1
|
Rudell JC, McLoon LK. Effects of Short-Term Treatment of Rabbit Extraocular Muscle With Ciliary Neurotrophic Factor. Invest Ophthalmol Vis Sci 2024; 65:41. [PMID: 39330989 PMCID: PMC11437687 DOI: 10.1167/iovs.65.11.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Purpose Little is known about the effect of ciliary neurotrophic factor (CNTF) on extraocular muscles, but microarray studies suggested CNTF might play a role in the development and/or maintenance of strabismus. The effect of short-term treatment of adult rabbit extraocular muscle with injected CNTF was examined for its ability to alter muscle characteristics. Methods Eight adult New Zealand white rabbits received an injection into one superior rectus muscle of 2 µg/100 µL CNTF on 3 consecutive days. One week after the first injection, the rabbits were euthanized, and the treated and contralateral superior rectus muscles were assessed for force generation capacity and contraction characteristics using an in vitro stimulation protocol and compared to naïve control superior rectus muscles. All muscles were analyzed to determine mean cross-sectional areas and expression of slow twitch myosin heavy chain isoform. Results Short-term treatment of rabbit superior rectus muscles with CNTF resulted in a significant decrease in muscle force generation, but only at the higher stimulation frequencies. Significantly decreased myofiber cross-sectional areas of the treated muscles correlated with the decreased generated force. In addition, there were significant changes to contractile properties of the treated muscles, as well as a decrease in the number of myofibers expressing slow twitch myosin heavy chain. Conclusions We show that short-term treatment of a single rabbit superior rectus muscle results in decreased myofiber size, decreased force, and altered contractile characteristics. Further studies are needed to determine if it can play a role in improving alignment in animal models of strabismus.
Collapse
Affiliation(s)
- Jolene C Rudell
- Department of Ophthalmology, University of California San Diego, La Jolla, California, United States
| | - Linda K McLoon
- Departments of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
2
|
Mayadali ÜS, Chertes CAM, Sinicina I, Shaikh AG, Horn AKE. Ion channel profiles of extraocular motoneurons and internuclear neurons in human abducens and trochlear nuclei. Front Neuroanat 2024; 18:1411154. [PMID: 38957435 PMCID: PMC11217180 DOI: 10.3389/fnana.2024.1411154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
Introduction Extraocular muscles are innervated by two anatomically and histochemically distinct motoneuron populations: motoneurons of multiply-innervated fibers (MIF), and of singly-innervated fibers (SIF). Recently, it has been established by our research group that these motoneuron types of monkey abducens and trochlear nuclei express distinct ion channel profiles: SIF motoneurons, as well as abducens internuclear neurons (INT), express strong Kv1.1 and Kv3.1b immunoreactivity, indicating their fast-firing capacity, whereas MIF motoneurons do not. Moreover, low voltage activated cation channels, such as Cav3.1 and HCN1 showed differences between MIF and SIF motoneurons, indicating distinct post-inhibitory rebound characteristics. However, the ion channel profiles of MIF and SIF motoneurons have not been established in human brainstem tissue. Methods Therefore, we used immunohistochemical methods with antibodies against Kv, Cav3 and HCN channels to (1) examine the human trochlear nucleus in terms of anatomical organization of MIF and SIF motoneurons, (2) examine immunolabeling patterns of ion channel proteins in the distinct motoneurons populations in the trochlear and abducens nuclei. Results In the examination of the trochlear nucleus, a third motoneuron subgroup was consistently encountered with weak perineuronal nets (PN). The neurons of this subgroup had -on average- larger diameters than MIF motoneurons, and smaller diameters than SIF motoneurons, and PN expression strength correlated with neuronal size. Immunolabeling of various ion channels revealed that, in general, human MIF and SIF motoneurons did not differ consistently, as opposed to the findings in monkey trochlear and abducens nuclei. Kv1.1, Kv3.1b and HCN channels were found on both MIF and SIF motoneurons and the immunolabeling density varied for multiple ion channels. On the other hand, significant differences between SIF motoneurons and INTs were found in terms of HCN1 immunoreactivity. Discussion These results indicated that motoneurons may be more variable in human in terms of histochemical and biophysiological characteristics, than previously thought. This study therefore establishes grounds for any histochemical examination of motor nuclei controlling extraocular muscles in eye movement related pathologies in the human brainstem.
Collapse
Affiliation(s)
- Ümit S. Mayadali
- Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, LMU Munich, Munich, Germany
| | - Christina A. M. Chertes
- Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, LMU Munich, Munich, Germany
| | - Inga Sinicina
- Faculty of Medicine, Institute of Legal Medicine, LMU Munich, Munich, Germany
| | - Aasef G. Shaikh
- Department of Neurology, University Hospitals, Cleveland VA Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Anja K. E. Horn
- Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, LMU Munich, Munich, Germany
| |
Collapse
|
3
|
Hoh JFY. Developmental, Physiological and Phylogenetic Perspectives on the Expression and Regulation of Myosin Heavy Chains in Craniofacial Muscles. Int J Mol Sci 2024; 25:4546. [PMID: 38674131 PMCID: PMC11050549 DOI: 10.3390/ijms25084546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This review deals with the developmental origins of extraocular, jaw and laryngeal muscles, the expression, regulation and functional significance of sarcomeric myosin heavy chains (MyHCs) that they express and changes in MyHC expression during phylogeny. Myogenic progenitors from the mesoderm in the prechordal plate and branchial arches specify craniofacial muscle allotypes with different repertoires for MyHC expression. To cope with very complex eye movements, extraocular muscles (EOMs) express 11 MyHCs, ranging from the superfast extraocular MyHC to the slowest, non-muscle MyHC IIB (nmMyH IIB). They have distinct global and orbital layers, singly- and multiply-innervated fibres, longitudinal MyHC variations, and palisade endings that mediate axon reflexes. Jaw-closing muscles express the high-force masticatory MyHC and cardiac or limb MyHCs depending on the appropriateness for the acquisition and mastication of food. Laryngeal muscles express extraocular and limb muscle MyHCs but shift toward expressing slower MyHCs in large animals. During postnatal development, MyHC expression of craniofacial muscles is subject to neural and hormonal modulation. The primary and secondary myotubes of developing EOMs are postulated to induce, via different retrogradely transported neurotrophins, the rich diversity of neural impulse patterns that regulate the specific MyHCs that they express. Thyroid hormone shifts MyHC 2A toward 2B in jaw muscles, laryngeal muscles and possibly extraocular muscles. This review highlights the fact that the pattern of myosin expression in mammalian craniofacial muscles is principally influenced by the complex interplay of cell lineages, neural impulse patterns, thyroid and other hormones, functional demands and body mass. In these respects, craniofacial muscles are similar to limb muscles, but they differ radically in the types of cell lineage and the nature of their functional demands.
