Han lowlanders at sea level. A total of 1820 healthy Tibetans and 224 healthy Han highlanders were drawn from a representative sample of residents in Tibet. Echocardiography was performed on each participant at the sampled local medical centers. Echocardiographic data from 2332 healthy Han lowlanders were obtained from a database of a medical examination center in Beijing. Using propensity score matching to balance differences in demographic features, we evaluated the effects of altitude and ethnicity in three paired comparisons. The results revealed that the great arteries were larger in the Han population than in the Tibetan population regardless of altitude (all p < 0.05). No differences were found in the right atrium between different altitudes and ethnicities. The diameters and thicknesses of the right ventricle (RV) were larger in the Tibetans than in the Han lowlanders (i.e., 30.0 mm (26.0, 34.0) versus 28.6 mm (25.5, 31.8) for the basal right ventricular linear dimension). The left heart in diastole was largest in the Han lowlanders (i.e., 46.3 ± 3.9 mm versus 43.0 mm [40.0, 44.0] in Han highlanders and 45.8 mm [43.0, 48.8] versus 42.0 mm [39.0, 45.0] in Tibetans for the diameter of the left ventricle [LV] at end-diastole). Moreover, the interventricular septum was thicker in the high-altitude population than in the low-altitude population (all p < 0.05). Compared with the Tibetans, the Han highlanders exhibited enhanced ventricular functions (65.0% [60.0, 69.0] versus 68.0% [63.0, 69.0] for LV ejection fraction and 22.0 mm [20.0, 26.0] versus 24.0 mm [21.0, 27.0] for tricuspid annular plane systolic excursion, both p < 0.05). In conclusion, a small left heart and a large RV may be consequences of hypoxic exposure at high altitudes irrespective of ethnic origin.
Collapse
Affiliation(s)
- Ying Yang
- 1 Division of Prevention and Community Health, National Center for Cardiovascular Disease, Fuwai Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Duo-Ji Zha-Xi
- 2 Department of Ultrasound Diagnosis, Tibet Second People's Hospital , Lhasa, Tibet, China
| | - Wei Mao
- 3 Department of Internal Medicine, People's Hospital of Duilongdeqing County , Lhasa, Tibet, China
| | - Guang Zhi
- 4 Department of Cardiology, Chinese PLA General Hospital , Beijing, China
| | - Bin Feng
- 4 Department of Cardiology, Chinese PLA General Hospital , Beijing, China
| | - Yun-Dai Chen
- 4 Department of Cardiology, Chinese PLA General Hospital , Beijing, China
| |
Collapse
|
19
|
Vanderpool RR, Naeije R. Hematocrit-corrected Pulmonary Vascular Resistance. Am J Respir Crit Care Med 2018. [DOI: 10.1164/rccm.201801-0081pp] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Rebecca R. Vanderpool
- Department of Translational and Regenerative Medicine, University of Arizona, Tucson, Arizona; and
| | - Robert Naeije
- Department of Cardiology, Erasmus University Hospital, Brussels, Belgium
| |
Collapse
|
20
|
Stembridge M, Ainslie PN, Boulet LM, Anholm J, Subedi P, Tymko MM, Willie CK, Cooper SM, Shave R. The independent effects of hypovolaemia and pulmonary vasoconstriction on ventricular function and exercise capacity during acclimatisation to 3800 m. J Physiol 2018; 597:1059-1072. [PMID: 29808473 DOI: 10.1113/jp275278] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 04/17/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS We sought to determine the isolated and combined influence of hypovolaemia and hypoxic pulmonary vasoconstriction on the decrease in left ventricular (LV) function and maximal exercise capacity observed under hypobaric hypoxia. We performed echocardiography and maximal exercise tests at sea level (344 m), and following 5-10 days at the Barcroft Laboratory (3800 m; White Mountain, California) with and without (i) plasma volume expansion to sea level values and (ii) administration of the pulmonary vasodilatator sildenafil in a double-blinded and placebo-controlled trial. The high altitude-induced reduction in LV filling and ejection was abolished by plasma volume expansion but to a lesser extent by sildenafil administration; however, neither intervention had a positive effect on maximal exercise capacity. Both hypovolaemia and hypoxic pulmonary vasoconstriction play a role in the reduction of LV filling at 3800 m, but the increase in LV filling does not influence exercise capacity at this moderate altitude. ABSTRACT We aimed to determine the isolated and combined contribution of hypovolaemia and hypoxic pulmonary vasoconstriction in limiting left ventricular (LV) function and exercise capacity under chronic hypoxaemia at high altitude. In a double-blinded, randomised and placebo-controlled design, 12 healthy participants underwent echocardiography at rest and during submaximal exercise before completing a maximal test to exhaustion at sea level (SL; 344 m) and after 5-10 days at 3800 m. Plasma volume was normalised to SL values, and hypoxic pulmonary vasoconstriction was reversed by administration of sildenafil (50 mg) to create four unique experimental conditions that were compared with SL values: high altitude (HA), Plasma Volume Expansion (HA-PVX), Sildenafil (HA-SIL) and Plasma Volume Expansion with Sildenafil (HA-PVX-SIL). High altitude exposure reduced plasma volume by 11% (P < 0.01) and increased pulmonary artery systolic pressure (19.6 ± 4.3 vs. 26.0 ± 5.4, P < 0.001); these differences were abolished by PVX and SIL respectively. LV end-diastolic volume (EDV) and stroke volume (SV) were decreased upon ascent to high altitude, but were comparable to sea level in the HA-PVX trial. LV EDV and SV were also elevated in the HA-SIL and HA-PVX-SIL trials compared to HA, but to a lesser extent. Neither PVX nor SIL had a significant effect on the LV EDV and SV response to exercise, or the maximal oxygen consumption or peak power output. In summary, at 3800 m both hypovolaemia and hypoxic pulmonary vasoconstriction contribute to the decrease in LV filling, but restoring LV filling does not confer an improvement in maximal exercise performance.
