1
|
Nelson VK, Nuli MV, Ausali S, Gupta S, Sanga V, Mishra R, Jaini PK, Madhuri Kallam SD, Sudhan HH, Mayasa V, Abomughaid MM, Almutary AG, Pullaiah CP, Mitta R, Jha NK. Dietary anti-inflammatory and anti-bacterial medicinal plants and its compounds in bovine mastitis associated impact on human life. Microb Pathog 2024; 192:106687. [PMID: 38750773 DOI: 10.1016/j.micpath.2024.106687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Bovine mastitis (BM) is the most common bacterial mediated inflammatory disease in the dairy cattle that causes huge economic loss to the dairy industry due to decreased milk quality and quantity. Milk is the essential food in the human diet, and rich in crucial nutrients that helps in lowering the risk of diseases like hypertension, cardiovascular diseases and type 2 diabetes. The main causative agents of the disease include various gram negative, and positive bacteria, along with other risk factors such as udder shape, age, genetic, and environmental factors also contributes much for the disease. Currently, antibiotics, immunotherapy, probiotics, dry cow, and lactation therapy are commonly recommended for BM. However, these treatments can only decrease the rise of new cases but can't eliminate the causative agents, and they also exhibit several limitations. Hence, there is an urgent need of a potential source that can generate a typical and ideal treatment to overcome the limitations and eliminate the pathogens. Among the various sources, medicinal plants and its derived products always play a significant role in drug discovery against several diseases. In addition, they are also known for its low toxicity and minimum resistance features. Therefore, plants and its compounds that possess anti-inflammatory and anti-bacterial properties can serve better in bovine mastitis. In addition, the plants that are serving as a food source and possessing pharmacological properties can act even better in bovine mastitis. Hence, in this evidence-based study, we particularly review the dietary medicinal plants and derived products that are proven for anti-inflammatory and anti-bacterial effects. Moreover, the role of each dietary plant and its compounds along with possible role in the management of bovine mastitis are delineated. In this way, this article serves as a standalone source for the researchers working in this area to help in the management of BM.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Center for global health research, saveetha medical college, saveetha institute of medical and technical sciences, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saijyothi Ausali
- College of Pharmacy, MNR higher education and research academy campus, MNR Nagar, Sangareddy, 502294, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Vaishnavi Sanga
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Richa Mishra
- Department of Computer Engineering, Faculty of Engineering and Technology, Parul University, Vadodara, 391760, Gujrat, India
| | - Pavan Kumar Jaini
- Department of Pharmaceutics, Raffles University, Neemrana, Rajasthan, India
| | - Sudha Divya Madhuri Kallam
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur, Vadlamudi, Andhra Pradesh, 522213, India
| | - Hari Hara Sudhan
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Vinyas Mayasa
- GITAM School of Pharmacy, GITAM University Hyderabad Campus, Rudraram, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box, 59911, United Arab Emirates
| | - Chitikela P Pullaiah
- Department of Chemistry, Siddha Central Research Institute, Chennai, Tamil Nadu, 60016, India
| | - Raghavendra Mitta
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, Guntur, 522213, Andhra Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering & Technology (SSET), Sharda University, Greater Noida, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| |
Collapse
|
2
|
Tavvabi-Kashani N, Hasanpour M, Baradaran Rahimi V, Vahdati-Mashhadian N, Askari VR. Pharmacodynamic, pharmacokinetic, toxicity, and recent advances in Eugenol's potential benefits against natural and chemical noxious agents: A mechanistic review. Toxicon 2024; 238:107607. [PMID: 38191032 DOI: 10.1016/j.toxicon.2024.107607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
The active biological phytochemicals, crucial compounds employed in creating hundreds of medications, are derived from valuable and medicinally significant plants. These phytochemicals offer excellent protection from various illnesses, including inflammatory disorders and chronic conditions caused by oxidative stress. A phenolic monoterpenoid known as eugenol (EUG), it is typically found in the essential oils of many plant species from the Myristicaceae, Myrtaceae, Lamiaceae, and Lauraceae families. One of the main ingredients of clove oil (Syzygium aromaticum (L.), Myrtaceae), it has several applications in industry, including flavoring food, pharmaceutics, dentistry, agriculture, and cosmeceuticals. Due to its excellent potential for avoiding many chronic illnesses, it has lately attracted attention. EUG has been classified as a nonmutant, generally acknowledged as a safe (GRAS) chemical by the World Health Organization (WHO). According to the existing research, EUG possesses notable anti-inflammatory, antioxidant, analgesic, antibacterial, antispasmodic, and apoptosis-promoting properties, which have lately gained attention for its ability to control chronic inflammation, oxidative stress, and mitochondrial malfunction and dramatically impact human wellness. The purpose of this review is to evaluate the scientific evidence from the most significant research studies that have been published regarding the protective role and detoxifying effects of EUG against a wide range of toxins, including biological and chemical toxins, as well as different drugs and pesticides that produce a variety of toxicities, throughout view of the possible advantages of EUG.
Collapse
Affiliation(s)
- Negin Tavvabi-Kashani
- Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maede Hasanpour
- Department of Pharmacognosy and Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Naser Vahdati-Mashhadian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Devi S, Chauhan S, Mannan A, Singh TG. Targeting cardiovascular risk factors with eugenol: an anti-inflammatory perspective. Inflammopharmacology 2024; 32:307-317. [PMID: 38085446 DOI: 10.1007/s10787-023-01392-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/05/2023] [Indexed: 03/03/2024]
Abstract
Inflammation is a multifaceted biological reaction to a wide range of stimuli, and it has been linked to the onset and progression of chronic diseases such as heart disease, cancer, and diabetes. Inflammatory markers found in the blood, including C-reactive protein, serum amyloid A, fibrinogen, plasma viscosity, erythrocyte sedimentation rate, interleukin-6, and soluble adhesion molecules (like intercellular adhesion molecule-1 and vascular cell adhesion molecule-1), are risk factors for cardiovascular diseases such as coronary heart disease, stroke, and peripheral arterial disease. These markers play a crucial role in understanding and assessing cardiovascular health. Due to this complicated relationship between inflammation and cardiovascular disease, anti-inflammatory agents of natural origin have been the subject of many preclinical and clinical studies in recent years. Eugenol is a natural phenolic compound found in clove oil, nutmeg oil, cinnamon oil, and bay leaf oil, as well as other essential oils. Eugenol has been shown to have anti-inflammatory properties in many forms of experimental inflammation. It may scavenge free radicals, which contribute to inflammation and tissue damage. Various studies also suggest that eugenol can limit the production of inflammatory mediators such as prostaglandins, cytokines, and chemokines. Animal models of arthritis, colitis, and lung damage, as well as human clinical studies, have shown that eugenol has phenomenal anti-inflammatory properties. These properties suggest that eugenol may be able to reduce the risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
4
|
Usmani K, Jain SK, Yadav S. Mechanism of action of certain medicinal plants for the treatment of asthma. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116828. [PMID: 37369335 DOI: 10.1016/j.jep.2023.116828] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/06/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asthma is often treated and prevented using the pharmacological properties of traditional medicinal plants. These healthcare systems are among the most well-known, conveniently accessible, and economically priced in India and several other Asian countries. Traditional Indian Ayurvedic plants have the potential to be used as phyto-therapeutics, to create novel anti-asthmatic drugs, and as a cost-effective source of pharmaceuticals. Current conventional therapies have drawbacks, including serious side effects and expensive costs that interfere with treatment compliance and affect the patient's quality of life. The primary objective of the article is to comprehensively evaluate the advancement of research on the protective phytochemicals of traditional plants that target immune responses and signaling cascades in inflammatory experimental asthma models. The study would assist in paving the way for the creation of natural phytomedicines that are protective, anti-inflammatory, and immunomodulatory against asthma, which may then be used in individualized asthma therapy. AIM OF THE STUDY The study demonstrates the mechanisms of action of phytochemicals present in traditional medicinal plants, diminish pulmonary disorder in both in vivo and in vitro models of asthma. MATERIALS AND METHODS A comprehensive review of the literature on conventional plant-based asthma therapies was performed from 2006 to 2022. The study uses authoritative scientific sources such as PubMed, PubChem Compound, Wiley Online Library, Science Direct, Springer Link, and Google Scholar to collect information on potential phytochemicals and their mechanisms of action. World Flora Online (http://www.worldfloraonline.org) and Plants of the World Online (https://wcsp.science.kew.org) databases were used for the scientific names of medicinal plants. RESULTS The study outlines the phytochemical mechanisms of some traditional Ayurveda botanicals used to treat asthma. Active phytochemicals including curcumin, withaferin-A, piperine, glabridin, glycyrrhizin, 18β-glycyrrhetinic acid, trans-cinnamaldehyde, α-hederin, thymoquinone, eugenol, [6]-shogoal, and gingerol may treat asthma by controlling inflammation and airway remodeling. The study concluded that certain Ayurvedic plants' phytochemicals have the ability to reduce inflammation and modulate the immune system, that can effectively cure asthma. CONCLUSION Plants used in traditional Ayurvedic medicine have been utilized for millennia, advocating phyto-therapy as a treatment for a variety of illnesses. A theoretical foundation for the use of cutting-edge asthma treatments has been built with the growth of experimental research on traditional phytochemicals. In-depth phytochemical research for the treatment of asthma using Indian Traditional Ayurvedic herbs is compiled in the study. The approach for preventative therapeutics and cutting-edge alternatives to battle the molecular pathways in the pathophysiology of asthma are the key themes of the study. The phytochemical mechanism of action of traditional Ayurvedic herbs is explained to get the attention of the pharmaceutical industry so they can make future anti-asthma drugs for personalized asthma care in the community. The study develops strategies for customized phyto-therapeutics, concentrating on low-cost, side-effect-free approaches that employ bioactive phytochemicals from plants as the major source of effective anti-asthmatic therapy.
