1
|
Ye RZ, Montastier É, Noll C, Frisch F, Fortin M, Bouffard L, Phoenix S, Guérin B, Turcotte ÉE, Carpentier AC. Total Postprandial Hepatic Nonesterified and Dietary Fatty Acid Uptake Is Increased and Insufficiently Curbed by Adipose Tissue Fatty Acid Trapping in Prediabetes With Overweight. Diabetes 2022; 71:1891-1901. [PMID: 35748318 PMCID: PMC9862339 DOI: 10.2337/db21-1097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/14/2022] [Indexed: 02/05/2023]
Abstract
Excessive lean tissue uptake of fatty acids (FAs) is important in the development of insulin resistance and may be caused by impaired dietary FA (DFA) storage and/or increased nonesterified FA (NEFA) flux from adipose tissue intracellular lipolysis. Cardiac and hepatic total postprandial FA uptake of NEFA+DFA has, however, never been reported in prediabetes with overweight. In this study, 20 individuals with impaired glucose tolerance (IGT) and 19 participants with normal glucose tolerance (NGT) and normal fasting glucose underwent postprandial studies with whole-body positron emission tomography/computed tomography (PET/CT) with oral [18F]fluoro-thia-heptadecanoic acid and dynamic PET/CT with intravenous [11C]palmitate. Hepatic (97 [range 36-215] mmol/6 h vs. 68 [23-132] mmol/6 h, P = 0.03) but not cardiac (11 [range 4-24] mmol/6 h vs. 8 [3-20] mmol/6 h, P = 0.09) uptake of most sources of postprandial FA (NEFA + DFA uptake) integrated over 6 h was higher in IGT versus NGT. DFA accounted for lower fractions of total cardiac (21% [5-47] vs. 25% [9-39], P = 0.08) and hepatic (19% [6-52] vs. 28% [14-50], P = 0.04) uptake in IGT versus NGT. Increased adipose tissue DFA trapping predicted lower hepatic DFA uptake and was associated with higher total cardiac FA uptake. Hence, enhanced adipose tissue DFA trapping in the face of increased postprandial NEFA flux is insufficient to fully curb increased postprandial lean organ FA uptake in prediabetes with overweight (ClinicalTrials.gov; NCT02808182).
Collapse
Affiliation(s)
- Run Zhou Ye
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Émilie Montastier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Frédérique Frisch
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mélanie Fortin
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Lucie Bouffard
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Serge Phoenix
- Department of Nuclear Medicine and Radiobiology, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Éric E. Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - André C. Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Corresponding author: André C. Carpentier,
| |
Collapse
|
2
|
Montastier É, Ye RZ, Noll C, Bouffard L, Fortin M, Frisch F, Phoenix S, Guérin B, Turcotte ÉE, Lewis GF, Carpentier AC. Increased postprandial nonesterified fatty acid efflux from adipose tissue in prediabetes is offset by enhanced dietary fatty acid adipose trapping. Am J Physiol Endocrinol Metab 2021; 320:E1093-E1106. [PMID: 33870714 DOI: 10.1152/ajpendo.00619.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mechanism of increased postprandial nonesterified fatty acid (NEFA) appearance in the circulation in impaired glucose tolerance (IGT) is due to increased adipose tissue lipolysis but could also be contributed to by reduced adipose tissue (AT) dietary fatty acid (DFA) trapping and increased "spillover" into the circulation. Thirty-one subjects with IGT (14 women, 17 men) and 29 with normal glucose tolerance (NGT, 15 women, 14 men) underwent a meal test with oral and intravenous palmitate tracers and the oral [18F]-fluoro-thia-heptadecanoic acid positron emission tomography method. Postprandial palmitate appearance (Rapalmitate) was higher in IGT versus NGT (P < 0.001), driven exclusively by Rapalmitate from obesity-associated increase in intracellular lipolysis (P = 0.01), as Rapalmitate from DFA spillover was not different between the groups (P = 0.19) and visceral AT DFA trapping was even higher in IGT versus NGT (P = 0.02). Plasma glycerol appearance was lower in IGT (P = 0.01), driven down by insulin resistance and increased insulin secretion. Thus, we found higher AT DFA trapping, limiting spillover to lean organs and in part offsetting the increase in Rapalmitate from intracellular lipolysis. Whether similar findings occur in frank diabetes, a condition also characterized by insulin resistance but relative insulin deficiency, requires further investigation (Clinicaltrials.gov: NCT04088344, NCT02808182).NEW & NOTEWORTHY We found higher adipose tissue dietary fatty acid trapping, limiting spillover to lean organs, that in part offsets the increase in appearance rate of palmitate from intracellular lipolysis in prediabetes. These results point to the adaptive nature of adipose tissue trapping and dietary fatty acid spillover as a protective mechanism against excess obesity-related palmitate appearance rate from intracellular adipose tissue lipolysis.
