1
|
Welch JF, Mitchell GS. Inaugural Review Prize 2023: The exercise hyperpnoea dilemma: A 21st-century perspective. Exp Physiol 2024; 109:1217-1237. [PMID: 38551996 PMCID: PMC11291877 DOI: 10.1113/ep091506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/12/2024] [Indexed: 08/02/2024]
Abstract
During mild or moderate exercise, alveolar ventilation increases in direct proportion to metabolic rate, regulating arterial CO2 pressure near resting levels. Mechanisms giving rise to the hyperpnoea of exercise are unsettled despite over a century of investigation. In the past three decades, neuroscience has advanced tremendously, raising optimism that the 'exercise hyperpnoea dilemma' can finally be solved. In this review, new perspectives are offered in the hope of stimulating original ideas based on modern neuroscience methods and current understanding. We first describe the ventilatory control system and the challenge exercise places upon blood-gas regulation. We highlight relevant system properties, including feedforward, feedback and adaptive (i.e., plasticity) control of breathing. We then elaborate a seldom explored hypothesis that the exercise ventilatory response continuously adapts (learns and relearns) throughout life and ponder if the memory 'engram' encoding the feedforward exercise ventilatory stimulus could reside within the cerebellum. Our hypotheses are based on accumulating evidence supporting the cerebellum's role in motor learning and the numerous direct and indirect projections from deep cerebellar nuclei to brainstem respiratory neurons. We propose that cerebellar learning may be obligatory for the accurate and adjustable exercise hyperpnoea capable of tracking changes in life conditions/experiences, and that learning arises from specific cerebellar microcircuits that can be interrogated using powerful techniques such as optogenetics and chemogenetics. Although this review is speculative, we consider it essential to reframe our perspective if we are to solve the till-now intractable exercise hyperpnoea dilemma.
Collapse
Affiliation(s)
- Joseph F. Welch
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonBirminghamUK
| | - Gordon S. Mitchell
- Breathing Research and Therapeutics Centre, Department of Physical Therapy, McKnight Brain InstituteUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
2
|
Mouradian GC, Liu P, Nakagawa P, Duffy E, Gomez Vargas J, Balapattabi K, Grobe JL, Sigmund CD, Hodges MR. Patch-to-Seq and Transcriptomic Analyses Yield Molecular Markers of Functionally Distinct Brainstem Serotonin Neurons. Front Synaptic Neurosci 2022; 14:910820. [PMID: 35844900 PMCID: PMC9280690 DOI: 10.3389/fnsyn.2022.910820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/10/2022] [Indexed: 01/22/2023] Open
Abstract
Acute regulation of CO2 and pH homeostasis requires sensory feedback from peripheral (carotid body) and central (central) CO2/pH sensitive cells - so called respiratory chemoreceptors. Subsets of brainstem serotonin (5-HT) neurons in the medullary raphe are CO2 sensitive or insensitive based on differences in embryonic origin, suggesting these functionally distinct subpopulations may have unique transcriptional profiles. Here, we used Patch-to-Seq to determine if the CO2 responses in brainstem 5-HT neurons could be correlated to unique transcriptional profiles and/or unique molecular markers and pathways. First, firing rate changes with hypercapnic acidosis were measured in fluorescently labeled 5-HT neurons in acute brainstem slices from transgenic, Dahl SS (SSMcwi) rats expressing T2/ePet-eGFP transgene in Pet-1 expressing (serotonin) neurons (SS ePet1-eGFP rats). Subsequently, the transcriptomic and pathway profiles of CO2 sensitive and insensitive 5-HT neurons were determined and compared by single cell RNA (scRNAseq) and bioinformatic analyses. Low baseline firing rates were a distinguishing feature of CO2 sensitive 5-HT neurons. scRNAseq of these recorded neurons revealed 166 differentially expressed genes among CO2 sensitive and insensitive 5-HT neurons. Pathway analyses yielded novel predicted upstream regulators, including the transcription factor Egr2 and Leptin. Additional bioinformatic analyses identified 6 candidate gene markers of CO2 sensitive 5-HT neurons, and 2 selected candidate genes (CD46 and Iba57) were both expressed in 5-HT neurons determined via in situ mRNA hybridization. Together, these data provide novel insights into the transcriptional control of cellular chemoreception and provide unbiased candidate gene markers of CO2 sensitive 5-HT neurons. Methodologically, these data highlight the utility of the patch-to-seq technique in enabling the linkage of gene expression to specific functions, like CO2 chemoreception, in a single cell to identify potential mechanisms underlying functional differences in otherwise similar cell types.
Collapse
Affiliation(s)
- Gary C. Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States,*Correspondence: Gary C. Mouradian Jr.,
| | - Pengyuan Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Erin Duffy
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Javier Gomez Vargas
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kirthikaa Balapattabi
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States,Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Curt D. Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Matthew R. Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
3
|
Mouradian GC, Kilby M, Alvarez S, Kaplan K, Hodges MR. Mortality and ventilatory effects of central serotonin deficiency during postnatal development depend on age but not sex. Physiol Rep 2021; 9:e14946. [PMID: 34228894 PMCID: PMC8259800 DOI: 10.14814/phy2.14946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/24/2022] Open
Abstract
Serotonin (5-HT) influences brain development and has predominantly excitatory neuromodulatory effects on the neural respiratory control circuitry. Infants that succumb to sudden infant death syndrome (SIDS) have reduced brainstem 5-HT levels and Tryptophan hydroxylase 2 (Tph2). Furthermore, there are age- and sex-dependent risk factors associated with SIDS. Here we utilized our established Dark Agouti transgenic rat lacking central serotonin KO to test the hypotheses that CNS 5-HT deficiency leads to: (1) high mortality in a sex-independent manner, (2) age-dependent alterations in other CNS aminergic systems, and (3) age-dependent impairment of chemoreflexes during post-natal development. KO rat pups showed high neonatal mortality but not in a sex-dependent manner and did not show altered hypoxic or hypercapnic ventilatory chemoreflexes. However, KO rat pups had increased apnea-related metrics during a specific developmental age (P12-16), which were preceded by transient increases in dopaminergic system activity (P7-8). These results support and extend the concept that 5-HT per se is a critical factor in supporting respiratory control during post-natal development.
Collapse
Affiliation(s)
- Gary C. Mouradian
- Department of PhysiologyMedical College of WisconsinMilwaukeeWIUSA
- Neuroscience Research CenterMedical College of WisconsinMilwaukeeWIUSA
| | - Madeline Kilby
- Department of PhysiologyMedical College of WisconsinMilwaukeeWIUSA
| | - Santiago Alvarez
- Department of PhysiologyMedical College of WisconsinMilwaukeeWIUSA
| | - Kara Kaplan
- Department of PhysiologyMedical College of WisconsinMilwaukeeWIUSA
| | - Matthew R. Hodges
- Department of PhysiologyMedical College of WisconsinMilwaukeeWIUSA
- Neuroscience Research CenterMedical College of WisconsinMilwaukeeWIUSA
| |
Collapse
|
4
|
Sprenger RJ, Milsom WK. Respiratory development in burrowing rodents: Effect of perinatal hypercapnia. Respir Physiol Neurobiol 2021; 288:103640. [PMID: 33588089 DOI: 10.1016/j.resp.2021.103640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 11/13/2022]
Abstract
Burrowing rodents have a blunted hypercapnic ventilatory response compared to non-burrowing rodents, but semi-fossorial ground squirrels and hamsters are not born with this blunted response when raised in room conditions. This study examined the hypercapnic ventilatory response of rats, hamsters, and ground squirrels raised in burrow-like hypercapnia (∼3 % CO2) through development (embryonic day 16-18 to postnatal day 30) to determine if chronic hypercapnia exerts any effect on the developing and adult semi-fossorial response. Chronic hypercapnia attenuated the ventilatory response to 5 % CO2 by 60 % (rats), 150 % (hamsters), and 70 % (squirrels) in newborns when compared to newborns raised in normal conditions. When raised in burrow conditions, squirrels and hamsters reached the blunted adult response ∼8-12 days sooner in development than their room air counterparts, while burrow-reared rats maintained a consistently blunted response until removal from chronic hypercapnia. Our study revealed no lasting effect of chronic hypercarbia on the ventilatory responses to CO2 in burrowing rodents, but rather a change in the developmental profile such that the blunted adult response was reached earlier in development.
Collapse
Affiliation(s)
- Ryan J Sprenger
- Department of Zoology, University of British Columbia, #4200-6270, University Blvd. Vancouver, B.C., V6T 1Z4, Canada.
| | - William K Milsom
- Department of Zoology, University of British Columbia, #4200-6270, University Blvd. Vancouver, B.C., V6T 1Z4, Canada
| |
Collapse
|
5
|
Patterson KC, Kahanovitch U, Gonçalves CM, Hablitz JJ, Staruschenko A, Mulkey DK, Olsen ML. K ir 5.1-dependent CO 2 /H + -sensitive currents contribute to astrocyte heterogeneity across brain regions. Glia 2021; 69:310-325. [PMID: 32865323 PMCID: PMC8665280 DOI: 10.1002/glia.23898] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 09/19/2023]
Abstract
Astrocyte heterogeneity is an emerging concept in which astrocytes within or between brain regions show variable morphological and/or gene expression profiles that presumably reflect different functional roles. Recent evidence indicates that retrotrapezoid nucleus (RTN) astrocytes sense changes in tissue CO2/ H+ to regulate respiratory activity; however, mechanism(s) by which they do so remain unclear. Alterations in inward K+ currents represent a potential mechanism by which CO2 /H+ signals may be conveyed to neurons. Here, we use slice electrophysiology in rats of either sex to show that RTN astrocytes intrinsically respond to CO2 /H+ by inhibition of an inward rectifying potassium (Kir ) conductance and depolarization of the membrane, while cortical astrocytes do not exhibit such CO2 /H+ -sensitive properties. Application of Ba2+ mimics the effect of CO2 /H+ on RTN astrocytes as measured by reductions in astrocyte Kir -like currents and increased RTN neuronal firing. These CO2 /H+ -sensitive currents increase developmentally, in parallel to an increased expression in Kir 4.1 and Kir 5.1 in the brainstem. Finally, the involvement of Kir 5.1 in the CO2 /H+ -sensitive current was verified using a Kir5.1 KO rat. These data suggest that Kir inhibition by CO2 /H+ may govern the degree to which astrocytes mediate downstream chemoreceptive signaling events through cell-autonomous mechanisms. These results identify Kir channels as potentially important regional CO2 /H+ sensors early in development, thus expanding our understanding of how astrocyte heterogeneity may uniquely support specific neural circuits and behaviors.