Collapse
Affiliation(s)
- Kainat Usmani
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, MP, India.
| | - Subodh Kumar Jain
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, MP, India.
| | - Shweta Yadav
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, MP, India.
| |
Collapse
|
5
|
Naz F, Khan I, Baammi S, Islam A. Investigation of the interactions of HSA and SARS-CoV-2 papain-like protease against eugenol for novel COVID-19 drug discovery: spectroscopic and insilico study. J Biomol Struct Dyn 2023; 41:10161-10170. [PMID: 36636828 DOI: 10.1080/07391102.2022.2164062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 11/24/2022] [Indexed: 01/14/2023]
Abstract
Coronavirus family consist of a member known as SARS-CoV-2, spread drastically in 2019 (Covid-19), affecting millions of people worldwide. Till date there is no clear-clinical therapy or drug, targeted to cure this serious disease. Researches are going on to prevent this corona virus. Here, we tried to explore a novel SARS-CoV-2 papain-like protease as a potential inhibitor. Finally, eugenol was docked with this protease to find prime SARS-inhibitors. In silico studies revealed that eugenol binds to the active site of SARS-CoV-2 papain-like protease with appropriate binding. Moreover, the MD simulation for 100 ns and MMPBSA calculation reveals that eugenol possess potential phytotherapeutic properties against COVID-19. The interaction of eugenol with human serum albumin has been examined by using fluorescence, UV-vis spectroscopy, circular dichroism as well as computational techniques such as molecular docking, molecular dynamic simulation and MMPBSA calculation. Overall investigation shows eugenol having good affinity for HSA Ka 6.80 × 106 M-1.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Farheen Naz
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Imran Khan
- Department of Computer Science, Deanship of Educational Services, Qassim University, Buraidah, Al Qassim, Saudi Arabia
| | - Soukayna Baammi
- African Genome Centre (AGC), Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
6
|
Barbosa-de-Oliveira MC, Oliveira-Melo P, Gonçalves da Silva MH, Santos da Silva F, Andrade Carvalho da Silva F, Silva de Araujo BV, Franco de Oliveira M, Tadeu Correia A, Miyoshi Sakamoto S, Valença SS, Lanzetti M, Schmidt M, Kennedy-Feitosa E. Modulation of Alveolar Macrophage Activity by Eugenol Attenuates Cigarette-Smoke-Induced Acute Lung Injury in Mice. Antioxidants (Basel) 2023; 12:1258. [PMID: 37371988 DOI: 10.3390/antiox12061258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
This study investigates the role of eugenol (EUG) on CS-induced acute lung injury (ALI) and how this compound is able to modulate macrophage activity. C57BL/6 mice were exposed to 12 cigarettes/day/5days and treated 15 min/day/5days with EUG. Rat alveolar macrophages (RAMs) were exposed to CSE (5%) and treated with EUG. In vivo, EUG reduced morphological changes inflammatory cells, oxidative stress markers, while, in vitro, it induced balance in the oxidative stress and reduced the pro-inflammatory cytokine release while increasing the anti-inflammatory one. These results suggest that eugenol reduced CS-induced ALI and acted as a modulator of macrophage activity.
Collapse
Affiliation(s)
- Maria Clara Barbosa-de-Oliveira
- Morphophysiopharmacology Laboratory, Department of Health Sciences, Federal University of the Semi-Arid Region, Mossoró 59625-900, Brazil
| | - Paolo Oliveira-Melo
- Laboratório de Pesquisa em Cirurgia Torácica, Faculdade de Medicina HCFMUSP, Universidade de Sao Paulo, Sao Paulo 05508-220, Brazil
| | | | - Flávio Santos da Silva
- Morphophysiopharmacology Laboratory, Department of Health Sciences, Federal University of the Semi-Arid Region, Mossoró 59625-900, Brazil
| | - Felipe Andrade Carvalho da Silva
- Morphophysiopharmacology Laboratory, Department of Health Sciences, Federal University of the Semi-Arid Region, Mossoró 59625-900, Brazil
| | - Bruno Vinicios Silva de Araujo
- Morphophysiopharmacology Laboratory, Department of Health Sciences, Federal University of the Semi-Arid Region, Mossoró 59625-900, Brazil
| | | | - Aristides Tadeu Correia
- Laboratório de Pesquisa em Cirurgia Torácica, Faculdade de Medicina HCFMUSP, Universidade de Sao Paulo, Sao Paulo 05508-220, Brazil
| | - Sidnei Miyoshi Sakamoto
- Morphophysiopharmacology Laboratory, Department of Health Sciences, Federal University of the Semi-Arid Region, Mossoró 59625-900, Brazil
| | - Samuel Santos Valença
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, Brazil
| | - Manuella Lanzetti
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, Brazil
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, Building 3211, Room 406, 9713 AV Groningen, The Netherlands
- Groningen Research Institute of Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Emanuel Kennedy-Feitosa
- Morphophysiopharmacology Laboratory, Department of Health Sciences, Federal University of the Semi-Arid Region, Mossoró 59625-900, Brazil
| |
Collapse
|
7
|
Hasan MR, Alotaibi BS, Althafar ZM, Mujamammi AH, Jameela J. An Update on the Therapeutic Anticancer Potential of Ocimum sanctum L.: "Elixir of Life". Molecules 2023; 28:1193. [PMID: 36770859 PMCID: PMC9919305 DOI: 10.3390/molecules28031193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 01/27/2023] Open
Abstract
In most cases, cancer develops due to abnormal cell growth and subsequent tumour formation. Due to significant constraints with current treatments, natural compounds are being explored as potential alternatives. There are now around 30 natural compounds under clinical trials for the treatment of cancer. Tulsi, or Holy Basil, of the genus Ocimum, is one of the most widely available and cost-effective medicinal plants. In India, the tulsi plant has deep religious and medicinal significance. Tulsi essential oil contains a valuable source of bioactive compounds, such as camphor, eucalyptol, eugenol, alpha-bisabolene, beta-bisabolene, and beta-caryophyllene. These compounds are proposed to be responsible for the antimicrobial properties of the leaf extracts. The anticancer effects of tulsi (Ocimum sanctum L.) have earned it the title of "queen of herbs" and "Elixir of Life" in Ayurvedic treatment. Tulsi leaves, which have high concentrations of eugenol, have been shown to have anticancer properties. In a various cancers, eugenol exerts its antitumour effects through a number of different mechanisms. In light of this, the current review focuses on the anticancer benefits of tulsi and its primary phytoconstituent, eugenol, as apotential therapeutic agent against a wide range of cancer types. In recent years, tulsi has gained popularity due to its anticancer properties. In ongoing clinical trials, a number of tulsi plant compounds are being evaluated for their potential anticancer effects. This article discusses anticancer, chemopreventive, and antioxidant effects of tulsi.
Collapse
Affiliation(s)
- Mohammad Raghibul Hasan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Bader Saud Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Ziyad Mohammed Althafar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Ahmed Hussain Mujamammi
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Jafar Jameela
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| |
Collapse
|
8
|
Pulegone and Eugenol Oral Supplementation in Laboratory Animals: Results from Acute and Chronic Studies. Biomedicines 2022; 10:biomedicines10102595. [PMID: 36289857 PMCID: PMC9599722 DOI: 10.3390/biomedicines10102595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Essential oils are natural compounds used by humans for scientific purposes due to their wide range of properties. Eugenol is mostly present in clove oil, while pulegone is the main constituent of pennyroyal oil. To guarantee the safe use of eugenol and pulegone for both humans and animals, this study addressed, for the first time, the effects of these compounds, at low doses (chronic toxicity) and high doses (acute toxicity), in laboratory animals. Thirty-five FVB/n female mice were randomly assigned to seven groups (n = 5): group I (control, non-additive diet); group II (2.6 mg of eugenol + 2.6 mg of pulegone); group III (5.2 mg of eugenol + 5.2 mg of pulegone); group IV (7.8 mg of eugenol + 7.8 mg of pulegone); group V (7.8 mg of eugenol); group VI (7.8 mg of pulegone); and group VII (1000 mg of eugenol + 1000 mg of pulegone). The compounds were administered in the food. Groups I to VI were integrated into the chronic toxicity study, lasting 28 days, and group VII was used in the acute toxicity study, lasting 7 days. Animals were monitored to assess their general welfare. Water and food intake, as well as body weight, were recorded. On the 29th day, all animals were euthanized by an overdose of ketamine and xylazine, and a complete necropsy was performed. Blood samples were collected directly from the heart for microhematocrit and serum analysis, as well as for comet assay. Organs were collected, weighed, and fixed in formaldehyde for further histological analysis and enzymatic assay. Eugenol and pulegone induced behavioral changes in the animals, namely in the posture, hair appearance and grooming, and in mental status. These compounds also caused a decrease in the animals’ body weight, as well as in the food and water consumption. A mortality rate of 20% was registered in the acute toxicity group. Both compounds modulated the serum levels of triglycerides and alanine aminotransferase. Eugenol and pulegone induced genetic damage in all animals. Eugenol increased the activity of the CAT enzyme. Both compounds increased the GR enzyme at the highest dose. Moreover, pulegone administered as a single compound increased the activity of the GST enzyme. Histopathological analysis revealed inflammatory infiltrates in the lungs of groups II, III, and IV. The results suggest that eugenol and pulegone may exert beneficial or harmful effects, depending on the dose, and if applied alone or in combination.
Collapse
|
9
|
Bourscheid TG, Cardoso LC, Nascimento Santana MH, Cimó de Oliveira L, Reginato FZ, Machado MM, Valle de Bairros A. Use of snuff and its main constituents for religious purposes in an alternative community with shamanic practices in the south of Brazil. JOURNAL OF PSYCHEDELIC STUDIES 2022. [DOI: 10.1556/2054.2022.00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Snuff is a fine aromatic powder composed of dried and thin leaves combined with tobacco, roots, peels, and seeds. Its use for indigenous religious purposes has appeared since pre-Columbian period in various localities of American continent. Practice is considered sacred in indigenous culture and suffered from trivialization of consumption due to influence of colonizers, which triggered subsequent industrialization of this complex for commercial purposes. Commercial snuff is essentially made from industrialized tobacco without addition of other medicinal plants and without therapeutic or spiritual purposes beyond its indiscriminate and inappropriate use, causing health risks. Therefore, this study aimed to make a review on snuff in Brazilian culture and a tour of a local community. In shamanism, plants are used as access vehicles to other religions of cosmos and its inhabitants, from where experts dialogue, bring songs, news, omens, and acquire new knowledge. The plants used in shamanic composition of snuff vary with the locality of indigenous villages in America and are essential ingredients of this interaction between humans and non-humans, a special mediator of intersubjective interactions. Several studies show the use and meaning of Erythroxylum coca used in different communities of the Amazon, besides Chacrona and Mariri, popular names of plants used in manufacture of Ayahuasca drink by doctrine Santo Daime. Because of this, it is essential to establish differences between recreational snuff and shamanic and their effects on body as well as studies on use of shamanic snuff should be directed according to their applications and plants employed by communities.