Collapse
Affiliation(s)
- Mike Stembridge
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cardiff, UK
| | - Philip N Ainslie
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Lindsey M Boulet
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - James Anholm
- VA Loma Linda Healthcare System and Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Prajan Subedi
- VA Loma Linda Healthcare System and Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Michael M Tymko
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Christopher K Willie
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Stephen-Mark Cooper
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cardiff, UK
| | - Rob Shave
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cardiff, UK.,Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
21
|
Abstract
INTRODUCTION Altitude is associated with a decrease in partial pressure of oxygen. Hypoxia induces pulmonary vasoconstriction with subsequent fixed increase in pulmonary artery pressure, and eventual right heart failure. CURRENT KNOWLEDGE High altitude exposure is associated with an increase in pulmonary artery pressure that is proportional to initial vasoconstriction. Echocardiographic evaluations on a large number of subjects show that the altitude-induced increase in pulmonary pressure is generally modest and does not exceed the 25mmHg that are diagnostic of pulmonary hypertension. This does not greatly increase right ventricular afterload, so that imaging of the right ventricle only shows some alterations of indices of systolic or diastolic function, but preserved contractile reserve during exercise. In less than 1% of cases, hypoxic vasoconstriction is strong and may be a cause of severe pulmonary hypertension and right heart failure. PERSPECTIVES The prognostic relevance of altitude-induced pulmonary hypertension and associated cardiac function alterations is not known. Treatment of hypoxic pulmonary hypertension relies on evacuation to a lower altitude, oxygen and pulmonary vasodilators. These treatment strategies have not been rigorously evaluated. CONCLUSIONS Altitude may be a cause of right heart failure. This uncommon complication of altitude exposure requires further epidemiological and therapeutic studies.
Collapse
|
22
|
Pulmonary hemodynamics responses to hypoxia and/or CO 2 inhalation during moderate exercise in humans. Pflugers Arch 2018; 470:1035-1045. [PMID: 29502264 DOI: 10.1007/s00424-018-2127-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 02/07/2018] [Accepted: 02/19/2018] [Indexed: 02/06/2023]
Abstract
In this study, we hypothesized that adding CO2 to an inhaled hypoxic gas mixture will limit the rise of pulmonary artery pressure (PAP) induced by a moderate exercise. Eight 20-year-old males performed four constant-load exercise tests on cycle at 40% of maximal oxygen consumption in four conditions: ambient air, normobaric hypoxia (12.5% O2), inhaled CO2 (4.5% CO2), and combination of hypoxia and inhaled CO2. Doppler echocardiography was used to measure systolic (s)PAP, cardiac output (CO). Total pulmonary resistance (TPR) was calculated. Arterialized blood pH was 7.40 at exercise in ambient and hypoxia conditions, whereas CO2 inhalation and combined conditions showed acidosis. sPAP increases from rest in ambient air to exercise ranged as follows: ambient + 110%, CO2 inhalation + 135%, combined + 184%, hypoxia + 217% (p < 0.001). CO was higher when inhaling O2-poor gas mixtures with or without CO2 (~ 17 L min-1) than in the other conditions (~ 14 L min-1, p < 0.001). Exercise induced a significant decrease in TPR in the four conditions (p < 0.05) but less marked in hypoxia (- 19% of the resting value in ambient air) than in ambient (- 33%) and in both CO2 inhalation and combined condition (- 29%). We conclude that (1) acute CO2 inhalation did not significantly modify pulmonary hemodynamics during moderate exercise. (2) CO2 adjunction to hypoxic gas mixture did not modify CO, despite a higher CaO2 in combined condition than in hypoxia. (3) TPR was lower in combined than in hypoxia condition, limiting sPAP increase in combined condition.