Collapse
Affiliation(s)
- Joseph Foon Yoong Hoh
- Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Schiaffino S, Hughes SM, Murgia M, Reggiani C. MYH13, a superfast myosin expressed in extraocular, laryngeal and syringeal muscles. J Physiol 2024; 602:427-443. [PMID: 38160435 DOI: 10.1113/jp285714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
MYH13 is a unique type of sarcomeric myosin heavy chain (MYH) first detected in mammalian extraocular (EO) muscles and later also in vocal muscles, including laryngeal muscles of some mammals and syringeal muscles of songbirds. All these muscles are specialized in generating very fast contractions while producing relatively low force, a design appropriate for muscles acting against a much lower load than most skeletal muscles inserting into the skeleton. The definition of the physiological properties of muscle fibres containing MYH13 has been complicated by the mixed fibre type composition of EO muscles and the coexistence of different MYH types within the same fibre. A major advance in this area came from studies on isolated recombinant myosin motors and the demonstration that the affinity of actin-bound human MYH13 for ADP is much weaker than those of fast-type MYH1 (type 2X) and MYH2 (type 2A). This property is consistent with a very fast detachment of myosin from actin, a major determinant of shortening velocity. The MYH13 gene arose early during vertebrate evolution but was characterized only in mammals and birds and appears to have been lost in some teleost fish. The MYH13 gene is located at the 3' end of the mammalian fast/developmental gene cluster and in a similar position to the orthologous cluster in syntenic regions of the songbird genome. MYH13 gene regulation is controlled by a super-enhancer in the mammalian locus and deletion of the neighbouring fast MYH1 and MYH4 genes leads to abnormal MYH13 expression in mouse leg muscles.
Collapse
Affiliation(s)
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College, London, UK
| | - Marta Murgia
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Science and Research Center Koper, Institute for Kinesiology Research, Koper, Slovenia
| |
Collapse
|
5
|
Hoh JFY. Developmental, physiologic and phylogenetic perspectives on the expression and regulation of myosin heavy chains in mammalian skeletal muscles. J Comp Physiol B 2023:10.1007/s00360-023-01499-0. [PMID: 37277594 DOI: 10.1007/s00360-023-01499-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023]
Abstract
The kinetics of myosin controls the speed and power of muscle contraction. Mammalian skeletal muscles express twelve kinetically different myosin heavy chain (MyHC) genes which provides a wide range of muscle speeds to meet different functional demands. Myogenic progenitors from diverse craniofacial and somitic mesoderm specify muscle allotypes with different repertoires for MyHC expression. This review provides a brief synopsis on the historical and current views on how cell lineage, neural impulse patterns, and thyroid hormone influence MyHC gene expression in muscles of the limb allotype during development and in adult life and the molecular mechanisms thereof. During somitic myogenesis, embryonic and foetal myoblast lineages form slow and fast primary and secondary myotube ontotypes which respond differently to postnatal neural and thyroidal influences to generate fully differentiated fibre phenotypes. Fibres of a given phenotype may arise from myotubes of different ontotypes which retain their capacity to respond differently to neural and thyroidal influences during postnatal life. This gives muscles physiological plasticity to adapt to fluctuations in thyroid hormone levels and patterns of use. The kinetics of MyHC isoforms vary inversely with animal body mass. Fast 2b fibres are specifically absent in muscles involved in elastic energy saving in hopping marsupials and generally absent in large eutherian mammals. Changes in MyHC expression are viewed in the context of the physiology of the whole animal. The roles of myoblast lineage and thyroid hormone in regulating MyHC gene expression are phylogenetically the most ancient while that of neural impulse patterns the most recent.
Collapse
Affiliation(s)
- Joseph Foon Yoong Hoh
- Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
- , PO Box 152, Killara, NSW, 2071, Australia.
| |
Collapse
|
6
|
Mohamadi A, Vasaghi-Gharamaleki B, Mirzajani A, Jafarzadehpur E. Dynamic Electrooculography Findings for Medial Rectus Myofascial Release in Esodeviation. J Curr Ophthalmol 2023; 35:190-194. [PMID: 38250489 PMCID: PMC10795812 DOI: 10.4103/joco.joco_143_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 01/23/2024] Open
Abstract
Purpose To determine which mechanisms are operative in releasing the extraocular myofascial tissue in response to extraocular myofascial release (EOMR) and to evaluate the effect of EOMR on saccadic velocity and esodeviation angle in patients with convergence spasm. Methods Fourteen patients with convergence spasm aged 20-35 participated in this research. The treatment included touching the medial rectus and its interrelated fascial tissue with the index finger pulp from over the eyelid for at least 300 s and applying very gentle and uniform pressure. We evaluated the saccadic velocity obtained from dynamic electrooculography (EOG) and the angle of deviation. The findings of dynamic EOG were used as a reliable quantitative method to assess eye movement function. Results The amount of esodeviation decreased significantly at both far 2.39Δ, 95% confidence interval (CI) (1.27-3.52) (P = 0.002) and near 5.57Δ, 95% CI (4.67-6.47) (P = 0.001) after two sessions of EOMR in a week. There was no significant difference in saccadic velocities before and after treatment. Conclusion In the short term, the EOMR only affects the static condition of the eye. Therefore, a significant improvement could be seen in the deviometric findings. However, the dynamic properties of the extraocular muscles did not improve and probably needed a more extended treatment period for acting the long-term mechanisms.
Collapse
Affiliation(s)
- Alireza Mohamadi
- Rehabilitation Research Center, Department of Optometry, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Behnoosh Vasaghi-Gharamaleki
- Rehabilitation Research Center, Department of Optometry, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mirzajani
- Rehabilitation Research Center, Department of Optometry, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Jafarzadehpur
- Rehabilitation Research Center, Department of Optometry, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Adade S, Das VE. Investigation of Selective Innervation of Extraocular Muscle Compartments. Invest Ophthalmol Vis Sci 2023; 64:24. [PMID: 36820678 PMCID: PMC9970002 DOI: 10.1167/iovs.64.2.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Purpose Recent magnetic resonance imaging studies have suggested that extraocular muscles (EOM) are further divided into transverse compartments that behave differentially and often unexpectedly during eye movements. Selective innervation of EOM compartments may explain the observation that certain horizontal recti compartments contribute to specific vertical eye movements and that some cyclovertical EOM compartments do not contribute to vertical vergence. We investigated the discharge characteristics of extraocular motoneurons during these eye movement tasks where EOM compartments behaved differentially for evidence of selective innervation. Methods We recorded from all six extraocular motoneuron populations in the abducens, oculomotor, and trochlear nuclei as two non-human primates performed vertical vergence and vertical smooth-pursuit. The relationship between motoneuron firing rate, horizontal and vertical eye parameters of the innervated eye during each task was determined using multiple linear regression. Results All 26 medial rectus motoneurons recorded showed no significant modulation during vertical smooth-pursuit and vertical vergence. Twenty-eight of 30 abducens motoneurons showed no significant modulation during vertical vergence, and all 30 cells did not modulate during vertical smooth-pursuit. For the cyclovertical motoneurons, 147 of the 149 cells (44/46 inferior rectus, 27/27 superior oblique, 41/41 superior rectus and 35/35 inferior oblique) modulated significantly during vertical vergence. Conclusions Extraocular motoneuron activity during vertical vergence and vertical smooth-pursuit does not support the theory that EOM compartments are selectively innervated. The observed differential behavior of EOM compartments is likely not driven by oculomotor control and could be due to passive change in EOM cross-sectional area.