Collapse
Affiliation(s)
- Thais Guimarães Bourscheid
- Nucleus Applied to Toxicology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Leonardo Corrêa Cardoso
- Nucleus Applied to Toxicology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Letícia Cimó de Oliveira
- Nucleus Applied to Toxicology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Fernanda Ziegler Reginato
- Nucleus Applied to Toxicology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Michel Mansur Machado
- Immunology and Applied Genetics Group (GIGA), Federal University of Pampa, Uruguaiana, Brazil
| | - André Valle de Bairros
- Nucleus Applied to Toxicology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
10
|
Csikós E, Csekő K, Kemény Á, Draskóczi L, Kereskai L, Kocsis B, Böszörményi A, Helyes Z, Horváth G. Pinus sylvestris L. and Syzygium aromaticum (L.) Merr. & L. M. Perry Essential Oils Inhibit Endotoxin-Induced Airway Hyperreactivity despite Aggravated Inflammatory Mechanisms in Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123868. [PMID: 35744988 PMCID: PMC9229653 DOI: 10.3390/molecules27123868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
Scots pine (SO) and clove (CO) essential oils (EOs) are commonly used by inhalation, and their main components are shown to reduce inflammatory mediator production. The aim of our research was to investigate the chemical composition of commercially available SO and CO by gas chromatography–mass spectrometry and study their effects on airway functions and inflammation in an acute pneumonitis mouse model. Inflammation was evoked by intratracheal endotoxin and EOs were inhaled three times during the 24 h experimental period. Respiratory function was analyzed by unrestrained whole-body plethysmography, lung inflammation by semiquantitative histopathological scoring, myeloperoxidase (MPO) activity and cytokine measurements. α-Pinene (39.4%) was the main component in SO, and eugenol (88.6%) in CO. Both SO and CO significantly reduced airway hyperresponsiveness, and prevented peak expiratory flow, tidal volume increases and perivascular edema formation. Meanwhile, inflammatory cell infiltration was not remarkably affected. In contrast, MPO activity and several inflammatory cytokines (IL-1β, KC, MCP-1, MIP-2, TNF-α) were aggravated by both EOs. This is the first evidence that SO and CO inhalation improve airway function, but enhance certain inflammatory parameters. These results suggest that these EOs should be used with caution in cases of inflammation-associated respiratory diseases.
Collapse
Affiliation(s)
- Eszter Csikós
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pecs, H-7624 Pecs, Hungary;
| | - Kata Csekő
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, H-7624 Pecs, Hungary; (K.C.); (Á.K.); (L.D.); (Z.H.)
- Szentágothai Research Centre, University of Pecs, H-7624 Pecs, Hungary
| | - Ágnes Kemény
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, H-7624 Pecs, Hungary; (K.C.); (Á.K.); (L.D.); (Z.H.)
- Szentágothai Research Centre, University of Pecs, H-7624 Pecs, Hungary
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pecs, H-7624 Pecs, Hungary
| | - Lilla Draskóczi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, H-7624 Pecs, Hungary; (K.C.); (Á.K.); (L.D.); (Z.H.)
- Szentágothai Research Centre, University of Pecs, H-7624 Pecs, Hungary
| | - László Kereskai
- Department of Pathology, Medical School, University of Pecs, H-7624 Pecs, Hungary;
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, H-7624 Pecs, Hungary;
| | - Andrea Böszörményi
- Institute of Pharmacognosy, Faculty of Pharmacy, Semmelweis University, H-1085 Budapest, Hungary;
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, H-7624 Pecs, Hungary; (K.C.); (Á.K.); (L.D.); (Z.H.)
- Szentágothai Research Centre, University of Pecs, H-7624 Pecs, Hungary
- PharmInVivo Ltd., H-7629 Pecs, Hungary
| | - Györgyi Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pecs, H-7624 Pecs, Hungary;
- Correspondence: ; Tel.: +36-72-503650-28823
| |
Collapse
|
11
|
Khadangi F, Tremblay-Pitre S, Dufour-Mailhot A, Rojas-Ruiz AB, Boucher M, Henry C, Fereydoonzad L, Brunet D, Robichaud A, Bossé Y. Sensitive physiological readouts to evaluate countermeasures for lipopolysaccharide-induced lung alterations in mice. Am J Physiol Lung Cell Mol Physiol 2022; 323:L107-L120. [PMID: 35670484 DOI: 10.1152/ajplung.00073.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite decades of research, studies investigating the physiological alterations caused by an acute bout of inflammation induced by exposing the lung to lipopolysaccharide have yielded inconsistent results. This can be attributed to small effects and/or a lack of fitted physiological testing. Herein, a comprehensive investigation of lung mechanics was conducted in 270 male C57BL/6 mice at 24, 48 or 96 h after an intranasal exposure to saline or lipopolysaccharide at either 1 or 3 mg/kg (30 mice per group). Traditional techniques that probe the lung using small-amplitude perturbations (i.e., oscillometry) were used, together with less conventional and new techniques that probe the lung using maneuvers of large amplitudes. The latter include a partial and a full-range pressure-volume maneuvers to measure quasi-static elastance, compliance, total lung volume, vital capacity and residual volume. The results demonstrate that lung mechanics assessed by oscillometry was only slightly affected by lipopolysaccharide, confirming previous findings. In contradistinction, lipopolysaccharide markedly altered mechanics when the lung was probed with maneuvers of large amplitudes. With the dose of 3 mg/kg at the peak of inflammation (48 h post-exposure), lipopolysaccharide increased quasi-static elastance by 26.7% (p<0.0001), and decreased compliance by 34.5% (p<0.0001). It also decreased lung volumes, including total lung capacity, vital capacity and residual volume by 33.3%, 30.5% and 43.3%, respectively (all p<0.0001). These newly reported physiological alterations represent sensitive outcomes to efficiently evaluate countermeasures (e.g., drugs) in the context of several lung diseases.
Collapse
Affiliation(s)
- Fatemeh Khadangi
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Québec, Canada
| | - Sophie Tremblay-Pitre
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Québec, Canada
| | - Alexis Dufour-Mailhot
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Québec, Canada
| | - Andrés Bruno Rojas-Ruiz
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Québec, Canada
| | - Magali Boucher
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Québec, Canada
| | - Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Québec, Canada
| | | | - David Brunet
- SCIREQ - Scientific Respiratory Equipment Inc., Montreal, Canada
| | | | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Québec, Canada
| |
Collapse
|
12
|
A Medicinal Halophyte Ipomoea pes-caprae (Linn.) R. Br.: A Review of Its Botany, Traditional Uses, Phytochemistry, and Bioactivity. Mar Drugs 2022; 20:md20050329. [PMID: 35621980 PMCID: PMC9144928 DOI: 10.3390/md20050329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/04/2023] Open
Abstract
Ipomoea pes-caprae (Linn.) R. Br. (Convolvulaceae) is a halophytic plant that favorably grows in tropical and subtropical countries in Asia, America, Africa, and Australia. Even though this plant is considered a pan-tropical plant, I. pes-caprae has been found to occur in inland habitats and coasts of wider areas, such as Spain, Anguilla, South Africa, and Marshall Island, either through a purposeful introduction, accidentally by dispersal, or by spreading due to climate change. The plant parts are used in traditional medicine for treating a wide range of diseases, such as inflammation, gastrointestinal disorders, pain, and hypertension. Previous phytochemical analyses of the plant have revealed pharmacologically active components, such as alkaloids, glycosides, steroids, terpenoids, and flavonoids. These phytoconstituents are responsible for the wide range of biological activities possessed by I. pes-caprae plant parts and extracts. This review arranges the previous reports on the botany, distribution, traditional uses, chemical constituents, and biological activities of I. pes-caprae to facilitate further studies that would lead to the discovery of novel bioactive natural products from this halophyte.
Collapse
|
13
|
Repurposing Multiple-Molecule Drugs for COVID-19-Associated Acute Respiratory Distress Syndrome and Non-Viral Acute Respiratory Distress Syndrome via a Systems Biology Approach and a DNN-DTI Model Based on Five Drug Design Specifications. Int J Mol Sci 2022; 23:ijms23073649. [PMID: 35409008 PMCID: PMC8998971 DOI: 10.3390/ijms23073649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) epidemic is currently raging around the world at a rapid speed. Among COVID-19 patients, SARS-CoV-2-associated acute respiratory distress syndrome (ARDS) is the main contribution to the high ratio of morbidity and mortality. However, clinical manifestations between SARS-CoV-2-associated ARDS and non-SARS-CoV-2-associated ARDS are quite common, and their therapeutic treatments are limited because the intricated pathophysiology having been not fully understood. In this study, to investigate the pathogenic mechanism of SARS-CoV-2-associated ARDS and non-SARS-CoV-2-associated ARDS, first, we constructed a candidate host-pathogen interspecies genome-wide genetic and epigenetic network (HPI-GWGEN) via database mining. With the help of host-pathogen RNA sequencing (RNA-Seq) data, real HPI-GWGEN of COVID-19-associated ARDS and non-viral ARDS were obtained by system modeling, system identification, and Akaike information criterion (AIC) model order selection method to delete the false positives in candidate HPI-GWGEN. For the convenience of mitigation, the principal network projection (PNP) approach is utilized to extract core HPI-GWGEN, and then the corresponding core signaling pathways of COVID-19-associated ARDS and non-viral ARDS are annotated via their core HPI-GWGEN by KEGG pathways. In order to design multiple-molecule drugs of COVID-19-associated ARDS and non-viral ARDS, we identified essential biomarkers as drug targets of pathogenesis by comparing the core signal pathways between COVID-19-associated ARDS and non-viral ARDS. The deep neural network of the drug–target interaction (DNN-DTI) model could be trained by drug–target interaction databases in advance to predict candidate drugs for the identified biomarkers. We further narrowed down these predicted drug candidates to repurpose potential multiple-molecule drugs by the filters of drug design specifications, including regulation ability, sensitivity, excretion, toxicity, and drug-likeness. Taken together, we not only enlighten the etiologic mechanisms under COVID-19-associated ARDS and non-viral ARDS but also provide novel therapeutic options for COVID-19-associated ARDS and non-viral ARDS.