Collapse
|
23
|
Faoro V, Deboeck G, Vicenzi M, Gaston AF, Simaga B, Doucende G, Hapkova I, Roca E, Subirats E, Durand F, Naeije R. Pulmonary Vascular Function and Aerobic Exercise Capacity at Moderate Altitude. Med Sci Sports Exerc 2018; 49:2131-2138. [PMID: 28915226 DOI: 10.1249/mss.0000000000001320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE There has been suggestion that a greater "pulmonary vascular reserve" defined by a low pulmonary vascular resistance (PVR) and a high lung diffusing capacity (DL) allow for a superior aerobic exercise capacity. How pulmonary vascular reserve might affect exercise capacity at moderate altitude is not known. METHODS Thirty-eight healthy subjects underwent an exercise stress echocardiography of the pulmonary circulation, combined with measurements of DL for nitric oxide (NO) and carbon monoxide (CO) and a cardiopulmonary exercise test at sea level and at an altitude of 2250 m. RESULTS At rest, moderate altitude decreased arterial oxygen content (CaO2) from 19.1 ± 1.6 to 18.4 ± 1.7 mL·dL, P < 0.001, and slightly increased PVR, DLNO, and DLCO. Exercise at moderate altitude was associated with decreases in maximum O2 uptake (V˙O2max), from 51 ± 9 to 43 ± 8 mL·kg⋅min, P < 0.001, and CaO2 to 16.5 ± 1.7 mL·dL, P < 0.001, but no different cardiac output, PVR, and pulmonary vascular distensibility. DLNO was inversely correlated to the ventilatory equivalent of CO2 (V˙E/V˙CO2) at sea level and at moderate altitude. Independent determinants of V˙O2max as determined by a multivariable analysis were the slope of mean pulmonary artery pressure-cardiac output relationship, resting stroke volume, and resting DLNO at sea level as well as at moderate altitude. The magnitude of the decrease in V˙O2max at moderate altitude was independently predicted by more pronounced exercise-induced decrease in CaO2 at moderate altitude. CONCLUSION Aerobic exercise capacity is similarly modulated by pulmonary vascular reserve at moderate altitude and at sea level. Decreased aerobic exercise capacity at moderate altitude is mainly explained by exercise-induced decrease in arterial oxygenation.
Collapse
Affiliation(s)
- Vitalie Faoro
- 1Laboratory of Exercise Physiology, Faculty of Motor Sciences, Université Libre de Bruxelles, Brussels, BELGIUM; 2Department of Cardiology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, BELGIUM; 3U.O.C. Cardiovascular Diseases, Fondazione IRCCS Granda Hospital Maggiore Policlinico, Milan, ITALY; 4European Laboratory of Performance Health and Altitude, University of Perpignan, Font-Romeu, FRANCE; 5Faculty of Medicine, University of Girona, Girona, SPAIN; and 6Hospital Transfronterer de Cerdanya, Puigcerdà, SPAIN
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hughes J, Dinh-Xuan A. The DL NO /DL CO ratio: Physiological significance and clinical implications. Respir Physiol Neurobiol 2017; 241:17-22. [DOI: 10.1016/j.resp.2017.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
|
25
|
Zavorsky GS, Hsia CCW, Hughes JMB, Borland CDR, Guénard H, van der Lee I, Steenbruggen I, Naeije R, Cao J, Dinh-Xuan AT. Standardisation and application of the single-breath determination of nitric oxide uptake in the lung. Eur Respir J 2017; 49:49/2/1600962. [PMID: 28179436 DOI: 10.1183/13993003.00962-2016] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/26/2016] [Indexed: 01/03/2023]
Abstract
Diffusing capacity of the lung for nitric oxide (DLNO), otherwise known as the transfer factor, was first measured in 1983. This document standardises the technique and application of single-breath DLNO This panel agrees that 1) pulmonary function systems should allow for mixing and measurement of both nitric oxide (NO) and carbon monoxide (CO) gases directly from an inspiratory reservoir just before use, with expired concentrations measured from an alveolar "collection" or continuously sampled via rapid gas analysers; 2) breath-hold time should be 10 s with chemiluminescence NO analysers, or 4-6 s to accommodate the smaller detection range of the NO electrochemical cell; 3) inspired NO and oxygen concentrations should be 40-60 ppm and close to 21%, respectively; 4) the alveolar oxygen tension (PAO2 ) should be measured by sampling the expired gas; 5) a finite specific conductance in the blood for NO (θNO) should be assumed as 4.5 mL·min-1·mmHg-1·mL-1 of blood; 6) the equation for 1/θCO should be (0.0062·PAO2 +1.16)·(ideal haemoglobin/measured haemoglobin) based on breath-holding PAO2 and adjusted to an average haemoglobin concentration (male 14.6 g·dL-1, female 13.4 g·dL-1); 7) a membrane diffusing capacity ratio (DMNO/DMCO) should be 1.97, based on tissue diffusivity.
