1
|
Cardoso AM, Silvério MNO, de Oliveira Maciel SFV. Purinergic signaling as a new mechanism underlying physical exercise benefits: a narrative review. Purinergic Signal 2021; 17:649-679. [PMID: 34590239 PMCID: PMC8677870 DOI: 10.1007/s11302-021-09816-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/21/2021] [Indexed: 11/27/2022] Open
Abstract
In the last years, it has become evident that both acute and chronic physical exercise trigger responses/adaptations in the purinergic signaling and these adaptations can be considered one important mechanism related to the exercise benefits for health improvement. Purinergic system is composed of enzymes (ectonucleotidases), receptors (P1 and P2 families), and molecules (ATP, ADP, adenosine) that are able to activate these receptors. These components are widely distributed in almost all cell types, and they respond/act in a specific manner depending on the exercise types and/or intensities as well as the cell type (organ/tissue analyzed). For example, while acute intense exercise can be associated with tissue damage, inflammation, and platelet aggregation, chronic exercise exerts anti-inflammatory and anti-aggregant effects, promoting health and/or treating diseases. All of these effects are dependent on the purinergic signaling. Thus, this review was designed to cover the aspects related to the relationship between physical exercise and purinergic signaling, with emphasis on the modulation of ectonucleotidases and receptors. Here, we discuss the impact of different exercise protocols as well as the differences between acute and chronic effects of exercise on the extracellular signaling exerted by purinergic system components. We also reinforce the concept that purinergic signaling must be understood/considered as a mechanism by which exercise exerts its effects.
Collapse
Affiliation(s)
- Andréia Machado Cardoso
- Graduate Program in Biomedical Sciences and Medicine Course, Federal University of Fronteira Sul - UFFS, Campus Chapecó, Rodovia SC 484 - Km 02, Fronteira Sul, 89815-899, Brazil.
- Graduate Program in Physical Education, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Mauro Nicollas Oliveira Silvério
- Medicine Course, Federal University of Fronteira Sul - UFFS, Campus Chapecó, Rodovia SC 484 - Km 02, Fronteira Sul, 89815-899, Brazil
| | - Sarah Franco Vieira de Oliveira Maciel
- Graduate Program in Biomedical Sciences and Medicine Course, Federal University of Fronteira Sul - UFFS, Campus Chapecó, Rodovia SC 484 - Km 02, Fronteira Sul, 89815-899, Brazil
| |
Collapse
|
2
|
Effect of ice slurry ingestion on core temperature and blood pressure response after exercise in a hot environment. J Therm Biol 2021; 98:102922. [PMID: 34016346 DOI: 10.1016/j.jtherbio.2021.102922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/21/2021] [Accepted: 03/27/2021] [Indexed: 11/23/2022]
Abstract
Delays in the restoration of thermoregulation after exercise in a hot environment has been associated with post-exercise hypotension. This study tested the hypothesis that simultaneous internal cooling and rehydration by ingesting ice slurry prevents the excessive decrease in mean arterial pressure (MAP) and promotes recovery of core and skin temperatures in male athletes. Seven male athletes participated in this randomized controlled trial with a crossover design. The participants ran on a treadmill at 75% of their maximal oxygen uptake in the heat (35 °C, 60% relative humidity), up to exhaustion. Immediately after exercise, participants ingested either 4 g⋅kg -1 body weight of ice slurry (0.5 °C, ICE) or a control beverage (28 °C, CON). The participants then recovered by sitting for 20 min. We measured participants' rectal temperature (Tre), skin temperature (Tsk), mean arterial pressure (MAP), heart rate (HR), cardiac output (CO), total peripheral resistance (TPR), and physiological strain index (PSI) before exercise (Pre), after running to exhaustion (PEx), and at 0 (P0), 10 (P10), and 20 (P20) minutes after ice slurry or control beverage ingestion. MAP, CO, HR, TPR, or PSI did not change significantly during the recovery period. At P10 and P20, Tre and Tsk significantly decreased in the ICE group compared to the CON group (p < 0.05). These results suggested that ingestion of ice slurry, post-exercise, promoted core and skin temperature recovery but did not affect the central and peripheral cardiovascular responses during the acute recovery period.
Collapse
|
3
|
Kovac K, Ferguson SA, Paterson JL, Aisbett B, Hilditch CJ, Reynolds AC, Vincent GE. Exercising Caution Upon Waking-Can Exercise Reduce Sleep Inertia? Front Physiol 2020; 11:254. [PMID: 32317980 PMCID: PMC7155753 DOI: 10.3389/fphys.2020.00254] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/05/2020] [Indexed: 11/13/2022] Open
Abstract
Sleep inertia, the transitional state of reduced alertness and impaired cognitive performance upon waking, is a safety risk for on-call personnel who can be required to perform critical tasks soon after waking. Sleep inertia countermeasures have previously been investigated; however, none have successfully dissipated sleep inertia within the first 15 min following waking. During this time, on-call personnel could already be driving, providing advice, or performing other safety-critical tasks. Exercise has not yet been investigated as a sleep inertia countermeasure but has the potential to stimulate the key physiological mechanisms that occur upon waking, including changes in cerebral blood flow, the cortisol awakening response, and increases in core body temperature. Here, we examine these physiological processes and hypothesize how exercise can stimulate them, positioning exercise as an effective sleep inertia countermeasure. We then propose key considerations for research investigating the efficacy of exercise as a sleep inertia countermeasure, including the need to determine the intensity and duration of exercise required to reduce sleep inertia, as well as testing the effectiveness of exercise across a range of conditions in which the severity of sleep inertia may vary. Finally, practical considerations are identified, including the recommendation that qualitative field-based research be conducted with on-call personnel to determine the potential constraints in utilizing exercise as a sleep inertia countermeasure in real-world scenarios.