Collapse
Affiliation(s)
- Samuel Adade
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Vallabh E. Das
- College of Optometry, University of Houston, Houston, Texas, United States
| |
Collapse
|
8
|
Abstract
Eye movements are indispensable for visual image stabilization during self-generated and passive head and body motion and for visual orientation. Eye muscles and neuronal control elements are evolutionarily conserved, with novel behavioral repertoires emerging during the evolution of frontal eyes and foveae. The precise execution of eye movements with different dynamics is ensured by morphologically diverse yet complementary sets of extraocular muscle fibers and associated motoneurons. Singly and multiply innervated muscle fibers are controlled by motoneuronal subpopulations with largely selective premotor inputs from task-specific ocular motor control centers. The morphological duality of the neuromuscular interface is matched by complementary biochemical and molecular features that collectively assign different physiological properties to the motor entities. In contrast, the functionality represents a continuum where most motor elements contribute to any type of eye movement, although within preferential dynamic ranges, suggesting that signal transmission and muscle contractions occur within bands of frequency-selective pathways.
Collapse
Affiliation(s)
- Anja K E Horn
- Institute of Anatomy and Cell Biology I, Ludwig-Maximilians-University Munich, 80336 Munich, Germany;
| | - Hans Straka
- Department Biology II, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| |
Collapse
|
9
|
Hoh JFY. Myosin heavy chains in extraocular muscle fibres: Distribution, regulation and function. Acta Physiol (Oxf) 2021; 231:e13535. [PMID: 32640094 DOI: 10.1111/apha.13535] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
This review examines kinetic properties and distribution of the 11 isoforms of myosin heavy chain (MyHC) expressed in extraocular muscle (EOM) fibre types and the regulation and function of these MyHCs. Although recruitment and discharge characteristics of ocular motoneurons during fixation and eye movements are well documented, work directly linking these properties with motor unit contractile speed and MyHC composition is lacking. Recruitment of motor units according to Henneman's size principle has some support in EOMs but needs consolidation. Both neurogenic and myogenic mechanisms regulate MyHC expression as in other muscle allotypes. Developmentally, multiply-innervated (MIFs) and singly-innervated fibres (SIFs) are derived presumably from distinct myoblast lineages, ending up expressing MyHCs in the slow and fast ends of the kinetic spectrum respectively. They modulate the synaptic inputs of their motoneurons through different retrogradely transported neurotrophins, thereby specifying their tonic and phasic impulse patterns. Immunohistochemical analyses of EOMs regenerating in situ and in limb muscle beds suggest that the very impulse patterns driving various ocular movements equip effectors with appropriate MyHC compositions and speeds to accomplish their tasks. These experiments also suggest that satellite cells of SIFs and MIFs are distinct lineages expressing different MyHCs during regeneration. MyHC compositions and functional characteristics of orbital fibres show longitudinal variations that facilitate linear ocular rotation during saccades. Palisade endings on global MIFs are postulated to respond to active and passive tensions by triggering axon reflexes that play important roles during fixation, saccades and vergence. How EOMs implement Listings law during ocular rotation is discussed.
Collapse
Affiliation(s)
- Joseph F. Y. Hoh
- Discipline of Physiology and the Bosch Institute School of Medical Sciences Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| |
Collapse
|
10
|
Rudell JC, Stager D, Felius J, McLoon LK. Morphological Differences in the Inferior Oblique Muscles from Subjects with Over-elevation in Adduction. Invest Ophthalmol Vis Sci 2021; 61:33. [PMID: 32539136 PMCID: PMC7415317 DOI: 10.1167/iovs.61.6.33] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose We examined inferior oblique muscles from subjects with over-elevation in adduction for characteristics that might shed light on the potential mechanisms for their abnormal eye position. Methods The inferior oblique muscles were obtained at the time of surgery in subjects diagnosed with either primary inferior oblique overaction or Apert syndrome. The muscles were frozen and processed for morphometric analysis of myofiber size, central nucleation, myosin heavy chain (MyHC) isoform expression, nerve density, and numbers of neuromuscular junctions per muscle section. Results The inferior oblique muscles from subjects with Apert Syndrome were smaller, and had a much more heterogeneous profile relative to myofiber cross-sectional area compared to controls. Increased central nucleation in the Apert syndrome muscles suggested on-going myofiber regeneration or reinnervation over time. Complex changes were seen in the MyHC isoform patterns that would predict slower and more sustained contractions than in the control muscles. Nerve fiber densities were significantly increased compared to controls for the muscles with primary inferior oblique overaction and Apert syndrome that had no prior surgery. The muscles from Apert syndrome subjects as well as those with primary inferior oblique overaction with no prior surgery had significantly elevated numbers of neuromuscular junctions relative to the whole muscle area. Conclusions The muscles from both sets of subjects were significantly different from control muscles in a number of properties examined. These data support the view that despite similar manifestations of eye misalignment, the potential mechanism behind the strabismus in these subjects is significantly different.
Collapse
|
11
|
Larson L, Lioy J, Johnson J, Medler S. Transitional Hybrid Skeletal Muscle Fibers in Rat Soleus Development. J Histochem Cytochem 2019; 67:891-900. [PMID: 31510854 PMCID: PMC6882066 DOI: 10.1369/0022155419876421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/12/2019] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscles comprise hundreds of individual muscle fibers, with each possessing specialized contractile properties. Skeletal muscles are recognized as being highly plastic, meaning that the physiological properties of single muscle fibers can change with appropriate use. During fiber type transitions, one myosin heavy chain isoform is exchanged for another and over time the fundamental nature of the fiber adapts to become a different fiber type. Within the rat triceps surae complex, the soleus muscle starts out as a muscle comprised of a mixture type IIA and type I fibers. As neonatal rats grow and mature, the soleus undergoes a near complete transition into a muscle with close to 100% type I fibers at maturity. We used immunohistochemistry and single fiber SDS-PAGE to track the transformation of type IIA into type I fibers. We found that transitioning fibers progressively incorporate new myofibrils containing type I myosin into existing type IIA fibers. During this exchange, distinct type I-containing myofibrils are segregated among IIA myofibrils. The individual myofibrils within existing muscle fibers thus appear to represent the functional unit that is exchanged during fiber type transitions that occur as part of normal muscle development.