Collapse
Affiliation(s)
- Gerald S Zavorsky
- Dept of Respiratory Therapy, Georgia State University, Atlanta, GA, USA
| | - Connie C W Hsia
- Dept of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Colin D R Borland
- Dept of Medicine, University of Cambridge, Hinchingbrooke Hospital, Huntingdon, UK
| | - Hervé Guénard
- Dept of Physiology and Pulmonary Laboratory, University of Bordeaux and CHU, Bordeaux, France
| | - Ivo van der Lee
- Dept of Pulmonary Diseases, Spaarne Hospital, Hoofddorp, The Netherlands
| | | | - Robert Naeije
- Dept of Cardiology, Erasme University Hospital, Brussels, Belgium
| | - Jiguo Cao
- Dept of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, Canada
| | - Anh Tuan Dinh-Xuan
- Dept of Physiology, Cochin Hospital, Paris Descartes University, Paris, France
| |
Collapse
|
26
|
Lung diffusing capacity in sub-Saharan Africans versus European Caucasians. Respir Physiol Neurobiol 2017; 241:23-27. [PMID: 28087341 DOI: 10.1016/j.resp.2017.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/20/2016] [Accepted: 01/04/2017] [Indexed: 11/20/2022]
Abstract
Single breath measurements of lung diffusing capacity (DL) for carbon monoxide (CO) and nitric oxide (NO) were performed in age-, sex-, weight- and height-matched 32 sub-Saharan Africans (13 women) and 32 Caucasian Europeans, and repeated in 14 of each group at 80% of maximum exercise capacity. In Africans versus Caucasians respectively, DLNO was 153±31 vs 176±38ml/mmHg/min at rest (P<0.001) and 210±48 vs 241±52ml/mmHg/min at exercise (P<0.01) while hemoglobin-adjusted DLCO was 29±6 vs 34±6ml/mmHg/min at rest (P<0.001), and 46±11 vs 51±13ml/mmHg/min at exercise (P<0.01). However there were no differences in DLCO/alveolar volume(VA) (KCO) and DLNO/VA(KNO). The sitting-to-standing height ratio was lower in the Africans. Differences in lung volume with respect to body height explain lower DLNO and DLCO in sub-Saharan Africans as compared to Caucasian Europeans.
Collapse
|
27
|
Soria R, Egger M, Scherrer U, Bender N, Rimoldi SF. Pulmonary artery pressure and arterial oxygen saturation in people living at high or low altitude: systematic review and meta-analysis. J Appl Physiol (1985) 2016; 121:1151-1159. [PMID: 27660297 DOI: 10.1152/japplphysiol.00394.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/02/2016] [Accepted: 09/21/2016] [Indexed: 02/08/2023] Open
Abstract
More than 140 million people are living at high altitude worldwide. An increase of pulmonary artery pressure (PAP) is a hallmark of high-altitude exposure and, if pronounced, may be associated with important morbidity and mortality. Surprisingly, there is little information on the usual PAP in high-altitude populations. We, therefore, conducted a systematic review (MEDLINE and EMBASE) and meta-analysis of studies published (in English or Spanish) between 2000 and 2015 on echocardiographic estimations of PAP and measurements of arterial oxygen saturation in apparently healthy participants from general populations of high-altitude dwellers (>2,500 m). For comparison, we similarly analyzed data published on these variables during the same period for populations living at low altitude. Twelve high-altitude studies comprising 834 participants and 18 low-altitude studies (710 participants) fulfilled the inclusion criteria. All but one high-altitude studies were performed between 3,600 and 4,350 m. The combined mean systolic PAP (right ventricular-to-right atrial pressure gradient) at high altitude [25.3 mmHg, 95% confidence interval (CI) 24.0, 26.7], as expected was significantly (P < 0.001) higher than at low altitude (18.4 mmHg, 95% CI 17.1,19.7), and arterial oxygen saturation was significantly lower (90.4%, 95% CI 89.3, 91.5) than at low altitude (98.1%; 95% CI 97.7, 98.4). These findings indicate that at an altitude where the very large majority of high-altitude populations are living, pulmonary hypertension appears to be rare. The reference values and distributions for PAP and arterial oxygen saturation in apparently healthy high-altitude dwellers provided by this meta-analysis will be useful to future studies on the adjustments to high altitude in humans.
Collapse
Affiliation(s)
- Rodrigo Soria
- Department of Cardiology and Clinical Research, Inselspital, University of Bern, Switzerland
| | - Matthias Egger
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Switzerland.,Division of Epidemiology and Biostatistics, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Urs Scherrer
- Department of Cardiology and Clinical Research, Inselspital, University of Bern, Switzerland.,Facultad de Ciencias, Departamento de Biología, Universidad de Tarapacá, Arica, Chile; and
| | - Nicole Bender
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Switzerland.,Institute of Evolutionary Medicine, University of Zurich, Switzerland
| | - Stefano F Rimoldi
- Department of Cardiology and Clinical Research, Inselspital, University of Bern, Switzerland;
| |
Collapse
|
28
|
Affiliation(s)
- J Michael B Hughes
- National Heart and Lung Institute, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| |
Collapse
|
29
|
Integrative Conductance of Oxygen During Exercise at Altitude. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 903:395-408. [PMID: 27343110 DOI: 10.1007/978-1-4899-7678-9_26] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the oxygen (O2) cascade downstream steps can never achieve higher flows of O2 than the preceding ones. At the lung the transfer of O2 is determined by the O2 gradient between the alveolar space and the lung capillaries and the O2 diffusing capacity (DLO2). While DLO2 may be increased several times during exercise by recruiting more lung capillaries and by increasing the oxygen carrying capacity of blood due to higher peripheral extraction of O2, the capacity to enhance the alveolocapillary PO2 gradient is more limited. The transfer of oxygen from the alveolar space to the hemoglobin (Hb) must overcome first the resistance offered by the alveolocapillary membrane (1/DM) and the capillary blood (1/θVc). The fractional contribution of each of these two components to DLO2 remains unknown. During exercise these resistances are reduced by the recruitment of lung capillaries. The factors that reduce the slope of the oxygen dissociation curve of the Hb (ODC) (i.e., lactic acidosis and hyperthermia) increase 1/θVc contributing to limit DLO2. These effects are accentuated in hypoxia. Reducing the size of the active muscle mass improves pulmonary gas exchange during exercise and reduces the rightward shift of the ODC. The flow of oxygen from the muscle capillaries to the mitochondria is pressumably limited by muscle O2 conductance (DmcO2) (an estimation of muscle oxygen diffusing capacity). However, during maximal whole body exercise in normoxia, a higher flow of O2 is achieved at the same pressure gradients after increasing blood [Hb], implying that in healthy humans exercising in normoxia there is a functional reserve in DmcO2. This conclusion is supported by the fact that during small muscle exercise in chronic hypoxia, peak exercise DmcO2 is similar to that observed during exercise in normoxia despite a markedly lower O2 pressure gradient driving diffusion.