Collapse
Affiliation(s)
- Katya Kovac
- Appleton Institute, School of Health, Medical and Applied Sciences, Central Queensland University, Adelaide, SA, Australia
| | - Sally A Ferguson
- Appleton Institute, School of Health, Medical and Applied Sciences, Central Queensland University, Adelaide, SA, Australia
| | - Jessica L Paterson
- Appleton Institute, School of Health, Medical and Applied Sciences, Central Queensland University, Adelaide, SA, Australia
| | - Brad Aisbett
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Cassie J Hilditch
- Fatigue Countermeasures Laboratory, San José State University Research Foundation, Moffett Field, CA, United States
| | - Amy C Reynolds
- Appleton Institute, School of Health, Medical and Applied Sciences, Central Queensland University, Adelaide, SA, Australia
| | - Grace E Vincent
- Appleton Institute, School of Health, Medical and Applied Sciences, Central Queensland University, Adelaide, SA, Australia
| |
Collapse
|
4
|
Amano T, Fujii N, Inoue Y, Kondo N. Cutaneous adrenergic nerve blockade attenuates sweating during incremental exercise in habitually trained men. J Appl Physiol (1985) 2018; 125:1041-1050. [PMID: 30024338 DOI: 10.1152/japplphysiol.00370.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
It remains unknown whether cutaneous adrenergic nerves functionally contribute to sweat production during exercise. This study examined whether cutaneous adrenergic nerve blockade attenuates sweating during incremental exercise, specifically in habitually trained individuals. Accordingly, 10 habitually trained and 10 untrained males (V̇o2max: 56.7 ± 5.4 and 38.9 ± 6.7 ml·kg-1·min-1, respectively; P < 0.001) performed incremental semirecumbent cycling (20 W/min) until exhaustion. Sweat rates (ventilated capsule) were measured at two bilateral forearm skin sites on which either 10 mM bretylium tosylate (BT) (an inhibitor of neurotransmitter release from sympathetic adrenergic nerve terminals) or saline (Control) was transdermally administered via iontophoresis. BT treatment delayed sweating onset in both groups (∼0.66 min; P = 0.001) and suppressed the sweat rate relative to the Control treatment at ≥70% relative total exercise time in trained individuals (each 10% increment; all P ≤ 0.009) but not in untrained counterparts ( P = 0.122, interaction between relative time × treatment). Changes in total sweat production at the BT site relative to the Control site were greater in trained individuals than in untrained counterparts (area under the curve, -0.86 ± 0.67 and -0.22 ± 0.39 mg/cm2, respectively; P = 0.023). In conclusion, we demonstrated that cutaneous adrenergic nerves do modulate sweating during incremental exercise, which appeared to be more apparent in habitually trained men (e.g., ≥70% maximum workload). Although our results indicated that habitual exercise training may augment neural adrenergic sweat production during incremental exercise, additional studies are required to confirm this possibility. NEW & NOTEWORTHY We demonstrated for the first time that cutaneous adrenergic nerves do modulate sweating during high-intensity exercise in humans (≥70% maximum workload). In addition, neural adrenergic sweating appeared to be greater in habitually trained individuals than in untrained counterparts, although further studies are necessary to confirm such a possibility. Nonetheless, the observations presented herein advance our understanding on human thermoregulation while providing new evidence for the neutral mediation of adrenergic sweating during exercise.
Collapse
Affiliation(s)
- Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University , Niigata , Japan
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba , Tsukuba City , Japan
| | - Yoshimitsu Inoue
- Laboratory for Human Performance Research, Osaka International University , Osaka , Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University , Kobe , Japan
| |
Collapse
|
5
|
Lenhardt R. Body temperature regulation and anesthesia. HANDBOOK OF CLINICAL NEUROLOGY 2018; 157:635-644. [DOI: 10.1016/b978-0-444-64074-1.00037-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Kenny GP, McGinn R. Restoration of thermoregulation after exercise. J Appl Physiol (1985) 2016; 122:933-944. [PMID: 27881668 DOI: 10.1152/japplphysiol.00517.2016] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/26/2016] [Accepted: 11/16/2016] [Indexed: 11/22/2022] Open
Abstract
Performing exercise, especially in hot conditions, can heat the body, causing significant increases in internal body temperature. To offset this increase, powerful and highly developed autonomic thermoregulatory responses (i.e., skin blood flow and sweating) are activated to enhance whole body heat loss; a response mediated by temperature-sensitive receptors in both the skin and the internal core regions of the body. Independent of thermal control of heat loss, nonthermal factors can have profound consequences on the body's ability to dissipate heat during exercise. These include the activation of the body's sensory receptors (i.e., baroreceptors, metaboreceptors, mechanoreceptors, etc.) as well as phenotypic factors such as age, sex, acclimation, fitness, and chronic diseases (e.g., diabetes). The influence of these factors extends into recovery such that marked impairments in thermoregulatory function occur, leading to prolonged and sustained elevations in body core temperature. Irrespective of the level of hyperthermia, there is a time-dependent suppression of the body's physiological ability to dissipate heat. This delay in the restoration of postexercise thermoregulation has been associated with disturbances in cardiovascular function which manifest most commonly as postexercise hypotension. This review examines the current knowledge regarding the restoration of thermoregulation postexercise. In addition, the factors that are thought to accelerate or delay the return of body core temperature to resting levels are highlighted with a particular emphasis on strategies to manage heat stress in athletic and/or occupational settings.
Collapse
Affiliation(s)
- Glen P Kenny
- Human and Environmental Physiology Research Unit, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Ryan McGinn
- Human and Environmental Physiology Research Unit, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| |
Collapse
|
7
|
Fonseca SF, Teles MC, Ribeiro VGC, Magalhães FC, Mendonça VA, Peixoto MFD, Leite LHR, Coimbra CC, Lacerda ACR. Hypertension is associated with greater heat exchange during exercise recovery in a hot environment. Braz J Med Biol Res 2015; 48:1122-9. [PMID: 26517335 PMCID: PMC4661029 DOI: 10.1590/1414-431x20154532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 05/12/2015] [Indexed: 11/24/2022] Open
Abstract
Individuals with systemic arterial hypertension have a higher risk of heat-related complications. Thus, the aim of this study was to examine the thermoregulatory responses of hypertensive subjects during recovery from moderate-intensity exercise performed in the heat. A total of eight essential hypertensive (H) and eight normotensive (N) male subjects (age=46.5±1.3 and 45.6±1.4 years, body mass index=25.8±0.8 and 25.6±0.6 kg/m2, mean arterial pressure=98.0±2.8 and 86.0±2.3 mmHg, respectively) rested for 30 min, performed 1 h of treadmill exercise at 50% of maximal oxygen consumption, and rested for 1 h after exercise in an environmental chamber at 38°C and 60% relative humidity. Skin and core temperatures were measured to calculate heat exchange parameters. Mean arterial pressure was higher in the hypertensive than in the normotensive subjects throughout the experiment (P<0.05, unpaired t-test). The hypertensive subjects stored less heat (H=-24.23±3.99 W·m-2vs N=-13.63±2.24 W·m-2, P=0.03, unpaired t-test), experienced greater variations in body temperature (H=-0.62±0.05°C vsN=-0.35±0.12°C, P=0.03, unpaired t-test), and had more evaporated sweat (H=-106.1±4.59 W·m-2vs N=-91.15±3.24 W·m-2, P=0.01, unpaired t-test) than the normotensive subjects during the period of recovery from exercise. In conclusion, essential hypertensive subjects showed greater sweat evaporation and increased heat dissipation and body cooling relative to normotensive subjects during recovery from moderate-intensity exercise performed in hot conditions.