Collapse
Affiliation(s)
- Lauren Larson
- Biology Department, State University of New York at Fredonia, Fredonia, NY, USA
| | - Jessica Lioy
- Biology Department, State University of New York at Fredonia, Fredonia, NY, USA
| | - Jordan Johnson
- Biology Department, State University of New York at Fredonia, Fredonia, NY, USA
| | - Scott Medler
- Biology Department, State University of New York at Fredonia, Fredonia, NY, USA
| |
Collapse
|
12
|
Medler S. Mixing it up: the biological significance of hybrid skeletal muscle fibers. ACTA ACUST UNITED AC 2019; 222:222/23/jeb200832. [PMID: 31784473 DOI: 10.1242/jeb.200832] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skeletal muscle fibers are classified according to the myosin heavy chain (MHC) isoforms and other myofibrillar proteins expressed within these cells. In addition to 'pure' fibers expressing single MHC isoforms, many fibers are 'hybrids' that co-express two or more different isoforms of MHC or other myofibrillar proteins. Although hybrid fibers have been recognized by muscle biologists for more than three decades, uncertainty persists about their prevalence in normal muscles, their role in fiber-type transitions, and what they might tell us about fiber-type regulation at the cellular and molecular levels. This Review summarizes current knowledge on the relative abundance of hybrid fibers in a variety of muscles from different species. Data from more than 150 muscles from 39 species demonstrate that hybrid fibers are common, frequently representing 25% or more of the fibers in normal muscles. Hybrid fibers appear to have two main roles: (1) they function as intermediates during the fiber-type transitions associated with skeletal muscle development, adaptation to exercise and aging; and (2) they provide a functional continuum of fiber phenotypes, as they possess physiological properties that are intermediate to those of pure fiber types. One aspect of hybrid fibers that is not widely recognized is that fiber-type asymmetries - such as dramatic differences in the MHC composition along the length of single fibers - appear to be a common aspect of many fibers. The final section of this Review examines the possible role of differential activities of nuclei in different myonuclear domains in establishing fiber-type asymmetries.
Collapse
Affiliation(s)
- Scott Medler
- Biology Department, State University of New York at Fredonia, Fredonia, NY 14063, USA
| |
Collapse
|
13
|
Scott AB, Miller JM, Namgalies TC. Activating the levator to elevate the eyelid. J AAPOS 2019; 23:219.e1-219.e4. [PMID: 31229610 DOI: 10.1016/j.jaapos.2019.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 03/12/2019] [Accepted: 04/09/2019] [Indexed: 11/19/2022]
Abstract
PURPOSE To demonstrate in an animal model the feasibility of elevating the eyelid in a functionally useful manner by chronically stimulating the levator palpebrae superioris (LPS) muscle with an implanted electrode. METHODS Five rabbits were implanted with electrodes designed to stimulate the nerve innervating the LPS near its entry to the muscle. Bipolar platinum electrodes in a silicone rubber envelope with silicone-sleeved, PTFE-coated platinum lead wires were used to provide long-term stimulation with bipolar square-wave pulse trains of 0.18-0.80 mA and 200 Hz at a duty cycle of 8 seconds on and 2 seconds off. Explanted electrodes were examined for damage, and stimulated tissues were evaluated for abnormalities by light microscopy. RESULTS We achieved mean lid elevation of 1.6 mm, approaching the diameter of the light-adapted pupil, with 0.5 mA stimulus. Stimulus currents below 1.0 mA produced no signs of discomfort. Three animals with which we attempted daily stimulation, averaged 16.1 hours per week. Experiments lasted 22 weeks on average. Lid lifting with a well-implanted platinum electrodes was stable, with no apparent tissue or electrode damage after as long as 29.1 weeks. CONCLUSIONS Stable, functionally useful eyelid lifting was achieved with stimulation currents that caused no apparent discomfort or damage to muscles or nerves. A simple, discrete bipolar electrode was effective and survivable.
Collapse
Affiliation(s)
- Alan B Scott
- The Strabismus Research Foundation, San Francisco, California, USA; Eidactics, San Francisco, California, USA
| | - Joel M Miller
- The Strabismus Research Foundation, San Francisco, California, USA; Eidactics, San Francisco, California, USA.
| | - Talita Cunha Namgalies
- The Strabismus Research Foundation, San Francisco, California, USA; Eidactics, San Francisco, California, USA; Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
14
|
Fitzpatrick KR, Cucak A, McLoon LK. Changing muscle function with sustained glial derived neurotrophic factor treatment of rabbit extraocular muscle. PLoS One 2018; 13:e0202861. [PMID: 30142211 PMCID: PMC6108505 DOI: 10.1371/journal.pone.0202861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/10/2018] [Indexed: 01/05/2023] Open
Abstract
Recent microarray and RNAseq experiments provided evidence that glial derived neurotrophic factor (GDNF) levels were decreased in extraocular muscles from human strabismic subjects compared to age-matched controls. We assessed the effect of sustained GDNF treatment of the superior rectus muscles of rabbits on their physiological and morphological characteristics, and these were compared to naïve control muscles. Superior rectus muscles of rabbits were implanted with a sustained release pellet of GDNF to deliver 2μg/day, with the contralateral side receiving a placebo pellet. After one month, the muscles were assessed using in vitro physiological methods. The muscles were examined histologically for alteration in fiber size, myosin expression patterns, neuromuscular junction size, and stem cell numbers and compared to age-matched naïve control muscles. GDNF resulted in decreased force generation, which was also seen on the untreated contralateral superior rectus muscles. Muscle relaxation times were increased in the GDNF treated muscles. Myofiber mean cross-sectional areas were increased after the GDNF treatment, but there was a compensatory increase in expression of developmental, neonatal, and slow tonic myosin heavy chain isoforms. In addition, in the GDNF treated muscles there was a large increase in Pitx2-positive myogenic precursor cells. One month of GDNF resulted in significant extraocular muscle adaptation. These changes are interesting relative to the decreased levels of GDNF in the muscles from subjects with strabismus and preliminary data in infant non-human primates where sustained GDNF treatment produced a strabismus. These data support the view that GDNF has the potential for improving eye alignment in subjects with strabismus.
Collapse
Affiliation(s)
- Krysta R. Fitzpatrick
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Anja Cucak
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Linda K. McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Ophthalmology and Visual Neurosciences and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
15
|
Hopker LM, Neves JDC, Nascimento DJ, Campos ED, Mendonça TS, Zanoteli E, Allemann N. Histological changes underlying bupivacaine's effect on extra ocular muscle. Exp Eye Res 2018. [PMID: 29530812 DOI: 10.1016/j.exer.2018.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
To determine the changes in the cross-sectional area (CSA) of myofibers and their subtype distribution based on the myosin isoform expression after bupivacaine (BUP) injection in the EOM of rabbits and help the understanding of strabismus correction after BUP injection in the clinical practice. A total of 32 rabbits received 0.3 mL of 1.5% BUP in the superior rectus muscle (SR) of the right eye (OD) and were sacrificed at days 7, 28, 60, and 92. Additional eight untouched rabbits were included as controls. Hematoxylin and eosin staining was performed, and ImageJ software was used to measure CSA. Immunohistochemical analysis was performed to analyze the proportion of myofibers positive for myosin types 1 (slow), 2 (fast) and embryonic. Myofiber area measurement decreased 7 days after BUP injection [SR, 1271 ± 412 μm2 (control) to 909 ± 255 μm2 (day 7)] after BUP injection, followed by an increasing trend after 28 days and normalization after 92 days [SR; 1062 ± 363 μm2 (day 28), 1492 ± 404 μm2 (day 60), 1317 ± 334 μm2 (day 92)]. The proportion of slow myosin-positive fibers increased in the 60-day group (88.5% ± 16.2%). There was no statistically significant difference in fast myosin-positive fibers. The inferior rectus of both eyes showed an increase in CSA. No increase of endomysial fibrous tissue was observed after 60 and 92 days of BUP injection. Bupivacaine, when injected into the SR of rabbits, initially decreases the fiber area followed by a transient increasing trend and normalization. There is a transient increase in the proportion of slow myosin-positive fibers in the injected muscle. Muscle adaptation in untreated EOM was found with increased CSA. These findings help clarify the clinical effects of BUP in extraocular muscle.