Collapse
Affiliation(s)
- Kelsey C Patterson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Uri Kahanovitch
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | - John J Hablitz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
6
|
Barrett KT, Hasan SU, Scantlebury MH, Wilson RJA. Impaired cardiorespiratory responses to hypercapnia in neonatal mice lacking PAC1 but not VPAC2 receptors. Am J Physiol Regul Integr Comp Physiol 2021; 320:R116-R128. [PMID: 33146556 DOI: 10.1152/ajpregu.00161.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The evidence is mounting for a role for abnormal signaling of the stress peptide pituitary adenylate cyclase activating polypeptide (PACAP) and its canonical receptor PAC1 in the pathogenesis of sudden infant death syndrome. In this study, we investigated whether the PACAP receptors PAC1 or VPAC2 are involved in the neonatal cardiorespiratory response to hypercapnic stress. We used head-out plethysmography and surface ECG electrodes to assess cardiorespiratory responses to an 8% hypercapnic challenge in unanesthetized and spontaneously breathing 4-day-old PAC1 or VPAC2 knockout (KO) and wild-type mouse pups. We demonstrate that compared with WTs, breathing frequency (RR) and minute ventilation ([Formula: see text]) in PAC1 KO pups were significantly blunted in response to hypercapnia. Although heart rate was unaltered in PAC1 KO pups during hypercapnia, heart rate recovery posthypercapnia was impaired. In contrast, cardiorespiratory impairments in VPAC2 KO pups were limited to only an overall higher tidal volume (VT), independent of treatment. These findings suggest that PACAP signaling through the PAC1 receptor plays a more important role than signaling through the VPAC2 receptor in neonatal respiratory responses to hypercapnia. Thus deficits in PACAP signaling primarily via PAC1 may contribute to the inability of infants to mount an appropriate protective response to homeostatic stressors in childhood disorders such as SIDS.
Collapse
Affiliation(s)
- Karlene T Barrett
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Alberta, Canada
| | - Shabih U Hasan
- Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Alberta, Canada
| | - Morris H Scantlebury
- Department of Pediatrics, Clinical Neuroscience, Alberta Children's Hospital Research Institute, University of Calgary, Alberta, Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Alberta, Canada
| |
Collapse
|
7
|
Song MJ, Pratt AE, Bavis RW. Development of ventilatory chemoreflexes in Coturnix quail chicks. Respir Physiol Neurobiol 2020; 276:103411. [PMID: 32068130 DOI: 10.1016/j.resp.2020.103411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/01/2022]
Abstract
Compared to mammals, little is known about the development of the respiratory control system in birds. In the present study, ventilation and metabolism were measured in Coturnix quail chicks exposed to room air, hypoxia (11 % O2), and hypercapnia (4% CO2) at 0-1, 3-4, and 6-7 days posthatching (dph). Mass-specific ventilation and metabolic rate tended to increase between 0-1 and 3-4 dph and then decrease again between 3-4 and 6-7 dph. The magnitude of the hypoxic ventilatory response (HVR) increased with age. The HVR also exhibited a biphasic shape in younger quail: after the initial increase in ventilation, ventilation declined back to (0-1 dph), or toward (4 dph), baseline. Older chicks (6-7 dph) had a "sustained HVR" in which ventilation remained high throughout the hypoxic challenge. The biphasic HVR did not appear to be caused by a decline in metabolic rate; although hypoxic hypometabolism was observed in quail chicks in all three age groups, the metabolic response appeared to occur more slowly than the biphasic HVR. The biphasic ventilatory response was also specific to hypoxia since the hypercapnic ventilatory response (HCVR) was characterized by a sustained increase in ventilation in all three age groups. The magnitude of the HCVR decreased with age. These results point to several similarities in the development of ventilatory chemorflexes between Coturnix quail and newborn mammals, including age-dependent (1) increases in the HVR, (2) transitions from a biphasic to a sustained HVR, and (3) decreases in the HCVR. Whether homologous mechanisms underlie these developmental changes remains to be determined.
Collapse
Affiliation(s)
- Monata J Song
- Department of Biology, Bates College, Lewiston, ME 04240 USA
| | - Ashley E Pratt
- Department of Biology, Bates College, Lewiston, ME 04240 USA
| | - Ryan W Bavis
- Department of Biology, Bates College, Lewiston, ME 04240 USA.
| |
Collapse
|
8
|
5-HT neurons and central CO2 chemoreception. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/b978-0-444-64125-0.00021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
9
|
Postnatal changes in O2 and CO2 sensitivity in rodents. Respir Physiol Neurobiol 2020; 272:103313. [DOI: 10.1016/j.resp.2019.103313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/31/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023]
|
10
|
Loiseau C, Casciato A, Barka B, Cayetanot F, Bodineau L. Orexin Neurons Contribute to Central Modulation of Respiratory Drive by Progestins on ex vivo Newborn Rodent Preparations. Front Physiol 2019; 10:1200. [PMID: 31611806 PMCID: PMC6776592 DOI: 10.3389/fphys.2019.01200] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/03/2019] [Indexed: 11/13/2022] Open
Abstract
Dysfunction of central respiratory CO2/H+ chemosensitivity is a pivotal factor that elicits deep hypoventilation in patients suffering from central hypoventilation syndromes. No pharmacological treatment is currently available. The progestin desogestrel has been suggested to allow recovery of respiratory response to CO2/H+ in patients suffering from central hypoventilation, but except the fact that supramedullary regions may be involved, mechanisms are still unknown. Here, we tested in neonates whether orexin systems contribute to desogestrel’s central effects on respiratory function. Using isolated ex vivo central nervous system preparations from newborn rats, we show orexin and almorexant, an antagonist of orexin receptors, supressed strengthening of the increase in respiratory frequency induced by prolonged metabolic acidosis under exposure to etonogestrel, the active metabolite of desogestrel. In parallel, almorexant suppressed the increase and enhanced increase in c-fos expression in respiratory-related brainstem structures induced by etonogestrel. These results suggest orexin signalisation is a key component of acidosis reinforcement of respiratory drive by etonogestrel in neonates. Although stage of development used is different as that for progestin clinical observations, presents results provide clues about conditions under which desogestrel or etonogestrel may enhance ventilation in patients suffering from central hypoventilation syndromes.
Collapse
Affiliation(s)
- Camille Loiseau
- Institut National de la Santé et de la Recherche Médicale, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
| | - Alexis Casciato
- Institut National de la Santé et de la Recherche Médicale, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
| | - Besma Barka
- Institut National de la Santé et de la Recherche Médicale, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
| | - Florence Cayetanot
- Institut National de la Santé et de la Recherche Médicale, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
| | - Laurence Bodineau
- Institut National de la Santé et de la Recherche Médicale, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
| |
Collapse
|
11
|
Cummings KJ, Hodges MR. The serotonergic system and the control of breathing during development. Respir Physiol Neurobiol 2019; 270:103255. [PMID: 31362064 DOI: 10.1016/j.resp.2019.103255] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/28/2019] [Accepted: 07/12/2019] [Indexed: 01/26/2023]
Abstract
Serotonin (5-hydroxytryptamine 5-HT) was first discovered in the late 1940's as an endogenous bioactive amine capable of inducing vasoconstriction, and in the mid-1950's was found in the brain. It was in these early years that some of the first demonstrations were made regarding a role for brain 5-HT in neurological function and behavior, including data implicating reduced brain levels of 5-HT in clinical depression. Since that time, advances in molecular biology and physiological approaches in basic science research have intensely focused on 5-HT in the brain, and the many facets of its role during embryonic development, post-natal maturation, and neural function in adulthood continues to be established. This review focuses on what is known about the developmental roles for the 5-HT system, which we define as the neurons producing 5-HT along with pre-and post-synaptic receptors, in a vital homeostatic motor behavior - the control of breathing. We will cover what is known about the embryonic origins and fate specification of 5-HT neurons, and how the 5-HT system influences pre- and post-natal maturation of the ventilatory control system. In addition, we will focus on the role of the 5-HT system in specific respiratory behaviors during fetal, neonatal and postnatal development, and the relevance of dysfunction in this system in respiratory-related human pathologies including Sudden Infant Death Syndrome (SIDS).
Collapse
Affiliation(s)
- Kevin J Cummings
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
12
|
Mechanisms underlying a critical period of respiratory development in the rat. Respir Physiol Neurobiol 2019; 264:40-50. [PMID: 30999061 DOI: 10.1016/j.resp.2019.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 01/13/2023]
Abstract
Twenty-five years ago, Filiano and Kinney (1994) proposed that a critical period of postnatal development constitutes one of the three risk factors for sudden infant death syndrome (SIDS). The underlying mechanism was poorly understood. In the last 17 years, much has been uncovered on this period in the rat. Against several expected trends of development, abrupt neurochemical, metabolic, ventilatory, and electrophysiological changes occur in the respiratory system at P12-13. This results in a transient synaptic imbalance with suppressed excitation and enhanced inhibition, and the response to acute hypoxia is the weakest at this time, both at the cellular and system's levels. The basis for the synaptic imbalance is likely to be contributed by a reduced expression of brain-derived neurotrophic factor (BDNF) and its TrkB receptors in multiple brain stem respiratory-related nuclei during the critical period. Exogenous BDNF or a TrkB agonist partially reverses the synaptic imbalance, whereas a TrkB antagonist accentuates the imbalance. A transient down-regulation of pituitary adenylate cyclase-activating polypeptide (PACAP) at P12 in respiratory-related nuclei also contributes to the vulnerability of this period. Carotid body denervation during this time or perinatal hyperoxia merely delays and sometimes prolongs, but not eliminate the critical period. The rationale for the necessity of the critical period in postnatal development is discussed.
