1
|
McDermott A, Nevin A, Gildea N, Rocha J, O'Shea D, Egaña M. Muscle deoxygenation during ramp incremental cycle exercise in older adults with type 2 diabetes. Eur J Appl Physiol 2024; 124:561-571. [PMID: 37638974 PMCID: PMC10858067 DOI: 10.1007/s00421-023-05297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023]
Abstract
PURPOSE To explore profiles of fractional O2 extraction (using near-infrared spectroscopy) during ramp incremental cycling in older individuals with type 2 diabetes (T2D). METHODS Twelve individuals with T2D (mean ± SD, age: 63 ± 3 years) and 12 healthy controls (mean age: 65 ± 3 years) completed a ramp cycling exercise. Rates of muscle deoxygenation (i.e., deoxygenated haemoglobin and myoglobin, Δ[HHb + Mb]) profiles of the vastus lateralis muscle were normalised to 100% of the response, plotted against absolute (W) and relative (%peak) power output (PO) and fitted with a double linear regression model. RESULTS Peak oxygen uptake (V̇O2peak) was significantly (P < 0.01) reduced in T2D (23.0 ± 4.2 ml.kg-1.min-1) compared with controls (28.3 ± 5.3 ml.kg-1.min-1). The slope of the first linear segment of the model was greater (median (interquartile range)) in T2D (1.06 (1.50)) than controls (0.79 (1.06)) when Δ%[HHb + Mb] was plotted as a function of PO. In addition, the onset of the second linear segment of the Δ%[HHb + Mb]/PO model occurred at a lower exercise intensity in T2D (101 ± 35 W) than controls (140 ± 34 W) and it displayed a near-plateau response in both groups. When the relationship of the Δ%[HHb + Mb] profile was expressed as a function of %PO no differences were observed in any parameters of the double linear model. CONCLUSIONS These findings suggest that older individuals with uncomplicated T2D demonstrate greater fractional oxygen extraction for a given absolute PO compared with older controls. Thus, the reductions in V̇O2peak in older people with T2D are likely influenced by impairments in microvascular O2 delivery.
Collapse
Affiliation(s)
- Adam McDermott
- Department of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Aaron Nevin
- Department of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Norita Gildea
- Department of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | | | - Donal O'Shea
- Endocrinology, St Columcille's and St Vincent's Hospitals, Dublin, Ireland
| | - Mikel Egaña
- Department of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| |
Collapse
|
2
|
Kourek C, Karatzanos E, Raidou V, Papazachou O, Philippou A, Nanas S, Dimopoulos S. Effectiveness of high intensity interval training on cardiorespiratory fitness and endothelial function in type 2 diabetes: A systematic review. World J Cardiol 2023; 15:184-199. [PMID: 37124974 PMCID: PMC10130888 DOI: 10.4330/wjc.v15.i4.184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/22/2023] [Accepted: 03/29/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a chronic metabolic syndrome characterized by insulin resistance and hyperglycemia that may lead to endothelial dysfunction, reduced functional capacity and exercise intolerance. Regular aerobic exercise has been promoted as the most beneficial non-pharmacological treatment of cardiovascular diseases. High intensity interval training (HIIT) seems to be superior than moderate-intensity continuous training (MICT) in cardiovascular diseases by improving brachial artery flow-mediated dilation (FMD) and cardiorespiratory fitness to a greater extent. However, the beneficial effects of HIIT in patients with T2DM still remain under investigation and number of studies is limited.
AIM To evaluate the effectiveness of high intensity interval training on cardiorespiratory fitness and endothelial function in patients with T2DM.
METHODS We performed a search on PubMed, PEDro and CINAHL databases, selecting papers published between December 2012 and December 2022 and identified published randomized controlled trials (RCTs) in the English language that included community or outpatient exercise training programs in patients with T2DM. RCTs were assessed for methodological rigor and risk of bias via the Physiotherapy Evidence Database (PEDro). The primary outcome was peak VO2 and the secondary outcome was endothelial function assessed either by FMD or other indices of microcirculation.
RESULTS Twelve studies were included in our systematic review. The 12 RCTs resulted in 661 participants in total. HIIT was performed in 310 patients (46.8%), MICT to 271 and the rest 80 belonged to the control group. Peak VO2 increased in 10 out of 12 studies after HIIT. Ten studies compared HIIT with other exercise regimens (MICT or strength endurance) and 4 of them demonstrated additional beneficial effects of HIIT over MICT or other exercise regimens. Moreover, 4 studies explored the effects of HIIT on endothelial function and FMD in T2DM patients. In 2 of them, HIIT further improved endothelial function compared to MICT and/or the control group while in the rest 2 studies no differences between HIIT and MICT were observed.
CONCLUSION Regular aerobic exercise training has beneficial effects on cardiorespiratory fitness and endothelial function in T2DM patients. HIIT may be superior by improving these parameters to a greater extent than MICT.