Collapse
Affiliation(s)
- Luisa Moreira Hopker
- Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil; Evangelical Hospital of Curitiba, Curitiba, Brazil.
| | | | | | | | | | - Edmar Zanoteli
- Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brazil
| | - Norma Allemann
- Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil; University of Illinois at Chicago (UIC), Chicago, IL, USA
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The goal of this review is to summarize the unique regenerative milieu within mature mammalian extraocular muscles (EOMs). This will aid in understanding disease propensity for and sparing of EOMs in skeletal muscle diseases as well as the recalcitrance of the EOM to injury. RECENT FINDINGS The EOMs continually remodel throughout life and contain an extremely enriched number of myogenic precursor cells that differ in number and functional characteristics from those in limb skeletal muscle. The EOMs also contain a large population of Pitx2-positive myogenic precursor cells that provide the EOMs with many of their unusual biological characteristics, such as myofiber remodeling and skeletal muscle disease sparing. This environment provides for rapid and efficient remodeling and regeneration after various types of injury. In addition, the EOMs show a remarkable ability to respond to perturbations of single muscles with coordinated changes in the other EOMs that move in the same plane. SUMMARY These data will inform Ophthalmologists as they work toward developing new treatments for eye movement disorders, new approaches for repair after nerve or direct EOMs injury, as well as suggest potential explanations for the unusual disease propensity and disease sparing characteristics of human EOM.
Collapse
Affiliation(s)
- Mayank Verma
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | - Krysta Fitzpatrick
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota
| | - Linda K McLoon
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
17
|
Peggion C, Massimino ML, Biancotto G, Angeletti R, Reggiani C, Sorgato MC, Bertoli A, Stella R. Absolute quantification of myosin heavy chain isoforms by selected reaction monitoring can underscore skeletal muscle changes in a mouse model of amyotrophic lateral sclerosis. Anal Bioanal Chem 2017; 409:2143-2153. [PMID: 28078418 DOI: 10.1007/s00216-016-0160-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/05/2016] [Accepted: 12/15/2016] [Indexed: 01/08/2023]
Abstract
Skeletal muscle fibers contain different isoforms of myosin heavy chain (MyHC) that define distinctive contractile properties. In light of the muscle capacity to adapt MyHC expression to pathophysiological conditions, a rapid and quantitative assessment of MyHC isoforms in small muscle tissue quantities would represent a valuable diagnostic tool for (neuro)muscular diseases. As past protocols did not meet these requirements, in the present study we applied a targeted proteomic approach based on selected reaction monitoring that allowed the absolute quantification of slow and fast MyHC isoforms in different mouse skeletal muscles with high reproducibility. This mass-spectrometry-based method was validated also in a pathological specimen, by comparison of the MyHC expression profiles in different muscles from healthy mice and a genetic mouse model of amyotrophic lateral sclerosis (ALS) expressing the SOD1(G93A) mutant. This analysis showed that terminally ill ALS mice have a fast-to-slow shift in the fiber type composition of the tibialis anterior and gastrocnemius muscles, as previously reported. These results will likely open the way to accurate and rapid diagnoses of human (neuro)muscular diseases by the proposed method. Graphical Abstract Methods for myosin heavy chain (MyHC) quantification: a comparison of classical methods and selected reaction monitoring (SRM)-based mass spectrometry approaches.
Collapse
Affiliation(s)
- Caterina Peggion
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, 35131, Padua, PD, Italy
| | - Maria Lina Massimino
- CNR Neuroscience Institute, University of Padua, Via Ugo Bassi 58/B, 35131, Padua, PD, Italy
| | - Giancarlo Biancotto
- Department of Chemistry, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, 10, 35020, Legnaro, PD, Italy
| | - Roberto Angeletti
- Department of Chemistry, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, 10, 35020, Legnaro, PD, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, 35131, Padua, PD, Italy
| | - Maria Catia Sorgato
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, 35131, Padua, PD, Italy.,CNR Neuroscience Institute, University of Padua, Via Ugo Bassi 58/B, 35131, Padua, PD, Italy
| | - Alessandro Bertoli
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, 35131, Padua, PD, Italy.
| | - Roberto Stella
- Department of Chemistry, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, 10, 35020, Legnaro, PD, Italy.
| |
Collapse
|
18
|
Korfage J, Kwee K, Everts V, Langenbach G. Myosin Heavy Chain Expression Can Vary over the Length of Jaw and Leg Muscles. Cells Tissues Organs 2016; 201:130-7. [PMID: 26950765 PMCID: PMC5296893 DOI: 10.1159/000443606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 11/19/2022] Open
Abstract
Muscle fiber type classification can be determined by its myosin heavy chain (MyHC) composition based on a few consecutive sections. It is generally assumed that the MyHC expression of a muscle fiber is the same over its length since neural stimulation and systemic influences are supposed to be the same over its length. We analyzed this in detail in three muscle types: the temporalis (closer) and digastricus (opener; both first brachial arch), and the medial gastrocnemius (somite). Sections of the muscles were incubated with monoclonal antibodies against various MyHC isoforms, and the distribution of these isoforms within individual fibers was followed over a distance of approximately 1 mm. The staining intensity of a fiber was measured and compared with the other fibers in the section. In the temporalis, digastricus, and gastrocnemius, 46, 11, and 15%, respectively, of their MyHC-I fibers showed a variation in the staining intensity over the length of their fibers, as well as 47, 87, and 22%, respectively, of their MyHC-IIA fibers. Most variable fibers were found amongst those with an overall relative intermediate staining intensity, which are presumably hybrid fibers. We conclude that different parts of a muscle fiber can have different fiber type compositions and, thus, contractile properties. Some muscle parts might reach their maximum contraction peak sooner or later than a muscle part a few microns further away. Next to stimulation by the nerve and systemic influences, local influences might also have an impact on the MyHC expression of the fiber.