Collapse
|
14
|
Dantas DDM, Silva ADA, Pereira-de-Morais L, Bastos CMDS, Calixto GL, Kerntopf MR, Menezes IRAD, Weinreich D, Barbosa R. Characterization of the vasodilator effect of eugenol in isolated human umbilical cord arteries. Chem Biol Interact 2022; 359:109890. [DOI: 10.1016/j.cbi.2022.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022]
|
15
|
ELKHADRAGY MF, AQEEL NSMA, YEHIA HM, ABDEL-GABER R, HAMED SS. Histological and molecular characterization of the protective effect of Eugenia caryophyllata against renal toxicity induced by vitamin D in male wistar rats. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.97522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Balkrishna A, Tomer M, Manik M, Srivastava J, Dev R, Haldar S, Varshney A. Chyawanprash, An Ancient Indian Ayurvedic Medicinal Food, Regulates Immune Response in Zebrafish Model of Inflammation by Moderating Inflammatory Biomarkers. Front Pharmacol 2021; 12:751576. [PMID: 34867361 PMCID: PMC8633414 DOI: 10.3389/fphar.2021.751576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/15/2021] [Indexed: 01/08/2023] Open
Abstract
The time-tested Ayurvedic medicinal food, Chyawanprash, has been a part of the Indian diet since ancient times. It is an extremely concentrated mixture of extracts from medicinal herbs and processed minerals, known for its immunity boosting, rejuvenating, and anti-oxidative effects. In this study, we have evaluated the anti-inflammatory potential of Patanjali Special Chyawanprash (PSCP) using the zebrafish model of inflammation. Zebrafish were fed on PSCP-infused pellets at stipulated doses for 13 days before inducing inflammation through lipopolysaccharide (LPS) injection. The test subjects were monitored for inflammatory pathologies like behavioral fever, hyperventilation, skin hemorrhage, locomotory agility, and morphological anomaly. PSCP exerted a strong prophylactic effect on the zebrafish that efficiently protected them from inflammatory manifestations at a human equivalent dose. Expression levels of pro-inflammatory cytokines, like interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and interleukin-1 beta (IL-1β), were also reduced in the LPS-stimulated zebrafish fed on PSCP-infused pellets. Skin hemorrhage, hyperventilation, and loss of caudal fins are characteristics of LPS-induced inflammation in zebrafish. PSCP prophylactically ameliorated skin hemorrhage, restored normal respiration, and prevented loss of caudal fin in inflamed zebrafish. Under in vitro conditions, PSCP reduced IL-6 and TNF-α secretion by THP-1 macrophages in a dose-dependent manner by targeting NF-κB signaling, as evident from the secreted embryonic alkaline phosphatase (SEAP) reporter assay. These medicinal benefits of PSCP can be attributed to its constitutional bioactive components. Taken together, these observations provide in vivo validation of the anti-inflammatory property and in vitro insight into the mode-of-action of Chyawanprash, a traditionally described medicinal food.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Governed By Patanjali Research Foundation Trust, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
| | - Meenu Tomer
- Drug Discovery and Development Division, Patanjali Research Institute, Governed By Patanjali Research Foundation Trust, Haridwar, India
| | - Moumita Manik
- Drug Discovery and Development Division, Patanjali Research Institute, Governed By Patanjali Research Foundation Trust, Haridwar, India
| | - Jyotish Srivastava
- Drug Discovery and Development Division, Patanjali Research Institute, Governed By Patanjali Research Foundation Trust, Haridwar, India
| | - Rishabh Dev
- Drug Discovery and Development Division, Patanjali Research Institute, Governed By Patanjali Research Foundation Trust, Haridwar, India
| | - Swati Haldar
- Drug Discovery and Development Division, Patanjali Research Institute, Governed By Patanjali Research Foundation Trust, Haridwar, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Governed By Patanjali Research Foundation Trust, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
17
|
Bittencourt-Mernak MI, Pinheiro NM, da Silva RC, Ponci V, Banzato R, Pinheiro AJMCR, Olivo CR, Tibério IFLC, Lima Neto LG, Santana FPR, Lago JHG, Prado CM. Effects of Eugenol and Dehydrodieugenol B from Nectandra leucantha against Lipopolysaccharide (LPS)-Induced Experimental Acute Lung Inflammation. JOURNAL OF NATURAL PRODUCTS 2021; 84:2282-2294. [PMID: 34264084 DOI: 10.1021/acs.jnatprod.1c00386] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Acute lung injury (ALI) is an important public health problem. The present work investigated whether dehydrodieugenol B treatment, a compound isolated from Brazilian plant Nectandra leucantha (Lauraceae), modulates experimental ALI and compared the observed effects to eugenol. Effects of dehydrodieugenol B in vitro in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells were evaluated. The lung and systemic inflammatory profile, lung function, and possible mechanisms involved in BALB/C male mice (6-8 weeks) with ALI induced by LPS instillation (5 mg/kg) was assayed. Dehydrodieugenol B did not affect the cell viability and inhibited the increase in NO release and IL-1β and IL-6 gene expression induced by LPS. In vivo, both compounds reduced lung edema, inflammatory cells, and the IL-6 and IL-1 β levels in bronchoalveolar lavage fluid, as well as reduced inflammatory cell infiltration and those positive to iNOS, MMP-9, and TIMP-1, and reduced the collagen content and the 8-isoprostane expression in lung tissue. Eugenol and dehydrodieugenol B also inhibited the phosphorylation of Jc-Jun-NH2 terminal Kinase (JNK), a signaling protein involved in the MAPKinase pathway. There was no effect of these compounds in lung function. Therefore, eugenol and dehydrodieugenol B ameliorates several features of experimental ALI and could be considered as a pharmacological tool to ameliorate acute lung inflammation.
Collapse
Affiliation(s)
| | - Nathalia M Pinheiro
- Department of Bioscience, Federal University of São Paulo, Santos, SP, 11015-020, Brazil
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, 01246-000, Brazil
| | - Rafael C da Silva
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, 09913-030, Brazil
| | - Vitor Ponci
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, 09913-030, Brazil
| | - Rosana Banzato
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, 01246-000, Brazil
| | - Aruanã J M C R Pinheiro
- Universidade CEUMA, São Luís, MA, 65075-120, Brazil
- Programa de Pós-Graduação da Rede BIONORTE, São Luís, MA, 65055-310, Brazil
| | - Clarice R Olivo
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, 01246-000, Brazil
| | - Iolanda F L C Tibério
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, 01246-000, Brazil
| | - Lídio G Lima Neto
- Universidade CEUMA, São Luís, MA, 65075-120, Brazil
- Programa de Pós-Graduação da Rede BIONORTE, São Luís, MA, 65055-310, Brazil
| | - Fernanda P R Santana
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, 09913-030, Brazil
- Department of Medicine-Nephrology, Federal University of São Paulo, São Paulo, SP, 04023-062, Brazil
| | - João H G Lago
- Center of Natural Sciences and Humanities, Federal University of ABC, Santo André, SP, 09210-170, Brazil
| | - Carla M Prado
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, 09913-030, Brazil
- Department of Bioscience, Federal University of São Paulo, Santos, SP, 11015-020, Brazil
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, 01246-000, Brazil
| |
Collapse
|
18
|
Nisar MF, Khadim M, Rafiq M, Chen J, Yang Y, Wan CC. Pharmacological Properties and Health Benefits of Eugenol: A Comprehensive Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2497354. [PMID: 34394824 PMCID: PMC8357497 DOI: 10.1155/2021/2497354] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/17/2021] [Indexed: 02/07/2023]
Abstract
The biologically active phytochemicals are sourced from edible and medicinally important plants and are important molecules being used for the formulation of thousands of drugs. These phytochemicals have great benefits against many ailments particularly the inflammatory diseases or oxidative stress-mediated chronic diseases. Eugenol (EUG) is a versatile naturally occurring molecule as phenolic monoterpenoid and frequently found in essential oils in a wide range of plant species. EUG bears huge industrial applications particularly in pharmaceutics, dentistry, flavoring of foods, agriculture, and cosmeceutics. It is being focused recently due to its great potential in preventing several chronic conditions. The World Health Organization (WHO) has declared EUG as a nonmutant and generally recognized as safe (GRAS) molecule. The available literature about pharmacological activities of EUG shows remarkable anti-inflammatory, antioxidant, analgesic, and antimicrobial properties and has a significant effect on human health. The current manuscript summarizes the pharmacological characteristics of EUG and its potential health benefits.