Collapse
Affiliation(s)
- S. F. Fonseca
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde, Universidade
Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG,
Brasil
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas,
Sociedade Brasileira de Fisiologia, São Paulo, SP, Brasil
| | - M. C. Teles
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde, Universidade
Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG,
Brasil
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas,
Sociedade Brasileira de Fisiologia, São Paulo, SP, Brasil
| | - V. G. C. Ribeiro
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde, Universidade
Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG,
Brasil
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas,
Sociedade Brasileira de Fisiologia, São Paulo, SP, Brasil
| | - F. C. Magalhães
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde, Universidade
Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG,
Brasil
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas,
Sociedade Brasileira de Fisiologia, São Paulo, SP, Brasil
| | - V. A. Mendonça
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde, Universidade
Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG,
Brasil
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas,
Sociedade Brasileira de Fisiologia, São Paulo, SP, Brasil
| | - M. F. D. Peixoto
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde, Universidade
Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG,
Brasil
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas,
Sociedade Brasileira de Fisiologia, São Paulo, SP, Brasil
| | - L. H. R. Leite
- Instituto de Ciências Biológicas, Universidade Federal de Juiz de
Fora, Juiz de Fora, MG, Brasil
| | - C. C. Coimbra
- Instituto de Ciências Biológicas, Universidade Federal de Minas
Gerais, Belo Horizonte, MG, Brasil
| | - A. C. R. Lacerda
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde, Universidade
Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG,
Brasil
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas,
Sociedade Brasileira de Fisiologia, São Paulo, SP, Brasil
| |
Collapse
|
8
|
Johnson JM, Minson CT, Kellogg DL. Cutaneous vasodilator and vasoconstrictor mechanisms in temperature regulation. Compr Physiol 2014; 4:33-89. [PMID: 24692134 DOI: 10.1002/cphy.c130015] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this review, we focus on significant developments in our understanding of the mechanisms that control the cutaneous vasculature in humans, with emphasis on the literature of the last half-century. To provide a background for subsequent sections, we review methods of measurement and techniques of importance in elucidating control mechanisms for studying skin blood flow. In addition, the anatomy of the skin relevant to its thermoregulatory function is outlined. The mechanisms by which sympathetic nerves mediate cutaneous active vasodilation during whole body heating and cutaneous vasoconstriction during whole body cooling are reviewed, including discussions of mechanisms involving cotransmission, NO, and other effectors. Current concepts for the mechanisms that effect local cutaneous vascular responses to local skin warming and cooling are examined, including the roles of temperature sensitive afferent neurons as well as NO and other mediators. Factors that can modulate control mechanisms of the cutaneous vasculature, such as gender, aging, and clinical conditions, are discussed, as are nonthermoregulatory reflex modifiers of thermoregulatory cutaneous vascular responses.
Collapse
Affiliation(s)
- John M Johnson
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | | | | |
Collapse
|
9
|
Kenny GP, Jay O. Thermometry, calorimetry, and mean body temperature during heat stress. Compr Physiol 2014; 3:1689-719. [PMID: 24265242 DOI: 10.1002/cphy.c130011] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Heat balance in humans is maintained at near constant levels through the adjustment of physiological mechanisms that attain a balance between the heat produced within the body and the heat lost to the environment. Heat balance is easily disturbed during changes in metabolic heat production due to physical activity and/or exposure to a warmer environment. Under such conditions, elevations of skin blood flow and sweating occur via a hypothalamic negative feedback loop to maintain an enhanced rate of dry and evaporative heat loss. Body heat storage and changes in core temperature are a direct result of a thermal imbalance between the rate of heat production and the rate of total heat dissipation to the surrounding environment. The derivation of the change in body heat content is of fundamental importance to the physiologist assessing the exposure of the human body to environmental conditions that result in thermal imbalance. It is generally accepted that the concurrent measurement of the total heat generated by the body and the total heat dissipated to the ambient environment is the most accurate means whereby the change in body heat content can be attained. However, in the absence of calorimetric methods, thermometry is often used to estimate the change in body heat content. This review examines heat exchange during challenges to heat balance associated with progressive elevations in environmental heat load and metabolic rate during exercise. Further, we evaluate the physiological responses associated with heat stress and discuss the thermal and nonthermal influences on the body's ability to dissipate heat from a heat balance perspective.
Collapse
Affiliation(s)
- Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | | |
Collapse
|
10
|
McGinn R, Paull G, Meade RD, Fujii N, Kenny GP. Mechanisms underlying the postexercise baroreceptor-mediated suppression of heat loss. Physiol Rep 2014; 2:2/10/e12168. [PMID: 25293599 PMCID: PMC4254094 DOI: 10.14814/phy2.12168] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Reports indicate that postexercise heat loss is modulated by baroreceptor input; however, the mechanisms remain unknown. We examined the time‐dependent involvement of adenosine receptors, noradrenergic transmitters, and nitric oxide (NO) in modulating baroreceptor‐mediated changes in postexercise heat loss. Eight males performed two 15‐min cycling bouts (85% VO2max) each followed by a 45‐min recovery in the heat (35°C). Lower body positive (LBPP), negative (LBNP), or no (Control) pressure were applied in three separate sessions during the final 30‐min of each recovery. Four microdialysis fibres in the forearm skin were perfused with: (1) lactated Ringer's (Ringer's); (2) 4 mmol·L−1 Theophylline (inhibits adenosine receptors); (3) 10 mmol·L−1 Bretylium (inhibits noradrenergic transmitter release); or (4) 10 mmol·L−1 l‐NAME (inhibits NO synthase). We measured cutaneous vascular conductance (CVC; percentage of maximum) calculated as perfusion units divided by mean arterial pressure, and local sweat rate. Compared to Control, LBPP did not influence CVC at l‐NAME, Theophylline or Bretylium during either recovery (P >0.07); however, CVC at Ringer's was increased by ~5‐8% throughout 30 min of LBPP during Recovery 1 (all P <0.02). In fact, CVC at Ringer's was similar to Theophylline and Bretylium during LBPP. Conversely, LBNP reduced CVC at all microdialysis sites by ~7–10% in the last 15 min of Recovery 2 (all P <0.05). Local sweat rate was similar at all treatment sites as a function of pressure condition (P >0.10). We show that baroreceptor input modulates postexercise CVC to some extent via adenosine receptors, noradrenergic vasoconstriction, and NO whereas no influence was observed for postexercise sweating. To assess the mechanisms of the baroreceptor‐mediated suppression of cutaneous blood flow and sweating postexercise, eight young men performed two 15‐min bouts of cycling at 85% of their VO2max each followed by 45 min of recovery during which positive, negative, or no pressure were applied to the lower limbs. Baroreceptors modulated cutaneous blood flow via nitric oxide (panel B), adenosine receptor (panel C), and noradrenergic vasoconstrictor (panel D) dependent mechanisms. On the other hand, baroreceptors were not shown to modulate postexercise sweating.
Collapse
Affiliation(s)
- Ryan McGinn
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Gabrielle Paull
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| |
Collapse
|
11
|
Treatment of exertional heat stress developed during low or moderate physical work. Eur J Appl Physiol 2014; 114:2551-60. [PMID: 25118838 DOI: 10.1007/s00421-014-2971-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/28/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE We examined whether treatment for exertional heat stress via ice water immersion (IWI) or natural recovery is affected by the intensity of physical work performed and, thus, the time taken to reach hyperthermia. METHODS Nine adults (18-45 years; 17.9 ± 2.8 percent body fat; 57.0 ± 2.0 mL kg(-1) min(-1) peak oxygen uptake) completed four conditions incorporating either walking or jogging at 40 °C (20 % relative humidity) while wearing a non-permeable rain poncho. Upon reaching 39.5 °C rectal temperature (Tre), participants recovered either via IWI in 2 °C water or via natural recovery (seated in a ~29 °C environment) until T re returned to 38 °C. RESULTS Cooling rates were greater in the IWI [Tre: 0.24 °C min(-1); esophageal temperature (Tes): 0.24 °C min(-1)] than the natural recovery (Tre and Tes: 0.03 °C min(-1)) conditions (p < 0.001) with no differences between the two moderate and the two low intensity conditions (p > 0.05). Cooling rates for T re and T es were greater in the 39.0-38.5 °C (Tre: 0.19 °C min(-1); Tes: 0.31 °C min(-1)) compared with the 39.5-39.0 °C (Tre: 0.11 °C min(-1); Tes: 0.13 °C min(-1)) period across conditions (p < 0.05). Similar reductions in heart rate and mean arterial pressure were observed during recovery across conditions (p > 0.05), albeit occurred faster during IWI. Percent change in plasma volume at the end of natural recovery and IWI was 5.96 and 9.58%, respectively (p < 0.001). CONCLUSION The intensity of physical work performed and, thus, the time taken to reach hyperthermia does not affect the effectiveness of either IWI treatment or natural recovery. Therefore, while the path to hyperthermia may be different for each patient, the path to recovery must always be immediate IWI treatment.