Collapse
Affiliation(s)
- Émilie Montastier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Run Zhou Ye
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Lucie Bouffard
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mélanie Fortin
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Frédérique Frisch
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Brigitte Guérin
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Éric E Turcotte
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Gary F Lewis
- Division of Endocrinology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
3
|
Ivanova YM, Blondin DP. Examining the benefits of cold exposure as a therapeutic strategy for obesity and type 2 diabetes. J Appl Physiol (1985) 2021; 130:1448-1459. [PMID: 33764169 DOI: 10.1152/japplphysiol.00934.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of metabolic diseases such as obesity and type 2 diabetes are characterized by a progressive dysregulation in energy partitioning, often leading to end-organ complications. One emerging approach proposed to target this metabolic dysregulation is the application of mild cold exposure. In healthy individuals, cold exposure can increase energy expenditure and whole body glucose and fatty acid utilization. Repeated exposures can lower fasting glucose and insulin levels and improve dietary fatty acid handling, even in healthy individuals. Despite its apparent therapeutic potential, little is known regarding the effects of cold exposure in populations for which this stimulation could benefit the most. The few studies available have shown that both acute and repeated exposures to the cold can improve insulin sensitivity and reduce fasting glycemia in individuals with type 2 diabetes. However, critical gaps remain in understanding the prolonged effects of repeated cold exposures on glucose regulation and whole body insulin sensitivity in individuals with metabolic syndrome. Much of the metabolic benefits appear to be attributable to the recruitment of shivering skeletal muscles. However, further work is required to determine whether the broader recruitment of skeletal muscles observed during cold exposure can confer metabolic benefits that surpass what has been historically observed from endurance exercise. In addition, although cold exposure offers unique cardiovascular responses for a physiological stimulus that increases energy expenditure, further work is required to determine how acute and repeated cold exposure can impact cardiovascular responses and myocardial function across a broader scope of individuals.