Collapse
Affiliation(s)
- J.A.M. Korfage
- Department of Functional Anatomy and Oral Cell Biology, Academisch Centrum Tandheelkunde Amsterdam, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
19
|
McDonald AA, Hebert SL, McLoon LK. Sparing of the extraocular muscles in mdx mice with absent or reduced utrophin expression: A life span analysis. Neuromuscul Disord 2015; 25:873-87. [PMID: 26429098 PMCID: PMC4630113 DOI: 10.1016/j.nmd.2015.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/08/2015] [Accepted: 09/01/2015] [Indexed: 11/26/2022]
Abstract
Sparing of the extraocular muscles in muscular dystrophy is controversial. To address the potential role of utrophin in this sparing, mdx:utrophin(+/-) and mdx:utrophin(-/-) mice were examined for changes in myofiber size, central nucleation, and Pax7-positive and MyoD-positive cell density at intervals over their life span. Known to be spared in the mdx mouse, and contrary to previous reports, the extraocular muscles from both the mdx:utrophin(+/-) and mdx:utrophin(-/-) mice were also morphologically spared. In the mdx:utrophin(+/)(-) mice, which have a normal life span compared to the mdx:utrophin(-/-) mice, the myofibers were larger at 3 and 12 months than the wild type age-matched eye muscles. While there was a significant increase in central nucleation in the extraocular muscles from all mdx:utrophin(+/)(-) mice, the levels were still very low compared to age-matched limb skeletal muscles. Pax7- and MyoD-positive myogenic precursor cell populations were retained and were similar to age-matched wild type controls. These results support the hypothesis that utrophin is not involved in extraocular muscle sparing in these genotypes. In addition, it appears that these muscles retain the myogenic precursors that would allow them to maintain their regenerative capacity and normal morphology over a lifetime even in these more severe models of muscular dystrophy.
Collapse
Affiliation(s)
- Abby A McDonald
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA; Graduate Program in Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN, USA
| | - Sadie L Hebert
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Linda K McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA; Graduate Program in Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
20
|
Willoughby CL, Fleuriet J, Walton MM, Mustari MJ, McLoon LK. Adaptability of the Immature Ocular Motor Control System: Unilateral IGF-1 Medial Rectus Treatment. Invest Ophthalmol Vis Sci 2015; 56:3484-96. [PMID: 26030103 DOI: 10.1167/iovs.15-16761] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Unilateral treatment with sustained release IGF-1 to one medial rectus muscle in infant monkeys was performed to test the hypothesis that strabismus would develop as a result of changes in extraocular muscles during the critical period of development of binocularity. METHODS Sustained release IGF-1 pellets were implanted unilaterally on one medial rectus muscle in normal infant monkeys during the first 2 weeks of life. Eye position was monitored using standard photographic methods. After 3 months of treatment, myofiber and neuromuscular size, myosin composition, and innervation density were quantified in all rectus muscles and compared to those in age-matched controls. RESULTS Sustained unilateral IGF-1 treatments resulted in strabismus for all treated subjects; 3 of the 4 subjects had a clinically significant strabismus of more than 10°. Both the treated medial rectus and the untreated ipsilateral antagonist lateral rectus muscles had significantly larger myofibers. No adaptation in myofiber size occurred in the contralateral functionally yoked lateral rectus or in myosin composition, neuromuscular junction size, or nerve density. CONCLUSIONS Sustained unilateral IGF-1 treatment to extraocular muscles during the sensitive period of development of orthotropic eye alignment and binocularity was sufficient to disturb ocular motor development, resulting in strabismus in infant monkeys. This could be due to altering fusion of gaze during the early sensitive period. Serial measurements of eye alignment suggested the IGF-1-treated infants received insufficient coordinated binocular experience, preventing the establishment of normal eye alignment. Our results uniquely suggest that abnormal signaling by the extraocular muscles may be a cause of strabismus.
Collapse
Affiliation(s)
- Christy L Willoughby
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States 2Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| | - Jérome Fleuriet
- Washington National Primate Research Center, Seattle, Washington, United States 4Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Mark M Walton
- Washington National Primate Research Center, Seattle, Washington, United States
| | - Michael J Mustari
- Washington National Primate Research Center, Seattle, Washington, United States 4Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Linda K McLoon
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States 2Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
21
|
Willoughby CL, Fleuriet J, Walton MM, Mustari MJ, McLoon LK. Adaptation of slow myofibers: the effect of sustained BDNF treatment of extraocular muscles in infant nonhuman primates. Invest Ophthalmol Vis Sci 2015; 56:3467-83. [PMID: 26030102 DOI: 10.1167/iovs.15-16852] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE We evaluated promising new treatment options for strabismus. Neurotrophic factors have emerged as a potential treatment for oculomotor disorders because of diverse roles in signaling to muscles and motor neurons. Unilateral treatment with sustained release brain-derived neurotrophic factor (BDNF) to a single lateral rectus muscle in infant monkeys was performed to test the hypothesis that strabismus would develop in correlation with extraocular muscle (EOM) changes during the critical period for development of binocularity. METHODS The lateral rectus muscles of one eye in two infant macaques were treated with sustained delivery of BDNF for 3 months. Eye alignment was assessed using standard photographic methods. Muscle specimens were analyzed to examine the effects of BDNF on the density, morphology, and size of neuromuscular junctions, as well as myofiber size. Counts were compared to age-matched controls. RESULTS No change in eye alignment occurred with BDNF treatment. Compared to control muscle, neuromuscular junctions on myofibers expressing slow myosins had a larger area. Myofibers expressing slow myosin had larger diameters, and the percentage of myofibers expressing slow myosins increased in the proximal end of the muscle. Expression of BDNF was examined in control EOM, and observed to have strongest immunoreactivity outside the endplate zone. CONCLUSIONS We hypothesize that the oculomotor system adapted to sustained BDNF treatment to preserve normal alignment. Our results suggest that BDNF treatment preferentially altered myofibers expressing slow myosins. This implicates BDNF signaling as influencing the slow twitch properties of EOM.
Collapse
Affiliation(s)
- Christy L Willoughby
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States 2Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| | - Jérome Fleuriet
- Washington National Primate Research Center, Seattle, Washington, United States 4Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Mark M Walton
- Washington National Primate Research Center, Seattle, Washington, United States
| | - Michael J Mustari
- Washington National Primate Research Center, Seattle, Washington, United States 4Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Linda K McLoon
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States 2Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
22
|
Walton MMG, Mustari MJ, Willoughby CL, McLoon LK. Abnormal activity of neurons in abducens nucleus of strabismic monkeys. Invest Ophthalmol Vis Sci 2014; 56:10-9. [PMID: 25414191 DOI: 10.1167/iovs.14-15360] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Infantile strabismus is characterized by persistent misalignment of the eyes. Mounting evidence suggests that the disorder is associated with abnormalities at the neural level, but few details are known. This study investigated the signals carried by abducens neurons in monkeys with experimentally induced strabismus. We wanted to know whether the firing rates of individual neurons are exclusively related to the position and velocity of one eye and whether the overall level of activity of the abducens nucleus was in the normal range. METHODS We recorded 58 neurons in right and left abducens nuclei while strabismic monkeys (one esotrope and one exotrope) performed a saccade task. We analyzed the firing rates associated with static horizontal eye position and saccades by fitting the data with a dynamic equation that included position and velocity terms for each eye. Results were compared to previously published data in normal monkeys. RESULTS For both strabismic monkeys the overall tonic activity was 50 to 100 spikes/s lower, for every suprathreshold eye position, than what has previously been reported for normal monkeys. This was mostly the result of lower baseline activity; the slopes of rate-position curves were similar to those in previous reports in normal monkeys. The saccade velocity sensitivities were similar to those of normal monkeys, 0.35 for the esotrope and 0.40 for the exotrope. For most neurons the firing rate was more closely related to the position and velocity of the ipsilateral eye. CONCLUSIONS These data suggest that strabismus can be associated with reduced neural activity in the abducens nucleus.
