1
|
An J, Su Z, Meng S. Effect of aerobic training versus resistance training for improving cardiorespiratory fitness and body composition in middle-aged to older adults: A systematic review and meta-analysis of randomized controlled trials. Arch Gerontol Geriatr 2024; 126:105530. [PMID: 38878596 DOI: 10.1016/j.archger.2024.105530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 09/05/2024]
Abstract
This systematic review and meta-analysis aimed to examine the influence of aerobic training (AT) versus resistance training (RT) on cardiorespiratory fitness and body composition in middle-aged to older adults. Four electronic databases including PubMed, Scopus, Cochrane CENTRAL, and web of science, as well as reference lists of included randomized controlled trials (RCTs) were searched from inception to April 2024. Data were pooled by the inverse-variance method and reported as mean differences (MDs) with 95 % confidence intervals (CIs). Thirty-eight RCTs, with a pooled sample of 1682 participants, met our inclusion criteria. Meta-analysis revealed that AT significantly improved VO2max/peak (MD = 1.80, 95 % CI: 0.96 to 2.64, p < 0.0001) and 6-MWT (MD = 18.58, 95 % CI: 10.38 to 26.78, p < 0.00001), and significantly decreased body mass (MD = -1.23, 95 % CI: -1.98 to -0.47, p = 0.001) versus RT. However, changes in lean body mass favored RT over AT. Moreover, changes in VO2max/peak and 6-MWT following AT were significant among both healthy and unhealthy participants, or men and women, after medium-term (< 24 weeks) and long-term (≥ 24 weeks) interventions, and among participants aged ≤65 and >65. Our results propose that AT should be considered an efficient approach to improving cardiorespiratory fitness and overall body composition with aging, particularly in terms of VO2max and 6-MWT performance. However, for improvements in lean body mass, RT may be more beneficial. Therefore, a combination of AT and RT might be optimal for comprehensive fitness and body composition improvements with aging.
Collapse
Affiliation(s)
- Jianqun An
- College of Sports Science, Lingnan Normal University, Zhanjiang 524048, Guangdong, China
| | - Zhanguo Su
- Faculty of Physical Education, Huainan Normal University, Huainan 232038, Anhui, China.
| | - Shangjie Meng
- International College, Krirk University, Bangkok 10220, Thailand
| |
Collapse
|
2
|
Alexander SE, Gatto B, Knowles OE, Williams RM, Fiebig KN, Jansons P, Della Gatta PA, Garnham A, Eynon N, Wadley GD, Aisbett B, Hiam D, Lamon S. Bioavailable testosterone and androgen receptor activation, but not total testosterone, are associated with muscle mass and strength in females. J Physiol 2024. [PMID: 39393048 DOI: 10.1113/jp286803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/05/2024] [Indexed: 10/13/2024] Open
Abstract
Testosterone, the major androgen, influences the reproductive and non-reproductive systems in males and females via binding to the androgen receptor (AR). Both circulating endogenous testosterone and muscle AR protein content are positively associated with muscle mass and strength in males, but there is no such evidence in females. Here, we tested whether circulating testosterone levels were associated with muscle mass, function, or the muscle anabolic response to resistance training in pre-menopausal females. Twenty-seven pre-menopausal, untrained females (aged 23.5 ± 4.8 years) underwent a 12-week resistance training programme. Muscle strength, size, power, and plasma and urine androgen hormone levels were measured. Skeletal muscle biopsies were collected before and after the training programme to quantify the effect of resistance training on AR content and nuclear localisation. Primary muscle cell lines were cultured from a subset (n = 6) of the participants' biopsies and treated with testosterone to investigate its effect on myotube diameter, markers of muscle protein synthesis and AR cellular localisation. Physiological levels of total testosterone were not associated with muscle mass or strength at baseline or with the changes in muscle mass and strength that occurred in response to resistance training in our cohort of pre-menopausal females. In contrast, bioavailable testosterone and the proportion of nuclear-localised AR were positively associated with skeletal muscle mass and strength in pre-menopausal females. In vitro, supra-physiological doses of testosterone increased myocyte diameter, but this did not occur via the Akt/mTOR pathway as previously suggested. Instead, we show a marked increase in AR nuclear localisation with testosterone administration in vitro. KEY POINTS: Total circulating testosterone was not related to muscle mass or strength before or after resistance training in pre-menopausal females. Bioavailable testosterone was positively related to exercise-induced muscle hypertrophy in pre-menopausal females. In vivo nuclear localisation of the androgen receptor was positively related to muscle mass in pre-menopausal females at baseline, but not to resistance training-induced hypertrophy. Testosterone treatment induced androgen receptor nuclear translocation but did not induce mTOR signalling in primary skeletal myocytes cultured from pre-menopausal female muscle.