Collapse
|
13
|
Stojanovska V, Miller SL, Hooper SB, Polglase GR. The Consequences of Preterm Birth and Chorioamnionitis on Brainstem Respiratory Centers: Implications for Neurochemical Development and Altered Functions by Inflammation and Prostaglandins. Front Cell Neurosci 2018; 12:26. [PMID: 29449803 PMCID: PMC5799271 DOI: 10.3389/fncel.2018.00026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/17/2018] [Indexed: 11/16/2022] Open
Abstract
Preterm birth is a major cause for neonatal morbidity and mortality, and is frequently associated with adverse neurological outcomes. The transition from intrauterine to extrauterine life at birth is particularly challenging for preterm infants. The main physiological driver for extrauterine transition is the establishment of spontaneous breathing. However, preterm infants have difficulty clearing lung liquid, have insufficient surfactant levels, and underdeveloped lungs. Further, preterm infants have an underdeveloped brainstem, resulting in reduced respiratory drive. These factors facilitate the increased requirement for respiratory support. A principal cause of preterm birth is intrauterine infection/inflammation (chorioamnionitis), and infants with chorioamnionitis have an increased risk and severity of neurological damage, but also demonstrate impaired autoresuscitation capacity and prevalent apnoeic episodes. The brainstem contains vital respiratory centers which provide the neural drive for breathing, but the impact of preterm birth and/or chorioamnionitis on this brain region is not well understood. The aim of this review is to provide an overview of the role and function of the brainstem respiratory centers, and to highlight the proposed mechanisms of how preterm birth and chorioamnionitis may affect central respiratory functions.
Collapse
Affiliation(s)
- Vanesa Stojanovska
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University and Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University and Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University and Hudson Institute of Medical Research, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Santin JM. How important is the CO 2 chemoreflex for the control of breathing? Environmental and evolutionary considerations. Comp Biochem Physiol A Mol Integr Physiol 2017; 215:6-19. [PMID: 28966145 DOI: 10.1016/j.cbpa.2017.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022]
Abstract
Haldane and Priestley (1905) discovered that the ventilatory control system is highly sensitive to CO2. This "CO2 chemoreflex" has been interpreted to dominate control of resting arterial PCO2/pH (PaCO2/pHa) by monitoring PaCO2/pHa and altering ventilation through negative feedback. However, PaCO2/pHa varies little in mammals as ventilation tightly couples to metabolic demands, which may minimize chemoreflex control of PaCO2. The purpose of this synthesis is to (1) interpret data from experimental models with meager CO2 chemoreflexes to infer their role in ventilatory control of steady-state PaCO2, and (2) identify physiological causes of respiratory acidosis occurring normally across vertebrate classes. Interestingly, multiple rodent and amphibian models with minimal/absent CO2 chemoreflexes exhibit normal ventilation, gas exchange, and PaCO2/pHa. The chemoreflex, therefore, plays at most a minor role in ventilatory control at rest; however, the chemoreflex may be critical for recovering PaCO2 following acute respiratory acidosis induced by breath-holding and activity in many ectothermic vertebrates. An apparently small role for CO2 feedback in the genesis of normal breathing contradicts the prevailing view that central CO2/pH chemoreceptors increased in importance throughout vertebrate evolution. Since the CO2 chemoreflex contributes minimally to resting ventilation, these CO2 chemoreceptors may have instead decreased importance throughout tetrapod evolution, particularly with the onset and refinement of neural innovations that improved the matching of ventilation to tissue metabolic demands. This distinct and elusive "metabolic ventilatory drive" likely underlies steady-state PaCO2 in air-breathers. Uncovering the mechanisms and evolution of the metabolic ventilatory drive presents a challenge to clinically-oriented and comparative respiratory physiologists alike.
Collapse
|
15
|
Kouchi H, Uppari N, Joseph V, Bairam A. Sex-specific respiratory effects of acute and chronic caffeine administration in newborn rats. Respir Physiol Neurobiol 2017; 240:8-16. [DOI: 10.1016/j.resp.2017.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/19/2017] [Accepted: 01/28/2017] [Indexed: 01/01/2023]
|
16
|
Ventilatory and chemoreceptor responses to hypercapnia in neonatal rats chronically exposed to moderate hyperoxia. Respir Physiol Neurobiol 2016; 237:22-34. [PMID: 28034711 DOI: 10.1016/j.resp.2016.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/06/2016] [Accepted: 12/18/2016] [Indexed: 11/23/2022]
Abstract
Rats reared in hyperoxia hypoventilate in normoxia and exhibit progressive blunting of the hypoxic ventilatory response, changes which are at least partially attributed to abnormal carotid body development. Since the carotid body also responds to changes in arterial CO2/pH, we tested the hypothesis that developmental hyperoxia would attenuate the hypercapnic ventilatory response (HCVR) of neonatal rats by blunting peripheral and/or central chemoreceptor responses to hypercapnic challenges. Rats were reared in 21% O2 (Control) or 60% O2 (Hyperoxia) until studied at 4, 6-7, or 13-14days of age. Hyperoxia rats had significantly reduced single-unit carotid chemoafferent responses to 15% CO2 at all ages; CO2 sensitivity recovered within 7days after return to room air. Hypercapnic responses of CO2-sensitive neurons of the caudal nucleus tractus solitarius (cNTS) were unaffected by chronic hyperoxia, but there was evidence for a small decrease in neuronal excitability. There was also evidence for augmented excitatory synaptic input to cNTS neurons within brainstem slices. Steady-state ventilatory responses to 4% and 8% CO2 were unaffected by developmental hyperoxia in all three age groups, but ventilation increased more slowly during the normocapnia-to-hypercapnia transition in 4-day-old Hyperoxia rats. We conclude that developmental hyperoxia impairs carotid body chemosensitivity to hypercapnia, and this may compromise protective ventilatory reflexes during dynamic respiratory challenges in newborn rats. Impaired carotid body function has less of an impact on the HCVR in older rats, potentially reflecting compensatory plasticity within the CNS.
Collapse
|
17
|
Santin JM, Hartzler LK. Environmentally induced return to juvenile-like chemosensitivity in the respiratory control system of adult bullfrog, Lithobates catesbeianus. J Physiol 2016; 594:6349-6367. [PMID: 27444338 DOI: 10.1113/jp272777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/19/2016] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS The degree to which developmental programmes or environmental signals determine physiological phenotypes remains a major question in physiology. Vertebrates change environments during development, confounding interpretation of the degree to which development (i.e. permanent processes) or phenotypic plasticity (i.e. reversible processes) produces phenotypes. Tadpoles mainly breathe water for gas exchange and frogs may breathe water or air depending on their environment and are, therefore, exemplary models to differentiate the degree to which life-stage vs. environmental context drives developmental phenotypes associated with neural control of lung breathing. Using isolated brainstem preparations and patch clamp electrophysiology, we demonstrate that adult bullfrogs acclimatized to water-breathing conditions do not exhibit CO2 and O2 chemosensitivity of lung breathing, similar to water-breathing tadpoles. Our results establish that phenotypes associated with developmental stage may arise from plasticity per se and suggest that a developmental trajectory coinciding with environmental change obscures origins of stage-dependent physiological phenotypes by masking plasticity. ABSTRACT An unanswered question in developmental physiology is to what extent does the environment vs. a genetic programme produce phenotypes? Developing animals inhabit different environments and switch from one to another. Thus a developmental time course overlapping with environmental change confounds interpretations as to whether development (i.e. permanent processes) or phenotypic plasticity (i.e. reversible processes) generates phenotypes. Tadpoles of the American bullfrog, Lithobates catesbeianus, breathe water at early life-stages and minimally use lungs for gas exchange. As adults, bullfrogs rely on lungs for gas exchange, but spend months per year in ice-covered ponds without lung breathing. Aquatic submergence, therefore, removes environmental pressures requiring lung breathing and enables separation of adulthood from environmental factors associated with adulthood that necessitate control of lung ventilation. To test the hypothesis that postmetamorphic respiratory control phenotypes arise through permanent developmental changes vs. reversible environmental signals, we measured respiratory-related nerve discharge in isolated brainstem preparations and action potential firing from CO2 -sensitive neurons in bullfrogs acclimatized to semi-terrestrial (air-breathing) and aquatic-overwintering (no air-breathing) habitats. We found that aquatic overwintering significantly reduced neuroventilatory responses to CO2 and O2 involved in lung breathing. Strikingly, this gas sensitivity profile reflects that of water-breathing tadpoles. We further demonstrated that aquatic overwintering reduced CO2 -induced firing responses of chemosensitive neurons. In contrast, respiratory rhythm generating processes remained adult-like after submergence. Our results establish that phenotypes associated with life-stage can arise from phenotypic plasticity per se. This provides evidence that developmental time courses coinciding with environmental changes obscure interpretations regarding origins of stage-dependent physiological phenotypes by masking plasticity.
Collapse
Affiliation(s)
- Joseph M Santin
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA. .,Biomedical Sciences PhD Program, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.
| | - Lynn K Hartzler
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| |
Collapse
|
18
|
Cerpa VJ, Wu Y, Bravo E, Teran FA, Flynn RS, Richerson GB. Medullary 5-HT neurons: Switch from tonic respiratory drive to chemoreception during postnatal development. Neuroscience 2016; 344:1-14. [PMID: 27619736 DOI: 10.1016/j.neuroscience.2016.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 01/27/2023]
Abstract
Serotonin (5-HT) neurons contribute to respiratory chemoreception in adult mice, but it is unclear whether they play a similar role in neonatal mice. We studied breathing during development in Lmx1bf/f/p mice, which lack 5-HT neurons. From postnatal days 1-7 (P1-P7), ventilation of Lmx1bf/f/p mice breathing room air was 50% of WT mice (p<0.001). By P12, baseline ventilation increased to a level equal to WT mice. In contrast, the hypercapnic ventilatory response (HCVR) of neonatal Lmx1bf/f/p and WT mice was equal to each other, but were both much less than adult WT mice. By P21 the HCVR of WT mice increased to near adult levels, but the HCVR of Lmx1bf/f/p mice had not changed, and was 42% less than WT mice. Primary cell cultures were prepared from the ventromedial medulla of neonatal mice, and patch-clamp recordings were made from neurons identified as serotonergic by expression of a reporter gene. In parallel with developmental changes of the HCVR in vivo, 5-HT neurons had little chemosensitivity to acidosis until 12days in vitro (DIV), after which their response increased to reach a plateau around 25 DIV. Neonatal Lmx1bf/f/p mice displayed high mortality and decreased growth rate, and this worsened in hypoxia. Mortality was decreased in hyperoxia. These results indicate that maturation of 5-HT neurons contributes to development of respiratory CO2/pH chemoreception during the first few weeks of life in mice in vivo. A defect in the 5-HT system in early postnatal life decreases survival due in part to hypoxia.