Collapse
Affiliation(s)
- Mark M G Walton
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States
| | - Michael J Mustari
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States
| | - Christy L Willoughby
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
| | - Linda K McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
23
|
Blaauw B, Schiaffino S, Reggiani C. Mechanisms modulating skeletal muscle phenotype. Compr Physiol 2014; 3:1645-87. [PMID: 24265241 DOI: 10.1002/cphy.c130009] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian skeletal muscles are composed of a variety of highly specialized fibers whose selective recruitment allows muscles to fulfill their diverse functional tasks. In addition, skeletal muscle fibers can change their structural and functional properties to perform new tasks or respond to new conditions. The adaptive changes of muscle fibers can occur in response to variations in the pattern of neural stimulation, loading conditions, availability of substrates, and hormonal signals. The new conditions can be detected by multiple sensors, from membrane receptors for hormones and cytokines, to metabolic sensors, which detect high-energy phosphate concentration, oxygen and oxygen free radicals, to calcium binding proteins, which sense variations in intracellular calcium induced by nerve activity, to load sensors located in the sarcomeric and sarcolemmal cytoskeleton. These sensors trigger cascades of signaling pathways which may ultimately lead to changes in fiber size and fiber type. Changes in fiber size reflect an imbalance in protein turnover with either protein accumulation, leading to muscle hypertrophy, or protein loss, with consequent muscle atrophy. Changes in fiber type reflect a reprogramming of gene transcription leading to a remodeling of fiber contractile properties (slow-fast transitions) or metabolic profile (glycolytic-oxidative transitions). While myonuclei are in postmitotic state, satellite cells represent a reserve of new nuclei and can be involved in the adaptive response.
Collapse
Affiliation(s)
- Bert Blaauw
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | |
Collapse
|
24
|
McLoon LK, Harandi VM, Brännström T, Andersen PM, Liu JX. Wnt and extraocular muscle sparing in amyotrophic lateral sclerosis. Invest Ophthalmol Vis Sci 2014; 55:5482-96. [PMID: 25125606 DOI: 10.1167/iovs.14-14886] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE The extraocular muscles (EOM) and their motor neurons are spared in amyotrophic lateral sclerosis (ALS). In limb muscle, axon retraction from the neuromuscular junctions occurs early in the disease. Wnts, a conserved family of secreted signaling molecules, play a critical role in neuromuscular junction formation. This is the first study to examine Wnt signaling for its potential involvement in maintenance of normal morphology in EOM in ALS. METHODS Extraocular muscle and limb muscle axons, neuromuscular junctions, and myofibers from control, aging, and ALS subjects and the SOD1(G93A) mouse model of ALS were quantified for their expression of Wnt1, Wnt3a, Wnt5a, Wnt7a, and β-catenin. RESULTS All four Wnt isoforms were expressed in most axon profiles in all human EOM. Significantly fewer were positive for Wnt1, Wnt3a, and Wnt7a in the human limb muscles. Similar differential patterns in Wnt myofiber expression were also seen except in the case of Wnt7a, where expression was elevated. In the SOD1(G93A) mouse, all four Wnt isoforms were significantly decreased in the neuromuscular junctions at the terminal stage compared to values in age-matched controls. β-Catenin was activated in a subset of myofibers in EOM and limb muscle in all subjects. CONCLUSIONS The differences in expression of Wnts in EOM and limb muscle, particularly at the neuromuscular junction level, suggest that they play a role in the pathophysiology of ALS. Collectively, the data support a role for signaling of Wnts in the preservation of the EOM in ALS and their dysregulation and the subsequent development of pathology in the ALS limb muscles.
Collapse
Affiliation(s)
- Linda K McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | - Vahid M Harandi
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | - Thomas Brännström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Peter M Andersen
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Jing-Xia Liu
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| |
Collapse
|
25
|
Demer JL, Clark RA. Magnetic resonance imaging of differential compartmental function of horizontal rectus extraocular muscles during conjugate and converged ocular adduction. J Neurophysiol 2014; 112:845-55. [PMID: 24848474 DOI: 10.1152/jn.00649.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Activity in horizontal rectus extraocular muscles (EOMs) was investigated by magnetic resonance imaging (MRI) of humans during asymmetric convergence to a monocularly aligned target at 15-cm distance or monocular fixation of afocal targets placed over a wide range of conjugate abduction through adduction. Cross sections and posterior partial volumes (PPVs) of EOMs were determined from quasi-coronal image planes and were separately analyzed in the inferior vs. superior compartments, defined by lines bisecting their maximum vertical dimensions. Both inferior and superior compartments of medial (MR) and lateral (LR) rectus exhibited contractile changes in PPV and maximum cross section for both asymmetric convergence and a comparable range of conjugate adduction. Both LR compartments, and the inferior MR compartment, exhibited similar decreases in contractility correlating with relaxation during both convergence and conjugate adduction. In contrast, the superior MR compartment exhibited roughly three times the contractility in conjugate adduction as in similar-magnitude convergence. In the aligned eye that did not move during convergence, summed contractility in all compartments of MR and LR exhibited corelaxation consistent with published EOM force measurements in this paradigm (Miller JM, Bockisch CJ, Pavlovski DS. J Neurophysiol 87: 2421-2433, 2002; Miller JM, Davison RC, Gamlin PD. J Neurophysiol 105: 2863-2873, 2011). The superior MR compartment also exhibited significantly greater contractility than the other compartments over the maximum achievable horizontal globe rotation from abduction to adduction. These findings suggest that the superior MR compartment is controlled differentially from the inferior compartment and suggest that its activity is reduced during convergence as a component of generally altered extraocular mechanics.