Collapse
Affiliation(s)
- Sarah E Alexander
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
- Cardiometabolic Health and Exercise Physiology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Briana Gatto
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Olivia E Knowles
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Ross M Williams
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Kinga N Fiebig
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Paul Jansons
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Paul A Della Gatta
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Andrew Garnham
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Nir Eynon
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Brad Aisbett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Danielle Hiam
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
3
|
Evans WS, Pena GS, Gelman B, Kuzmiak‐Glancy S, Prior SJ. Unilateral hindlimb ischaemia-induced systemic inflammation is associated with non-ischaemic skeletal muscle inflammation. Exp Physiol 2024; 109:1604-1613. [PMID: 38888281 PMCID: PMC11363109 DOI: 10.1113/ep091901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Skeletal muscle atrophy and dysfunction commonly accompany cardiovascular diseases such as peripheral arterial disease and may be partially attributable to systemic inflammation. We sought to determine whether acute systemic inflammation in a model of hindlimb ischaemia (HLI) could affect skeletal muscle macrophage infiltration, fibre size, or capillarization, independent of the ischaemia. Eight-week-old C57BL/6 male mice underwent either Sham or HLI surgery, and were killed 1, 3, or 7 days post-surgery. Circulating inflammatory cytokine concentrations were measured, as well as immune cell infiltration and morphology of skeletal muscle from both limbs of HLI and Sham mice. In HLI compared with Sham mice at day 1, plasma interleukin-1β levels were 216% higher (0.48 ± 0.10 vs. 0.15 ± 0.01 pg/μL, P = 0.005) and decreased by day 3. This was followed by increased macrophage presence in muscle from both ischaemic and non-ischaemic limbs of HLI mice by day 7 (7.3- and 2.3-fold greater than Sham, respectively, P < 0.0001). In HLI mice, muscle from the ischaemic limb had 21% lower fibre cross-sectional area than the non-ischaemic limb (724 ± 28 vs. 916 ± 46 μm2, P = 0.01), but the non-ischaemic limb of HLI mice was no different from Sham. This shows that HLI induces acute systemic inflammation accompanied by immune infiltration in both ischaemic and remote skeletal muscle; however, this did not induce skeletal muscle atrophy in remote muscle within the 7-day time course of this study. This effect of local skeletal muscle ischaemia on the inflammatory status of remote skeletal muscle may signal a priming of muscle for subsequent atrophy over a longer time course. HIGHLIGHTS: What is the central question of this study? Does hindlimb ischaemia-induced inflammation cause acute immune, inflammatory and morphological alterations in remote non-ischaemic skeletal muscle? What is the main finding and its importance? Hindlimb ischaemia induced systemic inflammation with subsequent neutrophil and macrophage infiltration in both ischaemic and non-ischaemic skeletal muscle; however, morphological changes did not occur in non-ischaemic muscle within 7 days. These immune alterations may have functional implications that take longer than 7 days to manifest, and subsequent or prolonged systemic inflammation and immune infiltration of muscle could lead to morphological changes and functional decline.
Collapse
Affiliation(s)
- William S. Evans
- Department of KinesiologyUniversity of Maryland School of Public HealthCollege ParkMarylandUSA
| | - Gabriel S. Pena
- Department of KinesiologyUniversity of Maryland School of Public HealthCollege ParkMarylandUSA
| | - Beata Gelman
- Department of KinesiologyUniversity of Maryland School of Public HealthCollege ParkMarylandUSA
| | - Sarah Kuzmiak‐Glancy
- Department of KinesiologyUniversity of Maryland School of Public HealthCollege ParkMarylandUSA
| | - Steven J. Prior
- Department of KinesiologyUniversity of Maryland School of Public HealthCollege ParkMarylandUSA
- Baltimore Veterans Affairs Geriatric ResearchEducation and Clinical Center and Research and Development ServiceBaltimoreMarylandUSA
| |
Collapse
|
4
|
Xie N, Robinson K, Sundquist T, Chan SSK. In vivo PSC differentiation as a platform to identify factors for improving the engraftability of cultured muscle stem cells. Front Cell Dev Biol 2024; 12:1362671. [PMID: 38425500 PMCID: PMC10902072 DOI: 10.3389/fcell.2024.1362671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Producing an adequate number of muscle stem cells (MuSCs) with robust regenerative potential is essential for the successful cell therapy of muscle-wasting disorders. We have recently developed a method to produce skeletal myogenic cells with exceptional engraftability and expandability through an in vivo pluripotent stem cell (PSC) differentiation approach. We have subsequently mapped engraftment and gene expression and found that leukemia inhibitory factor receptor (Lifr) expression is positively correlated with engraftability. We therefore investigated the effect of LIF, the endogenous ligand of LIFR, on cultured MuSCs and examined their engraftment potential. We found that LIF-treated MuSCs exhibited elevated expression of PAX7, formed larger colonies from single cells, and favored the retention of PAX7+ "reserve cells" upon myogenic differentiation. This suggested that LIF promoted the maintenance of cultured MuSCs at a stem cell stage. Moreover, LIF enhanced the engraftment capability of MuSCs that had been expanded in vitro for 12 days by 5-fold and increased the number of MuSCs that repopulated the stem cell pool post-transplantation. These results thereby demonstrated the effectiveness of our in vivo PSC differentiation platform to identify positive regulators of the engraftability of cultured MuSCs.