Collapse
Affiliation(s)
- Veronica J Cerpa
- Department of Neurology, Yale University, New Haven, CT 06510, United States; Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | - Yuanming Wu
- Department of Neurology, Yale University, New Haven, CT 06510, United States; Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | - Eduardo Bravo
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States.
| | - Frida A Teran
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | - Rachel S Flynn
- Department of Neurology, Yale University, New Haven, CT 06510, United States
| | - George B Richerson
- Department of Neurology, Yale University, New Haven, CT 06510, United States; Department of Neurology, University of Iowa, Iowa City, IA 52242, United States; Department of Molecular Physiology & Biophysics, University of Iowa, Iowa City, IA 52242, United States; Veterans Affairs Medical Center, Iowa City, IA 52242, United States
| |
Collapse
|
19
|
Patterson KC, Hawkins VE, Arps KM, Mulkey DK, Olsen ML. MeCP2 deficiency results in robust Rett-like behavioural and motor deficits in male and female rats. Hum Mol Genet 2016; 25:3303-3320. [PMID: 27329765 PMCID: PMC5179928 DOI: 10.1093/hmg/ddw179] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/18/2016] [Accepted: 06/08/2016] [Indexed: 11/12/2022] Open
Abstract
Since the identification of MECP2 as the causative gene in the majority of Rett Syndrome (RTT) cases, transgenic mouse models have played a critical role in our understanding of this disease. The use of additional mammalian RTT models offers the promise of further elucidating critical early mechanisms of disease as well as providing new avenues for translational studies. We have identified significant abnormalities in growth as well as motor and behavioural function in a novel zinc-finger nuclease model of RTT utilizing both male and female rats throughout development. Male rats lacking MeCP2 (Mecp2ZFN/y) were noticeably symptomatic as early as postnatal day 21, with most dying by postnatal day 55, while females lacking one copy of Mecp2 (Mecp2ZFN/+) displayed a more protracted disease course. Brain weights of Mecp2ZFN/y and Mecp2ZFN/+ rats were significantly reduced by postnatal day 14 and 21, respectively. Early motor and breathing abnormalities were apparent in Mecp2ZFN/y rats, whereas Mecp2ZFN/+ rats displayed functional irregularities later in development. The large size of this species will provide profound advantages in the identification of early disease mechanisms and the development of appropriately timed therapeutics. The current study establishes a foundational basis for the continued utilization of this rat model in future RTT research.
Collapse
Affiliation(s)
- Kelsey C Patterson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Virginia E Hawkins
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Kara M Arps
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Michelle L Olsen
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
20
|
Lopes LT, Patrone LGA, Li KY, Imber AN, Graham CD, Gargaglioni LH, Putnam RW. Anatomical and functional connections between the locus coeruleus and the nucleus tractus solitarius in neonatal rats. Neuroscience 2016; 324:446-68. [PMID: 27001176 PMCID: PMC4841468 DOI: 10.1016/j.neuroscience.2016.03.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/25/2016] [Accepted: 03/14/2016] [Indexed: 11/29/2022]
Abstract
This study was designed to investigate brain connections among chemosensitive areas in newborn rats. Rhodamine beads were injected unilaterally into the locus coeruleus (LC) or into the caudal part of the nucleus tractus solitarius (cNTS) in Sprague-Dawley rat pups (P7-P10). Rhodamine-labeled neurons were patched in brainstem slices to study their electrophysiological responses to hypercapnia and to determine if chemosensitive neurons are communicating between LC and cNTS regions. After 7-10 days, retrograde labeling was observed in numerous areas of the brainstem, including many chemosensitive regions, such as the contralateral LC, cNTS and medullary raphe. Whole-cell patch clamp was done in cNTS. In 4 of 5 retrogradely labeled cNTS neurons that projected to the LC, firing rate increased in response to hypercapnic acidosis (15% CO2), even in synaptic blockade medium (SNB) (high Mg(2+)/low Ca(2+)). In contrast, 2 of 3 retrogradely labeled LC neurons that projected to cNTS had reduced firing rate in response to hypercapnic acidosis, both in the presence and absence of SNB. Extensive anatomical connections among chemosensitive brainstem regions in newborn rats were found and at least for the LC and cNTS, the connections involve some CO2-sensitive neurons. Such anatomical and functional coupling suggests a complex central respiratory control network, such as seen in adult rats, is already largely present in neonatal rats by at least day P7-P10. Since the NTS and the LC play a major role in memory consolidation, our results may also contribute to the understanding of the development of memory consolidation.
Collapse
Affiliation(s)
- L T Lopes
- Dept of Animal Morphology and Physiology. São Paulo State University, FCAV, Jaboticabal, SP, Brazil
| | - L G A Patrone
- Dept of Animal Morphology and Physiology. São Paulo State University, FCAV, Jaboticabal, SP, Brazil
| | - K-Y Li
- Dept of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - A N Imber
- Dept of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - C D Graham
- Dept of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - L H Gargaglioni
- Dept of Animal Morphology and Physiology. São Paulo State University, FCAV, Jaboticabal, SP, Brazil
| | - R W Putnam
- Dept of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA.
| |
Collapse
|
21
|
Garg SK, Lioy DT, Knopp SJ, Bissonnette JM. Conditional depletion of methyl-CpG-binding protein 2 in astrocytes depresses the hypercapnic ventilatory response in mice. J Appl Physiol (1985) 2015. [DOI: 10.1152/japplphysiol.00411.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mice that are deficient in the transcription factor methyl-CpG-binding protein 2 (MeCP2) have a depressed hypercapnic ventilatory response (HCVR). The expression of MeCP2 can be selectively removed from astrocytes or neurons, thus offering a tool to dissect the role of this transcription factor in astrocytes from that in neurons. Studies were carried out in the progeny of mice that were a cross between those harboring a tamoxifen (TAM)-inducible Cre recombinase transgene driven by the human astrocytic glial fibrillary acidic protein (hGFAP) promoter, or Cre recombinase under control of the synapsin promoter, with mice containing a Cre-excisable exon III in the Mecp2 gene. The TAM-conditional excision of the Mecp2 exon allowed the respiratory CO2 response to be studied in the same animals before and after selective depletion of MeCP2 in astrocytes. Immunohistochemistry showed that following TAM treatment only ∼20% of GFAP-labeled cells in the retrotrapazoid nucleus and in the raphé magnus were positive for MeCP2. The slope of the relative increase in minute ventilation as a function of 1, 3, and 5% inspired CO2 was depressed in mice with depleted astrocyte MeCP2 compared with wild-type littermates. In contrast, selective depletion of MeCP2 in neurons did not significantly affect slope. While neurons which constitute the respiratory network ultimately determine the ventilatory response to CO2, this study demonstrates that loss of MeCP2 in astrocytes alone is sufficient to result in a dramatic attenuation of the HCVR. We propose that the glial contribution to HCVR is under the control of the MeCP2 gene.
Collapse
Affiliation(s)
| | | | | | - John M. Bissonnette
- Department of Obstetrics and Gynecology, and
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
22
|
Massey CA, Iceman KE, Johansen SL, Wu Y, Harris MB, Richerson GB. Isoflurane abolishes spontaneous firing of serotonin neurons and masks their pH/CO₂ chemosensitivity. J Neurophysiol 2015; 113:2879-88. [PMID: 25695656 DOI: 10.1152/jn.01073.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/18/2015] [Indexed: 11/22/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) neurons from the mouse and rat rostral medulla are stimulated by increased CO2 when studied in culture or brain slices. However, the response of 5-HT neurons has been variable when animals are exposed to hypercapnia in vivo. Here we examined whether halogenated inhalational anesthetics, which activate TWIK-related acid-sensitive K(+) (TASK) channels, could mask an effect of CO2 on 5-HT neurons. During in vivo plethysmography in mice, isoflurane (1%) markedly reduced the hypercapnic ventilatory response (HCVR) by 78-96% depending upon mouse strain and ambient temperature. In a perfused rat brain stem preparation, isoflurane (1%) reduced or silenced spontaneous firing of medullary 5-HT neurons in situ and abolished their responses to elevated perfusate Pco2. In dissociated cell cultures, isoflurane (1%) hyperpolarized 5-HT neurons by 6.52 ± 3.94 mV and inhibited spontaneous firing. A subsequent decrease in pH from 7.4 to 7.2 depolarized neurons by 4.07 ± 2.10 mV, but that was insufficient to reach threshold for firing. Depolarizing current restored baseline firing and the firing frequency response to acidosis, indicating that isoflurane did not block the underlying mechanisms mediating chemosensitivity. These results demonstrate that isoflurane masks 5-HT neuron chemosensitivity in vitro and in situ and markedly decreases the HCVR in vivo. The use of this class of anesthetic has a particularly potent inhibitory effect on chemosensitivity of 5-HT neurons.
Collapse
Affiliation(s)
- Cory A Massey
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa Hospitals and Clinics, Iowa City, Iowa; Department of Neurology and NIH/NINDS Center for SUDEP Research, University of Iowa Hospitals and Clinics, Iowa City, Iowa;
| | - Kimberly E Iceman
- Department of Biology and Wildlife, University of Alaska, Fairbanks, Alaska
| | - Sara L Johansen
- Department of Biology and Wildlife, University of Alaska, Fairbanks, Alaska
| | - Yuanming Wu
- Department of Neurology and NIH/NINDS Center for SUDEP Research, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Michael B Harris
- Department of Biology and Wildlife, University of Alaska, Fairbanks, Alaska; Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska
| | - George B Richerson
- Department of Neurology and NIH/NINDS Center for SUDEP Research, University of Iowa Hospitals and Clinics, Iowa City, Iowa; Department of Molecular Physiology and Biophysics, University of Iowa Hospitals and Clinics, Iowa City, Iowa; and Department of Veterans Affairs Medical Center, Iowa City, Iowa
| |
Collapse
|
23
|
Cummings KJ. Interaction of central and peripheral chemoreflexes in neonatal mice: evidence for hypo-addition. Respir Physiol Neurobiol 2014; 203:75-81. [PMID: 25192642 DOI: 10.1016/j.resp.2014.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 10/24/2022]
Abstract
The potential for interaction between the peripheral (PCR) and central (CCR) chemoreflexes has not been studied in the neonatal period, when breathing is inherently unstable. Based on recent work in adult rodents, this study addresses the hypothesis that in neonatal mice there is a hypoadditive interaction between the chemoreflexes. To test this, a mask-pneumotach system was used to expose postnatal day (P) 11-12 mouse pups to square-wave hyperoxia (100% O2; n=8) or hypoxia (10% O2; n=11), administered in normocapnic conditions (inspired CO2 (FICO2)=0.001-0.005), or following an episode of re-breathing to increase FICO2 by 0.015-0.02. The immediate (i.e. PCR-mediated) responses of frequency (fB), tidal volume (VT) and ventilation (V˙E) to square-wave hyperoxia and hypoxia were assessed. When given in a normocapnic background, hyperoxia induced an immediate (within the first 20 breaths, or ∼6s) but transient fall in fB (-46±9breaths/min) and V˙E (-149±41μlmin(-1)g(-1)) (P<0.001 for both), with no effect on VT. In contrast, hyperoxia had no influence on breathing when it was administered following re-breathing. Similarly, the hypoxia-induced increase in fB was greater when applied under normocapnic conditions (50±8breaths/min) then when applied following re-breathing (21±5breaths/min) (P=0.02). These data demonstrate a hypo-additive interaction between the PCR and CCR with respect to the immediate frequency response to inhibition or excitation of the PCR. Hypoaddition of the chemoreflexes could cause or mitigate neonatal apnea, depending on the prevailing PCO2.