Collapse
Affiliation(s)
- Christos Kourek
- Clinical Ergospirometry, Exercise and Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, Athens 10676, Greece
- Department of Cardiology, 417 Army Share Fund Hospital of Athens, Athens 11521, Greece
| | - Eleftherios Karatzanos
- Clinical Ergospirometry, Exercise and Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, Athens 10676, Greece
| | - Vasiliki Raidou
- Clinical Ergospirometry, Exercise and Rehabilitation Laboratory, National and Kapodistrian University of Athens, Athens 10676, Greece
| | - Ourania Papazachou
- Department of Cardiology, "Helena Venizelou" Hospital, Athens 10676, Greece
| | - Anastassios Philippou
- Clinical Ergospirometry, Exercise and Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, Athens 10676, Greece
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Serafim Nanas
- Clinical Ergospirometry, Exercise and Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, Athens 10676, Greece
| | - Stavros Dimopoulos
- Clinical Ergospirometry, Exercise and Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, Athens 10676, Greece
- Cardiac Surgery Intensive Care Unit, Onassis Cardiac Surgery Center, Athens 17674, Greece
| |
Collapse
|
3
|
Butenas ALE, Copp SW, Hageman KS, Poole DC, Musch TI. Effects of comorbid type II diabetes mellitus and heart failure on rat hindlimb and respiratory muscle blood flow during treadmill exercise. J Appl Physiol (1985) 2023; 134:846-857. [PMID: 36825642 PMCID: PMC10042612 DOI: 10.1152/japplphysiol.00770.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
In rats with type II diabetes mellitus (T2DM) compared with nondiabetic healthy controls, muscle blood flow (Q̇m) to primarily glycolytic hindlimb muscles and the diaphragm muscle are elevated during submaximal treadmill running consequent to lower skeletal muscle mass, a finding that held even when muscle mass was normalized to body mass. In rats with heart failure with reduced ejection fraction (HF-rEF) compared with healthy controls, hindlimb Q̇m was lower, whereas diaphragm Q̇m is elevated during submaximal treadmill running. Importantly, T2DM is the most common comorbidity present in patients with HF-rEF, but the effect of concurrent T2DM and HF-rEF on limb and respiratory Q̇m during exercise is unknown. We hypothesized that during treadmill running (20 m·min-1; 10% incline), hindlimb and diaphragm Q̇m would be higher in T2DM Goto-Kakizaki rats with HF-rEF (i.e., HF-rEF + T2DM) compared with nondiabetic Wistar rats with HF-rEF. Ejection fractions were not different between groups (HF-rEF: 30 ± 5; HF-rEF + T2DM: 28 ± 8%; P = 0.617), whereas blood glucose was higher in HF-rEF + T2DM (209 ± 150 mg/dL) compared with HF-rEF rats (113 ± 28 mg/dL; P = 0.040). Hindlimb muscle mass normalized to body mass was lower in rats with HF-rEF + T2DM (36.3 ± 1.6 mg/g) than in nondiabetic HF-rEF counterparts (40.3 ± 2.7 mg/g; P < 0.001). During exercise, Q̇m was elevated in rats with HF-rEF + T2DM compared with nondiabetic counterparts to the hindlimb (HF-rEF: 100 ± 28; HF-rEF + T2DM: 139 ± 23 mL·min-1·100 g-1; P < 0.001) and diaphragm (HF-rEF: 177 ± 66; HF-rEF + T2DM: 215 ± 93 mL·min-1·100g-1; P = 0.035). These data suggest that the pathophysiological consequences of T2DM on hindlimb and diaphragm Q̇m during treadmill running in the GK rat persist even in the presence of HF-rEF.NEW & NOTEWORTHY Herein, we demonstrate that rats comorbid with heart failure with reduced ejection fraction (HF-rEF) and type II diabetes mellitus (T2DM) have a higher hindlimb and respiratory muscle blood flow during submaximal treadmill running (20 m·min-1; 10% incline) compared with nondiabetic HF-rEF counterparts. These data may carry important clinical implications for roughly half of all patients with HF-rEF who present with T2DM.
Collapse
Affiliation(s)
- Alec L E Butenas
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
| | - Steven W Copp
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
| | - K Sue Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, United States
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, United States
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, United States
| |
Collapse
|
4
|
Rocha J, Gildea N, O’Shea D, Green S, Egaña M. Priming exercise accelerates oxygen uptake kinetics during high-intensity cycle exercise in middle-aged individuals with type 2 diabetes. Front Physiol 2022; 13:1006993. [PMID: 36505082 PMCID: PMC9727537 DOI: 10.3389/fphys.2022.1006993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
Background: The primary phase time constant of pulmonary oxygen uptake kinetics (V · O 2 τ p) during submaximal efforts is longer in middle-aged people with type 2 diabetes (T2D), partly due to limitations in oxygen supply to active muscles. This study examined if a high-intensity "priming" exercise (PE) would speedV · O 2 τ p during a subsequent high-intensity cycling exercise in T2D due to enhanced oxygen delivery. Methods: Eleven (4 women) middle-aged individuals with type 2 diabetes and 11 (4 women) non-diabetic controls completed four separate cycling bouts each starting at an 'unloaded' baseline of 10 W and transitioning to a high-intensity constant-load. Two of the four cycling bouts were preceded by priming exercise. The dynamics of pulmonaryV · O 2 and muscle deoxygenation (i.e. deoxygenated haemoglobin and myoglobin concentration [HHb + Mb]), were calculated from breath-by-breath and near-infrared spectroscopy data at the vastus lateralis, respectively. Results: At baselineV · O 2 τ p, was slower (p < 0.001) in the type 2 diabetes group (48 ± 6 s) compared to the control group (34 ± 2 s) but priming exercise significantly reducedV · O 2 τ p (p < 0.001) in type 2 diabetes (32 ± 6 s) so that post priming exercise it was not different compared with controls (34 ± 3 s). Priming exercise reduced the amplitude of theV · O 2 slow component (As) in both groups (type 2 diabetes: 0.26 ± 0.11 to 0.16 ± 0.07 L/min; control: 0.33 ± 0.13 to 0.25 ± 0.14 L/min, p < 0.001), while [HHb + Mb] kinetics remained unchanged. Conclusion: These results suggest that in middle-aged men and women with T2D, PE speedsV · O 2 τ p likely by a better matching of O2 delivery to utilisation and reduces theV · O 2 As during a subsequent high-intensity exercise.
Collapse
Affiliation(s)
- Joel Rocha
- Division of Sport and Exercise Sciences, Abertay University, Dundee, United Kingdom
| | - Norita Gildea
- Department of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Donal O’Shea
- Endocrinology, St Columcille’s and St Vincent’s Hospitals, Dublin, Ireland
| | - Simon Green
- School of Science and Health, Western Sydney University, Sydney, AU-NSW, Australia
| | - Mikel Egaña
- Department of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Gildea N, McDermott A, Rocha J, Crognale D, Nevin A, O'Shea D, Green S, Egaña M. Low-volume HIIT and MICT speed V̇O 2 kinetics during high-intensity "work-to-work" cycling with a similar time-course in type 2 diabetes. J Appl Physiol (1985) 2022; 133:273-287. [PMID: 35678744 DOI: 10.1152/japplphysiol.00148.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We assessed the rates of adjustment in oxygen uptake (V̇O2) and muscle deoxygenation (i.e., deoxygenated haemoglobin and myoglobin, [HHb+Mb]) during the on-transition to high-intensity cycling initiated from an elevated baseline (work-to-work) before training and at weeks 3, 6, 9 and 12 of low-volume high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) in type 2 diabetes (T2D). Participants were randomly assigned to MICT (n=11, 50 min of moderate-intensity cycling), HIIT (n =8, 10x1 min of high-intensity cycling separated by 1-min of light cycling) or non-exercising control (n=9) groups. Exercising groups trained 3 times per week. Participants completed two work-to-work transitions at each time point consisting of sequential step increments to moderate- and high-intensity work-rates. [HHb+Mb] kinetics were measured by near-infrared spectroscopy at the vastus lateralis muscle. The pretraining time constant of the primary phase of V̇O2 (V̇O2τp) and the amplitude of the V̇O2 slow component (V̇O2As) of the high-intensity w-to-w bout decreased (P<0.05) by a similar magnitude at wk 3 of training in both MICT (from, 56±9 to 43±6s, and from 0.17±0.07 to 0.09±0.05 L.min-1, respectively) and HIIT (from, 56±8 to 42±6s, and from 0.18±0.05 to 0.09±0.08 L.min-1, respectively) with no further changes thereafter. No changes were reported in controls. The parameter estimates of Δ[HHb+Mb] remained unchanged in all groups. MICT and HIIT elicited comparable improvements in V̇O2 kinetics without changes in muscle deoxygenation kinetics during high-intensity exercise initiated from an elevated baseline in T2D despite training volume and time commitment being ~50% lower in the HIIT group.