Collapse
Affiliation(s)
- Ning Xie
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Kathryn Robinson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Timothy Sundquist
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Sunny S. K. Chan
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
- Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
5
|
Garcia SM, Lau J, Diaz A, Chi H, Lizarraga M, Wague A, Montenegro C, Davies MR, Liu X, Feeley BT. Distinct human stem cell subpopulations drive adipogenesis and fibrosis in musculoskeletal injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.28.551038. [PMID: 38260367 PMCID: PMC10802239 DOI: 10.1101/2023.07.28.551038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Fibroadipogenic progenitors (FAPs) maintain healthy skeletal muscle in homeostasis but drive muscle degeneration in chronic injuries by promoting adipogenesis and fibrosis. To uncover how these stem cells switch from a pro-regenerative to pro-degenerative role we perform single-cell mRNA sequencing of human FAPs from healthy and injured human muscles across a spectrum of injury, focusing on rotator cuff tears. We identify multiple subpopulations with progenitor, adipogenic, or fibrogenic gene signatures. We utilize full spectrum flow cytometry to identify distinct FAP subpopulations based on highly multiplexed protein expression. Injury severity increases adipogenic commitment of FAP subpopulations and is driven by the downregulation of DLK1. Treatment of FAPs both in vitro and in vivo with DLK1 reduces adipogenesis and fatty infiltration, suggesting that during injury, reduced DLK1 within a subpopulation of FAPs may drive degeneration. This work highlights how stem cells perform varied functions depending on tissue context, by dynamically regulating subpopulation fate commitment, which can be targeted improve patient outcomes after injury.
Collapse
|
6
|
Gupta A, Shaik SK, Balasubramanian L, Chakraborty U. MSCProfiler: a single cell image processing workflow to investigate mesenchymal stem cell heterogeneity. Biotechniques 2023; 75:195-209. [PMID: 37916466 DOI: 10.2144/btn-2023-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Single cell cytometry has demonstrated plausible immuno-heterogeneity of mesenchymal stem cells (MSCs) owing to their multivariate stromal origin. To contribute successfully to next-generation stem cell therapeutics, a deeper understanding of their cellular morphology and immunophenotype is important. In this study, the authors describe MSCProfiler, an image analysis pipeline developed using CellProfiler software. This workflow can extract geometrical and texture features such as shape, size, eccentricity and entropy, along with intensity values of the surface markers from multiple single cell images obtained using imaging flow cytometry. This screening pipeline can be used to analyze geometrical and texture features of all types of MSCs across different passages hallmarked by enhanced feature extraction potential from brightfield and fluorescent images of the cells.
Collapse
Affiliation(s)
- Ayona Gupta
- Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | | | | | - Uttara Chakraborty
- Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
7
|
Baltrusch S. Automated in-depth fiber and nuclei typing in cross-sectional muscle images can pave the way to a better understanding of skeletal muscle diseases. Acta Physiol (Oxf) 2023; 239:e14031. [PMID: 37551418 DOI: 10.1111/apha.14031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/09/2023]
Affiliation(s)
- Simone Baltrusch
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock and Department Life, Light & Matter, University of Rostock, Rostock, Germany
| |
Collapse
|
8
|
Lundquist A, Lázár E, Han NS, Emanuelsson EB, Reitzner SM, Chapman MA, Shirokova V, Alkass K, Druid H, Petri S, Sundberg CJ, Bergmann O. FiNuTyper: Design and validation of an automated deep learning-based platform for simultaneous fiber and nucleus type analysis in human skeletal muscle. Acta Physiol (Oxf) 2023; 239:e13982. [PMID: 37097015 DOI: 10.1111/apha.13982] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
AIM While manual quantification is still considered the gold standard for skeletal muscle histological analysis, it is time-consuming and prone to investigator bias. To address this challenge, we assembled an automated image analysis pipeline, FiNuTyper (Fiber and Nucleus Typer). METHODS We integrated recently developed deep learning-based image segmentation methods, optimized for unbiased evaluation of fresh and postmortem human skeletal muscle, and utilized SERCA1 and SERCA2 as type-specific myonucleus and myofiber markers after validating them against the traditional use of MyHC isoforms. RESULTS Parameters including cross-sectional area, myonuclei per fiber, myonuclear domain, central myonuclei per fiber, and grouped myofiber ratio were determined in a fiber-type-specific manner, revealing that a large degree of sex- and muscle-related heterogeneity could be detected using the pipeline. Our platform was also tested on pathological muscle tissue (ALS and IBM) and adapted for the detection of other resident cell types (leucocytes, satellite cells, capillary endothelium). CONCLUSION In summary, we present an automated image analysis tool for the simultaneous quantification of myofiber and myonuclear types, to characterize the composition and structure of healthy and diseased human skeletal muscle.