Collapse
Affiliation(s)
- Yoanna M Ivanova
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada.,Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Denis P Blondin
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada.,Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
4
|
Sumi D, Kasai N, Ito H, Goto K. The Effects of Endurance Exercise in Hypoxia on Acid-Base Balance, Potassium Kinetics, and Exogenous Glucose Oxidation. Front Physiol 2019; 10:504. [PMID: 31156445 PMCID: PMC6531820 DOI: 10.3389/fphys.2019.00504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/09/2019] [Indexed: 01/14/2023] Open
Abstract
Purpose To investigate the carbohydrate metabolism, acid–base balance, and potassium kinetics in response to exercise in moderate hypoxia among endurance athletes. Methods Nine trained endurance athletes [maximal oxygen uptake (VO2max): 62.5 ± 1.2 mL/kg/min] completed two different trials on different days: either exercise in moderate hypoxia [fraction of inspired oxygen (FiO2) = 14.5%, HYPO] or exercise in normoxia (FiO2 = 20.9%, NOR). They performed a high-intensity interval-type endurance exercise consisting of 10 × 3 min runs at 90% of VO2max with 60 s of running (active rest) at 50% of VO2max between sets in hypoxia (HYPO) or normoxia (NOR). Venous blood samples were obtained before exercise and during the post-exercise. The subjects consumed 13C-labeled glucose immediately before exercise, and we collected expired gas samples during exercise to determine the 13C-excretion (calculated as 13CO2/12CO2). Results The running velocities were significantly lower in HYPO (15.0 ± 0.2 km/h) than in NOR (16.4 ± 0.3 km/h, P < 0.0001). Despite the lower running velocity, we found a significantly greater exercise-induced blood lactate elevation in HYPO compared with in NOR (P = 0.002). The bicarbonate ion concentration (P = 0.002) and blood pH (P = 0.002) were significantly lower in HYPO than in NOR. There were no significant differences between the two trials regarding the exercise-induced blood potassium elevation (P = 0.87) or 13C-excretion (HYPO, 0.21 ± 0.02 mmol⋅39 min; NOR, 0.14 ± 0.03 mmol⋅39 min; P = 0.10). Conclusion Endurance exercise in moderate hypoxia elicited a decline in blood pH. However, it did not augment the exercise-induced blood K+ elevation or exogenous glucose oxidation (13C-excretion) compared with the equivalent exercise in normoxia among endurance athletes. The findings suggest that endurance exercise in moderate hypoxia causes greater metabolic stress and similar exercise-induced elevation of blood K+ and exogenous glucose oxidation compared with the same exercise in normoxia, despite lower mechanical stress (i.e., lower running velocity).
Collapse
Affiliation(s)
- Daichi Sumi
- Graduate School of Sports and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Nobukazu Kasai
- Graduate School of Sports and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Hiroto Ito
- Graduate School of Sports and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Kazushige Goto
- Graduate School of Sports and Health Science, Ritsumeikan University, Kusatsu, Japan.,Faculty of Sports and Health Science, Ritsumeikan University, Kusatsu, Japan
| |
Collapse
|
5
|
Shi H, Yao R, Lian S, Liu P, Liu Y, Yang YY, Yang H, Li S. Regulating glycolysis, the TLR4 signal pathway and expression of RBM3 in mouse liver in response to acute cold exposure. Stress 2019; 22:366-376. [PMID: 30821572 DOI: 10.1080/10253890.2019.1568987] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
At low temperatures, the liver increases glucose utilization and expresses RNA-binding motif 3 (RBM3) to cope with cold exposure. In this study, the expression of heat shock protein 70 (HSP70), Toll-like receptor 4 (TLR4), bone marrow differentiation factor 88 (MYD88), and phosphorylated nuclear factor-κB (NF-κB) was consistent with fluctuations in insulin in fasted cold-exposed mice. We also found up-regulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in acute cold exposure with a decrease in core body temperature. RBM3 transcription and translation were activated 2 h after cold exposure. The anti-apoptotic factor Bcl-2/Bax ratio also increased, while expression of apoptosis factors: cleaved caspase-3, cleaved poly(ADP-ribose)polymerase 1 (PARP-1) and cytochrome-c (Cyt-c) was unchanged. Liver glycogen was depleted after 2 h of cold exposure, and blood glucose decreased after 4 h. Glycogen synthase kinase 3β (GSK3β) phosphorylation continued to increase to promote hepatic glycogen synthesis. We found a high level of protein kinase B (AKT) phosphorylation after 6 h of cold exposure. In addition, we demonstrated that after cold exposure for 2 h, in the liver, continued phosphorylation of fructose-2,6-diphosphate (PFKFB2) and decreased accumulation of glycogen intermediates fructose-1,6-diphosphate (FDP) and pyruvic acid (PA). In summary, the liver responds to cold exposure through a number of different pathways, including activation of HSP70/TLR4 signaling pathways, up-regulation of RBM3 expression, and increased glycolysis and glycogen synthesis. We propose a possible signaling pathway in which regulation of RBM3 expression by the liver affects the AKT metabolic signaling pathway. Lay summary In response to changes in ambient temperature, mice regulate global metabolism and gene expression through hormones. This study focused on the effects of environmental hypothermia on molecular pathways of glucose metabolism in the liver, which is the important metabolic organ in mice. This provides a basis for further study of mice against cold exposure damage.