Collapse
Affiliation(s)
- Muhammad Farrukh Nisar
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Mahnoor Khadim
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Muhammad Rafiq
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 330075, China
| | - Yali Yang
- Department of Pathology, Affiliated Hospital of Yunnan University/Second People's Hospital of Yunnan Province, Kunming 650021, China
| | - Chunpeng Craig Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
19
|
Rager JE, Clark J, Eaves LA, Avula V, Niehoff NM, Kim YH, Jaspers I, Gilmour MI. Mixtures modeling identifies chemical inducers versus repressors of toxicity associated with wildfire smoke. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145759. [PMID: 33611182 PMCID: PMC8243846 DOI: 10.1016/j.scitotenv.2021.145759] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 05/02/2023]
Abstract
Exposure to wildfire smoke continues to be a growing threat to public health, yet the chemical components in wildfire smoke that primarily drive toxicity and associated disease are largely unknown. This study utilized a suite of computational approaches to identify groups of chemicals induced by variable biomass burn conditions that were associated with biological responses in the mouse lung, including pulmonary immune response and injury markers. Smoke condensate samples were collected and characterized, resulting in chemical distribution information for 86 constituents across ten different exposures. Mixtures-relevant statistical methods included (i) a chemical clustering and data-reduction method, weighted chemical co-expression network analysis (WCCNA), (ii) a quantile g-computation approach to address the joint effect of multiple chemicals in different groupings, and (iii) a correlation analysis to compare mixtures modeling results against individual chemical relationships. Seven chemical groups were identified using WCCNA based on co-occurrence showing both positive and negative relationships with biological responses. A group containing methoxyphenols (e.g., coniferyl aldehyde, eugenol, guaiacol, and vanillin) displayed highly significant, negative relationships with several biological responses, including cytokines and lung injury markers. This group was further shown through quantile g-computation methods to associate with reduced biological responses. Specifically, mixtures modeling based on all chemicals excluding those in the methoxyphenol group demonstrated more significant, positive relationships with several biological responses; whereas mixtures modeling based on just those in the methoxyphenol group demonstrated significant negative relationships with several biological responses, suggesting potential protective effects. Mixtures-based analyses also identified other groups consisting of inorganic elements and ionic constituents showing positive relationships with several biological responses, including markers of inflammation. Many of the effects identified through mixtures modeling in this analysis were not captured through individual chemical analyses. Together, this study demonstrates the utility of mixtures-based approaches to identify potential drivers and inhibitors of toxicity relevant to wildfire exposures.
Collapse
Affiliation(s)
- Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| | - Jeliyah Clark
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lauren A Eaves
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vennela Avula
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicole M Niehoff
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Yong Ho Kim
- The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA
| | - Ilona Jaspers
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA; Department of Pediatrics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Ian Gilmour
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
20
|
Palit P, Chattopadhyay D, Thomas S, Kundu A, Kim HS, Rezaei N. Phytopharmaceuticals mediated Furin and TMPRSS2 receptor blocking: can it be a potential therapeutic option for Covid-19? PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153396. [PMID: 33380375 PMCID: PMC7591300 DOI: 10.1016/j.phymed.2020.153396] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/27/2020] [Accepted: 10/21/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Currently, novel coronavirus disease (Covid-19) outbreak creates global panic across the continents, as people from almost all countries and territories have been affected by this highly contagious viral disease. The scenario is deteriorating due to lack of proper & specific target-oriented pharmacologically safe prophylactic agents or drugs, and or any effective vaccine. drug development is urgently required to back in the normalcy in the community and to combat this pandemic. PURPOSE Thus, we have proposed two novel drug targets, Furin and TMPRSS2, as Covid-19 treatment strategy. We have highlighted this target-oriented novel drug delivery strategy, based on their pathophysiological implication on SARS-CoV-2 infection, as evident from earlier SARS-CoV-1, MERS, and influenza virus infection via host cell entry, priming, fusion, and endocytosis. STUDY DESIGN & METHODS: An earlier study suggested that Furin and TMPRSS2 knockout mice had reduced level of viral load and a lower degree of organ damage such as the lung. The present study thus highlights the promise of some selected novel and potential anti-viral Phytopharmaceutical that bind to Furin and TMPRSS2 as target. RESULT Few of them had shown promising anti-viral response in both preclinical and clinical study with acceptable therapeutic safety-index. CONCLUSION Hence, this strategy may limit life-threatening Covid-19 infection and its mortality rate through nano-suspension based intra-nasal or oral nebulizer spray, to treat mild to moderate SARS-COV-2 infection when Furin and TMPRSS2 receptor may initiate to express and activate for processing the virus to cause cellular infection by replication within the host cell and blocking of host-viral interaction.
Collapse
Affiliation(s)
- Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar, Assam-788011 India.
| | - Debprasad Chattopadhyay
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi, 590010, India; ICMR-National Institute of Cholera and Enteric Diseases, Kolkata 700010, India.
| | - Sabu Thomas
- School of Chemical Sciences, Mahatma Gandhi University, Kerala 686 560, India.
| | - Amit Kundu
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea.
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 14194, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
21
|
Molecular Basis of the Therapeutical Potential of Clove ( Syzygium aromaticum L.) and Clues to Its Anti-COVID-19 Utility. Molecules 2021; 26:molecules26071880. [PMID: 33810416 PMCID: PMC8036487 DOI: 10.3390/molecules26071880] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
The current COronaVIrus Disease 19 (COVID-19) pandemic caused by SARS-CoV-2 infection is enormously affecting the worldwide health and economy. In the wait for an effective global immunization, the development of a specific therapeutic protocol to treat COVID-19 patients is clearly necessary as a short-term solution of the problem. Drug repurposing and herbal medicine represent two of the most explored strategies for an anti-COVID-19 drug discovery. Clove (Syzygium aromaticum L.) is a well-known culinary spice that has been used for centuries in folk medicine in many disorders. Interestingly, traditional medicines have used clove since ancient times to treat respiratory ailments, whilst clove ingredients show antiviral and anti-inflammatory properties. Other interesting features are the clove antithrombotic, immunostimulatory, and antibacterial effects. Thus, in this review, we discuss the potential role of clove in the frame of anti-COVID-19 therapy, focusing on the antiviral, anti-inflammatory, and antithrombotic effects of clove and its molecular constituents described in the scientific literature.
Collapse
|
22
|
Pleiotropic Effects of Eugenol: The Good, the Bad, and the Unknown. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3165159. [PMID: 33747344 PMCID: PMC7943301 DOI: 10.1155/2021/3165159] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/21/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022]
Abstract
Phytocompounds and medicinal herbs were used in traditional ancient medicine and are nowadays increasingly screened in both experimental and clinical settings due to their beneficial effects in several major pathologies. Similar to the drug industry, phytotherapy is interested in using nanobased delivery systems to view the identification and characterization of the cellular and molecular therapeutic targets of plant components. Eugenol, the major phenolic constituent of clove essential oil, is a particularly versatile phytochemical with a vast range of therapeutic properties, among which the anti-inflammatory, antioxidant, and anticarcinogenic effects have been systematically addressed. In the past decade, with the emerging understanding of the role of mitochondria as critical organelles in the pathophysiology of noncommunicable diseases, research regarding the role of phytochemicals as modulators of bioenergetics and metabolism is on a rise. Here, we present a brief overview of the major pharmacological properties of eugenol, with special emphasis on its applications in dental medicine, and provide preliminary data regarding its effects, alone, and included in polyurethane nanostructures, on mitochondrial bioenergetics, and glycolysis in human HaCaT keratinocytes.
Collapse
|
23
|
Pinheiro FG, Moreira-Gomes MD, Machado MN, Almeida TDS, Barboza PDPA, Silva Oliveira LF, Ávila Cavalcante FS, Leal-Cardoso JH, Fortunato RS, Zin WA. Eugenol mitigated acute lung but not spermatic toxicity of C 60 fullerene emulsion in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116188. [PMID: 33302087 DOI: 10.1016/j.envpol.2020.116188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/04/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
C60 fullerene (C60) is a nano-pollutant that can damage the respiratory system. Eugenol exhibits significant anti-inflammatory and antioxidant properties. We aimed to investigate the time course of C60 emulsion-induced pulmonary and spermatic harms, as well as the effect of eugenol on C60 emulsion toxicity. The first group of mice (protocol 1) received intratracheally C60 emulsion (1.0 mg/kg BW) or vehicle and were tested at 12, 24, 72 and 96 h (F groups) thereafter. The second group of mice (protocol 2) received intratracheally C60 emulsion or vehicle, 1 h later were gavaged with eugenol (150 mg/kg) or vehicle, and experiments were done 24 h after instillation. Lung mechanics, morphology, redox markers, cytokines and epididymal spermatozoa were analyzed. Protocol 1: Tissue damping (G) and elastance (H) were significantly higher in F24 than in others groups, except for H in F72. Morphological and inflammatory parameters were worst at 24 h and subsequently declined until 96 h, whereas redox and spermatic parameters worsened over the whole period. Eugenol eliminated the increase in G, H, cellularity, and cytokines, attenuated oxidative stress induced by C60 exposure, but had no effect on sperm. Hence, exposure to C60 emulsion deteriorated lung morphofunctional, redox and inflammatory characteristics and increased the risk of infertility. Furthermore, eugenol avoided those changes, but did not prevent sperm damage.