Collapse
Affiliation(s)
- August Lundquist
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Enikő Lázár
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nan S Han
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Eric B Emanuelsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Stefan M Reitzner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department for Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Mark A Chapman
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Integrated Engineering, University of San Diego, San Diego, USA
| | - Vera Shirokova
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kanar Alkass
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Druid
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Petri
- Department of Neurology, Hanover Medical School, Hanover, Germany
| | - Carl J Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Learning, Informatics, Management, and Ethics, Karolinska Institutet, Stockholm, Sweden
| | - Olaf Bergmann
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Pharmacology and Toxicology, University Medical Center Göttingen (UMG), Göttingen, Germany
| |
Collapse
|
9
|
Kahn RE, Krater T, Larson JE, Encarnacion M, Karakostas T, Patel NM, Swaroop VT, Dayanidhi S. Resident muscle stem cell myogenic characteristics in postnatal muscle growth impairments in children with cerebral palsy. Am J Physiol Cell Physiol 2023; 324:C614-C631. [PMID: 36622072 PMCID: PMC9942895 DOI: 10.1152/ajpcell.00499.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023]
Abstract
Children with cerebral palsy (CP), a perinatal brain alteration, have impaired postnatal muscle growth, with some muscles developing contractures. Functionally, children are either able to walk or primarily use wheelchairs. Satellite cells are muscle stem cells (MuSCs) required for postnatal development and source of myonuclei. Only MuSC abundance has been previously reported in contractured muscles, with myogenic characteristics assessed only in vitro. We investigated whether MuSC myogenic, myonuclear, and myofiber characteristics in situ differ between contractured and noncontractured muscles, across functional levels, and compared with typically developing (TD) children with musculoskeletal injury. Open muscle biopsies were obtained from 36 children (30 CP, 6 TD) during surgery; contracture correction for adductors or gastrocnemius, or from vastus lateralis [bony surgery in CP, anterior cruciate ligament (ACL) repair in TD]. Muscle cross sections were immunohistochemically labeled for MuSC abundance, activation, proliferation, nuclei, myofiber borders, type-1 fibers, and collagen content in serial sections. Although MuSC abundance was greater in contractured muscles, primarily in type-1 fibers, their myogenic characteristics (activation, proliferation) were lower compared with noncontractured muscles. Overall, MuSC abundance, activation, and proliferation appear to be associated with collagen content. Myonuclear number was similar between all muscles, but only in contractured muscles were there associations between myonuclear number, MuSC abundance, and fiber cross-sectional area. Puzzlingly, MuSC characteristics were similar between ambulatory and nonambulatory children. Noncontractured muscles in children with CP had a lower MuSC abundance compared with TD-ACL injured children, but similar myogenic characteristics. Contractured muscles may have an intrinsic deficiency in developmental progression for postnatal MuSC pool establishment, needed for lifelong efficient growth and repair.