Collapse
Affiliation(s)
- Hongzhao Shi
- a College of Animal Science and Veterinary Medicine , Heilongjiang Bayi Agricultural University , Daqing , PR China
| | - Ruizhi Yao
- a College of Animal Science and Veterinary Medicine , Heilongjiang Bayi Agricultural University , Daqing , PR China
| | - Shuai Lian
- a College of Animal Science and Veterinary Medicine , Heilongjiang Bayi Agricultural University , Daqing , PR China
| | - Peng Liu
- a College of Animal Science and Veterinary Medicine , Heilongjiang Bayi Agricultural University , Daqing , PR China
| | - Yang Liu
- a College of Animal Science and Veterinary Medicine , Heilongjiang Bayi Agricultural University , Daqing , PR China
| | - Yu Ying Yang
- a College of Animal Science and Veterinary Medicine , Heilongjiang Bayi Agricultural University , Daqing , PR China
| | - Huanmin Yang
- a College of Animal Science and Veterinary Medicine , Heilongjiang Bayi Agricultural University , Daqing , PR China
| | - Shize Li
- a College of Animal Science and Veterinary Medicine , Heilongjiang Bayi Agricultural University , Daqing , PR China
| |
Collapse
|
6
|
Blondin DP, Haman F. Shivering and nonshivering thermogenesis in skeletal muscles. HANDBOOK OF CLINICAL NEUROLOGY 2018; 156:153-173. [PMID: 30454588 DOI: 10.1016/b978-0-444-63912-7.00010-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Humans have inherited complex neural circuits which drive behavioral, somatic, and autonomic thermoregulatory responses to defend their body temperature. While they are well adapted to dissipate heat in warm climates, they have a reduced capacity to preserve it in cold environments. Consequently, heat production is critical to defending their core temperature. As in other large mammals, skeletal muscles are the primary source of heat production recruited in cold-exposed humans. This is achieved voluntarily in the form of contractions from exercising muscles or involuntarily in the form of contractions from shivering muscles and the recruitment of nonshivering mechanisms. This review describes our current understanding of shivering and nonshivering thermogenesis in skeletal muscles, from the neural circuitry driving their recruitment to the metabolic substrates that fuel them. The presence of these heat-producing mechanisms can be measured in vivo by combining indirect respiratory calorimetry with electromyography or biomedical imaging modalities. Indeed, much of what is known regarding shivering in humans and other animal models stems from studies performed using these methods combined with in situ and in vivo neurologic techniques. More recent investigations have focused on understanding the metabolic processes that produce the heat from both contracting and noncontracting mechanisms. With the growing interest in the potential therapeutic benefits of shivering and nonshivering skeletal muscle to counter the effects of neuromuscular, cardiovascular, and metabolic diseases, we expect this field to continue its growth in the coming years.
Collapse
Affiliation(s)
- Denis P Blondin
- Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada.