Collapse
Affiliation(s)
- Felipe Gomes Pinheiro
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Laboratory of Electrophysiology, Superior Institute of Biomedical Sciences, State University of Ceará, Ceará, Brazil
| | - Maria Diana Moreira-Gomes
- Laboratory of Electrophysiology, Superior Institute of Biomedical Sciences, State University of Ceará, Ceará, Brazil
| | - Mariana Nascimento Machado
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tailane Dos Santos Almeida
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - José Henrique Leal-Cardoso
- Laboratory of Electrophysiology, Superior Institute of Biomedical Sciences, State University of Ceará, Ceará, Brazil
| | - Rodrigo Soares Fortunato
- Laboratory of Endocrine Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Walter Araujo Zin
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
24
|
Tallei TE, Tumilaar SG, Niode NJ, Fatimawali, Kepel BJ, Idroes R, Effendi Y, Sakib SA, Emran TB. Potential of Plant Bioactive Compounds as SARS-CoV-2 Main Protease (M pro) and Spike (S) Glycoprotein Inhibitors: A Molecular Docking Study. SCIENTIFICA 2020; 2020:6307457. [PMID: 33425427 PMCID: PMC7773461 DOI: 10.1155/2020/6307457] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/17/2020] [Accepted: 12/08/2020] [Indexed: 05/20/2023]
Abstract
Since the outbreak of the COVID-19 (coronavirus disease 19) pandemic, researchers have been trying to investigate several active compounds found in plants that have the potential to inhibit the proliferation of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). The present study aimed to evaluate bioactive compounds found in plants using a molecular docking approach to inhibit the main protease (Mpro) and spike (S) glycoprotein of SARS-CoV-2. The evaluation was performed on the docking scores calculated using AutoDock Vina (AV) as a docking engine. A rule of five (Ro5) was calculated to determine whether a compound meets the criteria as an active drug orally in humans. The determination of the docking score was performed by selecting the best conformation of the protein-ligand complex that had the highest affinity (most negative Gibbs' free energy of binding/ΔG). As a comparison, nelfinavir (an antiretroviral drug), chloroquine, and hydroxychloroquine sulfate (antimalarial drugs recommended by the FDA as emergency drugs) were used. The results showed that hesperidin, nabiximols, pectolinarin, epigallocatechin gallate, and rhoifolin had better poses than nelfinavir, chloroquine, and hydroxychloroquine sulfate as spike glycoprotein inhibitors. Hesperidin, rhoifolin, pectolinarin, and nabiximols had about the same pose as nelfinavir but were better than chloroquine and hydroxychloroquine sulfate as Mpro inhibitors. This finding implied that several natural compounds of plants evaluated in this study showed better binding free energy compared to nelfinavir, chloroquine, and hydroxychloroquine sulfate, which so far are recommended in the treatment of COVID-19. From quantum chemical DFT calculations, the ascending order of chemical reactivity of selected compounds was pectolinarin > hesperidin > rhoifolin > morin > epigallocatechin gallate. All isolated compounds' C=O regions are preferable for an electrophilic attack, and O-H regions are suitable for a nucleophilic attack. Furthermore, Homo-Lumo and global descriptor values indicated a satisfactory remarkable profile for the selected compounds. As judged by the RO5 and previous study by others, the compounds kaempferol, herbacetin, eugenol, and 6-shogaol have good oral bioavailability, so they are also seen as promising candidates for the development of drugs to treat infections caused by SARS-CoV-2. The present study identified plant-based compounds that can be further investigated in vitro and in vivo as lead compounds against SARS-CoV-2.
Collapse
Affiliation(s)
- Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| | - Sefren Geiner Tumilaar
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| | - Nurdjannah Jane Niode
- Department of Dermatology and Venereology, Faculty of Medicine, University of Sam Ratulangi, Manado 95115, Indonesia
| | - Fatimawali
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| | - Billy Johnson Kepel
- Department of Chemistry, Faculty of Medicine, Sam Ratulangi University, Manado 95115, Indonesia
| | - Rinaldi Idroes
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Banda Aceh 23111, Indonesia
| | - Yunus Effendi
- Department of Biology, Faculty of Mathematics and Natural Sciences, Al Azhar University, South Jakarta 12110, Indonesia
| | - Shahenur Alam Sakib
- Department of Theoretical and Computational Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
25
|
Bahramsoltani R, Rahimi R. An Evaluation of Traditional Persian Medicine for the Management of SARS-CoV-2. Front Pharmacol 2020; 11:571434. [PMID: 33324206 PMCID: PMC7724033 DOI: 10.3389/fphar.2020.571434] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/21/2020] [Indexed: 01/12/2023] Open
Abstract
A new coronavirus causing severe acute respiratory syndrome (SARS-CoV-2) has emerged and with it, a global investigation of new antiviral treatments and supportive care for organ failure due to this life-threatening viral infection. Traditional Persian Medicine (TPM) is one of the most ancient medical doctrines mostly known with the manuscripts of Avicenna and Rhazes. In this paper, we first introduce a series of medicinal plants that would potentially be beneficial in treating SARS-CoV-2 infection according to TPM textbooks. Then, we review medicinal plants based on the pharmacological studies obtained from electronic databases and discuss their mechanism of action in SARS-CoV-2 infection. There are several medicinal plants in TPM with cardiotonic, kidney tonic, and pulmonary tonic activities, protecting the lung, heart, and kidney, the three main vulnerable organs in SARS-CoV-2 infection. Some medicinal plants can prevent "humor infection", a situation described in TPM which has similar features to SARS-CoV-2 infection. Pharmacological evaluations are in line with the therapeutic activities of several plants mentioned in TPM, mostly through antiviral, cytoprotective, anti-inflammatory, antioxidant, and anti-apoptotic mechanisms. Amongst the primarily-introduced medicinal plants from TPM, rhubarb, licorice, garlic, saffron, galangal, and clove are the most studied plants and represent candidates for clinical studies. The antiviral compounds isolated from these plants provide novel molecular structures to design new semisynthetic antiviral agents. Future clinical studies in healthy volunteers as well as patients suffering from pulmonary infections are necessary to confirm the safety and efficacy of these plants as complementary and integrative interventions in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
26
|
Eugenol-Encapsulated Nanocarriers for Microglial Polarisation: a Promising Therapeutic Application for Neuroprotection. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00789-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Ethanolic Extract of Moringa oleifera Leaves Influences NF-κB Signaling Pathway to Restore Kidney Tissue from Cobalt-Mediated Oxidative Injury and Inflammation in Rats. Nutrients 2020; 12:nu12041031. [PMID: 32283757 PMCID: PMC7230732 DOI: 10.3390/nu12041031] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
This study aimed to describe the protective efficacy of Moringa oleifera ethanolic extract (MOEE) against the impact of cobalt chloride (CoCl2) exposure on the rat’s kidney. Fifty male rats were assigned to five equal groups: a control group, a MOEE-administered group (400 mg/kg body weight (bw), daily via gastric tube), a CoCl2-intoxicated group (300 mg/L, daily in drinking water), a protective group, and a therapeutic co-administered group that received MOEE prior to or following and concurrently with CoCl2, respectively. The antioxidant status indices (superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH)), oxidative stress markers (hydrogen peroxide (H2O2), 8-hydroxy-2-deoxyguanosine (8-OHdG), and malondialdehyde (MDA)), and inflammatory response markers (nitric oxide (NO), tumor necrosis factor (TNF-α), myeloperoxidase (MPO), and C-reactive protein (CRP)) were evaluated. The expression profiles of pro-inflammatory cytokines (nuclear factor-kappa B (NF-kB) and interleukin-6 (IL-6)) were also measured by real-time quantitative polymerase chain reaction (qRT-PCR). The results showed that CoCl2 exposure was associated with significant elevations of oxidative stress and inflammatory indices with reductions in the endogenous tissue antioxidants’ concentrations. Moreover, CoCl2 enhanced the activity of the NF-κB inflammatory-signaling pathway that plays a role in the associated inflammation of the kidney. MOEE ameliorated CoCl2-induced renal oxidative damage and inflammatory injury with the suppression of the mRNA expression pattern of pro-inflammatory cytokine-encoding genes. MOEE is more effective when it is administered with CoCl2 exposure as a prophylactic regimen. In conclusion, MOEE administration exhibited protective effects in counteracting CoCl2-induced renal injury in rats.
Collapse
|
28
|
Tallei TE, Tumilaar SG, Niode NJ, Kepel BJ, Idroes R, Effendi Y, Sakib SA, Emran TB. Potential of Plant Bioactive Compounds as SARS-CoV-2 Main Protease (M pro) and Spike (S) Glycoprotein Inhibitors: A Molecular Docking Study. SCIENTIFICA 2020; 2020:6307457. [PMID: 33425427 DOI: 10.20944/preprints202004.0102.v2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/17/2020] [Accepted: 12/08/2020] [Indexed: 05/22/2023]
Abstract
Since the outbreak of the COVID-19 (coronavirus disease 19) pandemic, researchers have been trying to investigate several active compounds found in plants that have the potential to inhibit the proliferation of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). The present study aimed to evaluate bioactive compounds found in plants using a molecular docking approach to inhibit the main protease (Mpro) and spike (S) glycoprotein of SARS-CoV-2. The evaluation was performed on the docking scores calculated using AutoDock Vina (AV) as a docking engine. A rule of five (Ro5) was calculated to determine whether a compound meets the criteria as an active drug orally in humans. The determination of the docking score was performed by selecting the best conformation of the protein-ligand complex that had the highest affinity (most negative Gibbs' free energy of binding/ΔG). As a comparison, nelfinavir (an antiretroviral drug), chloroquine, and hydroxychloroquine sulfate (antimalarial drugs recommended by the FDA as emergency drugs) were used. The results showed that hesperidin, nabiximols, pectolinarin, epigallocatechin gallate, and rhoifolin had better poses than nelfinavir, chloroquine, and hydroxychloroquine sulfate as spike glycoprotein inhibitors. Hesperidin, rhoifolin, pectolinarin, and nabiximols had about the same pose as nelfinavir but were better than chloroquine and hydroxychloroquine sulfate as Mpro inhibitors. This finding implied that several natural compounds of plants evaluated in this study showed better binding free energy compared to nelfinavir, chloroquine, and hydroxychloroquine sulfate, which so far are recommended in the treatment of COVID-19. From quantum chemical DFT calculations, the ascending order of chemical reactivity of selected compounds was pectolinarin > hesperidin > rhoifolin > morin > epigallocatechin gallate. All isolated compounds' C=O regions are preferable for an electrophilic attack, and O-H regions are suitable for a nucleophilic attack. Furthermore, Homo-Lumo and global descriptor values indicated a satisfactory remarkable profile for the selected compounds. As judged by the RO5 and previous study by others, the compounds kaempferol, herbacetin, eugenol, and 6-shogaol have good oral bioavailability, so they are also seen as promising candidates for the development of drugs to treat infections caused by SARS-CoV-2. The present study identified plant-based compounds that can be further investigated in vitro and in vivo as lead compounds against SARS-CoV-2.