Collapse
|
30
|
Hoiland RL, Foster GE, Donnelly J, Stembridge M, Willie CK, Smith KJ, Lewis NC, Lucas SJ, Cotter JD, Yeoman DJ, Thomas KN, Day TA, Tymko MM, Burgess KR, Ainslie PN. Chemoreceptor Responsiveness at Sea Level Does Not Predict the Pulmonary Pressure Response to High Altitude. Chest 2015; 148:219-225. [DOI: 10.1378/chest.14-1992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
31
|
Kiyamu M, León-Velarde F, Rivera-Chira M, Elías G, Brutsaert TD. Developmental Effects Determine Submaximal Arterial Oxygen Saturation in Peruvian Quechua. High Alt Med Biol 2015; 16:138-46. [PMID: 25977978 DOI: 10.1089/ham.2014.1126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Kiyamu, Melisa, Fabiola León-Velarde, María Rivera-Chira, Gianpietro Elías, and Tom D. Brutsaert. Developmental effects determine submaximal arterial oxygen saturation in Peruvian Quechua. High Alt Med Biol 16, 138-146, 2015.--Andean high altitude natives show higher arterial oxygen saturation (Sao(2)) during exercise in hypoxia, compared to acclimatized sojourners. In order to evaluate the effects of life-long exposure to high altitude on Sao(2), we studied two groups of well-matched, self-identified Peruvian Quechua natives who differed in their developmental exposure to hypoxia before and after a 2-month training period. Male and female volunteers (18-35 years) were recruited in Lima, Peru (150 m). The two groups were: a) Individuals who were born and raised at sea-level (BSL, n=34) and b) Individuals who were born and raised at high altitude (BHA, n=32), but who migrated to sea-level as adults (>16 years old). Exercise testing was conducted using a submaximal exercise protocol in normobaric hypoxia in Lima (BP=750 mmHg, Fio(2)=0.12), in order to measure Sao(2) (%), ventilation (VE L/min) and oxygen consumption (Vo(2), L/min). Repeated-measures ANOVA, controlling for VE/VO(2) (L/min) and sex during the submaximal protocol showed that BHA maintained higher Sao(2) (%) compared to BSL at all workloads before (p=0.005) and after training (p=0.017). As expected, both groups showed a decrease in Sao(2) (%) (p<0.001), as workload increased. Resting Sao(2) levels were not found to be different between groups. The results suggest that developmental exposure to altitude contributes to the maintenance of higher Sao(2) levels during submaximal exercise at hypoxia.
Collapse
Affiliation(s)
- Melisa Kiyamu
- 1 Departamento de Ciencias Biológicas y Fisiológicas, Universidad Peruana Cayetano Heredia , Urb. San Martín de Porres, Peru
| | - Fabiola León-Velarde
- 1 Departamento de Ciencias Biológicas y Fisiológicas, Universidad Peruana Cayetano Heredia , Urb. San Martín de Porres, Peru
| | - María Rivera-Chira
- 1 Departamento de Ciencias Biológicas y Fisiológicas, Universidad Peruana Cayetano Heredia , Urb. San Martín de Porres, Peru
| | - Gianpietro Elías
- 1 Departamento de Ciencias Biológicas y Fisiológicas, Universidad Peruana Cayetano Heredia , Urb. San Martín de Porres, Peru
| | - Tom D Brutsaert
- 2 Department of Exercise Science, Syracuse University , Syracuse, New York
| |
Collapse
|
32
|
Niermeyer S, Andrade-M MP, Vargas E, Moore LG. Neonatal oxygenation, pulmonary hypertension, and evolutionary adaptation to high altitude (2013 Grover Conference series). Pulm Circ 2015; 5:48-62. [PMID: 25992270 PMCID: PMC4405714 DOI: 10.1086/679719] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/21/2014] [Indexed: 01/30/2023] Open
Abstract
Andeans and Tibetans have less altitude reduction in birth weight than do shorter-resident groups, but only Tibetans are protected from pulmonary hypertension and chronic mountain sickness (CMS). We hypothesized that differences in neonatal oxygenation were involved, with arterial O2 saturation (SaO2) being highest in Tibetans, intermediate in Andeans, and lowest in Han or Europeans, and that improved oxygenation in Andeans relative to Europeans was accompanied by a greater postnatal decline in systolic pulmonary arterial pressures (Ppasys ). We studied 41 healthy (36 Andeans, 5 Europeans) and 9 sick infants at 3,600 m in Bolivia. The SaO2 in healthy babies was highest at 6-24 hours of postnatal age and then declined, whereas sick babies showed the opposite pattern. Compared to that of 30 Tibetan or Han infants studied previously at 3,600 m, SaO2 was higher in Tibetans than in Han or Andeans during wakefulness and active or quiet sleep. Tibetans, as well as Andeans, had higher values than Han while feeding. The SaO2's of healthy Andeans and Europeans were similar and, like those of Tibetans, remained at 85% or above, whereas Han values dipped below 70%. Andean and European Ppasys values were above sea-level norms and higher in sick than in healthy babies, but right heart pressure decreased across 4-6 months in all groups. We concluded that Tibetans had better neonatal oxygenation than Andeans at 3,600 m but that, counter to our hypothesis, neither was SaO2 higher nor Ppa lower in Andean than in European infants. Further, longitudinal studies in these 4 groups are warranted to determine whether neonatal oxygenation influences susceptibility to high-altitude pulmonary hypertension and CMS later in life.