Collapse
Affiliation(s)
- Norita Gildea
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Adam McDermott
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Joel Rocha
- Division of Sport and Exercise Sciences, School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Domenico Crognale
- Institute for Sport and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Ireland
| | - Aaron Nevin
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Donal O'Shea
- Department of Endocrinology, St. Columcille's Hospital, Dublin, Ireland.,Department of Endocrinology and Diabetes Mellitus, St. Vincent's University Hospital, Dublin, Ireland
| | - Simon Green
- Schools of Health Sciences and Medicine, Western Sydney University, Sydney, Australia
| | - Mikel Egaña
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
6
|
Green S, Kiely C, O'Connor E, Gildea N, O'Shea D, Egaña M. Differential effects of sex on adaptive responses of skeletal muscle vasodilation to exercise training in type 2 diabetes. J Diabetes Complications 2022; 36:108098. [PMID: 34887186 DOI: 10.1016/j.jdiacomp.2021.108098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/14/2021] [Accepted: 11/21/2021] [Indexed: 01/07/2023]
Abstract
AIMS We tested the hypotheses that exercise training improves the peak and dynamic responses of leg vascular conductance (LVC) in males and females with type 2 diabetes (T2DM). METHODS Forty-one males and females with T2DM were assigned to two training groups and two control groups. Twelve weeks of aerobic/resistance training was performed three times per week, 60-90 min per session. Responses of calf muscle blood flow and systemic arterial pressure during incremental and constant-load (30% maximal voluntary contraction) intermittent plantar-flexion protocols in the supine position were recorded. RESULTS Training significantly increased peak LVC in males (4.86 ± 1.88 to 6.06 ± 2.06 ml·min-1·mm Hg-1) and females (3.91 ± 1.13 to 5.40 ± 1.38 ml·min-1·mm Hg-1) with no changes in control groups. For dynamic responses, training significantly increased the amplitude of the fast growth phase of LVC (1.81 ± 1.12 to 2.68 ± 1.01 ml·min-1·mm Hg-1) and decreased the time constant of the slow growth phase (43.6 ± 46.4 s to 16.1 14.0 s) in females, but no improvements were observed in control females or in any of the two male groups. CONCLUSIONS These data suggest that training increases the peak vasodilatory response in males and females, whereas the speed of the dynamic response of vasodilation is improved in females but not males.
Collapse
Affiliation(s)
- Simon Green
- School of Health Sciences, Western Sydney University, Sydney, Australia; School of Medicine, Western Sydney University, Sydney, Australia
| | - Catherine Kiely
- School of Medicine, Department of Physiology, Trinity College Dublin, Dublin 2, Ireland
| | - Eamonn O'Connor
- School of Medicine, Department of Physiology, Trinity College Dublin, Dublin 2, Ireland
| | - Norita Gildea
- School of Medicine, Department of Physiology, Trinity College Dublin, Dublin 2, Ireland
| | - Donal O'Shea
- Department of Endocrinology, St. Columcille's Hospital, Dublin, Ireland; Department of Endocrinology and Diabetes Mellitus, St. Vincent's University Hospital, Dublin, Ireland
| | - Mikel Egaña
- School of Medicine, Department of Physiology, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
7
|
Gildea N, McDermott A, Rocha J, O’Shea D, Green S, Egaña M. Time course of changes in V̇o2peak and O2 extraction during ramp cycle exercise following HIIT versus moderate-intensity continuous training in type 2 diabetes. Am J Physiol Regul Integr Comp Physiol 2021; 320:R683-R696. [DOI: 10.1152/ajpregu.00318.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the present study, we assessed the time course of adaptations in peak oxygen uptake (V̇o2peak) and muscle fractional oxygen (O2) extraction (using near-infrared spectroscopy) following 12 wk of low-volume high-intensity interval training (HIIT) versus moderate-intensity continuous endurance training (MICT) in adults with uncomplicated type 2 diabetes (T2D). Participants with T2D were randomly assigned to MICT ( n = 12, 50 min of moderate-intensity cycling) or HIIT ( n = 9, 10 × 1 min at ∼90% maximal heart rate) or to a nonexercising control group ( n = 9). Exercising groups trained three times per week and measurements were taken every 3 wk. The rate of muscle deoxygenation (i.e., deoxygenated hemoglobin and myoglobin concentration, Δ[HHb + Mb]) profiles of the vastus lateralis muscle were normalized to 100% of the response, plotted against % power output (PO), and fitted with a double linear regression model. V̇o2peak increased ( P < 0.05) by week 3 of MICT (+17%) and HIIT (+8%), with no further significant changes thereafter. Total increases in V̇o2peak posttraining ( P < 0.05) were 27% and 14%, respectively. The %Δ[HHb + Mb] versus %PO slope of the first linear segment ( slope1) was reduced ( P < 0.05) beyond 3 wk of HIIT and MICT, with no further significant changes thereafter. No changes in V̇o2peak or slope1 were observed in the control group. Low-volume HIIT and MICT induced improvements in V̇o2peak following a similar time course, and these improvements were likely, at least in part, due to an improved microvascular O2 delivery.