Collapse
Affiliation(s)
- Kevin J Cummings
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
24
|
Abstract
Lung ventilation fluctuates widely with behavior but arterial PCO2 remains stable. Under normal conditions, the chemoreflexes contribute to PaCO2 stability by producing small corrective cardiorespiratory adjustments mediated by lower brainstem circuits. Carotid body (CB) information reaches the respiratory pattern generator (RPG) via nucleus solitarius (NTS) glutamatergic neurons which also target rostral ventrolateral medulla (RVLM) presympathetic neurons thereby raising sympathetic nerve activity (SNA). Chemoreceptors also regulate presympathetic neurons and cardiovagal preganglionic neurons indirectly via inputs from the RPG. Secondary effects of chemoreceptors on the autonomic outflows result from changes in lung stretch afferent and baroreceptor activity. Central respiratory chemosensitivity is caused by direct effects of acid on neurons and indirect effects of CO2 via astrocytes. Central respiratory chemoreceptors are not definitively identified but the retrotrapezoid nucleus (RTN) is a particularly strong candidate. The absence of RTN likely causes severe central apneas in congenital central hypoventilation syndrome. Like other stressors, intense chemosensory stimuli produce arousal and activate circuits that are wake- or attention-promoting. Such pathways (e.g., locus coeruleus, raphe, and orexin system) modulate the chemoreflexes in a state-dependent manner and their activation by strong chemosensory stimuli intensifies these reflexes. In essential hypertension, obstructive sleep apnea and congestive heart failure, chronically elevated CB afferent activity contributes to raising SNA but breathing is unchanged or becomes periodic (severe CHF). Extreme CNS hypoxia produces a stereotyped cardiorespiratory response (gasping, increased SNA). The effects of these various pathologies on brainstem cardiorespiratory networks are discussed, special consideration being given to the interactions between central and peripheral chemoreflexes.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
25
|
Bissonnette JM, Schaevitz LR, Knopp SJ, Zhou Z. Respiratory phenotypes are distinctly affected in mice with common Rett syndrome mutations MeCP2 T158A and R168X. Neuroscience 2014; 267:166-76. [PMID: 24626160 DOI: 10.1016/j.neuroscience.2014.02.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 12/16/2022]
Abstract
Respiratory disturbances are a primary phenotype of the neurological disorder, Rett syndrome (RTT), caused by mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). Mouse models generated with null mutations in Mecp2 mimic respiratory abnormalities in RTT girls. Large deletions, however, are seen in only ∼10% of affected human individuals. Here we characterized respiration in heterozygous females from two mouse models that genetically mimic common RTT point mutations, a missense mutation T158A (Mecp2(T158A/)(+)) or a nonsense mutation R168X (Mecp2(R168X/+)). MeCP2 T158A shows decreased binding to methylated DNA, while MeCP2 R168X retains the capacity to bind methylated DNA but lacks the ability to recruit complexes required for transcriptional repression. We found that both Mecp2(T158A/+) and Mecp2(R168X/+) heterozygotes display augmented hypoxic ventilatory responses and depressed hypercapnic responses, compared to wild-type controls. Interestingly, the incidence of apnea was much greater in Mecp2(R168X/+) heterozygotes, 189 per hour, than Mecp2(T158A/+) heterozygotes, 41 per hour. These results demonstrate that different RTT mutations lead to distinct respiratory phenotypes, suggesting that characterization of the respiratory phenotype may reveal functional differences between MeCP2 mutations and provide insights into the pathophysiology of RTT.
Collapse
Affiliation(s)
- J M Bissonnette
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA; Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, OR, USA.
| | - L R Schaevitz
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - S J Knopp
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Z Zhou
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Teran FA, Massey CA, Richerson GB. Serotonin neurons and central respiratory chemoreception: where are we now? PROGRESS IN BRAIN RESEARCH 2014; 209:207-33. [PMID: 24746050 DOI: 10.1016/b978-0-444-63274-6.00011-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) neurons are widely considered to play an important role in central respiratory chemoreception. Although many studies in the past decades have supported this hypothesis, there had been concerns about its validity until recently. One recurring claim had been that 5-HT neurons are not consistently sensitive to hypercapnia in vivo. Another belief was that 5-HT neurons do not stimulate breathing; instead, they inhibit or modulate respiratory output. It was also believed by some that 5-HT neuron chemosensitivity is dependent on TASK channels, but mice with genetic deletion of TASK-1 and TASK-3 have a normal hypercapnic ventilatory response. This review explains why these principal arguments against the hypothesis are not supported by existing data. Despite repeated challenges, a large body of evidence now supports the conclusion that at least a subset of 5-HT neurons are central chemoreceptors.
Collapse
Affiliation(s)
- Frida A Teran
- St. Mary's University, One Camino Santa Maria, San Antonio, TX, USA
| | - Cory A Massey
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - George B Richerson
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; VAMC, Iowa City, IA, USA.
| |
Collapse
|
27
|
TASK-2 channels contribute to pH sensitivity of retrotrapezoid nucleus chemoreceptor neurons. J Neurosci 2013; 33:16033-44. [PMID: 24107938 DOI: 10.1523/jneurosci.2451-13.2013] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Phox2b-expressing glutamatergic neurons of the retrotrapezoid nucleus (RTN) display properties expected of central respiratory chemoreceptors; they are directly activated by CO2/H(+) via an unidentified pH-sensitive background K(+) channel and, in turn, facilitate brainstem networks that control breathing. Here, we used a knock-out mouse model to examine whether TASK-2 (K2P5), an alkaline-activated background K(+) channel, contributes to RTN neuronal pH sensitivity. We made patch-clamp recordings in brainstem slices from RTN neurons that were identified by expression of GFP (directed by the Phox2b promoter) or β-galactosidase (from the gene trap used for TASK-2 knock-out). Whereas nearly all RTN cells from control mice were pH sensitive (95%, n = 58 of 61), only 56% of GFP-expressing RTN neurons from TASK-2(-/-) mice (n = 49 of 88) could be classified as pH sensitive (>30% reduction in firing rate from pH 7.0 to pH 7.8); the remaining cells were pH insensitive (44%). Moreover, none of the recorded RTN neurons from TASK-2(-/-) mice selected based on β-galactosidase activity (a subpopulation of GFP-expressing neurons) were pH sensitive. The alkaline-activated background K(+) currents were reduced in amplitude in RTN neurons from TASK-2(-/-) mice that retained some pH sensitivity but were absent from pH-insensitive cells. Finally, using a working heart-brainstem preparation, we found diminished inhibition of phrenic burst amplitude by alkalization in TASK-2(-/-) mice, with apneic threshold shifted to higher pH levels. In conclusion, alkaline-activated TASK-2 channels contribute to pH sensitivity in RTN neurons, with effects on respiration in situ that are particularly prominent near apneic threshold.
Collapse
|
28
|
Short- and long-term effects of a maternal low-protein diet on ventilation, O₂/CO₂ chemoreception and arterial blood pressure in male rat offspring. Br J Nutr 2013; 111:606-15. [PMID: 24059468 DOI: 10.1017/s0007114513002833] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Maternal undernutrition increases the risk of adult arterial hypertension. The present study investigated the short- and long-term effects of a maternal low-protein diet on respiratory rhythm, O₂/CO₂ chemosensitivity and arterial blood pressure (ABP) of the offspring. Male Wistar rats were divided into two groups according to their mothers' diets during gestation and lactation: control (NP, 17% of casein) and low-protein (LP, 8% of casein) groups. Direct measurements of ABP, respiratory frequency (RF), tidal volume (V T) and ventilation (VE), as well as hypercapnia (7% CO₂) and hypoxia (7% O₂) evoked respiratory responses were recorded from the awake male offspring at the 30th and 90th days of life. Blood samples were collected for the analyses of protein, creatinine and urea concentrations. The LP offspring had impaired body weight and length throughout the experiment. At 30 d of age, the LP rats showed a reduction in the concentrations of total serum protein (approximately 24%). ABP in the LP rats was similar to that in the NP rats at 30 d of age, but it was 20% higher at 90 d of age. With respect to ventilatory parameters, the LP rats showed enhanced RF (approximately 34%) and VE (approximately 34%) at 30 d of age, which was associated with increased ventilatory responses to hypercapnia (approximately 21% in VE) and hypoxia (approximately 82% in VE). At 90 d of age, the VE values and CO₂/O₂ chemosensitivity of the LP rats were restored to the control range, but the RF values remained elevated. The present data show that a perinatal LP diet alters respiratory rhythm and O₂/CO₂ chemosensitivity at early ages, which may be a predisposing factor for increased ABP at adulthood.