Collapse
Affiliation(s)
- Susan Niermeyer
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
| | - Mario Patricio Andrade-M
- Division of Cardiology (Pediatrics), Caja Nacional de Salud and Clínica del Sur, La Paz, Bolivia
| | - Enrique Vargas
- Department of Respiratory Medicine, Cardiology, and Physiology, Instituto Boliviano de Biología de Altura, La Paz, Bolivia
| | - Lorna G. Moore
- Department of Obstetrics and Gynecology and Center for Women’s Health Research, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
33
|
Tremblay JC, Lovering AT, Ainslie PN, Stembridge M, Burgess KR, Bakker A, Donnelly J, Lucas SJE, Lewis NCS, Dominelli PB, Henderson WR, Dominelli GS, Sheel AW, Foster GE. Hypoxia, not pulmonary vascular pressure, induces blood flow through intrapulmonary arteriovenous anastomoses. J Physiol 2014; 593:723-37. [PMID: 25416621 DOI: 10.1113/jphysiol.2014.282962] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/10/2014] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Blood flow through intrapulmonary arteriovenous anastomoses (IPAVA) is increased by acute hypoxia during rest by unknown mechanisms. Oral administration of acetazolamide blunts the pulmonary vascular pressure response to acute hypoxia, thus permitting the observation of IPAVA blood flow with minimal pulmonary pressure change. Hypoxic pulmonary vasoconstriction was attenuated in humans following acetazolamide administration and partially restored with bicarbonate infusion, indicating that the effects of acetazolamide on hypoxic pulmonary vasoconstriction may involve an interaction between arterial pH and PCO2. We observed that IPAVA blood flow during hypoxia was similar before and after acetazolamide administration, even after acid-base status correction, indicating that pulmonary pressure, pH and PCO2 are unlikely regulators of IPAVA blood flow. ABSTRACT Blood flow through intrapulmonary arteriovenous anastomoses (IPAVA) is increased with exposure to acute hypoxia and has been associated with pulmonary artery systolic pressure (PASP). We aimed to determine the direct relationship between blood flow through IPAVA and PASP in 10 participants with no detectable intracardiac shunt by comparing: (1) isocapnic hypoxia (control); (2) isocapnic hypoxia with oral administration of acetazolamide (AZ; 250 mg, three times a day for 48 h) to prevent increases in PASP; and (3) isocapnic hypoxia with AZ and 8.4% NaHCO3 infusion (AZ + HCO3 (-) ) to control for AZ-induced acidosis. Isocapnic hypoxia (20 min) was maintained by end-tidal forcing, blood flow through IPAVA was determined by agitated saline contrast echocardiography and PASP was estimated by Doppler ultrasound. Arterial blood samples were collected at rest before each isocapnic-hypoxia condition to determine pH, [HCO3(-)] and Pa,CO2. AZ decreased pH (-0.08 ± 0.01), [HCO3(-)] (-7.1 ± 0.7 mmol l(-1)) and Pa,CO2 (-4.5 ± 1.4 mmHg; P < 0.01), while intravenous NaHCO3 restored arterial blood gas parameters to control levels. Although PASP increased from baseline in all three hypoxic conditions (P < 0.05), a main effect of condition expressed an 11 ± 2% reduction in PASP from control (P < 0.001) following AZ administration while intravenous NaHCO3 partially restored the PASP response to isocapnic hypoxia. Blood flow through IPAVA increased during exposure to isocapnic hypoxia (P < 0.01) and was unrelated to PASP, cardiac output and pulmonary vascular resistance for all conditions. In conclusion, isocapnic hypoxia induces blood flow through IPAVA independent of changes in PASP and the influence of AZ on the PASP response to isocapnic hypoxia is dependent upon the H(+) concentration or Pa,CO2.