Collapse
Affiliation(s)
| | | | - Jill E Larson
- Shirley Ryan AbilityLab, Chicago, Illinois
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | | | - Tasos Karakostas
- Shirley Ryan AbilityLab, Chicago, Illinois
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Neeraj M Patel
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Vineeta T Swaroop
- Shirley Ryan AbilityLab, Chicago, Illinois
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Sudarshan Dayanidhi
- Shirley Ryan AbilityLab, Chicago, Illinois
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
10
|
Lilja M, Moberg M, Apró W, Martínez-Aranda LM, Rundqvist H, Langlet B, Gustafsson T, Lundberg TR. Limited effect of over-the-counter doses of ibuprofen on mechanisms regulating muscle hypertrophy during resistance training in young adults. J Appl Physiol (1985) 2023; 134:753-765. [PMID: 36794689 DOI: 10.1152/japplphysiol.00698.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
We have previously shown that maximal over-the-counter doses of ibuprofen, compared with low doses of acetylsalicylic acid, reduce muscle hypertrophy in young individuals after 8 wk of resistance training. Because the mechanism behind this effect has not been fully elucidated, we here investigated skeletal muscle molecular responses and myofiber adaptations in response to acute and chronic resistance training with concomitant drug intake. Thirty-one young (aged 18-35 yr) healthy men (n = 17) and women (n = 14) were randomized to receive either ibuprofen (IBU; 1,200 mg daily; n = 15) or acetylsalicylic acid (ASA; 75 mg daily; n = 16) while undergoing 8 wk of knee extension training. Muscle biopsies from the vastus lateralis were obtained before, at week 4 after an acute exercise session, and after 8 wk of resistance training and analyzed for mRNA markers and mTOR signaling, as well as quantification of total RNA content (marker of ribosome biogenesis) and immunohistochemical analysis of muscle fiber size, satellite cell content, myonuclear accretion, and capillarization. There were only two treatment × time interaction in selected molecular markers after acute exercise (atrogin-1 and MuRF1 mRNA), but several exercise effects. Muscle fiber size, satellite cell and myonuclear accretion, and capillarization were not affected by chronic training or drug intake. RNA content increased comparably (∼14%) in both groups. Collectively, these data suggest that established acute and chronic hypertrophy regulators (including mTOR signaling, ribosome biogenesis, satellite cell content, myonuclear accretion, and angiogenesis) were not differentially affected between groups and therefore do not explain the deleterious effects of ibuprofen on muscle hypertrophy in young adults.NEW & NOTEWORTHY Here we show that mTOR signaling, fiber size, ribosome biogenesis, satellite cell content, myonuclear accretion, and angiogenesis were not differentially affected between groups undergoing 8 wk of resistance training with concomitant anti-inflammatory medication (ibuprofen versus low-dose aspirin). Atrogin-1 and MuRF-1 mRNA were more downregulated after acute exercise in the low-dose aspirin group than in the ibuprofen group. Taken together it appears that these established hypertrophy regulators do not explain the previously reported deleterious effects of high doses of ibuprofen on muscle hypertrophy in young adults.
Collapse
Affiliation(s)
- Mats Lilja
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Marcus Moberg
- Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - William Apró
- Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Luis Manuel Martínez-Aranda
- Movement Analysis Laboratory for Sport and Health (MALab), Faculty of Sport, Catholic University of Murcia, Murcia, Spain
| | - Håkan Rundqvist
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Billy Langlet
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Gustafsson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Tommy R Lundberg
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
11
|
Dubuisson N, Versele R, Planchon C, Selvais CM, Noel L, Abou-Samra M, Davis-López de Carrizosa MA. Histological Methods to Assess Skeletal Muscle Degeneration and Regeneration in Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:16080. [PMID: 36555721 PMCID: PMC9786356 DOI: 10.3390/ijms232416080] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive disease caused by the loss of function of the protein dystrophin. This protein contributes to the stabilisation of striated cells during contraction, as it anchors the cytoskeleton with components of the extracellular matrix through the dystrophin-associated protein complex (DAPC). Moreover, absence of the functional protein affects the expression and function of proteins within the DAPC, leading to molecular events responsible for myofibre damage, muscle weakening, disability and, eventually, premature death. Presently, there is no cure for DMD, but different treatments help manage some of the symptoms. Advances in genetic and exon-skipping therapies are the most promising intervention, the safety and efficiency of which are tested in animal models. In addition to in vivo functional tests, ex vivo molecular evaluation aids assess to what extent the therapy has contributed to the regenerative process. In this regard, the later advances in microscopy and image acquisition systems and the current expansion of antibodies for immunohistological evaluation together with the development of different spectrum fluorescent dyes have made histology a crucial tool. Nevertheless, the complexity of the molecular events that take place in dystrophic muscles, together with the rise of a multitude of markers for each of the phases of the process, makes the histological assessment a challenging task. Therefore, here, we summarise and explain the rationale behind different histological techniques used in the literature to assess degeneration and regeneration in the field of dystrophinopathies, focusing especially on those related to DMD.