Collapse
Affiliation(s)
- Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| | - Sefren Geiner Tumilaar
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| | - Nurdjannah Jane Niode
- Department of Dermatology and Venereology, Faculty of Medicine, University of Sam Ratulangi, Manado 95115, Indonesia
| | - Billy Johnson Kepel
- Department of Chemistry, Faculty of Medicine, Sam Ratulangi University, Manado 95115, Indonesia
| | - Rinaldi Idroes
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Banda Aceh 23111, Indonesia
| | - Yunus Effendi
- Department of Biology, Faculty of Mathematics and Natural Sciences, Al Azhar University, South Jakarta 12110, Indonesia
| | - Shahenur Alam Sakib
- Department of Theoretical and Computational Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
29
|
Evaluation of Chemical Composition, Antibacterial, Antifungal, and Cytotoxic Activity of Laurus nobilis L Grown in Saudi Arabia. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.4.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
30
|
Aspirin Eugenol Ester Reduces H 2O 2-Induced Oxidative Stress of HUVECs via Mitochondria-Lysosome Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8098135. [PMID: 31583045 PMCID: PMC6754946 DOI: 10.1155/2019/8098135] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 03/12/2019] [Accepted: 04/07/2019] [Indexed: 01/29/2023]
Abstract
The oxidative stress of vessel endothelium is a major risk factor of cardiovascular disorders. Antioxidative stress drugs are widely used in cardiovascular therapy. Aspirin eugenol ester (AEE) is a new pharmaceutical compound synthesized by esterification reaction of aspirin with eugenols and possesses antioxidative activity. The present study was designed to investigate the mechanism how AEE protects human umbilical vein endothelial cells (HUVECs) from H2O2-induced oxidative stress. H2O2 was given to the HUVECs with or without AEE pretreatment. Changes in the oxidative stress-related factors, including those related to the mitochondria-lysosome axis, were determined with Western blotting, cellular immunofluorescence, and enzyme activity test. The results showed that, in the HUVECs, 300 μM H2O2 treatment significantly increased the apoptosis rate, MDA concentration, reactive oxygen species (ROS) production, mitochondrial membrane potential, expression of Bax and mature cathepsin D (CTSD), and activity of CTSD and Caspase3 (Cas3) but decreased the expression of Bcl2 and lysosomal membrane stability, while in the HUVECs pretreated with AEE, the above changes caused by either the stimulatory or the inhibitory effect of H2O2 on the relevant factors were significantly reduced. AEE pretreatment significantly enhanced the activity of cellular superoxide dismutase and glutathione peroxidase in the HUVECs. Our findings suggest that AEE effectively reduced H2O2-induced oxidative stress in the HUVECs via mitochondria-lysosome axis.
Collapse
|
31
|
Investigating unset endodontic sealers' eugenol and hydrocortisone roles in modulating the initial steps of inflammation. Clin Oral Investig 2019; 24:639-647. [PMID: 31115691 DOI: 10.1007/s00784-019-02957-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/07/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Endodontic treatment success is achieved not only when the cement provides a hermetic seal but also when the injured periapical tissue is regenerated. However, an exaggerated inflammatory reaction hinders tissue regeneration and it has been shown that dental materials affect the inflammatory response through modulation of cytokine secretion. This work was set to investigate the effects of the presence of hydrocortisone in zinc oxide eugenol sealers (Endomethasone N) on modulating the initial steps of inflammation in vitro. MATERIAL AND METHODS Hydrocortisone and eugenol leaching from Endomethasone N and Pulp Canal Sealer (PCS) were quantified by ELISA and spectrofluorometry, respectively. The effects of Endomethasone N and Pulp Canal Sealer were studied on lipopolysaccharides (LPS)-stimulated human periodontal ligament (hPDL) cells. Cytokine (IL-6, TNF-α) secretion from cells was quantified by ELISA. Inflammatory cell (THP-1) adhesion to activated endothelial cells, their migration and activation were studied in vitro. RESULTS Endomethasone N decreased secretion of IL-6 and TNF-α from hPDL cells. THP-1 adhesion to activated endothelial cells (HUVECs) and migration significantly decreased with Endomethasone N while no effect was observed with PCS. Activation of THP-1 decreased with both materials' extracts but was significantly lower with Endomethasone N than with PCS. CONCLUSION These results performed in vitro show that Endomethasone N anti-inflammatory effects are due to the presence of hydrocortisone. CLINICAL RELEVANCE Endomethasone N has potential local anti-inflammatory effects which appear to be due to its hydrocortisone rather than eugenol content. Decreasing the inflammatory response is a pre-requisite to initiate the periapical healing.
Collapse
|
32
|
Naz F, Anis H, Hasan Z, Islam A, Khan LA. Exploration of Fungal Lipase as Direct Target of Eugenol through Spectroscopic Techniques. Protein Pept Lett 2019; 26:919-929. [PMID: 31057096 DOI: 10.2174/0929866526666190506113455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/13/2019] [Accepted: 04/19/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Fungal lipase dependent processes are important for their pathogenicity. Lipases can therefore be explored as direct target of promising herbal antifungals. OBJECTIVE We explored Aspergillus niger lipase as a direct target of eugenol through spectroscopic techniques and compare results with Bovine Serum Albumin and lysozyme to comment on selectivity of eugenol towards lipase. METHODS In vitro activity assays of lipase are used to determine concentration ranges. UV-Visible, Fluorescence and Circular dichroism spectroscopy were employed to determine binding constant, stoichiometric binding sites and structural changes in Lipase, BSA and lysozyme following incubation with varying concentrations of eugenol. RESULTS In activity assays 50% inhibition of lipase was obtained at 0.913 mmoles/litre eugenol. UV-vis spectroscopy shows formation of lipase-eugenol, Bovine Serum Albumin-eugenol and lysozyme-eugenol complex well below this concentration of eugenol. Eugenol binding caused blue shift with Bovine Serum Albumin and lysozyme suggestive of compaction, and red shift with lipase. Negative ellipticity decreased with lipase but increased with Bovine Serum Albumineugenol and lysozyme-eugenol complexes suggesting loss of helical structure for lipase and compaction for Bovine Serum Albumin and lysozyme. Binding of eugenol to lipase was strong (Ka= 4.7 x 106 M-1) as compared to Bovine Serum Albumin and lysozyme. The number of stoichiometric eugenol binding sites on lipase was found to be 2 as compared to 1.37 (Bovine Serum Albumin) and 0.32 (lysozyme). Docking results also suggest strong binding of eugenol with lipase followed by Bovine Serum Albumin and lysozyme. CONCLUSION Eugenol is found to be effective inhibitor and disruptor of secondary and tertiary structure of lipase, whereas its binding to Bovine Serum Albumin and lysozyme is found to be weak and less disruptive of structures suggesting selectivity of eugenol towards lipase.
Collapse
Affiliation(s)
- Farheen Naz
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Haider Anis
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ziaul Hasan
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Luqman A Khan
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
33
|
Antimicrobial, Cytotoxic, and Anti-Inflammatory Activities of Pimenta dioica and Rosmarinus officinalis Essential Oils. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1639726. [PMID: 31205934 PMCID: PMC6530202 DOI: 10.1155/2019/1639726] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022]
Abstract
Essential oils (EOs) are natural products composed of a mixture of volatile and aromatic compounds extracted from different parts of plants that have shown antimicrobial activities against pathogens. In this study, EOs extracted from Pimenta dioica (Myrtaceae) and Rosmarinus officinalis (Lamiaceae) were assessed for their antimicrobial activities using a panel of pathogenic Gram-positive, Gram-negative, and fungal strains. The antimicrobial activity was measured by the minimal inhibitory concentration required for the growth inhibition of the microorganisms. The cytotoxicity of the EOs was tested ex vivo using the model of human-derived macrophage THP-1 cells. In addition, an inflammatory response was evaluated using the anti-inflammatory cytokine IL-10 and the proinflammatory cytokines IL-6 and TNF-α. Results showed that both EOs had antimicrobial activity and different pathogens were exposed to concentrations ranging between 600 and 2000 μg/mL. In addition, the EOs showed no inflammatory activity when exposed to human macrophages, but a potent anti-inflammatory activity was measured when the oil from Rosmarinus officinalis was exposed to macrophages. This study demonstrates that the use of EOs is an effective alternative for pathogenic bacterial and fungal control, alone or in combination with antibiotic therapy. Moreover, the oil extracted from Rosmarinus officinalis could be used as potent anti-inflammatory agent.
Collapse
|
34
|
El-Kady AM, Ahmad AA, Hassan TM, El-Deek HEM, Fouad SS, Althagfan SS. Eugenol, a potential schistosomicidal agent with anti-inflammatory and antifibrotic effects against Schistosoma mansoni, induced liver pathology. Infect Drug Resist 2019; 12:709-719. [PMID: 30992676 PMCID: PMC6445185 DOI: 10.2147/idr.s196544] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction Schistosomiasis is one of the most prevalent parasitic infections in developing countries. Although chemotherapy is one of the main strategies in controlling the disease, it is less effective in reversal of schistosome-induced pathology especially in the chronic and advanced stages of schistosomiasis. New strategies and prospective therapeutic agents with antifibrotic effects are needed. Eugenol has a wide anti-inflammatory effect. In the present study, we investigated the possible antischistosomal effect of eugenol on Schistosoma mansoni. Materials and methods The murine model of S. mansoni was established in three groups of adult male Balb-c mice; group I (infected non-treated group) and groups II and III (infected groups) treated orally with eugenol and praziquantel (PZQ), respectively. The expression of the sensitive immunohistochemical marker α-smooth muscle actin (α-SMA) in schistosome-infected tissues was determined. In addition, parasitological, biochemical, and histological parameters that reflect disease severity and morbidity were examined. Results Eugenol treatment showed significant reduction in total worm burden by 19.2%; however, the oogram pattern showed no marked difference compared to that of the PZQ group. Yet, eugenol significantly reduced the serum levels of hepatic enzymes: aspartate aminotransferase and alanine aminotransferase. Histopathological examination revealed a significant reduction in both numbers and diameters of hepatic granulomata, which was consistent with reduction in collagen fiber deposition. Additionally, the antifibrotic effect of eugenol was validated by its considerable reduction in the expression of the sensitive marker α-SMA in both eugenol- and PZQ-treated groups. Conclusion Although eugenol could not totally eradicate adults of S. mansoni, the significant amelioration of liver enzymes and hepatic fibrosis potentiate eugenol’s role as a promising antifibrotic and a complementary antischistosomal agent.