| | - François Haman
- Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Haman F, Blondin DP. Shivering thermogenesis in humans: Origin, contribution and metabolic requirement. Temperature (Austin) 2017; 4:217-226. [PMID: 28944268 DOI: 10.1080/23328940.2017.1328999] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/07/2017] [Accepted: 05/08/2017] [Indexed: 01/01/2023] Open
Abstract
As endotherms, humans exposed to a compensable cold environment rely on an increase in thermogenic rate to counteract heat lost to the environment, thereby maintaining a stable core temperature. This review focuses primarily on the most important contributor of heat production in cold-exposed adult humans, shivering skeletal muscles. Specifically, it presents current understanding on (1) the origins of shivering, (2) the contribution of shivering to total heat production and (3) the metabolic requirements of shivering. Although shivering had commonly been measured as a metabolic outcome measure, considerable research is still needed to clearly identify the neuroanatomical structures and circuits that initiate and modulate shivering and drives the shivering patterns (continuous and burst shivering). One thing is clear, the thermogenic rate in humans can be maintained despite significant inter-individual differences in the thermogenic contribution of shivering, the muscles recruited in shivering, the burst shivering rate and the metabolic substrates used to support shivering. It has also become evident that the variability in burst shivering rate between individuals, despite not influencing heat production, does play a key role in orchestrating metabolic fuel selection in the cold. In addition, advances in our understanding of the thermogenic role of brown adipose tissue have been able to explain, at least in part, the large inter-individual differences in the contribution of shivering to total heat production. Whether these differences in the thermogenic role of shivering have any bearing on cold endurance and survival remains to be established. Despite the available research describing the relative thermogenic importance of shivering skeletal muscles in humans, the advancement in our understanding of how shivering is initiated and modulated is needed. Such research is critical to consider strategies to either reduce its role to improve occupational performance or exploit its metabolic potential for clinical purposes.
Collapse
Affiliation(s)
- François Haman
- Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Denis P Blondin
- Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
8
|
Haman F, Mantha OL, Cheung SS, DuCharme MB, Taber M, Blondin DP, McGarr GW, Hartley GL, Hynes Z, Basset FA. Oxidative fuel selection and shivering thermogenesis during a 12- and 24-h cold-survival simulation. J Appl Physiol (1985) 2015; 120:640-8. [PMID: 26718783 DOI: 10.1152/japplphysiol.00540.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/27/2015] [Indexed: 11/22/2022] Open
Abstract
Because the majority of cold exposure studies are constrained to short-term durations of several hours, the long-term metabolic demands of cold exposure, such as during survival situations, remain largely unknown. The present study provides the first estimates of thermogenic rate, oxidative fuel selection, and muscle recruitment during a 24-h cold-survival simulation. Using combined indirect calorimetry and electrophysiological and isotopic methods, changes in muscle glycogen, total carbohydrate, lipid, protein oxidation, muscle recruitment, and whole body thermogenic rate were determined in underfed and noncold-acclimatized men during a simulated accidental exposure to 7.5 °C for 12 to 24 h. In noncold-acclimatized healthy men, cold exposure induced a decrease of ∼0.8 °C in core temperature and a decrease of ∼6.1 °C in mean skin temperature (range, 5.4-6.9 °C). Results showed that total heat production increased by approximately 1.3- to 1.5-fold in the cold and remained constant throughout cold exposure. Interestingly, this constant rise in Ḣprod and shivering intensity was accompanied by a large modification in fuel selection that occurred between 6 and 12 h; total carbohydrate oxidation decreased by 2.4-fold, and lipid oxidation doubled progressively from baseline to 24 h. Clearly, such changes in fuel selection dramatically reduces the utilization of limited muscle glycogen reserves, thus extending the predicted time to muscle glycogen depletion to as much as 15 days rather than the previous estimates of approximately 30-40 h. Further research is needed to determine whether this would also be the case under different nutritional and/or colder conditions.