Collapse
Affiliation(s)
- Joshua C Tremblay
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Simonson TS, Wei G, Wagner HE, Wuren T, Bui A, Fine JM, Qin G, Beltrami FG, Yan M, Wagner PD, Ge RL. Increased blood-oxygen binding affinity in Tibetan and Han Chinese residents at 4200 m. Exp Physiol 2014; 99:1624-35. [PMID: 25172885 DOI: 10.1113/expphysiol.2014.080820] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
High-altitude natives are challenged by hypoxia, and a potential compensatory mechanism could be reduced blood oxygen-binding affinity (P50), as seen in several high-altitude mammalian species. In 21 Qinghai Tibetan and nine Han Chinese men, all resident at 4200 m, standard P50 was calculated from measurements of arterial PO2 and forehead oximeter oxygen saturation, which was validated in a separate examination of 13 healthy subjects residing at sea level. In both Tibetans and Han Chinese, standard P50 was 24.5 ± 1.4 and 24.5 ± 2.0 mmHg, respectively, and was lower than in the sea-level subjects (26.2 ± 0.6 mmHg, P < 0.01). There was no relationship between P50 and haemoglobin concentration (the latter ranging from 15.2 to 22.9 g dl(-1) in Tibetans). During peak exercise, P50 was not associated with alveolar-arterial PO2 difference or peak O2 uptake per kilogram. There appears to be no apparent benefit of a lower P50 in this adult high-altitude Tibetan population.
Collapse
Affiliation(s)
- T S Simonson
- Department of Medicine, Division of Physiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - G Wei
- Research Center for High-Altitude Medicine, Qinghai Medical College, Xining, Qinghai, 810001, PR China
| | - H E Wagner
- Department of Medicine, Division of Physiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - T Wuren
- Research Center for High-Altitude Medicine, Qinghai Medical College, Xining, Qinghai, 810001, PR China
| | - A Bui
- Department of Medicine, Division of Physiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - J M Fine
- Department of Medicine, Division of Physiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - G Qin
- Research Center for High-Altitude Medicine, Qinghai Medical College, Xining, Qinghai, 810001, PR China
| | - F G Beltrami
- Exercise Research Laboratory, School of Physical Education, Federal University of Rio Grande do Sul, RS, Brazil
| | - M Yan
- Research Center for High-Altitude Medicine, Qinghai Medical College, Xining, Qinghai, 810001, PR China
| | - P D Wagner
- Department of Medicine, Division of Physiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ri Li Ge
- Research Center for High-Altitude Medicine, Qinghai Medical College, Xining, Qinghai, 810001, PR China
| |
Collapse
|
36
|
Abstract
The pulmonary circulation is a high-flow and low-pressure circuit. The functional state of the pulmonary circulation is defined by pulmonary vascular pressure-flow relationships conforming to distensible vessel models with a correction for hematocrit. The product of pulmonary arterial compliance and resistance is constant, but with a slight decrease as a result of increased pulsatile hydraulic load in the presence of increased venous pressure or proximal pulmonary arterial obstruction. An increase in left atrial pressure is transmitted upstream with a ratio ≥1 for mean pulmonary artery pressure and ≤1 the diastolic pulmonary pressure. Therefore, the diastolic pressure gradient is more appropriate than the transpulmonary pressure gradient to identify pulmonary vascular disease in left heart conditions. Exercise is associated with a decrease in pulmonary vascular resistance and an increase in pulmonary arterial compliance. Right ventricular function is coupled to the pulmonary circulation with an optimal ratio of end-systolic to arterial elastances of 1.5-2.
Collapse
Affiliation(s)
- Robert Naeije
- Department of Physiology, Erasme Campus of the Free University of Brussels, CP 604, 808, Lennik Road, 1070, Brussels, Belgium,
| |
Collapse
|
37
|
Ferretti G. Maximal oxygen consumption in healthy humans: theories and facts. Eur J Appl Physiol 2014; 114:2007-36. [PMID: 24986693 DOI: 10.1007/s00421-014-2911-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/12/2014] [Indexed: 12/17/2022]
Abstract
This article reviews the concept of maximal oxygen consumption ([Formula: see text]) from the perspective of multifactorial models of [Formula: see text] limitation. First, I discuss procedural aspects of [Formula: see text] measurement: the implications of ramp protocols are analysed within the theoretical work of Morton. Then I analyse the descriptive physiology of [Formula: see text], evidencing the path that led to the view of monofactorial cardiovascular or muscular [Formula: see text] limitation. Multifactorial models, generated by the theoretical work of di Prampero and Wagner around the oxygen conductance equation, represented a radical change of perspective. These models are presented in detail and criticized with respect to the ensuing experimental work. A synthesis between them is proposed, demonstrating how much these models coincide and converge on the same conclusions. Finally, I discuss the cases of hypoxia and bed rest, the former as an example of the pervasive effects of the shape of the oxygen equilibrium curve, the latter as a neat example of adaptive changes concerning the entire respiratory system. The conclusion is that the concept of cardiovascular [Formula: see text] limitation is reinforced by multifactorial models, since cardiovascular oxygen transport provides most of the [Formula: see text] limitation, at least in normoxia. However, the same models show that the role of peripheral resistances is significant and cannot be neglected. The role of peripheral factors is greater the smaller is the active muscle mass. In hypoxia, the intervention of lung resistances as limiting factors restricts the role played by cardiovascular and peripheral factors.