Collapse
|
29
|
Guyenet PG, Abbott SBG. Chemoreception and asphyxia-induced arousal. Respir Physiol Neurobiol 2013; 188:333-43. [PMID: 23608705 PMCID: PMC3749262 DOI: 10.1016/j.resp.2013.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/02/2013] [Accepted: 04/06/2013] [Indexed: 02/07/2023]
Abstract
Arousal protects against the adverse and potentially fatal effects of asphyxia during sleep. Asphyxia stimulates the carotid bodies and central chemoreceptors but the sequence of events leading to arousal is uncertain. In this review, the theoretical mechanisms leading to arousal from sleep are briefly summarized and the issue of whether central respiratory chemoreceptors (CRCs) or other types of CO2-responsive CNS neurons contribute to asphyxia-induced arousal is discussed. We focus on the role of the retrotrapezoid nucleus, the raphe and the locus coeruleus and emphasize the anatomical and neurophysiological evidence which suggests that these putative central chemoreceptors could contribute to arousal independently of their effects on breathing. Finally, we describe recent attempts to test the contribution of specific brainstem pathways to asphyxia-induced arousal using optogenetic and other tools and the possible contribution of a group of hypoxia-sensitive brainstem neurons (the C1 cells) to breathing and arousal.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, United States.
| | | |
Collapse
|
30
|
Wong-Riley MTT, Liu Q, Gao XP. Peripheral-central chemoreceptor interaction and the significance of a critical period in the development of respiratory control. Respir Physiol Neurobiol 2013; 185:156-69. [PMID: 22684042 PMCID: PMC3467325 DOI: 10.1016/j.resp.2012.05.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 05/30/2012] [Accepted: 05/30/2012] [Indexed: 01/09/2023]
Abstract
Respiratory control entails coordinated activities of peripheral chemoreceptors (mainly the carotid bodies) and central chemosensors within the brain stem respiratory network. Candidates for central chemoreceptors include Phox2b-containing neurons of the retrotrapezoid nucleus, serotonergic neurons of the medullary raphé, and/or multiple sites within the brain stem. Extensive interconnections among respiratory-related nuclei enable central chemosensitive relay. Both peripheral and central respiratory centers are not mature at birth, but undergo considerable development during the first two postnatal weeks in rats. A critical period of respiratory development (∼P12-P13 in the rat) exists when abrupt neurochemical, metabolic, ventilatory, and electrophysiological changes occur. Environmental perturbations, including hypoxia, intermittent hypoxia, hypercapnia, and hyperoxia alter the development of the respiratory system. Carotid body denervation during the first two postnatal weeks in the rat profoundly affects the development and functions of central respiratory-related nuclei. Such denervation delays and prolongs the critical period, but does not eliminate it, suggesting that the critical period may be intrinsically and genetically determined.
Collapse
Affiliation(s)
- Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | |
Collapse
|
31
|
Toward MA, Abdala AP, Knopp SJ, Paton JFR, Bissonnette JM. Increasing brain serotonin corrects CO2 chemosensitivity in methyl-CpG-binding protein 2 (Mecp2)-deficient mice. Exp Physiol 2012. [PMID: 23180809 DOI: 10.1113/expphysiol.2012.069872] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mice deficient in the transcription factor methyl-CpG-binding protein 2 (Mecp2), a mouse model of Rett syndrome, display reduced CO2 chemosensitivity, which may contribute to their breathing abnormalities. In addition, patients with Rett syndrome and male mice that are null for Mecp2 show reduced levels of brain serotonin (5-HT). Serotonin is known to play a role in central chemosensitivity, and we hypothesized that increasing the availability of 5-HT in this mouse model would improve their respiratory response to CO2. Here we determined the apnoeic threshold in heterozygous Mecp2-deficient female mice and examined the effects of blocking 5-HT reuptake on the CO2 response in Mecp2-null male mice. Studies were performed in B6.129P2(C)-Mecp2(τm1.1Bird) null males and heterozygous females. In an in situ preparation, seven of eight Mecp2-deficient heterozygous females showed arrest of phrenic nerve activity when arterial CO2 was lowered to 3%, whereas the wild-types maintained phrenic nerve amplitude at 53 ± 3% of maximal. In vivo plethysmography studies were used to determine CO2 chemosensitivity in null males. These mice were exposed sequentially to 1, 3 and 5% CO2. The percentage increase in minute ventilation in response to increased inspired CO2 was less in Mecp2(-/y) than in Mecp2(+/y) mice. Pretreatment with citalopram, a selective 5-HT reuptake inhibitor (2.5 mg kg(-1) i.p.), 40 min prior to CO2 exposure, in Mecp2(-/y) mice resulted in an improvement in CO2 chemosensitivity to wild-type levels. These results suggest that decreased 5-HT in Mecp2-deficient mice reduces CO2 chemosensitivity, and restoring 5-HT levels can reverse this effect.
Collapse
Affiliation(s)
- Marie A Toward
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
32
|
Yuan H, Pinto SJ, Huang J, McDonough JM, Ward MB, Lee YN, Bradford RM, Gallagher PR, Shults J, Konstantinopoulou S, Samuel JM, Katz ES, Hua S, Tapia IE, Marcus CL. Ventilatory responses to hypercapnia during wakefulness and sleep in obese adolescents with and without obstructive sleep apnea syndrome. Sleep 2012; 35:1257-67. [PMID: 22942504 DOI: 10.5665/sleep.2082] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Abnormal ventilatory drive may contribute to the pathophysiology of the childhood obstructive sleep apnea syndrome (OSAS). Concomitant with the obesity epidemic, more adolescents are developing OSAS. However, few studies have specifically evaluated the obese adolescent group. The authors hypothesized that obese adolescents with OSAS would have a blunted hypercapnic ventilatory response (HCVR) while awake and blunted ventilatory responses to carbon dioxide (CO(2)) during sleep compared with obese and lean adolescents without OSAS. DESIGN CVR was measured during wakefulness. During nonrapid eye movement (NREM) and rapid eye movement (REM) sleep, respiratory parameters and genioglossal electromyogram were measured during CO(2) administration in comparison with room air in obese adolescents with OSAS, obese control study participants, and lean control study participants. SETTING Sleep laboratory. PARTICIPANTS Twenty-eight obese patients with OSAS, 21 obese control study participants, and 37 lean control study participants. RESULTS The obese OSAS and obese control groups had a higher HCVR compared with the lean control group during wakefulness. During both sleep states, all 3 groups had a response to CO(2); however, the obese OSAS group had lower percentage changes in minute ventilation, inspiratory flow, inspiratory time, and tidal volume compared with the 2 control groups. There were no significance differences in genioglossal activity between groups. CONCLUSIONS HCVR during wakefulness is increased in obese adolescents. Obese adolescents with OSAS have blunted ventilatory responses to CO(2) during sleep and do not have a compensatory prolongation of inspiratory time, despite having normal CO(2) responsivity during wakefulness. Central drive may play a greater role than upper airway neuromotor tone in adapting to hypercapnia.
Collapse
Affiliation(s)
- Haibo Yuan
- Division of Respiratory Diseases, First Hospital of Jilin University, Changchun, Jilin, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Edwards BA, Sands SA, Berger PJ. Postnatal maturation of breathing stability and loop gain: the role of carotid chemoreceptor development. Respir Physiol Neurobiol 2012; 185:144-55. [PMID: 22705011 DOI: 10.1016/j.resp.2012.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/16/2012] [Accepted: 06/01/2012] [Indexed: 11/17/2022]
Abstract
Any general model of respiratory control must explain a puzzling array of breathing patterns that are observed during the course of a lifetime. Particular challenges are to understand why periodic breathing is rarely seen in the first few days after birth, reaches a peak at 2-4 weeks postnatal age, and disappears by 6 months, why it is prevalent in preterm infants, and why it reappears in adults at altitude or with heart failure. In this review we use the concept of loop gain to obtain quantitative insight into the genesis of unstable breathing patterns with a particular focus on how changes in carotid body function could underlie the age-related dependence of periodic breathing.
Collapse
Affiliation(s)
- Bradley A Edwards
- Division of Sleep Medicine, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA.
| | | | | |
Collapse
|
34
|
Corcoran AE, Andrade DV, Marshall LH, Milsom WK. Developmental changes in cold tolerance and ability to autoresuscitate from hypothermic respiratory arrest are not linked in rats and hamsters. Respir Physiol Neurobiol 2012; 181:249-58. [DOI: 10.1016/j.resp.2012.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/08/2012] [Accepted: 03/08/2012] [Indexed: 11/26/2022]
|
35
|
Abstract
Central chemoreception traditionally refers to a change in ventilation attributable to changes in CO2/H(+) detected within the brain. Interest in central chemoreception has grown substantially since the previous Handbook of Physiology published in 1986. Initially, central chemoreception was localized to areas on the ventral medullary surface, a hypothesis complemented by the recent identification of neurons with specific phenotypes near one of these areas as putative chemoreceptor cells. However, there is substantial evidence that many sites participate in central chemoreception some located at a distance from the ventral medulla. Functionally, central chemoreception, via the sensing of brain interstitial fluid H(+), serves to detect and integrate information on (i) alveolar ventilation (arterial PCO2), (ii) brain blood flow and metabolism, and (iii) acid-base balance, and, in response, can affect breathing, airway resistance, blood pressure (sympathetic tone), and arousal. In addition, central chemoreception provides a tonic "drive" (source of excitation) at the normal, baseline PCO2 level that maintains a degree of functional connectivity among brainstem respiratory neurons necessary to produce eupneic breathing. Central chemoreception responds to small variations in PCO2 to regulate normal gas exchange and to large changes in PCO2 to minimize acid-base changes. Central chemoreceptor sites vary in function with sex and with development. From an evolutionary perspective, central chemoreception grew out of the demands posed by air versus water breathing, homeothermy, sleep, optimization of the work of breathing with the "ideal" arterial PCO2, and the maintenance of the appropriate pH at 37°C for optimal protein structure and function.
Collapse
Affiliation(s)
- Eugene Nattie
- Dartmouth Medical School, Department of Physiology, Lebanon, New Hampshire, USA.
| | | |
Collapse
|
36
|
Simpson SJ, Fong AY, Cummings KJ, Frappell PB. The ventilatory response to hypoxia and hypercapnia is absent in the neonatal fat-tailed dunnart. J Exp Biol 2012; 215:4242-7. [DOI: 10.1242/jeb.072413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
At birth, the newborn fat-tailed dunnart relies on cutaneous gas exchange to meet metabolic demands, with continuous lung ventilation emerging several days later. We hypothesized that the delayed expression of lung ventilation (VE) in these animals is in part owing to a low responsiveness of the respiratory control system to blood gas perturbations. To address this hypothesis we assessed the ventilatory and metabolic response to hypoxia (10% O2) and hypercapnia (5% CO2) using closed-system respirometry from birth to 23 days postpartum (P). Neonatal fat-tailed dunnarts displayed no significant hypoxic or hypercapnic ventilatory responses at any age. Regardless, significant hyperventilation through a suppression of metabolic rate (Vo2) was observed at birth in response to hypercapnia and in response to hypoxia at all ages, except P12. Therefore, reliance on cutaneous gas exchange during early life may be partially attributed to reduced chemosensitivity or a lack of central integration of chemosensitive afferent information. This may be in part due to the relative immaturity of this species at birth, compared to other mammals.