Collapse
Affiliation(s)
- Nicolas Dubuisson
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
- Neuromuscular Reference Center, Cliniques Universitaires Saint-Luc (CUSL), Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Romain Versele
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Chloé Planchon
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Camille M. Selvais
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Laurence Noel
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Michel Abou-Samra
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - María A. Davis-López de Carrizosa
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
12
|
Impact of concurrent training versus aerobic or resistance training on cardiorespiratory fitness and muscular strength in middle-aged to older adults: A systematic review and meta-analysis. Physiol Behav 2022; 254:113888. [PMID: 35728627 DOI: 10.1016/j.physbeh.2022.113888] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/29/2022]
Abstract
The effects of aerobic training (AT) on cardiorespiratory fitness (CRF), and resistance training (RT) on muscular strength, are well known in older adults. However, less is known about the potential additive benefits of concurrent training (CT) versus AT or RT alone in this population. We conducted a systematic review and meta-analysis to investigate the effects of CT, versus AT or RT, on CRF and muscular strength in middle-aged to older adults. PubMed and Web of Science were searched through October 2021 to identify randomized trials evaluating CT versus AT and/or RT in middle-aged and older adults (>50 yrs). Studies were included that measured CRF, using maximal or peak oxygen uptake (VO2max/peak); and/or lower- and upper-body muscular strength measured using 1-repetition maximum (1RM) to 10RM tests during isoinertial contractions, or peak torque during isometric dynamometry or isokinetic dynamometry at 30 to 60°/s. Standardized mean differences (SMD) and 95% confidence intervals (95% CIs) were determined using random or fixed effects models. Forty-nine studies involving 2,587 middle-aged to older participants with mean ages ranging from 55 to 88 years, were included in the meta-analysis. Results indicated that CT effectively increased VO2max/peak (SMD: 0.77, p = 0.005, 12 intervention arms) when compared to RT. In addition, CT effectively increased lower- (SMD: 0.60, p = 0.001, 43 intervention arms) and upper-body (SMD: 0.57, p = 0.001, 28 intervention arms) muscular strength when compared to AT. However, there were no differences in VO2max/peak (SMD: 0.09, p = 0.09, 33 intervention arms) between CT and AT, or in lower-body (SMD: 0.07, p = 0.48, 21 intervention arms) and upper-body (SMD: -0.07, p = 0.38, 17 intervention arms) muscular strength between CT and RT. Overall, CT was shown to be effective for increasing CRF and muscular strength in middle-aged to older adults and there was no negative effect on the magnitude of changes in these outcomes compared to either AT or RT alone. These results suggested that CT should be considered a viable strategy to improvement of CRF and muscular strength with aging.
Collapse
|
13
|
A User-Friendly Approach for Routine Histopathological and Morphometric Analysis of Skeletal Muscle Using CellProfiler Software. Diagnostics (Basel) 2022; 12:diagnostics12030561. [PMID: 35328114 PMCID: PMC8947111 DOI: 10.3390/diagnostics12030561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022] Open
Abstract
Adult skeletal muscle is capable of active and efficient differentiation in the event of injury in both physiological and pathological conditions, such as in Duchenne muscular dystrophy (DMD). DMD is characterized by different features, such as continuous cycles of degeneration/regeneration, fiber heterogeneity, chronic inflammation and fibrosis. A well-defined and standardized approach for histological and morphometric analysis of muscle samples is necessary in order to measure and quantify specific regenerative parameters in myopathies. Indeed, non-automatic methods are time-consuming and prone to error. Here, we describe a simple automatized computational approach to quantify muscle parameters with specific pipelines to be run by CellProfiler software in an open-source and well-defined fashion. Our pipelines consist of running image-processing modules in CellProfiler with the aim of quantifying different histopathological muscle hallmarks in mdx mice compared to their wild-type littermates. Specifically, we quantified the minimum Feret diameter, centrally nucleated fibers and the number of macrophages, starting from multiple images. Finally, for extracellular matrix quantification, we used Sirius red staining. Collectively, we developed reliable and easy-to-use pipelines that automatically measure parameters of muscle histology, useful for research in myobiology. These findings should simplify and shorten the time needed for the quantification of muscle histological properties, avoiding challenging manual procedures.
Collapse
|
14
|
Tropp N, Gilda JE, Cohen S. Reply to Kissane and Eggington. Am J Physiol Cell Physiol 2021; 321:C1084-C1085. [PMID: 34874767 DOI: 10.1152/ajpcell.00393.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Nadav Tropp
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | - Jennifer E Gilda
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | - Shenhav Cohen
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| |
Collapse
|
15
|
Kissane R, Egginton S. Do we need another semiautomated approach to measure muscle fiber cross-sectional area? Am J Physiol Cell Physiol 2021; 321:C1082-C1083. [PMID: 34874768 DOI: 10.1152/ajpcell.00352.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Roger Kissane
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Stuart Egginton
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
16
|
Nederveen JP, Betz MW, Snijders T, Parise G. The Importance of Muscle Capillarization for Optimizing Satellite Cell Plasticity. Exerc Sport Sci Rev 2021; 49:284-290. [PMID: 34547761 DOI: 10.1249/jes.0000000000000270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Satellite cells are essential for skeletal muscle regeneration, repair, and adaptation. The activity of satellite cells is influenced by their interactions with muscle-resident endothelial cells. We postulate that the microvascular network between muscle fibers plays a critical role in satellite cell function. Exercise-induced angiogenesis can mitigate the decline in satellite cell function with age.