Collapse
Affiliation(s)
- Joseph L Demer
- Department of Ophthalmology, David Geffen Medical School, University of California, Los Angeles, California; and Department of Neurology, David Geffen Medical School, University of California, Los Angeles, California
| | - Robert A Clark
- Department of Ophthalmology, David Geffen Medical School, University of California, Los Angeles, California; and
| |
Collapse
|
26
|
Complex tropomyosin and troponin T isoform expression patterns in orbital and global fibers of adult dog and rat extraocular muscles. J Muscle Res Cell Motil 2013; 34:211-31. [PMID: 23700265 DOI: 10.1007/s10974-013-9346-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/02/2013] [Indexed: 12/12/2022]
Abstract
We reported marked differences in the myosin heavy and light chain (MHC and MLC) isoform composition of fast and slow fibers between the global and orbital layers of dog extraocular muscles. Many dog extraocular fibers, especially orbital fibers, have MHC and MLC isoform patterns that are distinct from those in limb skeletal muscles. Additional observations suggested possible differences in the tropomyosin (Tm) and troponin T (TnT) isoform composition of global and orbital fibers. Therefore, we tested, using SDS-PAGE and immunoblotting, whether differences in Tm and TnT isoform expression do, in fact, exist between global and orbital layers of dog and rat EOMs and to compare expression patterns among identified fast and slow single fibers from both muscle layers. The Tm isoforms expressed in global fast and slow fibers are the same as in limb fast (α-Tm and β-Tm) and slow (γ-Tm and β-Tm) fibers, respectively. Orbital slow orbital fibers, on the other hand, each co-express all three sarcomeric Tm isoforms (α, β and γ). The results indicate that fast global and orbital fibers express only fast isoforms of TnT, but the relative amounts of the individual isoforms are different from those in limb fast muscle fibers and an abundant fast TnT isoform in the orbital layer was not detected in fast limb muscles. Slow fibers in both layers express slow TnT isoforms and the relative amounts also differ from those in limb slow fibers. Unexpectedly, significant amounts of cardiac TnT isoforms were also detected in slow fibers, especially in the orbital layer in both species. TnI and TnC isoform patterns are the same as in fast and slow fibers in limb muscles. These results expand the understanding of the elaborate diversity in contractile protein isoform expression in mammalian extraocular muscle fibers and suggest that major differences in calcium-activation properties exist among these fibers, based upon Tm and TnT isoform expression patterns.
Collapse
|
27
|
Altick AL, Feng CY, Schlauch K, Johnson LA, von Bartheld CS. Differences in gene expression between strabismic and normal human extraocular muscles. Invest Ophthalmol Vis Sci 2012; 53:5168-77. [PMID: 22786898 DOI: 10.1167/iovs.12-9785] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Strabismic extraocular muscles (EOMs) differ from normal EOMs in structural and functional properties, but the gene expression profile of these two types of EOM has not been examined. Differences in gene expression may inform about causes and effects of the strabismic condition in humans. METHODS EOM samples were obtained during corrective surgery from patients with horizontal strabismus and from deceased organ donors with normal EOMs. Microarrays and quantitative PCR identified significantly up- and down-regulated genes in EOM samples. Analysis was performed on probe sets with more than 3-fold differential expression between normal and strabismic samples, with an adjusted P value of ≤ 0.05. RESULTS Microarray analysis showed that 604 genes in these samples had significantly different expression. Expression predominantly was upregulated in genes involved in extracellular matrix structure, and down-regulated in genes related to contractility. Expression of genes associated with signaling, calcium handling, mitochondria function and biogenesis, and energy homeostasis also was significantly different between normal and strabismic EOM. Skeletal muscle PCR array identified 22 (25%) of 87 muscle-specific genes that were significantly down-regulated in strabismic EOMs; none was significantly upregulated. CONCLUSIONS Differences in gene expression between strabismic and normal human EOMs point to a relevant contribution of the peripheral oculomotor system to the strabismic condition. Decreases in expression of contractility genes and increases of extracellular matrix-associated genes indicate imbalances in EOM structure. We conclude that gene regulation of proteins fundamental to contractile mechanics and extracellular matrix structure is involved in pathogenesis and/or consequences of strabismus, suggesting potential novel therapeutic targets.
Collapse
Affiliation(s)
- Amy L Altick
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | | | |
Collapse
|
28
|
Willoughby CL, Ralles S, Christiansen SP, McLoon LK. Effects of sequential injections of hepatocyte growth factor and insulin-like growth factor-I on adult rabbit extraocular muscle. J AAPOS 2012; 16:354-60. [PMID: 22929450 PMCID: PMC3431511 DOI: 10.1016/j.jaapos.2012.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 12/26/2022]
Abstract
PURPOSE To determine whether hepatocyte growth factor (HGF) and insulin-like growth factor-I (IGF-I) have synergistic effects in promoting extraocular muscle fiber growth and force generation. METHODS A superior rectus muscle of adult rabbits was treated with either a single injection of HGF or sequential injections of HGF followed 1 week later by IGF-I. One week after HGF alone and 1 week after the IGF-I injection, the superior rectus muscles from treated and control orbits were examined for alterations in force generation as well as changes in myofiber size. RESULTS Injection of HGF alone did not result in changes to muscle force, specific tension, or myofiber cross-sectional area; however, it did result in a significant increase in numbers of satellite cells. Sequential injection of HGF and IGF-I resulted in significantly increased force, specific tension, and myofiber cross-sectional areas as well as increased numbers of satellite cells. CONCLUSIONS Preinjection with HGF augments the treatment effect of IGF-I. This synergistic effect is likely a result of HGF-induced activation of satellite cells and should allow a reduction in IGF-I dosing required to produce a given increase in extraocular muscle force generation.
Collapse
|
29
|
Willoughby CL, Christiansen SP, Mustari MJ, McLoon LK. Effects of the sustained release of IGF-1 on extraocular muscle of the infant non-human primate: adaptations at the effector organ level. Invest Ophthalmol Vis Sci 2012; 53:68-75. [PMID: 22125277 DOI: 10.1167/iovs.11-8356] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The authors have demonstrated that prolonged exposure of adult rabbit extraocular muscle (EOM) to insulin-like growth factor-1 (IGF-1) results in significantly increased cross-sectional area and muscle force generation lasting over 3 months. Here the authors assess the effects on EOM of sustained IGF-1 treatment on normal binocular infant Macaca mulatta. METHODS Sustained-release IGF-1 pellets were implanted bilaterally in each medial rectus (MR) muscle of two normal infant non-human primates. Eye position was examined using corneal light reflex testing. After 3 months, morphometric analyses of myofiber cross-sectional area and innervation density in treated MR muscles were compared with an age-matched control and with antagonist lateral rectus (LR) muscles. RESULTS After 3 months, the slow-release pellets remained at the implantation site in all four MR muscles treated. The treated MR showed pronounced increases in cross-sectional area and nerve density, mirrored in the untreated antagonist LR. CONCLUSIONS Three months of bilateral sustained IGF-1 release in infant non-human primate MR resulted in increased muscle size and innervation density, mirrored in the untreated antagonist LR. It appears that bilateral MR treatment resulted in slow adaptation of both treated MR and contralateral LR muscles over time such that functional homeostasis and near-normal alignment were maintained. Further work is needed to determine what signaling mechanisms maintain proportional innervation when EOMs are forced to adapt to an externally applied perturbation.
Collapse
Affiliation(s)
- Christy L Willoughby
- Department of Ophthalmology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|