Collapse
|
12
|
McGinn R, Fujii N, Swift B, Lamarche DT, Kenny GP. Adenosine receptor inhibition attenuates the suppression of postexercise cutaneous blood flow. J Physiol 2014; 592:2667-78. [PMID: 24687586 DOI: 10.1113/jphysiol.2014.274068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The time-dependent contributions of active vasodilation (e.g. nitric oxide) and noradrenergic vasoconstriction to the postexercise suppression of cutaneous perfusion despite persistent hyperthermia remain unknown. Moreover, adenosine receptors have been shown to mediate the decrease in cutaneous perfusion following passive heating. We examined the time-dependent modulation of nitric oxide synthase, noradrenergic vasoconstriction and adenosine receptors on postexercise cutaneous perfusion. Eight males performed 15 min of high-intensity (85% VO2 max) cycling followed by 60 min of recovery in temperate ambient conditions (25°C). Four microdialysis probes were inserted into the forearm skin and continuously infused with: (1) lactated Ringer solution (Control); (2) 10 mm N(G)-nitro-l-arginine methyl ester (l-NAME; nitric oxide synthase inhibitor); (3) 10 mm bretylium tosylate (BT; inhibitor of noradrenergic vasoconstriction); or (4) 4 mm theophylline (THEO; adenosine receptor inhibitor). Cutaneous vascular conductance (CVC) was expressed as a percentage of maximum and was calculated as perfusion units (laser Doppler) divided by mean arterial pressure. End-exercise CVC was similar in Control, THEO and BT (P > 0.1), but CVC with l-NAME (39 ± 4%) was lower than Control (59 ± 4%, P < 0.01). At 20 min of recovery, Control CVC (22 ± 3%) returned to baseline levels (19 ± 2%, P = 0.11). Relative to Control, CVC was reduced by l-NAME for the first 10 min of recovery whereas CVC was increased with BT for the first 30 min of recovery (P < 0.03). In contrast, CVC with THEO was elevated throughout the 60 min recovery period (P ≤ 0.01) compared to Control. We show that adenosine receptors appear to have a major role in postexercise cutaneous perfusion whereas nitric oxide synthase and noradrenergic vasoconstriction are involved only earlier during recovery.
Collapse
Affiliation(s)
- Ryan McGinn
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Brendan Swift
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Dallon T Lamarche
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| |
Collapse
|
13
|
Demachi K, Yoshida T, Kume M, Tsuji M, Tsuneoka H. The influence of internal and skin temperatures on active cutaneous vasodilation under different levels of exercise and ambient temperatures in humans. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2013; 57:589-596. [PMID: 22960747 DOI: 10.1007/s00484-012-0586-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 07/28/2012] [Accepted: 08/09/2012] [Indexed: 06/01/2023]
Abstract
To clarify the influence of internal and skin temperature on the active cutaneous vasodilation during exercise, the body temperature thresholds for the onset of active vasodilation during light or moderate exercise under different ambient temperature conditions were compared. Seven male subjects performed 30 min of a cycling exercise at 20 % or 50 % of peak oxygen uptake in a room maintained at 20, 24, or 28 °C. Esophageal (Tes) and mean skin temperature (Tsk) as measured by a thermocouple, deep thigh temperature (Tdt) by the zero-heat-flow (ZHF) method, and forearm skin blood flow by laser-Doppler flowmetry (LDF) were monitored. The mean arterial pressure (MAP) was also monitored non-invasively, and the cutaneous vascular conductance (CVC) was calculated as the LDF/MAP. Throughout the experiment, the Tsk at ambient temperatures of 20, 24, and 28 °C were approximately 30, 32, and 34 °C, respectively, for both 20 % and 50 % exercise. During 50 % exercise, the Tes or Tdt thresholds for the onset of the increase in CVC were observed to be similar among the 20, 24, and 28 °C ambient conditions. During 20 % exercise, the increase in Tes and Tdt was significantly lower than those found at 50 %, and the onset of the increase in CVC was only observed at 28 °C. These results suggest that the onset of active vasodilation was affected more strongly by the internal or exercising tissue temperatures than by the skin temperatures during exercise performed at a moderate load in comparison to a light load under Tsk variations ranging from 30 °C to 34 °C. Therefore, the modification by skin temperature of the central control on cutaneous vasomotor tone during exercise may differ between different exercise loads.
Collapse
Affiliation(s)
- Koichi Demachi
- Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | | | | | | | | |
Collapse
|
14
|
Effectiveness of short-term heat acclimation for highly trained athletes. Eur J Appl Physiol 2011; 112:1827-37. [DOI: 10.1007/s00421-011-2153-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
|
15
|
Kondo N, Nishiyasu T, Inoue Y, Koga S. Non-thermal modification of heat-loss responses during exercise in humans. Eur J Appl Physiol 2010; 110:447-58. [PMID: 20512585 DOI: 10.1007/s00421-010-1511-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2010] [Indexed: 10/19/2022]
Abstract
This review focuses on the characteristics of heat-loss responses during exercise with respect to non-thermal factors. In addition, the effects of physical training on non-thermal heat-loss responses are discussed. When a subject is already sweating the sweating rate increases at the onset of dynamic exercise without changes in core temperature, while cutaneous vascular conductance (skin blood flow) is temporarily decreased. Although exercise per se does not affect the threshold for the onset of sweating, it is possible that an increase in exercise intensity induces a higher sensitivity of the sweating response. Exercise increases the threshold for cutaneous vasodilation, and at higher exercise intensities, the sensitivity of the skin-blood-flow response decreases. Facilitation of the sweating response with increased exercise intensity may be due to central command, peripheral reflexes in the exercising muscle, and mental stimuli, whereas the attenuation of skin-blood-flow responses with decreased cutaneous vasodilation is related to many non-thermal factors. Most non-thermal factors have negative effects on magnitude of cutaneous vasodilation; however, several of these factors have positive effects on the sweating response. Moreover, thermal and non-thermal factors interact in controlling heat-loss responses, with non-thermal factors having a greater impact until core temperature elevations become significant, after which core temperature primarily would control heat loss. Finally, as with thermally induced sweating responses, physical training seems to also affect sweating responses governed by non-thermal factors.