Collapse
Affiliation(s)
- Joshua P Nederveen
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Centre, Hamilton, ON, Canada
| | - Milan W Betz
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Tim Snijders
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Gianni Parise
- Department of Kinesiology, Faculty of Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
17
|
Zhu WG, Hibbert JE, Lin KH, Steinert ND, Lemens JL, Jorgenson KW, Newman SM, Lamming DW, Hornberger TA. Weight Pulling: A Novel Mouse Model of Human Progressive Resistance Exercise. Cells 2021; 10:cells10092459. [PMID: 34572107 PMCID: PMC8465477 DOI: 10.3390/cells10092459] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/16/2022] Open
Abstract
This study describes a mouse model of progressive resistance exercise that utilizes a full-body/multi-joint exercise (weight pulling) along with a training protocol that mimics a traditional human paradigm (three training sessions per week, ~8–12 repetitions per set, 2 min of rest between sets, approximately two maximal-intensity sets per session, last set taken to failure, and a progressive increase in loading that is based on the individual’s performance). We demonstrate that weight pulling can induce an increase in the mass of numerous muscles throughout the body. The relative increase in muscle mass is similar to what has been observed in human studies, and is associated with the same type of long-term adaptations that occur in humans (e.g., fiber hypertrophy, myonuclear accretion, and, in some instances, a fast-to-slow transition in Type II fiber composition). Moreover, we demonstrate that weight pulling can induce the same type of acute responses that are thought to drive these long-term adaptations (e.g., the activation of signaling through mTORC1 and the induction of protein synthesis at 1 h post-exercise). Collectively, the results of this study indicate that weight pulling can serve as a highly translatable mouse model of progressive resistance exercise.
Collapse
Affiliation(s)
- Wenyuan G. Zhu
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (W.G.Z.); (J.E.H.); (K.H.L.); (N.D.S.); (J.L.L.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jamie E. Hibbert
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (W.G.Z.); (J.E.H.); (K.H.L.); (N.D.S.); (J.L.L.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kuan Hung Lin
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (W.G.Z.); (J.E.H.); (K.H.L.); (N.D.S.); (J.L.L.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nathaniel D. Steinert
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (W.G.Z.); (J.E.H.); (K.H.L.); (N.D.S.); (J.L.L.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jake L. Lemens
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (W.G.Z.); (J.E.H.); (K.H.L.); (N.D.S.); (J.L.L.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kent W. Jorgenson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (W.G.Z.); (J.E.H.); (K.H.L.); (N.D.S.); (J.L.L.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sarah M. Newman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (S.M.N.); (D.W.L.)
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Dudley W. Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (S.M.N.); (D.W.L.)
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Troy A. Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (W.G.Z.); (J.E.H.); (K.H.L.); (N.D.S.); (J.L.L.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
- Correspondence:
| |
Collapse
|
18
|
Horwath O, Envall H, Röja J, Emanuelsson EB, Sanz G, Ekblom B, Apró W, Moberg M. Variability in vastus lateralis fiber type distribution, fiber size, and myonuclear content along and between the legs. J Appl Physiol (1985) 2021; 131:158-173. [PMID: 34013752 DOI: 10.1152/japplphysiol.00053.2021] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human skeletal muscle characteristics such as fiber type composition, fiber size, and myonuclear content are widely studied in clinical and sports-related contexts. Being aware of the methodological and biological variability of the characteristics is a critical aspect in study design and outcome interpretation, but comprehensive data on the variability of morphological features in human skeletal muscle are currently limited. Accordingly, in the present study, m. vastus lateralis biopsies (10 per subject) from young and healthy individuals, collected in a systematic manner, were analyzed for various characteristics using immunohistochemistry (n = 7) and SDS-PAGE (n = 25). None of the analyzed parameters, fiber type % (FT%), type I and II fiber cross-sectional area (fCSA), percentage fiber type area (fCSA%), myosin heavy chain composition (MyHC%), type IIX content, myonuclear content, or myonuclear domain, varied in a systematic manner longitudinally along the muscle or between the two legs. The average within-subject coefficient of variation for FT%, fCSA, fCSA%, and MyHC% ranged between 13% and 18% but was only 5% for fiber-specific myonuclear content, which reduced the variability for myonuclear domain size to 11%-12%. Pure type IIX fibers and type IIX MyHC were randomly distributed and present in <24% of the analyzed samples, with the average content being 0.1% and 1.1%, respectively. In conclusion, leg or longitudinal orientation does not seem to be an important aspect to consider when investigating human vastus lateralis characteristics. However, single muscle biopsies should preferably not be used when studying fiber type- and fiber size-related aspects, given the notable sample-to-sample variability.NEW & NOTEWORTHY This study provides a comprehensive analysis of the variability of key human skeletal muscle fiber characteristics in multiple sites along and between the m. vastus lateralis of healthy and active individuals. We found a notable but nonsystematic variability in fiber type and size, whereas myonuclear content was distinctively less variable, and the prevalence of type IIX fibers was random and very low. These data are important to consider when designing and interpreting studies including m. vastus lateralis biopsies.