Collapse
Affiliation(s)
- Norita Gildea
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Adam McDermott
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Joel Rocha
- Division of Sport and Exercise Sciences, Abertay University, Dundee, United Kingdom
| | - Donal O’Shea
- Department of Endocrinology, St. Columcille’s Hospital, Dublin, Ireland
- Department of Endocrinology and Diabetes Mellitus, St. Vincent’s University Hospital, Dublin, Ireland
| | - Simon Green
- Schools of Health Sciences and Medicine, Western Sydney University, Sydney, Australia
| | - Mikel Egaña
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Grotle AK, Kaur J, Stone AJ, Fadel PJ. Neurovascular Dysregulation During Exercise in Type 2 Diabetes. Front Physiol 2021; 12:628840. [PMID: 33927637 PMCID: PMC8076798 DOI: 10.3389/fphys.2021.628840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence suggests that type 2 diabetes (T2D) may impair the ability to properly adjust the circulation during exercise with augmented blood pressure (BP) and an attenuated contracting skeletal muscle blood flow (BF) response being reported. This review provides a brief overview of the current understanding of these altered exercise responses in T2D and the potential underlying mechanisms, with an emphasis on the sympathetic nervous system and its regulation during exercise. The research presented support augmented sympathetic activation, heightened BP, reduced skeletal muscle BF, and impairment in the ability to attenuate sympathetically mediated vasoconstriction (i.e., functional sympatholysis) as potential drivers of neurovascular dysregulation during exercise in T2D. Furthermore, emerging evidence supporting a contribution of the exercise pressor reflex and central command is discussed along with proposed future directions for studies in this important area of research.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - Jasdeep Kaur
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Audrey J. Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Paul J. Fadel
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
9
|
Gildea N, McDermott A, Rocha J, O'Shea D, Green S, Egaña M. Time-course of V̇o 2 kinetics responses during moderate-intensity exercise subsequent to HIIT versus moderate-intensity continuous training in type 2 diabetes. J Appl Physiol (1985) 2021; 130:1646-1659. [PMID: 33792400 DOI: 10.1152/japplphysiol.00952.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We assessed the time-course of changes in oxygen uptake (V̇o2) and muscle deoxygenation (i.e., deoxygenated hemoglobin and myoglobin, [HHb + Mb]) kinetics during transitions to moderate-intensity cycling following 12 wk of low-volume high-intensity interval training (HIIT) vs. moderate-intensity continuous training (MICT) in adults with type 2 diabetes (T2D). Participants were randomly assigned to MICT (n = 10, 50 min of moderate-intensity cycling), HIIT (n = 9, 10 × 1 min at ∼90% maximal heart rate), or nonexercising control (n = 9) groups. Exercising groups trained three times per week, and measurements were taken every 3 wk. [HHb + Mb] kinetics were measured by near-infrared spectroscopy at the vastus lateralis muscle. The local matching of O2 delivery to O2 utilization was assessed by the Δ[HHb + Mb]/ΔV̇o2 ratio. The pretraining time constant of the primary phase of V̇o2 (τV̇o2p) decreased (P < 0.05) at wk 3 of training in both MICT (from 44 ± 12 to 32 ± 5 s) and HIIT (from 42 ± 8 to 32 ± 4 s) with no further changes thereafter, whereas no changes were reported in controls. The pretraining overall dynamic response of muscle deoxygenation (τ'[HHb + Mb]) was faster than τV̇o2p in all groups, resulting in Δ[HHb + Mb]/V̇o2p showing a transient "overshoot" relative to the subsequent steady-state level. After 3 wk, the Δ[HHb + Mb]/V̇o2p overshoot was eliminated only in the training groups, so that τ'[HHb + Mb] was not different to τV̇o2p in MICT and HIIT. The enhanced V̇o2 kinetics response consequent to both MICT and HIIT in T2D was likely attributed to a training-induced improvement in matching of O2 delivery to utilization.NEW & NOTEWORTHY High-intensity interval training and moderate-intensity continuous training elicited faster pulmonary oxygen uptake (V̇o2) kinetics during moderate-intensity cycling within 3 wk of training with no further changes thereafter in individuals with type 2 diabetes. These adaptations were accompanied by unaltered near-infrared spectroscopy-derived muscle deoxygenation (i.e. deoxygenated hemoglobin and myoglobin concentration, [HHb+Mb]) kinetics and transiently reduced Δ[HHb+Mb]-to-ΔV̇o2 ratio, suggesting an enhanced blood flow distribution within the active muscles subsequent to both training interventions.
Collapse
Affiliation(s)
- Norita Gildea
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Adam McDermott
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Joel Rocha
- Division of Sport and Exercise Sciences, Abertay University, Dundee, United Kingdom
| | - Donal O'Shea
- Department of Endocrinology, St. Columcille's Hospital, Dublin, Ireland.,Department of Endocrinology and Diabetes Mellitus, St. Vincent's University Hospital, Dublin, Ireland
| | - Simon Green
- Schools of Health Sciences and Medicine, Western Sydney University, Sydney, Australia
| | - Mikel Egaña
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Gildea N, Rocha J, O'Shea D, Green S, Egaña M. Priming exercise accelerates pulmonary oxygen uptake kinetics during "work-to-work" cycle exercise in middle-aged individuals with type 2 diabetes. Eur J Appl Physiol 2020; 121:409-423. [PMID: 33084929 DOI: 10.1007/s00421-020-04518-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE The time constant of phase II pulmonary oxygen uptake kinetics ([Formula: see text]) is increased when high-intensity exercise is initiated from an elevated baseline (work-to-work). A high-intensity priming exercise (PE), which enhances muscle oxygen supply, does not reduce this prolonged [Formula: see text] in healthy active individuals, likely because [Formula: see text] is limited by metabolic inertia (rather than oxygen delivery) in these individuals. Since [Formula: see text] is more influenced by oxygen delivery in type 2 diabetes (T2D), this study tested the hypothesis that PE would reduce [Formula: see text] in T2D during work-to-work cycle exercise. METHODS Nine middle-aged individuals with T2D and nine controls (ND) performed four bouts of constant-load, high-intensity work-to-work transitions, each commencing from a baseline of moderate-intensity. Two bouts were completed without PE and two were preceded by PE. The rate of muscle deoxygenation ([HHb + Mb]) and surface integrated electromyography (iEMG) were measured at the right and left vastus lateralis, respectively. RESULTS Subsequent to PE, [Formula: see text] was reduced (P = 0.001) in T2D (from 59 ± 17 to 37 ± 20 s) but not (P = 0.24) in ND (44 ± 10 to 38 ± 7 s). The amplitude of the [Formula: see text] slow component ([Formula: see text]2 As) was reduced (P = 0.001) in both groups (T2D: 0.16 ± 0.09 to 0.11 ± 0.04 l/min; ND: 0.21 ± 0.13 to 0.13 ± 0.09 l/min). This was accompanied by a reduction in ΔiEMG from the onset of [Formula: see text] slow component to end-exercise in both groups (P < 0.001), while [HHb + Mb] kinetics remained unchanged. CONCLUSIONS PE accelerates [Formula: see text] in T2D, likely by negating the O2 delivery limitation extant in the unprimed condition, and reduces the [Formula: see text]As possibly due to changes in muscle fibre activation.