Collapse
Affiliation(s)
- François Haman
- Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada;
| | - Olivier L Mantha
- Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Stephen S Cheung
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Michel B DuCharme
- Defense Research and Development Canada, Québec City, Québec, Canada
| | - Michael Taber
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada; Falck Safety Services Canada, Dartmouth, Novia Scotia, Canada; School Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Denis P Blondin
- Centre hospitalier universitaire de Sherbrooke, Sherbrooke, Québec, Canada; and
| | - Gregory W McGarr
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Geoffrey L Hartley
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Zach Hynes
- School Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Fabien A Basset
- School Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
9
|
Blondin DP, Tingelstad HC, Mantha OL, Gosselin C, Haman F. Maintaining thermogenesis in cold exposed humans: relying on multiple metabolic pathways. Compr Physiol 2015; 4:1383-402. [PMID: 25428848 DOI: 10.1002/cphy.c130043] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In cold exposed humans, increasing thermogenic rate is essential to prevent decreases in core temperature. This review describes the metabolic requirements of thermogenic pathways, mainly shivering thermogenesis, the largest contributor of heat. Research has shown that thermogenesis is sustained from a combination of carbohydrates, lipids, and proteins. The mixture of fuels is influenced by shivering intensity and pattern as well as by modifications in energy reserves and nutritional status. To date, there are no indications that differences in the types of fuel being used can alter shivering and overall heat production. We also bring forth the potential contribution of nonshivering thermogenesis in adult humans via the activation of brown adipose tissue (BAT) and explore some means to stimulate the activity of this highly thermogenic tissue. Clearly, the potential role of BAT, especially in young lean adults, can no longer be ignored. However, much work remains to clearly identify the quantitative nature of this tissue's contribution to total thermogenic rate and influence on shivering thermogenesis. Identifying ways to potentiate the effects of BAT via cold acclimation and/or the ingestion of compounds that stimulate the thermogenic process may have important implications in cold endurance and survival.
Collapse
Affiliation(s)
- Denis P Blondin
- Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada; Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
10
|
Gagnon DD, Rintamäki H, Gagnon SS, Oksa J, Porvari K, Cheung SS, Herzig KH, Kyröläinen H. Fuel selection during short-term submaximal treadmill exercise in the cold is not affected by pre-exercise low-intensity shivering. Appl Physiol Nutr Metab 2013; 39:282-91. [PMID: 24552368 DOI: 10.1139/apnm-2013-0061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exercise and shivering rely on different metabolic pathways and consequently, fuel selection. The present study examined the effects of a pre-exercise low-intensity shivering protocol on fuel selection during submaximal exercise in a cold environment. Nine male subjects exercised 4 times for 60 min at 50% (LOW) or 70% (MOD) of their peak oxygen consumption on a motorized treadmill in a climatic chamber set at 0 °C with (SHIV) and without (CON) a pre-exercise cooling protocol, inducing low-intensity shivering. Thermal, cardiorespiratory and metabolic responses were measured every 15 min whereas blood samples were collected every 30 min to assess serum nonesterified fatty acids (NEFA), glycerol, glucose, β-hydroxybutyrate (BHB) and plasma catecholamine concentrations. Rectal and skin temperatures were lower in the SHIV condition, within LOW and MOD conditions, during the first 45 min of exercise. Norepinephrine (NE) concentration was greater in SHIV vs. CON within LOW (1.39 ± 0.17 vs. 0.98 ± 0.17 ng·mL(-1)) and MOD (1.50 ± 0.20 vs. 1.01 ± 0.09 ng·mL(-1)), whereas NEFA, glycerol and BHB were greater in SHIV vs. CON (1060 ± 49 vs. 898 ± 78 μmol·L(-1); 0.27 ± 0.02 vs. 0.22 ± 0.03 mmol·L(-1); 0.39 ± 0.06 vs. 0.27 ± 0.04 mmol·L(-1), respectively) within MOD only. No changes were observed in fat or carbohydrate oxidation between SHIV and CON during exercise. Despite increases in NE, NEFA, glycerol and BHB from pre-exercise low-intensity shivering, fuel selection during short-term submaximal exercise in the cold was unaltered.