Collapse
Affiliation(s)
- Oscar Horwath
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Helena Envall
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Julia Röja
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Eric B Emanuelsson
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Gema Sanz
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.,Gnomics, Murcia, Spain
| | - Björn Ekblom
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - William Apró
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Marcus Moberg
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
19
|
Lundberg TR, Martínez-Aranda LM, Sanz G, Hansson B, von Walden F, Tesch PA, Fernandez-Gonzalo R. Early accentuated muscle hypertrophy is strongly associated with myonuclear accretion. Am J Physiol Regul Integr Comp Physiol 2020; 319:R50-R58. [DOI: 10.1152/ajpregu.00061.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The current study explored whether the marked hypertrophic response noted with a short-term unilateral concurrent exercise paradigm was associated with more prominent changes in myonuclei accretion, ribosome biogenesis, and capillarization compared with resistance exercise alone (RE). Ten men (age 25 ± 4 yr) performed aerobic and resistance exercise (AE + RE) for one leg while the other leg did RE. Muscle biopsies were obtained before and after 5 wk of training and subjected to fiber-type specific immunohistochemical analysis, and quantification of total RNA content and mRNA/rRNA transcript abundance. Type II fiber cross-sectional area (CSA) increased with both AE + RE (22%) and RE (16%), while type I fiber CSA increased mainly with AE + RE (16%). The change score tended to differ between legs for type I CSA ( P = 0.099), and the increase in smallest fiber diameter was greater in AE + RE than RE ( P = 0.029). The number of nuclei per fiber increased after AE + RE in both fiber types, and this increase was greater ( P = 0.027) than after RE. A strong correlation was observed between changes in number of nuclei per fiber and fiber CSA in both fiber types, for both AE + RE and RE ( r > 0.8, P < 0.004). RNA content increased after AE + RE (24%, P = 0.019), but the change-scores did not differ across legs. The capillary variables generally increased in both fiber types, with no difference across legs. In conclusion, the accentuated hypertrophic response to AE + RE was associated with more pronounced myonuclear accretion, which was strongly correlated with the degree of fiber hypertrophy. This suggests that myonuclear accretion could play a role in facilitating muscle hypertrophy also during very short training periods.
Collapse
Affiliation(s)
- Tommy R. Lundberg
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Luis Manuel Martínez-Aranda
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
- Faculty of Sport, Neuroscience of Human Movement Research Group (Neuromove), Catholic University of San Antonio, Murcia, Spain
| | - Gema Sanz
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Gnomics, Murcia, Spain
| | - Björn Hansson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Ferdinand von Walden
- Neuropediatrics Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Per A. Tesch
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Rodrigo Fernandez-Gonzalo
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
20
|
Two new reliable immunohistochemical methods for simultaneous identification of capillaries, the three types of fibers and basal lamina in human skeletal muscle. Histochem Cell Biol 2020; 154:327-337. [DOI: 10.1007/s00418-020-01895-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2020] [Indexed: 12/18/2022]
|
21
|
Egginton S, Kissane RWP, Al-Shammari AA, Gaffney EA. Quantifying fiber type-specific local capillary supply. J Appl Physiol (1985) 2020; 128:458-459. [PMID: 32073333 DOI: 10.1152/japplphysiol.00853.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Stuart Egginton
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, Leeds, United Kingdom
| | - Roger W P Kissane
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, Leeds, United Kingdom
| | - Abdullah A Al-Shammari
- Department of Mathematics, Faculty of Sciences, Kuwait University, Khaldiya, Kuwait.,Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Eamonn A Gaffney
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Sanz G, Martínez-Aranda LM, Tesch PA, Fernandez-Gonzalo R, Lundberg TR. Reply to Egginton et al.: The utility of the Muscle2View pipeline to quantify the capillary-to-muscle fiber interface. J Appl Physiol (1985) 2020; 128:460-461. [PMID: 32073334 DOI: 10.1152/japplphysiol.00005.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- G Sanz
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Gnomics, Murcia, Spain
| | - L M Martínez-Aranda
- Faculty of Sport, Neuroscience of Human Movement Research Group (Neuromove), Catholic University of San Antonio, Murcia, Spain.,Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - P A Tesch
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - R Fernandez-Gonzalo
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - T R Lundberg
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|