Collapse
Affiliation(s)
- Norita Gildea
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Joel Rocha
- Division of Sport and Exercise Sciences, Abertay University, Dundee, UK
| | - Donal O'Shea
- Department of Endocrinology, St. Columcille's Hospital, Dublin, Ireland.,Department of Endocrinology and Diabetes Mellitus, St. Vincent's University Hospital, Dublin, Ireland
| | - Simon Green
- Schools of Health Sciences and Medicine, Western Sydney University, Sydney, Australia
| | - Mikel Egaña
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
11
|
Butenas ALE, Smith JR, Copp SW, Sue Hageman K, Poole DC, Musch TI. Type II diabetes accentuates diaphragm blood flow increases during submaximal exercise in the rat. Respir Physiol Neurobiol 2020; 281:103518. [PMID: 32777269 DOI: 10.1016/j.resp.2020.103518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/25/2022]
Abstract
We investigated the effect of type 2 diabetes mellitus (T2DM) on respiratory muscle blood flow (BF) during exercise. Using the Goto-Kakizaki (GK) rat model of T2DM, we hypothesized that diaphragm, intercostal and transverse abdominis BFs (radiolabeled microspheres) would be higher in male GK rats (n = 10) compared to healthy male Wistar controls (CON; n = 8) during submaximal exercise (20 m/min, 10 % grade). Blood glucose was significantly higher in GK (246 ± 29 mg/dL) compared to CON (103 ± 4 mg/dL; P < 0.01). Respiratory muscle BFs were not different at rest (P> 0.50). From rest to submaximal exercise, respiratory muscle BFs increased in both groups to all muscles (P < 0.01). During submaximal exercise GK rats had higher diaphragm BFs (GK: 189 ± 13; CON: 138 ± 14 mL/min/100 g, P < 0.01), and vascular conductance (GK: 1.4 ± 0.1; CON: 1.0 ± 0.1 mL/min/mmHg/100 g; P < 0.01) compared to CON. There were no differences in intercostal or transverse abdominis BF or VC during exercise (P> 0.15). These findings suggest that submaximal exercise requires a higher diaphragm BF and VC in T2DM compared to healthy counterparts.
Collapse
Affiliation(s)
- Alec L E Butenas
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States.
| | - Joshua R Smith
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Steven W Copp
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States
| | - K Sue Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States; Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States; Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
12
|
Green S, Kiely C, O'Connor E, Gildea N, O'Shea D, Egaña M. Effects of exercise training and sex on dynamic responses of O 2 uptake in type 2 diabetes. Appl Physiol Nutr Metab 2020; 45:865-874. [PMID: 32134683 DOI: 10.1139/apnm-2019-0636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Effects of training and sex on oxygen uptake dynamics during exercise in type 2 diabetes mellitus (T2DM) are not well established. We tested the hypotheses that exercise training improves the time constant of the primary phase of oxygen uptake (τp oxygen uptake) and with greater effect in males than females. Forty-one subjects with T2DM were assigned to 2 training groups (Tmale, Tfemale) and 2 control groups (Cmale, Cfemale), and were assessed before and after a 12-week intervention period. Twelve weeks of aerobic/resistance training was performed 3 times per week, 60-90 min per session. Assessments included ventilatory threshold (VT), peak oxygen uptake, τp oxygen uptake (80%VT), and dynamic responses of cardiac output, mean arterial pressure and systemic vascular conductance (80%VT). Training significantly decreased τp oxygen uptake in males by a mean of 20% (Tmale = 42.7 ± 6.2 to 34.3 ± 7.2 s) and females by a mean of 16% (Tfemale = 42.2 ± 9.3 to 35.4 ± 8.6 s); whereas τp oxygen uptake was not affected in controls (Cmale = 41.6 ± 9.8 to 42.9 ± 7.6 s; Cfemale = 40.4 ± 12.2 to 40.6 ± 13.4 s). Training increased peak oxygen uptake in both sexes (12%-13%) but did not alter systemic cardiovascular dynamics in either sex. Training improved oxygen uptake dynamics to a similar extent in males and females in the absence of changes in systemic cardiovascular dynamics. Novelty Similar training improvements in oxygen uptake dynamics were observed in males and females with T2DM. In both sexes these improvements occurred without changes in systemic cardiovascular dynamics.
Collapse
Affiliation(s)
- Simon Green
- School of Science and Health, Western Sydney University, Sydney 2567, Australia.,School of Medicine, Western Sydney University, Sydney 2567, Australia
| | - Catherine Kiely
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Eamonn O'Connor
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Norita Gildea
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Donal O'Shea
- Endocrinology, St Columcille's and St Vincent's Hospitals, Dublin, Dublin 18, Ireland
| | - Mikel Egaña
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
13
|
Rocha J, Gildea N, O’Shea D, Green S, Egaña M. Influence of priming exercise on oxygen uptake and muscle deoxygenation kinetics during moderate-intensity cycling in type 2 diabetes. J Appl Physiol (1985) 2019; 127:1140-1149. [DOI: 10.1152/japplphysiol.00344.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pulmonary oxygen uptake (V̇o2) kinetics during the transition to moderate-intensity exercise is slowed in individuals with type 2 diabetes (T2D), at least in part because of limitations in O2 delivery. The present study tested the hypothesis that a prior heavy-intensity warm-up or “priming” exercise (PE) bout would accelerate V̇o2 kinetics in T2D, because of a better matching of O2 delivery to utilization. Twelve middle-aged individuals with T2D and 12 healthy controls (ND) completed moderate-intensity constant-load cycling bouts either without (Mod A) or with (Mod B) prior PE. The rates of muscle deoxygenation (i.e., deoxygenated hemoglobin and myoglobin concentration, [HHb+Mb]) and oxygenation (i.e., tissue oxygenation index) were continuously measured by near-infrared spectroscopy at the vastus lateralis muscle. The local matching of O2 delivery to O2 utilization was assessed by the Δ[HHb+Mb]-to-ΔV̇o2 ratio. Both groups demonstrated an accelerated V̇O2 kinetics response during Mod B compared with Mod A (T2D, 32 ± 9 vs. 42 ± 12 s; ND, 28 ± 9 vs. 34 ± 8 s; means ± SD) and an elevated muscle oxygenation throughout Mod B, whereas the [HHb+Mb] amplitude was greater during Mod B only in individuals with T2D. The [HHb+Mb] kinetics remained unchanged in both groups. In T2D, Mod B was associated with a decrease in the “overshoot” relative to steady state in the Δ[HHb+Mb]-to-ΔV̇o2 ratio (1.17 ± 0.17 vs. 1.05 ± 0.15), whereas no overshoot was observed in the control group before (1.04 ± 0.12) or after (1.01 ± 0.12) PE. Our findings support a favorable priming-induced acceleration of the V̇o2 kinetics response in middle-aged individuals with uncomplicated T2D attributed to an enhanced matching of microvascular O2 delivery to utilization. NEW & NOTEWORTHY Heavy-intensity “priming” exercise (PE) elicited faster pulmonary oxygen uptake (V̇o2) kinetics during moderate-intensity cycling exercise in middle-aged individuals with type 2 diabetes (T2D). This was accompanied by greater near-infrared spectroscopy-derived muscle deoxygenation (i.e., deoxygenated hemoglobin and myoglobin concentration, [HHb+Mb]) responses and a reduced Δ[HHb+Mb]-to-ΔV̇o2 ratio. This suggests that the PE-induced acceleration in oxidative metabolism in T2D is a result of greater O2 extraction and better matching between O2 delivery and utilization.