Collapse
|
37
|
Abstract
Central chemoreception traditionally refers to a change in ventilation attributable to changes in CO2/H(+) detected within the brain. Interest in central chemoreception has grown substantially since the previous Handbook of Physiology published in 1986. Initially, central chemoreception was localized to areas on the ventral medullary surface, a hypothesis complemented by the recent identification of neurons with specific phenotypes near one of these areas as putative chemoreceptor cells. However, there is substantial evidence that many sites participate in central chemoreception some located at a distance from the ventral medulla. Functionally, central chemoreception, via the sensing of brain interstitial fluid H(+), serves to detect and integrate information on (i) alveolar ventilation (arterial PCO2), (ii) brain blood flow and metabolism, and (iii) acid-base balance, and, in response, can affect breathing, airway resistance, blood pressure (sympathetic tone), and arousal. In addition, central chemoreception provides a tonic "drive" (source of excitation) at the normal, baseline PCO2 level that maintains a degree of functional connectivity among brainstem respiratory neurons necessary to produce eupneic breathing. Central chemoreception responds to small variations in PCO2 to regulate normal gas exchange and to large changes in PCO2 to minimize acid-base changes. Central chemoreceptor sites vary in function with sex and with development. From an evolutionary perspective, central chemoreception grew out of the demands posed by air versus water breathing, homeothermy, sleep, optimization of the work of breathing with the "ideal" arterial PCO2, and the maintenance of the appropriate pH at 37°C for optimal protein structure and function.
Collapse
Affiliation(s)
- Eugene Nattie
- Dartmouth Medical School, Department of Physiology, Lebanon, New Hampshire, USA.
| | | |
Collapse
|
38
|
Gulemetova R, Kinkead R. Neonatal stress increases respiratory instability in rat pups. Respir Physiol Neurobiol 2011; 176:103-9. [DOI: 10.1016/j.resp.2011.01.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/31/2011] [Accepted: 01/31/2011] [Indexed: 11/25/2022]
|
39
|
Dwinell M, Hogan G, Sirlin E, Mayhew D, Forster H. Postnatal ventilatory response to CO2 in awake piglets. Respir Physiol Neurobiol 2011; 175:49-54. [DOI: 10.1016/j.resp.2010.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 08/13/2010] [Accepted: 09/07/2010] [Indexed: 10/19/2022]
|
40
|
Hodges MR, Richerson GB. Medullary serotonin neurons and their roles in central respiratory chemoreception. Respir Physiol Neurobiol 2010; 173:256-63. [PMID: 20226279 PMCID: PMC4554718 DOI: 10.1016/j.resp.2010.03.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/03/2010] [Accepted: 03/04/2010] [Indexed: 11/13/2022]
Abstract
Much progress has been made in our understanding of central chemoreception since the seminal experiments of Fencl, Loeschcke, Mitchell and others, including identification of new brainstem regions and specific neuron types that may serve as central "sensors" of CO(2)/pH. In this review, we discuss key attributes, or minimal requirements a neuron/cell must possess to be defined as a central respiratory chemoreceptor, and summarize how well each of the various candidates fulfill these minimal criteria-especially the presence of intrinsic chemosensitivity. We then discuss some of the in vitro and in vivo evidence in support of the conclusion that medullary serotonin (5-HT) neurons are central chemoreceptors. We also provide an additional hypothesis that chemosensitive medullary 5-HT neurons are poised to integrate multiple synaptic inputs from various other sources thought to influence ventilation. Finally, we discuss open questions and future studies that may aid in continuing our advances in understanding central chemoreception.
Collapse
Affiliation(s)
- Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
41
|
Penatti EM, Barina AE, Raju S, Li A, Kinney HC, Commons KG, Nattie EE. Maternal dietary tryptophan deficiency alters cardiorespiratory control in rat pups. J Appl Physiol (1985) 2010; 110:318-28. [PMID: 20966190 DOI: 10.1152/japplphysiol.00788.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Malnutrition during pregnancy adversely affects postnatal forebrain development; its effect upon brain stem development is less certain. To evaluate the role of tryptophan [critical for serotonin (5-HT) synthesis] on brain stem 5-HT and the development of cardiorespiratory function, we fed dams a diet ∼45% deficient in tryptophan during gestation and early postnatal life and studied cardiorespiratory variables in the developing pups. Deficient pups were of normal weight at postnatal day (P)5 but weighed less than control pups at P15 and P25 (P < 0.001) and had lower body temperatures at P15 (P < 0.001) and P25 (P < 0.05; females only). Oxygen consumption (Vo(2)) was unaffected. At P15, deficient pups had an altered breathing pattern and slower heart rates. At P25, they had significantly lower ventilation (Ve) and Ve-to-Vo(2) ratios in both air and 7% CO(2). The ventilatory response to CO(2) (% increase in Ve/Vo(2)) was significantly increased at P5 (males) and reduced at P15 and P25 (males and females). Deficient pups had 41-56% less medullary 5-HT (P < 0.01) compared with control pups, without a difference in 5-HT neuronal number. These data indicate important interactions between nutrition, brain stem physiology, and age that are potentially relevant to understanding 5-HT deficiency in the sudden infant death syndrome.
Collapse
Affiliation(s)
- Eliana M Penatti
- Dartmouth Medical School, Dept. of Physiology, Borwell Bldg., 1 Medical Center Dr. HB7700, Lebanon, NH 03756, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Postnatal development of N-methyl-D-aspartate receptor subunits 2A, 2B, 2C, 2D, and 3B immunoreactivity in brain stem respiratory nuclei of the rat. Neuroscience 2010; 171:637-54. [PMID: 20887777 DOI: 10.1016/j.neuroscience.2010.09.055] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/07/2010] [Accepted: 09/23/2010] [Indexed: 11/21/2022]
Abstract
Previously, we reported that a critical period in respiratory network development exists in rats around postnatal days (P; P12-P13), when abrupt neurochemical, metabolic, and physiological changes occur. Specifically, the expressions of glutamate and N-methyl-d-aspartate (NMDA) receptor (NR) subunit 1 in the pre-Bötzinger complex (PBC), nucleus ambiguus (Amb), hypoglossal nucleus (XII), and ventrolateral subnucleus of solitary tract nucleus (NTS(VL)) were significantly reduced at P12. To test our hypothesis that other NR subunits also undergo postnatal changes, we undertook an in-depth immunohistochemical study of NR2A, 2B, 2C, 2D, and 3B in these four respiratory nuclei in P2-P21 rats, using the non-respiratory cuneate nucleus (CN) as a control. Our results revealed that: (1) NR2A expression increased gradually from P2 to P11, but fell significantly at P12 in all four respiratory nuclei (but not in the CN), followed by a quick rise and a relative plateau until P21; (2) NR2B expression remained relatively constant from P2 to P21 in all five nuclei examined; (3) NR2C expression had an initial rise from P2 to P3, but remained relatively constant thereafter until P21, except for a significant fall at P12 in the PBC; (4) NR2D expression fell significantly from P2 to P3, then plateaued until P12, and declined again until P21; and (5) in contrast to NR2D, NR3B expression rose gradually from P2 to P21. These patterns reflect a dynamic remodeling of NMDA receptor subunit composition during postnatal development, with a distinct reduction of NR2A expression during the critical period (P12), just as NR1 did in various respiratory nuclei. There was also a potential switch between the neonatal NR2D and the more mature NR3B subunit, possibly around the critical period. Thus, during the critical period, NMDA receptors are undergoing greater adjustments that may contribute to attenuated excitatory synaptic transmission in the respiratory network.
Collapse
|
43
|
Dean JB, Putnam RW. The caudal solitary complex is a site of central CO(2) chemoreception and integration of multiple systems that regulate expired CO(2). Respir Physiol Neurobiol 2010; 173:274-87. [PMID: 20670695 DOI: 10.1016/j.resp.2010.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/30/2010] [Accepted: 07/01/2010] [Indexed: 12/16/2022]
Abstract
The solitary complex is comprised of the nucleus tractus solitarius (NTS, sensory) and dorsal motor nucleus of the vagus (DMV, motor), which functions as an integrative center for neural control of multiple systems including the respiratory, cardiovascular and gastroesophageal systems. The caudal NTS-DMV is one of the several sites of central CO(2) chemoreception in the brain stem. CO(2) chemosensitive neurons are fully responsive to CO(2) at birth and their responsiveness seems to depend on pH-sensitive K(+) channels. In addition, chemosensitive neurons are highly sensitive to conditions such as hypoxia (e.g., neural plasticity) and hyperoxia (e.g., stimulation), suggesting they employ redox and nitrosative signaling mechanisms. Here we review the cellular and systems physiological evidence supporting our hypothesis that the caudal NTS-DMV is a site for integration of respiratory, cardiovascular and gastroesophageal systems that work together to eliminate CO(2) during acute and chronic respiratory acidosis to restore pH homeostasis.
Collapse
Affiliation(s)
- Jay B Dean
- Dept. of Molecular Pharmacology & Physiology, Hyperbaric Biomedical Research Laboratory, University of South Florida, Tampa, FL 33612, USA.
| | | |
Collapse
|
44
|
Bavis RW, Young KM, Barry KJ, Boller MR, Kim E, Klein PM, Ovrutsky AR, Rampersad DA. Chronic hyperoxia alters the early and late phases of the hypoxic ventilatory response in neonatal rats. J Appl Physiol (1985) 2010; 109:796-803. [PMID: 20576840 DOI: 10.1152/japplphysiol.00510.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic hyperoxia during the first 1-4 postnatal weeks attenuates the hypoxic ventilatory response (HVR) subsequently measured in adult rats. Rather than focusing on this long-lasting plasticity, the present study considered the influence of hyperoxia on respiratory control during the neonatal period. Sprague-Dawley rats were born and raised in 60% O2 until studied at postnatal ages (P) of 4, 6-7, or 13-14 days. Ventilation and metabolism were measured in normoxia (21% O2) and acute hypoxia (12% O2) using head-body plethysmography and respirometry, respectively. Compared with age-matched rats raised in room air, the major findings were 1) diminished pulmonary ventilation and metabolic O2 consumption in normoxia at P4 and P6-7; 2) decreased breathing stability during normoxia; 3) attenuation of the early phase of the HVR at P6-7 and P13-14; and 4) a sustained increase in ventilation during hypoxia (vs. the normal biphasic HVR) at all ages studied. Attenuation of the early HVR likely reflects progressive impairment of peripheral arterial chemoreceptors while expression of a sustained HVR in neonates before P7 suggests that hyperoxia also induces plasticity within the central nervous system. Together, these results suggest a complex interaction between inhibitory and excitatory effects of hyperoxia on the developing respiratory control system.