Collapse
Affiliation(s)
- Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe 657-8501, Japan.
| | | | | | | |
Collapse
|
16
|
Influence of nonthermal baroreceptor modulation of heat loss responses during uncompensable heat stress. Eur J Appl Physiol 2009; 108:541-8. [DOI: 10.1007/s00421-009-1255-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2009] [Indexed: 10/20/2022]
|
17
|
Kenny GP, Webb P, Ducharme MB, Reardon FD, Jay O. Calorimetric measurement of postexercise net heat loss and residual body heat storage. Med Sci Sports Exerc 2009; 40:1629-36. [PMID: 18685528 DOI: 10.1249/mss.0b013e31817751cb] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Previous studies have shown a rapid reduction in postexercise local sweating and blood flow despite elevated core temperatures. However, local heat loss responses do not illustrate how much whole-body heat dissipation is reduced, and core temperature measurements do not accurately represent the magnitude of residual body heat storage. Whole-body evaporative (H(E)) and dry (H(D)) heat loss as well as changes in body heat content (DeltaH(b)) were measured using simultaneous direct whole-body and indirect calorimetry. METHODS Eight participants cycled for 60 min at an external work rate of 70 W followed by 60 min of recovery in a calorimeter at 30 degrees C and 30% relative humidity. Core temperature was measured in the esophagus (T(es)), rectum (T(re)), and aural canal (T(au)). Regional muscle temperature was measured in the vastus lateralis (T(vl)), triceps brachii (T(tb)), and upper trapezius (T(ut)). RESULTS After 60 min of exercise, average DeltaH(b) was +273 +/- 57 kJ, paralleled by increases in T(es), T(re), and T(au) of 0.84 +/- 0.49, 0.67 +/- 0.36, and 0.83 +/- 0.53 degrees C, respectively, and increases in T(vl), T(tb), and T(ut) of 2.43 +/- 0.60, 2.20 +/- 0.64, and 0.80 +/- 0.20 degrees C, respectively. After a 10-min recovery, metabolic heat production returned to pre-exercise levels, and H(E) was only 22.9 +/- 6.9% of the end-exercise value despite elevations in all core temperatures. After a 60-min recovery, DeltaH(b) was +129 +/- 58 kJ paralleled by elevations of T(es) = 0.19 +/- 0.13 degrees C, T(re) = 0.20 +/- 0.03 degrees C, T(au) = 0.18 +/- 0.04 degrees C, Tvl = 1.00 +/- 0.43 degrees C, T(tb) = 0.92 +/- 0.46 degrees C, and T(ut) = 0.31 +/- 0.27 degrees C. Despite this, H(E) returned to preexercise levels. Only minimal changes in H(D) occurred throughout. CONCLUSION We confirm a rapid reduction in postexercise whole-body heat dissipation by evaporation despite elevated core temperatures. Consequently, only 53% of the heat stored during 60 min of exercise was dissipated after 60 min of recovery, with the majority of residual heat stored in muscle tissue.
Collapse
Affiliation(s)
- Glen P Kenny
- Laboratory of Human Bioenergetics and Environmental Physiology, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | | | |
Collapse
|
18
|
Kenny GP, Gagnon D, Jay O, McInnis NH, Journeay WS, Reardon FD. Can supine recovery mitigate the exercise intensity dependent attenuation of post-exercise heat loss responses? Appl Physiol Nutr Metab 2008; 33:682-9. [PMID: 18641710 DOI: 10.1139/h08-053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cutaneous vascular conductance (CVC) and sweat rate are subject to non-thermal baroreflex-mediated attenuation post-exercise. Various recovery modalities have been effective in attenuating these decreases in CVC and sweat rate post-exercise. However, the interaction of recovery posture and preceding exercise intensity on post-exercise thermoregulation remains unresolved. We evaluated the combined effect of supine recovery and exercise intensity on post-exercise cardiovascular and thermal responses relative to an upright seated posture. Seven females performed 15 min of cycling ergometry at low- (LIE, 55% maximal oxygen consumption) or high-(HIE, 85% maximal oxygen consumption) intensity followed by 60 min of recovery in either an upright seated or supine posture. Esophageal temperature, CVC, sweat rate, cardiac output, stroke volume, heart rate, total peripheral resistance, and mean arterial pressure (MAP) were measured at baseline, at end-exercise, and at 2, 5, 12, 20, and every 10 min thereafter until the end of recovery. MAP and stroke volume were maintained during supine recovery to a greater extent relative to an upright seated recovery following HIE (p <or= 0.05) and were paralleled by an elevated CVC and sweat rate response (p <or= 0.05). A significantly lower esophageal temperature was subsequently observed when supine throughout recovery (p <or= 0.05). Although we observed a reflex bradycardia and increased stoke volume with supine recovery following LIE, no differences were observed for MAP, CVC, sweat rate or esophageal temperature. Supine recovery attenuates the post-exercise reductions in MAP, CVC, and sweat rate in a manner dependent directly on exercise intensity. This effect is likely attributable to a non-thermal baroreceptor mechanism.
Collapse
Affiliation(s)
- Glen P Kenny
- Laboratory of Human Bioenergetics and Environmental Physiology, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada.
| | | | | | | | | | | |
Collapse
|
19
|
Kenny GP, Leclair E, Sigal RJ, Journeay WS, Kilby D, Nettlefold L, Reardon FD, Jay O. Menstrual cycle and oral contraceptive use do not modify postexercise heat loss responses. J Appl Physiol (1985) 2008; 105:1156-65. [PMID: 18687980 DOI: 10.1152/japplphysiol.00194.2008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is unknown whether menstrual cycle or oral contraceptive (OC) use influences nonthermal control of postexercise heat loss responses. We evaluated the effect of menstrual cycle and OC use on the activation of heat loss responses during a passive heating protocol performed pre- and postexercise. Women without OC (n = 8) underwent pre- and postexercise passive heating during the early follicular phase (FP) and midluteal phase (LP). Women with OC (n = 8) underwent testing during the active pill consumption (high exogenous hormone phase, HH) and placebo (low exogenous hormone phase, LH) weeks. After a 60-min habituation at 26 degrees C, subjects donned a liquid conditioned suit. Mean skin temperature was clamped at approximately 32.5 degrees C for approximately 15 min and then gradually increased, and the absolute esophageal temperature at which the onset of forearm vasodilation (Th(vd)) and upper back sweating (Th(sw)) were noted. Subjects then cycled for 30 min at 75% Vo(2 peak) followed by a 15-min seated recovery. A second passive heating was then performed to establish postexercise values for Th(vd) and Th(sw). Between 2 and 15 min postexercise, mean arterial pressure (MAP) remained significantly below baseline (P < 0.05) by 10 +/- 1 and 11 +/- 1 mmHg for the FP/LH and LP/HH, respectively. MAP was not different between cycle phases. During LP/HH, Th(vd) was 0.16 +/- 0.24 degrees C greater than FP/LH preexercise (P = 0.020) and 0.15 +/- 0.23 degrees C greater than FP/LH postexercise (P = 0.017). During LP/HH, Th(sw) was 0.17 +/- 0.23 degrees C greater than FP/LH preexercise (P = 0.016) and 0.18 +/- 0.16 degrees C greater than FP/LH postexercise (P = 0.001). Postexercise thresholds were significantly greater (P < or = 0.001) than preexercise during both FP/LH (Th(vd), 0.22 +/- 0.03 degrees C; Th(sw), 0.13 +/- 0.03 degrees C) and LP/HH (Th(vd), 0.21 +/- 0.03 degrees C; Th(sw), 0.14 +/- 0.03 degrees C); however, the effect of exercise was similar between LP/HH and FP/LH. No effect of OC use was observed. We conclude that neither menstrual cycle nor OC use modifies the magnitude of the postexercise elevation in Th(vd) and Th(sw).