Collapse
Affiliation(s)
- Dominique D Gagnon
- a Department of Biology of Physical Activity, P.O: Box 35, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Jiang JF, Wang YG, Hu J, Lei F, Kheir MM, Wang XP, Chai YS, Yuan ZY, Lu X, Xing DM, Du F, Du LJ. Novel effect of berberine on thermoregulation in mice model induced by hot and cold environmental stimulation. PLoS One 2013; 8:e54234. [PMID: 23335996 PMCID: PMC3545878 DOI: 10.1371/journal.pone.0054234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 12/10/2012] [Indexed: 12/17/2022] Open
Abstract
The purpose of this study was to assess the effects of berberine (BBR) on thermoregulation in mice exposed to hot (40°C) and cold (4°C) environmental conditions. Four groups of mice were assembled with three different dosages of BBR (0.2, 0.4, and 0.8 mg/kg) and normal saline (control). In room temperature, our largest dosage of BBR (0.8 mg/kg) can reduce rectal temperatures (Tc) of normal mice. In hot conditions, BBR can antagonize the increasing core body temperature and inhibit the expression of HSP70 and TNFα in mice; conversely, in cold conditions, BBR can antagonize the decreasing core body temperature and enhance the expression of TRPM8. This study demonstrates the dual ability of BBR in maintaining thermal balance, which is of great relevance to the regulation of HSP70, TNFα and TRPM8.
Collapse
Affiliation(s)
- Jing-Fei Jiang
- Protein Science Laboratory of the Ministry of Education, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Yu-Gang Wang
- Protein Science Laboratory of the Ministry of Education, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Jun Hu
- Protein Science Laboratory of the Ministry of Education, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Fan Lei
- Protein Science Laboratory of the Ministry of Education, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Michael M. Kheir
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Xin-Pei Wang
- Protein Science Laboratory of the Ministry of Education, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Yu-Shuang Chai
- Protein Science Laboratory of the Ministry of Education, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Zhi-Yi Yuan
- Protein Science Laboratory of the Ministry of Education, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Xi Lu
- Protein Science Laboratory of the Ministry of Education, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Dong-Ming Xing
- Protein Science Laboratory of the Ministry of Education, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Feng Du
- Department of Mathematics, Tulane University, New Orleans, Louisiana, United States of America
| | - Li-Jun Du
- Protein Science Laboratory of the Ministry of Education, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Effects of green tea extracts on non-shivering thermogenesis during mild cold exposure in young men. Br J Nutr 2012; 110:282-8. [PMID: 23237788 DOI: 10.1017/s0007114512005089] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The effects of epigallocatechin-3-gallate (EGCG) and caffeine on non-shivering thermogenesis (NST) during cold exposure is unknown. The purpose of the present study was to quantify the effects of co-ingesting EGCG and caffeine on the thermogenic responses of a 3 h cold exposure. A total of eight healthy males were exposed to mild cold, using a liquid-conditioned suit perfused with 158C water, on two occasions and consumed a placebo or an extract of 1600 mg of EGCG and 600 mg of caffeine (Green tea). Thermic, metabolic and electromyographic measurements were monitored at baseline and during the cold exposure. Results showed that the AUC of shivering intensity over the cold exposure period was reduced by approximately 20% in the Green tea (266 (SEM 6)% maximal voluntary contraction (MVC) x min) compared with the Placebo (332 (SEM 69)%MVC x min) (P=0·01) treatments. In contrast, the total AUC for energy expenditure (EE) was approximately 10% higher in the Green tea (23·5 (SEM 1·4) kJ/kg x 180 min) compared with the Placebo (327 (SEM 74) kJ/kg 180 min) (P=0·007) treatments. The decrease in shivering activity combined with an increase in EE, following the ingestion of EGCG and caffeine during the cold exposure, indicates that NST pathways can be significantly stimulated in adult human subjects. The present study provides an experimental approach for human investigations into the potential role of diet and bioactive food ingredients in modulating NST during cold exposure. Stimulating NST pathways in such a manner may also provide important targets in the search of targets for the management of obesity and diabetes.
Collapse
|
13
|
BLONDIN DENISP, PÉRONNET FRANÇOIS, HAMAN FRANÇOIS. Coingesting Glucose and Fructose in the Cold Potentiates Exogenous CHO Oxidation. Med Sci Sports Exerc 2012; 44:1706-14. [DOI: 10.1249/mss.0b013e318254e952] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|