Collapse
Affiliation(s)
- Joel Rocha
- Division of Sport and Exercise Sciences, Abertay University, Dundee, United Kingdom
| | - Norita Gildea
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Donal O’Shea
- Department of Endocrinology, St. Columcille’s Hospital, Dublin, Ireland
- Department of Endocrinology and Diabetes Mellitus, St. Vincent’s University Hospital, Dublin, Ireland
| | - Simon Green
- School of Science and Health, Western Sydney University, Sydney, New South Wales, Australia
| | - Mikel Egaña
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Gildea N, Rocha J, McDermott A, O'Shea D, Green S, Egaña M. Influence of type 2 diabetes on muscle deoxygenation during ramp incremental cycle exercise. Respir Physiol Neurobiol 2019; 269:103258. [PMID: 31349019 DOI: 10.1016/j.resp.2019.103258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/04/2019] [Accepted: 07/23/2019] [Indexed: 11/18/2022]
Abstract
We tested the hypothesis that type 2 diabetes (T2D) alters the profile of muscle fractional oxygen (O2) extraction (near-infrared spectroscopy) during incremental cycle exercise. Seventeen middle-aged individuals with uncomplicated T2D and 17 controls performed an upright ramp test to exhaustion. The rate of muscle deoxygenation (i.e. deoxygenated haemoglobin and myoglobin concentration, Δ[HHb+Mb]) profiles of the vastus lateralis muscle were normalised to 100% of the response, plotted against % power output (PO) and fitted with a double linear regression model. Peak oxygen uptake was significantly (P < 0.05) reduced in individuals with T2D. The %Δ[HHb+Mb]/%PO slope of the first linear segment of the double linear regression function was significantly (P < 0.05) steeper in T2D than controls (1.59 (1.14) vs 1.23 (0.51)). Both groups displayed a near-plateau in Δ[HHb+Mb] at an exercise intensity (%PO) not different amongst them. Such findings suggest that a reduced O2 delivery to active muscles is an important underlying cause of exercise intolerance during a maximum graded test in middle-aged individuals with T2D.
Collapse
Affiliation(s)
- Norita Gildea
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Joel Rocha
- Division of Sport and Exercise Sciences, Abertay University, Dundee, UK
| | - Adam McDermott
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Donal O'Shea
- Endocrinology, St Columcille's and St Vincent's Hospitals, Dublin, Ireland
| | - Simon Green
- School of Science and Health, Western Sydney University, Sydney, Australia
| | - Mikel Egaña
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
15
|
Green S, O'Connor E, Kiely C, O'Shea D, Egaña M. Effect of obesity on oxygen uptake and cardiovascular dynamics during whole-body and leg exercise in adult males and females. Physiol Rep 2019; 6:e13705. [PMID: 29756296 PMCID: PMC5949330 DOI: 10.14814/phy2.13705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/13/2018] [Indexed: 12/02/2022] Open
Abstract
Obesity has been associated with a slowing of V˙O2 dynamics in children and adolescents, but this problem has not been studied in adults. Cardiovascular mechanisms underlying this effect are not clear. In this study, 48 adults (18 males, 30 females) grouped according to body mass index (BMI) (lean < 25 kg·m−2, overweight = 25–29.9 kg·m−2, obese ≥30 kg·m−2) provided a fasting blood sample, completed a maximal graded exercise test and six bouts of submaximal exercise on a cycle ergometer, and performed two protocols of calf exercise. Dynamic response characteristics of V˙O2 and leg vascular conductance (LVC) were assessed during cycling (80% ventilatory threshold) and calf exercise (30% MVC), respectively. Dynamic responses of cardiac output, mean arterial pressure and total systemic vascular conductance were also assessed during cycling based on measurements at 30 and 240 sec. The time constant of the second phase of the V˙O2 response was significantly greater in obese than lean subjects (39.4 (9.2) vs. 29.1 (7.6) sec); whereas dynamic responses of cardiac output and systemic vascular conductance were not affected by BMI. For calf exercise, the time constant of the second growth phase of LVC was slowed significantly in obese subjects (22.1 (12.7) sec) compared with lean and overweight subjects (11.6 (4.5) sec and 13.4 (6.7) sec). These data show that obesity slows dynamic responses of V˙O2 during cycling and the slower phase of vasodilation in contracting muscles of male and female adults.
Collapse
Affiliation(s)
- Simon Green
- School of Science and Health, Western Sydney University, Sydney, Australia
| | - Eamon O'Connor
- School of Medicine, Department of Physiology, Trinity College Dublin, Dublin, Ireland
| | - Catherine Kiely
- School of Medicine, Department of Physiology, Trinity College Dublin, Dublin, Ireland
| | - Donal O'Shea
- Endocrinology, St. Columcille's and St. Vincent's Hospitals, Dublin, Ireland
| | - Mikel Egaña
- School of Medicine, Department of Physiology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
16
|
Poitras VJ, Hudson RW, Tschakovsky ME. Exercise intolerance in Type 2 diabetes: is there a cardiovascular contribution? J Appl Physiol (1985) 2018; 124:1117-1139. [PMID: 29420147 DOI: 10.1152/japplphysiol.00070.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Physical activity is critically important for Type 2 diabetes management, yet adherence levels are poor. This might be partly due to disproportionate exercise intolerance. Submaximal exercise tolerance is highly sensitive to muscle oxygenation; impairments in exercising muscle oxygen delivery may contribute to exercise intolerance in Type 2 diabetes since there is considerable evidence for the existence of both cardiac and peripheral vascular dysfunction. While uncompromised cardiac output during submaximal exercise is consistently observed in Type 2 diabetes, it remains to be determined whether an elevated cardiac sympathetic afferent reflex could sympathetically restrain exercising muscle blood flow. Furthermore, while deficits in endothelial function are common in Type 2 diabetes and are often cited as impairing exercising muscle oxygen delivery, no direct evidence in exercise exists, and there are several other vasoregulatory mechanisms whose dysfunction could contribute. Finally, while there are findings of impaired oxygen delivery, conflicting evidence also exists. A definitive conclusion that Type 2 diabetes compromises exercising muscle oxygen delivery remains premature. We review these potentially dysfunctional mechanisms in terms of how they could impair oxygen delivery in exercise, evaluate the current literature on whether an oxygen delivery deficit is actually manifest, and correspondingly identify key directions for future research.