Collapse
Affiliation(s)
- Glen P Kenny
- University of Ottawa, School of Human Kinetics, 125 University, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Wissler EH. A quantitative assessment of skin blood flow in humans. Eur J Appl Physiol 2008; 104:145-57. [PMID: 18301912 DOI: 10.1007/s00421-008-0697-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2008] [Indexed: 11/29/2022]
Abstract
Various aspects of skin blood flow (SkBF) in human beings have been studied experimentally for more than seven decades. While reasonably complete phenomenological descriptions of individual factors have emerged from those investigations, little effort has been devoted to assembling the component parts into a coherent description of the entire system. This paper describes an effort to do that. Although the result is essentially a mathematical model of human SkBF, the model is firmly based on empirical data and not merely an abstract theoretical construct. We found that experimental data for human forearm blood flow (FBF) from many sources are well represented by an equation in which the rate of cutaneous blood flow (q (s)) is defined by the equation q (s) = q (s,r) AVD x CVCM x CVCL x CVCE. The coefficient q (s,r) is the perfusion rate at a reference state, and the four component factors are defined as follows: AVD defines centrally mediated active vasodilation as a function of central temperature (T (c)), mean skin temperature (T(s))d intensity of exercise (V(o)(2)) CVCM defines reflexly mediated cutaneous vasoconstriction as a function of (T(s)) CVCL defines locally mediated cutaneous vasoconstriction as a function of local skin temperature (T (s)); and CVCE defines the effect of exercise on cutaneous vasoconstriction and mean arterial pressure. The definition of each component function is based on experimental data. Two conclusions are particularly significant. One is that the study provides a rational explanation, based on the role of (T(s)), for previously disparate opinions about the non-thermal effect of exercise on active cutaneous vasodilation. The other is that it establishes that the four factors combine multiplicatively, and not additively, as previous investigators have suggested.
Collapse
Affiliation(s)
- Eugene H Wissler
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712-1062, USA.
| |
Collapse
|
21
|
Aggarwal Y, Karan BM, Das BN, Sinha RK. Prediction of Heat-Illness Symptoms with the Prediction of Human Vascular Response in Hot Environment Under Resting Condition. J Med Syst 2007; 32:167-76. [DOI: 10.1007/s10916-007-9119-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Journeay WS, Jay O, McInnis NH, Leclair E, Kenny GP. Postexercise heat loss and hemodynamic responses during head-down tilt are similar between genders. Med Sci Sports Exerc 2007; 39:1308-14. [PMID: 17762364 DOI: 10.1249/mss.0b013e31806865e0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE We evaluated the hypothesis that during recovery from dynamic exercise in the 15 degrees head-down tilt (HDT) position, the attenuation of the fall in mean arterial pressure (MAP), cutaneous vascular conductance (CVC), and sweat rate, and the augmentation of the rate of esophageal temperature (T(es)) decay relative to the upright seated (URS) posture, would be different between males and females. METHODS Fourteen subjects (seven males, seven females) performed two experimental protocols: 1) 15 min of cycle ergometry at 75% VO2peak and then 60 min of recovery in the URS posture; or 2) 15 min of cycle ergometry at 75% VO2peak and then 60 min of recovery in the 15 degrees HDT position. Mean skin temperature, Tes, CVC, sweat rate, cardiac output (CO), stroke volume (SV), heart rate (HR), total peripheral resistance (TPR), and MAP were recorded at baseline; end of exercise; 2 min, 5 min, 8 min, 12 min, 15 min, and 20 min after exercise; and every 5 min until the end of recovery (60 min). RESULTS During recovery from exercise, we observed significantly greater values for MAP, CVC, and sweat rate with HDT in comparison with the URS recovery posture (P <or= 0.05). The magnitude of these responses to HDT did not differ between genders, and a significantly lower T(es) was subsequently observed with HDT for the duration of recovery (P <or= 0.05) for both males and females. In the URS posture, females showed a greater decrease of postexercise MAP than did males (P <or= 0.05). At the end of 60 min of recovery, T(es) remained significantly elevated above baseline with the URS recovery posture (P <or= 0.05). With HDT, T(es) returned to baseline after 20 min. CONCLUSION HDT attenuates the reductions in MAP, CVC, and sweat rate observed after exercise in a gender-independent manner, and this likely is attributable to a nonthermal baroreceptor influence.
Collapse
Affiliation(s)
- W Shane Journeay
- Laboratory of Human Bioenergetics and Environmental Physiology, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | | | | | | | | |
Collapse
|
23
|
Kenny GP, Jay O, Journeay WS. Disturbance of thermal homeostasis following dynamic exercise. Appl Physiol Nutr Metab 2007; 32:818-31. [PMID: 17622300 DOI: 10.1139/h07-044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recovery from dynamic exercise results in significant perturbations of thermoregulatory control. These perturbations evoke a prolonged elevation in core body temperature and a concomitant decrease in sweating, skin blood flow, and skin temperature to pre-exercise baseline values within the early stages of recovery. Cutaneous vasodilation and sweating are critical responses necessary for effective thermoregulation during heat stress in humans. The ability to modulate the rate of heat loss through adjustments in vasomotor and sudomotor activity is a fundamental mechanism of thermoregulatory homeostasis. There is a growing body of evidence in support of a possible relationship between hemodynamic changes postexercise and heat loss responses. Specifically, nonthermoregulatory factors, such as baroreceptors, associated with hemodynamic changes, influence the regulation of core body temperature during exercise recovery. The following review will examine the etiology of the post-exercise disturbance in thermal homeostasis and evaluate possible thermal and nonthermal factors associated with a prolonged hyperthermic state following exercise.
Collapse
Affiliation(s)
- Glen P Kenny
- Laboratory for Human Bioenergetics and Environmental Physiology, Faculty of Health Sciences, School of Human Kinetics, 125 University Ave., Montpetit Hall, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | | | | |
Collapse
|
24
|
Waterhouse J, Aizawa S, Nevill A, Edwards B, Weinert D, Atkinson G, Reilly T. Rectal temperature, distal sweat rate, and forearm blood flow following mild exercise at two phases of the circadian cycle. Chronobiol Int 2007; 24:63-85. [PMID: 17364580 DOI: 10.1080/07420520601142551] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Changes in rectal temperature during mild exercise in the middle of the rising (11:00 h) and falling (23:00 h) phases of the circadian rhythm of resting core temperature have been compared. Seven healthy males were studied at rest, while exercising on a cycle ergometer (60 min at 80 W), and during the first 30 min of recovery. Rectal temperature, forearm blood flow, and forearm sweat rate were measured at 1 min intervals throughout. During exercise, there were significant time-of-day differences in the profiles of all three variables, and in the thresholds for increases in forearm blood flow and sweating. Forearm blood flow and sweat rate were recruited more rapidly and to a greater extent with evening exercise, and rectal temperature rose less. Analysis of covariance, with rectal temperature as the covariate, indicated the associations between it and forearm blood flow or sweating were significantly different (p<0.05) between the two times of day. There were also significant (p<0.05) time-of-day effects for forearm blood flow and sweating that were independent of rectal temperature. During recovery, rectal temperature fell more quickly in the late evening than late morning. Forearm blood flow and sweating also showed time-of-day differences, but these did not co-vary with rectal temperature. Control of rectal temperature during exercise and recovery appears to be more effective in the late evening than late morning, and differences in forearm blood flow and sweating, as well as factors independent of these two variables, contribute to this difference. The results support our "heat-gain/heat-loss modes" hypothesis.