Collapse
Affiliation(s)
- Guido Ferretti
- Département des Neurosciences Fondamentales, Université de Genève, 1 Rue Michel Servet, 1211, Geneva 4, Switzerland,
| |
Collapse
|
38
|
Stembridge M, Ainslie PN, Hughes MG, Stöhr EJ, Cotter JD, Nio AQX, Shave R. Ventricular structure, function, and mechanics at high altitude: chronic remodeling in Sherpa vs. short-term lowlander adaptation. J Appl Physiol (1985) 2014; 117:334-43. [PMID: 24876358 DOI: 10.1152/japplphysiol.00233.2014] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Short-term, high-altitude (HA) exposure raises pulmonary artery systolic pressure (PASP) and decreases left-ventricular (LV) volumes. However, relatively little is known of the long-term cardiac consequences of prolonged exposure in Sherpa, a highly adapted HA population. To investigate short-term adaptation and potential long-term cardiac remodeling, we studied ventricular structure and function in Sherpa at 5,050 m (n = 11; 31 ± 13 yr; mass 68 ± 10 kg; height 169 ± 6 cm) and lowlanders at sea level (SL) and following 10 ± 3 days at 5,050 m (n = 9; 34 ± 7 yr; mass 82 ± 10 kg; height 177 ± 6 cm) using conventional and speckle-tracking echocardiography. At HA, PASP was higher in Sherpa and lowlanders compared with lowlanders at SL (both P < 0.05). Sherpa had smaller right-ventricular (RV) and LV stroke volumes than lowlanders at SL with lower RV systolic strain (P < 0.05) but similar LV systolic mechanics. In contrast to LV systolic mechanics, LV diastolic, untwisting velocity was significantly lower in Sherpa compared with lowlanders at both SL and HA. After partial acclimatization, lowlanders demonstrated no change in the RV end-diastolic area; however, both RV strain and LV end-diastolic volume were reduced. In conclusion, short-term hypoxia induced a reduction in RV systolic function that was also evident in Sherpa following chronic exposure. We propose that this was consequent to a persistently higher PASP. In contrast to the RV, remodeling of LV volumes and normalization of systolic mechanics indicate structural and functional adaptation to HA. However, altered LV diastolic relaxation after chronic hypoxic exposure may reflect differential remodeling of systolic and diastolic LV function.
Collapse
Affiliation(s)
- Mike Stembridge
- Cardiff School of Sport, Cardiff Metropolitan University, Cardiff, United Kingdom;
| | - Philip N Ainslie
- School of Health and Exercise Sciences, University of British Columbia Okanagan Campus, Kelowna, Canada; and
| | - Michael G Hughes
- Cardiff School of Sport, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Eric J Stöhr
- Cardiff School of Sport, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - James D Cotter
- School of Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Amanda Q X Nio
- Cardiff School of Sport, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Rob Shave
- Cardiff School of Sport, Cardiff Metropolitan University, Cardiff, United Kingdom
| |
Collapse
|
39
|
Foster GE, Ainslie PN, Stembridge M, Day TA, Bakker A, Lucas SJE, Lewis NCS, MacLeod DB, Lovering AT. Resting pulmonary haemodynamics and shunting: a comparison of sea-level inhabitants to high altitude Sherpas. J Physiol 2014; 592:1397-409. [PMID: 24396057 PMCID: PMC3961095 DOI: 10.1113/jphysiol.2013.266593] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/24/2013] [Indexed: 12/22/2022] Open
Abstract
The incidence of blood flow through intracardiac shunt and intrapulmonary arteriovenous anastomoses (IPAVA) may differ between Sherpas permanently residing at high altitude (HA) and sea-level (SL) inhabitants as a result of evolutionary pressure to improve gas exchange and/or resting pulmonary haemodynamics. To test this hypothesis we compared sea-level inhabitants at SL (SL-SL; n = 17), during acute isocapnic hypoxia (SL-HX; n = 7) and following 3 weeks at 5050 m (SL-HA; n = 8 non-PFO subjects) to Sherpas at 5050 m (n = 14). SpO2, heart rate, pulmonary artery systolic pressure (PASP) and cardiac index (Qi) were measured during 5 min of room air breathing at SL and HA, during 20 min of isocapnic hypoxia (SL-HX; PETO2 = 47 mmHg) and during 5 min of hyperoxia (FIO2 = 1.0; Sherpas only). Intracardiac shunt and IPAVA blood flow was evaluated by agitated saline contrast echocardiography. Although PASP was similar between groups at HA (Sherpas: 30.0 ± 6.0 mmHg; SL-HA: 32.7 ± 4.2 mmHg; P = 0.27), it was greater than SL-SL (19.4 ± 2.1 mmHg; P < 0.001). The proportion of subjects with intracardiac shunt was similar between groups (SL-SL: 41%; Sherpas: 50%). In the remaining subjects, IPAVA blood flow was found in 100% of subjects during acute isocapnic hypoxia at SL, but in only 4 of 7 Sherpas and 1 of 8 SL-HA subjects at rest. In conclusion, differences in resting pulmonary vascular regulation, intracardiac shunt and IPAVA blood flow do not appear to account for any adaptation to HA in Sherpas. Despite elevated pulmonary pressures and profound hypoxaemia, IPAVA blood flow in all subjects at HA was lower than expected compared to acute normobaric hypoxia.
Collapse
Affiliation(s)
- Glen E Foster
- School of Health and Exercise Science, Faculty of Health and Social Development, University of British Columbia Okanagan, 3333 University Way, Kelowna, BC, V1V 1V7 Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|