Collapse
Affiliation(s)
- Veronica J Poitras
- School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada.,Department of Physiology, Queen's University , Kingston, Ontario , Canada.,Children's Hospital of Eastern Ontario, Research Institute , Ottawa, Ontario , Canada
| | - Robert W Hudson
- Department of Medicine, Division of Endocrinology, Queen's University , Kingston, Ontario , Canada
| | - Michael E Tschakovsky
- School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| |
Collapse
|
17
|
Murphy E, Rocha J, Gildea N, Green S, Egaña M. Venous occlusion plethysmography vs. Doppler ultrasound in the assessment of leg blood flow kinetics during different intensities of calf exercise. Eur J Appl Physiol 2017; 118:249-260. [DOI: 10.1007/s00421-017-3765-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/14/2017] [Indexed: 11/30/2022]
|
18
|
Kiely C, Rocha J, O'Connor E, O'Shea D, Green S, Egaña M. Influence of menopause and Type 2 diabetes on pulmonary oxygen uptake kinetics and peak exercise performance during cycling. Am J Physiol Regul Integr Comp Physiol 2015; 309:R875-83. [PMID: 26269520 DOI: 10.1152/ajpregu.00258.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/11/2015] [Indexed: 02/02/2023]
Abstract
We investigated if the magnitude of the Type 2 diabetes (T2D)-induced impairments in peak oxygen uptake (V̇O2) and V̇O2 kinetics was affected by menopausal status. Twenty-two women with T2D (8 premenopausal, 14 postmenopausal), and 22 nondiabetic (ND) women (11 premenopausal, 11 postmenopausal) matched by age (range = 30-59 yr) were recruited. Participants completed four bouts of constant-load cycling at 80% of their ventilatory threshold for the determination of V̇O2 kinetics. Cardiac output (CO) (inert gas rebreathing) was recorded at rest and at 30 s and 240 s during two additional bouts. Peak V̇O2 was significantly (P < 0.05) reduced in both groups with T2D compared with ND counterparts (premenopausal, 1.79 ± 0.16 vs. 1.55 ± 0.32 l/min; postmenopausal, 1.60 ± 0.30 vs. 1.45 ± 0.24 l/min). The time constant of phase II of the V̇O2 response was slowed (P < 0.05) in both groups with T2D compared with healthy counterparts (premenopausal, 29.1 ± 11.2 vs. 43.0 ± 12.2 s; postmenopausal, 33.0 ± 9.1 vs. 41.8 ± 17.7 s). At rest and during submaximal exercise absolute CO responses were lower, but the "gains" in CO larger (both P < 0.05) in both groups with T2D. Our results suggest that the magnitude of T2D-induced impairments in peak V̇O2 and V̇O2 kinetics is not affected by menopausal status in participants younger than 60 yr of age.
Collapse
Affiliation(s)
- Catherine Kiely
- School of Medicine, Department of Physiology, Trinity College Dublin, Dublin, Ireland
| | - Joel Rocha
- School of Medicine, Department of Physiology, Trinity College Dublin, Dublin, Ireland
| | - Eamonn O'Connor
- School of Medicine, Department of Physiology, Trinity College Dublin, Dublin, Ireland
| | - Donal O'Shea
- Endocrinology, St. Columcille's and St. Vincent's Hospitals, Dublin, Ireland; and
| | - Simon Green
- School of Science and Health and School of Medicine, University of Western Sydney, Sydney, Australia
| | - Mikel Egaña
- School of Medicine, Department of Physiology, Trinity College Dublin, Dublin, Ireland;
| |
Collapse
|
19
|
O'Connor E, Green S, Kiely C, O'Shea D, Egaña M. Differential effects of age and type 2 diabetes on dynamic vs. peak response of pulmonary oxygen uptake during exercise. J Appl Physiol (1985) 2015; 118:1031-9. [PMID: 25701005 DOI: 10.1152/japplphysiol.01040.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/18/2015] [Indexed: 11/22/2022] Open
Abstract
We investigated if the magnitude of the type 2 diabetes (T2D)-induced impairments in peak oxygen uptake (V̇o2) and V̇o2 kinetics was affected by age. Thirty-three men with T2D (15 middle-aged, 18 older), and 21 nondiabetic (ND) men (11 middle-aged, 10 older) matched by age were recruited. Participants completed four 6-min bouts of constant-load cycling at 80% ventilatory threshold for the determination of V̇o2 kinetics. Cardiac output (inert-gas rebreathing) was recorded at rest and 30 and 240 s during two additional bouts. Peak V̇o2 (determined from a separate graded test) was significantly (P < 0.05) reduced in middle-aged and older men with T2D compared with their respective ND counterparts (middle-aged, 3.2 ± 0.5 vs. 2.5 ± 0.5 l/min; older, 2.7 ± 0.4 vs. 2.4 ± 0.4 l/min), and the magnitude of these impairments was not affected by age. However, the time constant of phase II of the V̇o2 response was only slowed (P < 0.05) in middle-aged men with T2D compared with healthy counterparts, whereas it was similar among older men with and without T2D (middle-aged, 26.8 ± 9.3 vs. 41.6 ± 12.1 s; older, 40.5 ± 7.8 vs. 41.1 ± 8.5 s). Similarly, the "gains" in systemic vascular conductance (estimated from the slope between cardiac output and mean arterial pressure responses) were lower (P < 0.05) in middle-aged men with T2D than ND controls, but similar between the older groups. The results suggest that the mechanisms by which T2D induces significant reductions in peak exercise performance are linked to a slower dynamic response of V̇o2 and reduced systemic vascular conductance responses in middle-aged men, whereas this is not the case in older men.