Collapse
Affiliation(s)
- Jim Waterhouse
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.
| | | | | | | | | | | | | |
Collapse
|
25
|
Kenny GP, Jay O, Zaleski WM, Reardon ML, Sigal RJ, Journeay WS, Reardon FD. Postexercise hypotension causes a prolonged perturbation in esophageal and active muscle temperature recovery. Am J Physiol Regul Integr Comp Physiol 2006; 291:R580-8. [PMID: 16513764 DOI: 10.1152/ajpregu.00918.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the effect of two levels of exercise-induced hypotension on esophageal (Tes) and active and nonactive muscle temperatures during and following exercise. Seven males performed an incremental isotonic test on a Kin-Com isokinetic apparatus to determine their peak oxygen consumption during bilateral knee extensions (VO2sp). This was followed on separate days by 15-min of isolated bilateral knee extensions at moderate (60% VO2sp) (MEI) and high (80% VO2sp) (HEI) exercise intensities, followed by 90 min of recovery. Muscle temperature was measured with an intramuscular probe inserted in the left vastus medialis (Tvm) and triceps brachii (Ttb) muscles under ultrasound guidance. The deepest sensor (tip) was located approximately 10 mm from the femur and deep femoral artery and from the superior ulnar collateral artery and humerus for the Tvm and Ttb, respectively. Additional sensors were located 15 and 30 mm from the tip with an additional sensor located at 45 mm for the Tvm measurements only. Following exercise, mean arterial pressure (MAP) remained significantly below preexercise rest for the initial 60 min of recovery after MEI and for the duration of the postexercise recovery period after HEI (P< or =0.05). After HEI, significantly greater elevations from preexercise rest were recorded for Tes and all muscle temperatures paralleled a greater decrease in MAP compared with MEI (P< or =0.05). By the end of 90-min postexercise recovery, MAP, Tes, and all muscle temperatures remained significantly greater after HEI than MEI. Furthermore, a significantly shallower muscle temperature profile across Tvm, relative to preexercise rest, was observed at the end of exercise for both HEI and MEI (P< or=0.05), and for 30 min of recovery for MEI and throughout 90 min of recovery for HEI. No significant differences in muscle temperature profile were observed for Ttb. Thus we conclude that the increase in the postexercise hypotensive response, induced by exercise of increasing intensity, was paralleled by an increase in the magnitude and recovery time of the postexercise esophageal and active muscle temperatures.
Collapse
Affiliation(s)
- Glen P Kenny
- Faculty of Health Sciences, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
McInnis NH, Journeay WS, Jay O, Leclair E, Kenny GP. 15° Head-down tilt attenuates the postexercise reduction in cutaneous vascular conductance and sweating and decreases esophageal temperature recovery time. J Appl Physiol (1985) 2006; 101:840-7. [PMID: 16741261 DOI: 10.1152/japplphysiol.00382.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The following study examined the effect of 15° head-down tilt (HDT) on postexercise heat loss and hemodynamic responses. We tested the hypothesis that recovery from dynamic exercise in the HDT position would attenuate the reduction in the heat loss responses of cutaneous vascular conductance (CVC) and sweating relative to upright seated (URS) recovery in association with an augmented hemodynamic response and an increased rate of core temperature decay. Seven male subjects performed the following three experimental protocols: 1) 60 min in the URS posture followed by 60 min in the 15° HDT position; 2) 15 min of cycle ergometry at 75% of their predetermined V̇o2 peak followed by 60 min of recovery in the URS posture; or 3) 15 min of cycle ergometry at 75% of their predetermined V̇o2 peak followed by 60 min of recovery in the 15° HDT position. Mean skin temperature, esophageal temperature (Tes), skin blood flow, sweat rate, cardiac output (CO), stroke volume (SV), heart rate (HR), total peripheral resistance, and mean arterial pressure (MAP) were recorded at baseline, end exercise, 2, 5, 8, 12, 15, and 20 min, and every 5 min until end of recovery (60 min). Without preceding exercise, HDT decreased HR and increased SV ( P ≤ 0.05). During recovery after exercise, a significantly greater MAP, SV, CVC, and sweat rate and a significantly lower HR were found with HDT compared with URS posture ( P ≤ 0.05). Subsequently, a significantly lower Tes was observed with HDT after 15 min of recovery onward ( P ≤ 0.05). At the end of 60 min of recovery, Tes remained significantly elevated above baseline with URS ( P ≤ 0.05); however, Tes returned to baseline with HDT. In conclusion, extended recovery from dynamic exercise in the 15° HDT position attenuates the reduction in CVC and sweating, thereby significantly increasing the rate of Tes decay compared with recovery in the URS posture.
Collapse
Affiliation(s)
- Natalie H McInnis
- Laboratory of Human Bioenergetics and Environmental Physiology, University of Ottawa, School of Human Kinetics, Ottawa, Ontario, Canada K1N 6N5
| | | | | | | | | |
Collapse
|
27
|
Kenny GP, Murrin JE, Journeay WS, Reardon FD. Differences in the postexercise threshold for cutaneous active vasodilation between men and women. Am J Physiol Regul Integr Comp Physiol 2006; 290:R172-9. [PMID: 16123228 DOI: 10.1152/ajpregu.00428.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to evaluate the possible differences in the postexercise cutaneous vasodilatory response between men and women. Fourteen subjects (7 men and 7 women) of similar age, body composition, and fitness status remained seated resting for 15 min or cycled for 15 min at 70% of peak oxygen consumption followed by 15 min of seated recovery. Subjects then donned a liquid-conditioned suit. Mean skin temperature was clamped at ∼34°C for 15 min. Mean skin temperature was then increased at a rate of 4.3 ± 0.8°C/h while local skin temperature was clamped at 34°C. Skin blood flow was measured continuously at two forearm skin sites, one with (UT) and without (BT) (treated with bretylium tosylate) intact α-adrenergic vasoconstrictor activity. The exercise threshold for cutaneous vasodilation in women (37.51 ± 0.08°C and 37.58 ± 0.04°C for UT and BT, respectively) was greater than that measured in men (37.33 ± 0.06°C and 37.35 ± 0.06°C for UT and BT, respectively) ( P < 0.05). Core temperatures were similar to baseline before the start of whole body warming for all conditions. Postexercise heart rate (HR) for the men (77 ± 4 beats/min) and women (87 ± 6 beats/min) were elevated above baseline (61 ± 3 and 68 ± 4 beats/min for men and women, respectively), whereas mean arterial pressure (MAP) for the men (84 ± 3 mmHg) and women (79 ± 3 mmHg) was reduced from baseline (93 ± 3 and 93 ± 4 mmHg for men and women, respectively) ( P < 0.05). A greater increase in HR and a greater decrease in the MAP postexercise were noted in women ( P < 0.05). No differences in core temperature, HR, and MAP were measured in the no-exercise trial. The postexercise threshold for cutaneous vasodilation measured at the UT and BT sites for men (37.15 ± 0.03°C and 37.16 ± 0.04°C, respectively) and women (37.36 ± 0.05°C and 37.42 ± 0.03°C, respectively) were elevated above no exercise (36.94 ± 0.07°C and 36.97 ± 0.05°C for men and 36.99 ± 0.09°C and 37.03 ± 0.11°C for women for the UT and BT sites, respectively) ( P < 0.05). A difference in the magnitude of the thresholds was measured between women and men ( P < 0.05). We conclude that women have a greater postexercise onset threshold for cutaneous vasodilation than do men and that the primary mechanism influencing the difference between men and women in postexercise skin blood flow is likely the result of an altered active vasodilatory response and not an increase in adrenergic vasoconstrictor tone.