Collapse
Affiliation(s)
- Ryan W Bavis
- Department of Biology, Bates College, 44 Campus Ave., Carnegie Science Hall, Lewiston, ME 04240, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
The locus coeruleus and central chemosensitivity. Respir Physiol Neurobiol 2010; 173:264-73. [PMID: 20435170 DOI: 10.1016/j.resp.2010.04.024] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 04/23/2010] [Accepted: 04/24/2010] [Indexed: 11/21/2022]
Abstract
The locus coeruleus (LC) lies in the dorsal pons and supplies noradrenergic (NA) input to many regions of the brain, including respiratory control areas. The LC may provide tonic input for basal respiratory drive and is involved in central chemosensitivity since focal acidosis of the region stimulates ventilation and ablation reduces CO(2)-induced increased ventilation. The output of LC is modulated by both serotonergic and glutamatergic inputs. A large percentage of LC neurons are intrinsically activated by hypercapnia. This percentage and the magnitude of their response are highest in young neonates and decrease dramatically after postnatal day P10. The cellular bases for intrinsic chemosensitivity of LC neurons are comprised of multiple factors, primary among them being reduced extracellular and intracellular pH, which inhibit inwardly rectifying and voltage-gated K(+) channels, and activate L-type Ca(2+) channels. Activation of K(Ca) channels in LC neurons may limit their ultimate response to hypercapnia. Finally, the LC mediates central chemosensitivity and contains pH-sensitive neurons in amphibians, suggesting that the LC has a long-standing phylogenetic role in respiratory control.
Collapse
|
46
|
Darnall RA. The role of CO(2) and central chemoreception in the control of breathing in the fetus and the neonate. Respir Physiol Neurobiol 2010; 173:201-12. [PMID: 20399912 DOI: 10.1016/j.resp.2010.04.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 04/08/2010] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
Abstract
Central chemoreception is active early in development and likely drives fetal breathing movements, which are influenced by a combination of behavioral state and powerful inhibition. In the premature human infant and newborn rat ventilation increases in response to CO(2); in the rat the sensitivity of the response increases steadily after ∼P12. The premature human infant is more vulnerable to instability than the newborn rat and exhibits periodic breathing that is augmented by hypoxia and eliminated by breathing oxygen or CO(2) or the administration of respiratory stimulants. The sites of central chemoreception active in the fetus are not known, but may involve the parafacial respiratory group which may be a precursor to the adult RTN. The fetal and neonatal rat brainstem-spinal-cord preparations promise to provide important information about central chemoreception in the developing rodent and will increase our understanding of important clinical problems, including The Sudden Infant Death Syndrome, Congenital Central Hypoventilation Syndrome, and periodic breathing and apnea of prematurity.
Collapse
Affiliation(s)
- Robert A Darnall
- Departments of Physiology and Neurobiology and Pediatrics, Dartmouth Medical School, Borwell Building, Lebanon, NH 03756, USA.
| |
Collapse
|
47
|
Mellen NM. Degeneracy as a substrate for respiratory regulation. Respir Physiol Neurobiol 2010; 172:1-7. [PMID: 20412870 DOI: 10.1016/j.resp.2010.04.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 04/13/2010] [Accepted: 04/13/2010] [Indexed: 11/27/2022]
Abstract
Recent studies in vivo and in vitro suggest that both respiratory rhythmogenesis and its central chemosensory modulation arise from multiple, mechanistically and/or anatomically distinct networks whose outputs are similar. These observations are consistent with degeneracy, defined as the ability of structurally distinct elements to generate similar function. This review argues that degeneracy is an essential feature of respiratory networks, ensuring the survival of the individual organism over the course of development, and accounting for the transformation of respiratory biomechanics over evolutionary time. At faster timescales, respiration must adapt continuously and rapidly to changes in metabolic demand and ambient conditions to maintain blood-gas homeostasis. Control theory, which formalizes homeostasis, states axiomatically that rapid responsiveness can only be achieved with high gain, but high gain comes at the cost of instability. Homeostatic systems displaying highly optimized tolerance (HOT) mitigate the instability accompanying high gain by incorporating regulatory mechanisms that provide protection against expected perturbations, yet these systems remain fragile to catastrophic failure in response to rare events. Because the multiple mechanisms that are conjectured to mediate respiratory rhythmogenesis and chemosensation have distinct ranges of activity and responses to modulatory input, they provide a richer substrate for respiratory regulation than those of any single mechanism. Respiration, though robust, remains fragile to rare perturbations, matching a key feature of HOT. These observations support the conclusion that degeneracy provides the substrate for respiratory regulation, and that the resulting regulatory system conforms to HOT.
Collapse
Affiliation(s)
- Nicholas M Mellen
- Kosair Children's Hospital Research Institute, University of Louisville, 570 S. Preston Street, Baxter Building 1, Suite 304, Louisville, KY 40202, USA.
| |
Collapse
|
48
|
Hodges MR, Richerson GB. The role of medullary serotonin (5-HT) neurons in respiratory control: contributions to eupneic ventilation, CO2 chemoreception, and thermoregulation. J Appl Physiol (1985) 2010; 108:1425-32. [PMID: 20133432 DOI: 10.1152/japplphysiol.01270.2009] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The functional roles of the medullary raphé, and specifically 5-HT neurons, are not well understood. It has previously been stated that the role of 5-HT has been so difficult to understand, because "it is implicated in virtually everything, but responsible for nothing"(Cowen PJ. Foreword. In: Serotonin and Sleep: Molecular, Functional and Clinical Aspects, edited by Monti JM, Prandi-Perumal SR, Jacobs BL, Nutt DJ. Switzerland: Birkhauser, 2008). Are 5-HT neurons important, and can we assign a general, or even specific, function to them given their diffuse projections? Recent data obtained from transgenic animals and other model systems indicate that the 5-HT system is not expendable, particularly during postnatal development, and likely plays specific roles in vital functions such as respiratory and thermoregulatory control. We recently provided a detailed and updated review of one specific function of 5-HT neurons, as central respiratory chemoreceptors contributing to the brain's ability to detect changes in pH/CO2 and stimulate adjustments to ventilation accordingly (9). Here, we turn our focus to recent data demonstrating that 5-HT neurons provide an essential excitatory drive to the respiratory network. We then further discuss their role in the CO2 chemoreflex, as well as other homeostatic functions that are closely related to ventilatory control. Last, we provide additional hypotheses/concepts that are worthy of further study, and how 5-HT neurons may be involved in human disease.
Collapse
Affiliation(s)
- Matthew R Hodges
- BSB-504, Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA.
| | | |
Collapse
|
49
|
Edwards BA, Sands SA, Skuza EM, Brodecky V, Stockx EM, Wilkinson MH, Berger PJ. Maturation of respiratory control and the propensity for breathing instability in a sheep model. J Appl Physiol (1985) 2009; 107:1463-71. [DOI: 10.1152/japplphysiol.00587.2009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Limited evidence suggests that the ventilatory interaction between O2 and CO2 is additive after birth and becomes multiplicative with postnatal development. Such a switch may be linked to the propensity for periodic breathing (PB) in infancy. To test this idea, we characterized the maturation of the respiratory controller and its effect on breathing stability in ∼10-day-old lambs and 6-mo-old sheep. We measured 1) carotid body sensitivity via dynamic ventilatory responses to step changes in O2 and CO2, 2) steady-state ventilatory sensitivity to CO2 under hypoxic and hyperoxic conditions, 3) the dependence of the apneic threshold on arterial Po2, and 4) the effect of hypoxic or hypercapnic gas inhalation during induced PB. Stability of the system was assessed using surrogate measures of loop gain. Peripheral sensitivity to O2 was higher in newborn than in older animals ( P < 0.05), but peripheral CO2 sensitivity was unchanged. Central CO2 sensitivity was reduced with age, but the slopes of the ventilatory responses to CO2 were the same in hypoxia and hyperoxia. Reduced arterial Po2 caused a leftward shift in the apneic threshold at both ages. Inspiration of hypoxic gas during PB immediately halted PB, whereas hypercapnia stopped PB only after one or two further PB cycles. We conclude that the controller in the sheep remains additive over the first 6 mo of life. Our results also show that the loop gain of the respiratory control system is reduced with age, possibly as a result of a reduction of peripheral O2 sensitivity.
Collapse
Affiliation(s)
- Bradley A. Edwards
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University, Monash Medical Centre, Clayton, Australia
| | - Scott A. Sands
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University, Monash Medical Centre, Clayton, Australia
| | - Elizabeth M. Skuza
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University, Monash Medical Centre, Clayton, Australia
| | - Vojta Brodecky
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University, Monash Medical Centre, Clayton, Australia
| | - Elaine M. Stockx
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University, Monash Medical Centre, Clayton, Australia
| | - Malcolm H. Wilkinson
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University, Monash Medical Centre, Clayton, Australia
| | - Philip J. Berger
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University, Monash Medical Centre, Clayton, Australia
| |
Collapse
|
50
|
Corcoran AE, Hodges MR, Wu Y, Wang W, Wylie CJ, Deneris ES, Richerson GB. Medullary serotonin neurons and central CO2 chemoreception. Respir Physiol Neurobiol 2009; 168:49-58. [PMID: 19394450 PMCID: PMC2787387 DOI: 10.1016/j.resp.2009.04.014] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/15/2009] [Accepted: 04/18/2009] [Indexed: 11/18/2022]
Abstract
Serotonergic (5-HT) neurons are putative central respiratory chemoreceptors, aiding in the brain's ability to detect arterial changes in PCO2 and implement appropriate ventilatory responses to maintain blood homeostasis. These neurons are in close proximity to large medullary arteries and are intrinsically chemosensitive in vitro, characteristics expected for chemoreceptors. 5-HT neurons of the medullary raphé are stimulated by hypercapnia in vivo, and their disruption results in a blunted hypercapnic ventilatory response. More recently, data collected from transgenic and knockout mice have provided further insight into the role of 5-HT in chemosensitivity. This review summarizes current evidence in support of the hypothesis that 5-HT neurons are central chemoreceptors, and addresses arguments made against this role. We also briefly explore the relationship between the medullary raphé and another chemoreceptive site, the retrotrapezoid nucleus, and discuss how they may interact during hypercapnia to produce a robust ventilatory response.
Collapse
Affiliation(s)
- Andrea E Corcoran
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, USA.
| | | | | | | | | | | | | |
Collapse
|