Collapse
Affiliation(s)
- Eamonn O'Connor
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Simon Green
- School of Science and Health and School of Medicine, University of Western Sydney, Sydney, New South Wales, Australia
| | - Catherine Kiely
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Donal O'Shea
- Endocrinology, St. Columcille's and St. Vincent's Hospitals, Dublin, Ireland; and
| | - Mikel Egaña
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland;
| |
Collapse
|
20
|
Greyling A, Schreuder THA, Landman T, Draijer R, Verheggen RJHM, Hopman MTE, Thijssen DHJ. Elevation in blood flow and shear rate prevents hyperglycemia-induced endothelial dysfunction in healthy subjects and those with type 2 diabetes. J Appl Physiol (1985) 2015; 118:579-85. [PMID: 25593286 DOI: 10.1152/japplphysiol.00936.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hyperglycemia, commonly present after a meal, causes transient impairment in endothelial function. We examined whether increases in blood flow (BF) protect against the hyperglycemia-mediated decrease in endothelial function in healthy subjects and patients with type 2 diabetes mellitus (T2DM). Ten healthy subjects and 10 age- and sex-matched patients with T2DM underwent simultaneous bilateral assessment of brachial artery endothelial function by means of flow-mediated dilation (FMD) using high-resolution echo-Doppler. FMD was examined before and 60, 120, and 150 min after a 75-g oral glucose challenge. We unilaterally manipulated BF by heating one arm between minute 30 and minute 60. Oral glucose administration caused a statistically significant, transient increase in blood glucose in both groups (P < 0.001). Forearm skin temperature, brachial artery BF, and shear rate significantly increased in the heated arm (P < 0.001), and to a greater extent compared with the nonheated arm in both groups (interaction effect P < 0.001). The glucose load caused a transient decrease in FMD% (P < 0.05), whereas heating significantly prevented the decline (interaction effect P < 0.01). Also, when correcting for changes in diameter and shear rate, we found that the hyperglycemia-induced decrease in FMD can be prevented by local heating (P < 0.05). These effects on FMD were observed in both groups. Our data indicate that nonmetabolically driven elevation in BF and shear rate can similarly prevent the hyperglycemia-induced decline in conduit artery endothelial function in healthy volunteers and in patients with type 2 diabetes. Additional research is warranted to confirm that other interventions that increase BF and shear rate equally protect the endothelium when challenged by hyperglycemia.
Collapse
Affiliation(s)
- Arno Greyling
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands; Unilever R&D Vlaardingen, The Netherlands; and
| | - Tim H A Schreuder
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thijs Landman
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Maria T E Hopman
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands; Research Institute for Sports and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
21
|
Green S, Egaña M, Baldi JC, Lamberts R, Regensteiner JG. Cardiovascular control during exercise in type 2 diabetes mellitus. J Diabetes Res 2015; 2015:654204. [PMID: 25918732 PMCID: PMC4396731 DOI: 10.1155/2015/654204] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/17/2015] [Indexed: 12/31/2022] Open
Abstract
Controlled studies of male and female subjects with type 2 diabetes mellitus (DM) of short duration (~3-5 years) show that DM reduces peak VO2 (L·min(-1) and mL·kg(-1)·min(-1)) by an average of 12-15% and induces a greater slowing of the dynamic response of pulmonary VO2 during submaximal exercise. These effects occur in individuals less than 60 years of age but are reduced or absent in older males and are consistently associated with significant increases in the exercise pressor response despite normal resting blood pressure. This exaggerated pressor response, evidence of exertional hypertension in DM, is manifest during moderate submaximal exercise and coincides with a more constrained vasodilation in contracting muscles. Maximum vasodilation during contractions involving single muscle groups is reduced by DM, and the dynamic response of vasodilation during submaximal contractions is slowed. Such vascular constraint most likely contributes to exertional hypertension, impairs dynamic and peak VO2 responses, and reduces exercise tolerance. There is a need to establish the effect of DM on dynamic aspects of vascular control in skeletal muscle during whole-body exercise and to clarify contributions of altered cardiovascular control and increased arterial stiffness to exertional hypertension.
Collapse
Affiliation(s)
- Simon Green
- School of Science and Health, University of Western Sydney, Sydney, NSW 2751, Australia
- Neuroscience Research Australia, Sydney, NSW 2751, Australia
- *Simon Green:
| | - Mikel Egaña
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 1, Ireland
| | - J. Chris Baldi
- Department of Medicine, University of Otago, Dunedin, Otago 9054, New Zealand
| | - Regis Lamberts
- Department of Physiology-HeartOtago, University of Otago, Dunedin, Otago 9054, New Zealand
| | - Judith G. Regensteiner
- Division of General Internal Medicine, Center for Women's Health Research, Department of Medicine, School of Medicine, University of Colorado, Denver, CO 80210, USA
| |
Collapse
|
22
|
Interactive effect of acute sympathetic activation and exercise intensity on the dynamic response characteristics of vascular conductance in the human calf muscle. Eur J Appl Physiol 2014; 115:879-90. [PMID: 25479730 DOI: 10.1007/s00421-014-3069-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE The effect of acute activation of the sympathetic nervous system on the dynamic response of muscle hyperaemia during exercise at different intensities is not clear. METHODS To explore this, six men performed 16, 5-min bouts of intermittent calf contractions at two intensities (25 and 50 % MVC) and two levels of sympathetic activation (CPT cold pressor test, CON control). Mean arterial pressure (MAP) and leg vascular conductance (LVC leg blood flow/MAP) were measured during rest and contractions (3 s intervals), and dynamic response characteristics of LVC were estimated using curve-fitting and empirical modeling. RESULTS MAP was ~20 % greater (P ≤ 0.05) during CPT than CON before and during initial contractions at both intensities. At 25 % MVC, CPT reduced the exercise-induced change in LVC (0.109 vs 0.125 ml 100 ml(-1 )min(-1 )mmHg(-1); P < 0.05), an effect attributed to the reduction in the amplitude of the fast growth phase (0.091 vs 0.128 1 ml 100 ml(-1 )min(-1 )mmHg(-1); P < 0.05). At 50 % MVC, CPT also blunted the fast growth phase (0.147 vs 0.189 ml 100 ml(-1 )min(-1 )mmHg(-1); P < 0.05), but the total change in LVC during exercise was unaffected because of a significant reduction in the amplitude of the rapid decay phase and tendency (P = 0.1) for a lower amplitude of the slow decay phase. CONCLUSION Increased sympathetic constraint of vasodilation persists during initial contractions but is overcome at the high intensity by a mechanism apparently related to hyperaemic decay.
Collapse
|