Collapse
Affiliation(s)
- Glen P Kenny
- University of Ottawa, School of Human Kinetics, 125 University, Montpetit Hall, Rm. 367, PO Box 450 Station A, Ottawa, ON, Canada.
| | | | | | | |
Collapse
|
28
|
Journeay WS, Reardon FD, McInnis NH, Kenny GP. Nonthermoregulatory control of cutaneous vascular conductance and sweating during recovery from dynamic exercise in women. J Appl Physiol (1985) 2005; 99:1816-21. [PMID: 16037402 DOI: 10.1152/japplphysiol.00497.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of the study was to examine the effect of 1) active (loadless pedaling), 2) passive (assisted pedaling), and 3) inactive (motionless) recovery modes on mean arterial pressure (MAP), cutaneous vascular conductance (CVC), and sweat rate during recovery after 15 min of dynamic exercise in women. It was hypothesized that an active recovery mode would be most effective in attenuating the fall in MAP, CVC, and sweating during exercise recovery. Ten female subjects performed 15 min of cycle ergometer exercise at 70% of their predetermined peak oxygen consumption followed by 20 min of 1) active, 2) passive, or 3) inactive recovery. Mean skin temperature (Tsk), esophageal temperature (Tes), skin blood flow, sweating, cardiac output (CO), stroke volume (SV), heart rate (HR), total peripheral resistance (TPR), and MAP were recorded at baseline, end exercise, and 2, 5, 8, 12, 15, and 20 min postexercise. Cutaneous vascular conductance (CVC) was calculated as the ratio of laser-Doppler blood flow to MAP. In the active recovery mode, CVC, sweat rate, MAP, CO, and SV remained elevated over inactive values (P < 0.05). The passive mode was equally as effective as the active mode in maintaining MAP. Sweat rate was different among all modes after 12 min of recovery (P < 0.05). TPR during active recovery remained significantly lower than during recovery in the inactive mode (P < 0.05). No differences in either Tes or Tsk were observed among conditions. The results indicate that CVC can be modulated by central command and possibly cardiopulmonary baroreceptors in women. However, differences in sweat rate may be influenced by factors such as central command, mechanoreceptor stimulation, or cardiopulmonary baroreceptors.
Collapse
Affiliation(s)
- W Shane Journeay
- Laboratory of Human Bioenergetics and Environmental Physiology, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
29
|
Kenny GP, Journeay WS. The Postexercise Increase in the Threshold for Cutaneous Vasodilation and Sweating is Not Observed With Extended Recovery. ACTA ACUST UNITED AC 2005; 30:113-21. [PMID: 15855687 DOI: 10.1139/h05-109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The following study was conducted to evaluate the hypothesis that an increase in the postexercise onset threshold for cutaneous vasodilation (ThVD) and sweating (ThSW) would not be observed upon the restoration of baseline mean arterial pressure (MAP). Subjects remained either seated resting for 15 min or performed 15 min of treadmill running at 70% [Formula: see text]peak followed by either 20- (short) or 60-min (extended) recovery. At the end of each recovery protocol (20 and 60 min) a water perfusion suit was then used to increase mean skin temperature until ThVD and ThSW was noted. Exercise resulted in an increase in ThVD and ThSW of 0.24 ± 0.03 and 0.24 ± 0.02 °C, respectively, above no-exercise for the short recovery (p < 0.05). No increase was measured for the extended recovery. Postexercise MAP was significantly reduced prior to whole-body warming for the short recovery whereas no reduction was measured for the extended recovery. The increase in ThVD and ThSW, measured during the early stages of recovery, is reversed with the reestablishment of baseline MAP. Key words: postexercise hypotension, exercise recovery, baroreceptors, heat stress
Collapse
Affiliation(s)
- Glen P Kenny
- University of Ottawa, School of Human Kinetics, Laboratory of Human Bioenergetics and Environmental Physiology, Ottawa, Ontario K1N 6N5
| | | |
Collapse
|
30
|
Wilkins BW, Minson CT, Halliwill JR. Regional hemodynamics during postexercise hypotension. II. Cutaneous circulation. J Appl Physiol (1985) 2004; 97:2071-6. [PMID: 15322061 DOI: 10.1152/japplphysiol.00466.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
After an acute bout of exercise, there is an unexplained elevation in systemic vascular conductance that is not completely offset by an increase in cardiac output, resulting in a postexercise hypotension. The contributions of the splanchnic and renal circulations are examined in a companion paper (Pricher MP, Holowatz LA, Williams JT, Lockwood JM, and Halliwill JR. J Appl Physiol 97: 2065-2070, 2004). The purpose of this study was to determine the contribution of the cutaneous circulation in postexercise hypotension under thermoneutral conditions (approximately 23 degrees C). Arterial blood pressure was measured via an automated sphygmomanometer, internal temperature was measured via an ingestible pill, and skin temperature was measured with eight thermocouples. Red blood cell flux (laser-Doppler flowmetry) was monitored at four skin sites (chest, forearm, thigh, and leg), and cutaneous vascular conductance (CVC) was calculated (red blood cell flux/mean arterial pressure) and scaled as percent maximal CVC (local heating to 43 degrees C). Ten subjects [6 men and 4 women; age 23 +/- 1 yr; peak O(2) uptake (Vo(2 peak)) 45.8 +/- 2.0 ml.kg(-1).min(-1)] volunteered for this study. After supine rest (30 min), subjects exercised on a bicycle ergometer for 1 h at 60% of their Vo(2 peak) and were then positioned supine for 90 min. Exercise elicited a postexercise hypotension reaching a nadir at 46.0 +/- 4.5 min postexercise (77 +/- 1 vs. 82 +/- 2 mmHg preexercise; P < 0.05). Internal temperature increased (38.0 +/- 0.1 vs. 36.7 +/- 0.1 degrees C preexercise; P < 0.05), remaining elevated at 90 min postexercise (36.9 +/- 0.1 degrees C vs. preexercise; P < 0.05). CVC at all four skin sites was elevated by the exercise bout (P < 0.05), returning to preexercise values within 50 min postexercise (P > 0.05). Therefore, although transient changes in CVC occur postexercise, they do not appear to play an obligatory role in mediating postexercise hypotension under thermoneutral conditions.
Collapse
Affiliation(s)
- Brad W Wilkins
- Department of Human Physiology, University of Oregon, Eugene, OR 97403-1240, USA
| | | | | |
Collapse
|