Collapse
Affiliation(s)
- Asmaa M El-Kady
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena 83523, Egypt,
| | | | - Tasneem M Hassan
- Department of Medical Parasitology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Heba E M El-Deek
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Samer S Fouad
- Department of Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Sultan S Althagfan
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| |
Collapse
|
35
|
Magalhães CB, Casquilho NV, Machado MN, Riva DR, Travassos LH, Leal-Cardoso JH, Fortunato RS, Faffe DS, Zin WA. The anti-inflammatory and anti-oxidative actions of eugenol improve lipopolysaccharide-induced lung injury. Respir Physiol Neurobiol 2019; 259:30-36. [DOI: 10.1016/j.resp.2018.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/28/2018] [Accepted: 07/07/2018] [Indexed: 11/28/2022]
|
36
|
Zhang Q, Nie J, Chen SJ, Li Q. Protective effects of ethyl gallate and pentagalloylglucose, the active components of Qingwen Baidu Decoction, against lipopolysaccharide-induced acute lung injury in rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 13:71-77. [PMID: 30587929 PMCID: PMC6304083 DOI: 10.2147/dddt.s186029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background The aim of this study was to investigate the bioactive constituents of Qingwen Baidu Decoction (QBD) in a rat model of acute lung injury (ALI) induced by lipopolysaccharide (LPS). Our previous studies showed that ethyl gallate (EG) and pentagalloylglucose (PGG) were the active components of QBD for the treatment of ALI. Materials and methods We isolated two compounds and identified the structures of them by nuclear magnetic resonance and mass spectrometer. Lung injury was induced by intratracheal instillation with LPS (5 mg/kg). Rats were randomly divided into six groups: Control group; LPS group; 5 mL/kg DEX + LPS group; 6.6 g/kg QBD extract + LPS group; 17.16 mg/kg PGG + LPS group; 7.26 mg/kg EG + LPS group. The effects of compounds on LPS-induced the number of total cells, neutrophils influx, protein leakage, W/D weight ratio and pulmonary histological changes were examined. Results The results demonstrated that pretreatment with EG and PGG could notably inhibit lung edema and attenuate the pulmonary histological changes (P<0.05). The pretreatment also decreased the number of total cells and polymorphonuclear leukocytes in bronchoalveolar lavage fluid (BALF) (P<0.05). Conclusion Ethyl gallate and pentagalloylglucose of QBD played a protective role in preventing LPS-induced ALI. The results supported further study of EG and PGG as potential candidates for preventing ALI.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China,
| | - Jing Nie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China,
| | - Su-Juan Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China,
| | - Qiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China,
| |
Collapse
|
37
|
An Overview on the Anti-inflammatory Potential and Antioxidant Profile of Eugenol. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3957262. [PMID: 30425782 PMCID: PMC6217746 DOI: 10.1155/2018/3957262] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022]
Abstract
The bioactive compounds found in foods and medicinal plants are attractive molecules for the development of new drugs with action against several diseases, such as those associated with inflammatory processes, which are commonly related to oxidative stress. Many of these compounds have an appreciable inhibitory effect on oxidative stress and inflammatory response, and may contribute in a preventive way to improve the quality of life through the use of a diet rich in these compounds. Eugenol is a natural compound that has several pharmacological activities, action on the redox status, and applications in the food and pharmaceutical industry. Considering the importance of this compound, the present review discusses its anti-inflammatory and antioxidant properties, demonstrating its mechanisms of action and therapeutic potential for the treatment of inflammatory diseases.
Collapse
|
38
|
In Vivo Protective Effects of Nootkatone against Particles-Induced Lung Injury Caused by Diesel Exhaust Is Mediated via the NF-κB Pathway. Nutrients 2018; 10:nu10030263. [PMID: 29495362 PMCID: PMC5872681 DOI: 10.3390/nu10030263] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 12/21/2022] Open
Abstract
Numerous studies have shown that acute particulate air pollution exposure is linked with pulmonary adverse effects, including alterations of pulmonary function, inflammation, and oxidative stress. Nootkatone, a constituent of grapefruit, has antioxidant and anti-inflammatory effects. However, the effect of nootkatone on lung toxicity has not been reported so far. In this study we evaluated the possible protective effects of nootkatone on diesel exhaust particles (DEP)-induced lung toxicity, and the possible mechanisms underlying these effects. Mice were intratracheally (i.t.) instilled with either DEP (30 µg/mouse) or saline (control). Nootkatone was given to mice by gavage, 1 h before i.t. instillation, with either DEP or saline. Twenty-four hours following DEP exposure, several physiological and biochemical endpoints were assessed. Nootkatone pretreatment significantly prevented the DEP-induced increase in airway resistance in vivo, decreased neutrophil infiltration in bronchoalveolar lavage fluid, and abated macrophage and neutrophil infiltration in the lung interstitium, assessed by histolopathology. Moreover, DEP caused a significant increase in lung concentrations of 8-isoprostane and tumor necrosis factor α, and decreased the reduced glutathione concentration and total nitric oxide activity. These actions were all significantly alleviated by nootkatone pretreatment. Similarly, nootkatone prevented DEP-induced DNA damage and prevented the proteolytic cleavage of caspase-3. Moreover, nootkatone inhibited nuclear factor-kappaB (NF-κB) induced by DEP. We conclude that nootkatone prevented the DEP-induced increase in airway resistance, lung inflammation, oxidative stress, and the subsequent DNA damage and apoptosis through a mechanism involving inhibition of NF-κB activation. Nootkatone could possibly be considered a beneficial protective agent against air pollution-induced respiratory adverse effects.
Collapse
|
39
|
Zhao JM, Jin ZZ, Zhao QZ. The preventive effect of ambroxol hydrochloride chitosan on postoperative intraperitoneal adhesion formation in a rat model. Acta Chir Belg 2017. [PMID: 28636473 DOI: 10.1080/00015458.2017.1287395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND This study aimed to investigate the effects of ambroxol hydrochloride chitosan reduced the degree of peritoneal adhesion. METHODS A total of 120 Sprague-Dawley (SD) rats were experimented, group A: the damaged peritoneal was covered with ambroxol hydrochloride chitosan, group B: chitosan membrane only, group C: nothing. Enzyme-linked immunosorbent assay (ELISA), western blotting, and immunohistochemistry (IHC) were used to observe the expression of TNF-α and NF-κB p65. RESULTS TNF-α and NF-κB p65 in group A significantly decreased in comparison with the controls. IHC showed TNF-α and NF-κB p65 were significantly down-regulated in group A. Adhesion grade in the treatment group was significantly lower than in controls. CONCLUSION Ambroxol hydrochloride chitosan reduced the degree of peritoneal adhesion.
Collapse
Affiliation(s)
- Jin-Ming Zhao
- Department of 98 Grads, China Medical University, Shenyang, China
| | - Zhi-Zhong Jin
- Department of 98 Grads, China Medical University, Shenyang, China
| | - Qi-Zhong Zhao
- Department of Emergency, Affiliated First Hospital, China Medical University, Shenyang, China
| |
Collapse
|
40
|
Tsai TH, Huang WC, Lien TJ, Huang YH, Chang H, Yu CH, Tsai PJ. Clove extract and eugenol suppress inflammatory responses elicited by Propionibacterium acnes in vitro and in vivo. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1320357] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Tsung-Hsien Tsai
- Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Cheng Huang
- Department of Pediatrics, Taipei Tzu-Chi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City, Taiwan
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei, Taiwan
| | - Tsung-Jung Lien
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei, Taiwan
| | - Yu-Han Huang
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei, Taiwan
| | - Hsiang Chang
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Chun-Hsien Yu
- Department of Pediatrics, Taipei Tzu-Chi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City, Taiwan
- Department of Pediatrics, Buddhist Tzu-Chi University College of Medicine, Hualien, Taiwan
| | - Po-Jung Tsai
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
41
|
Khalil AA, Rahman UU, Khan MR, Sahar A, Mehmood T, Khan M. Essential oil eugenol: sources, extraction techniques and nutraceutical perspectives. RSC Adv 2017. [DOI: 10.1039/c7ra04803c] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Graphical representation regarding sources, extraction techniques and nutraceutical perspectives of eugenol.
Collapse
Affiliation(s)
- Anees Ahmed Khalil
- National Institute of Food Science and Technology
- Faculty of Food, Nutrition and Home Sciences
- University of Agriculture
- Faisalabad
- Pakistan
| | - Ubaid ur Rahman
- National Institute of Food Science and Technology
- Faculty of Food, Nutrition and Home Sciences
- University of Agriculture
- Faisalabad
- Pakistan
| | - Moazzam Rafiq Khan
- National Institute of Food Science and Technology
- Faculty of Food, Nutrition and Home Sciences
- University of Agriculture
- Faisalabad
- Pakistan
| | - Amna Sahar
- National Institute of Food Science and Technology
- Faculty of Food, Nutrition and Home Sciences
- University of Agriculture
- Faisalabad
- Pakistan
| | - Tariq Mehmood
- National Institute of Food Science and Technology
- Faculty of Food, Nutrition and Home Sciences
- University of Agriculture
- Faisalabad
- Pakistan
| | - Muneeb Khan
- National Institute of Food Science and Technology
- Faculty of Food, Nutrition and Home Sciences
- University of Agriculture
- Faisalabad
- Pakistan
| |
Collapse
|
42
|
Lee JH, Lee HH, Kim HW, Yu JW, Kim KN, Kim KM. Immunomodulatory/anti-inflammatory effect of ZOE-based dental materials. Dent Mater 2016; 33:e1-e12. [PMID: 27726970 DOI: 10.1016/j.dental.2016.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 03/25/2016] [Accepted: 09/03/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The study assessed the cytotoxicity and immunomodulatory/anti-inflammatory effect of extract from zinc oxide-eugenol (ZOE)-based dental materials during setting using immortalized human dental pulp stem cells (IHDPSCs) and mouse bone marrow monocytes (IMBMMs), and identified the responsible extract component. METHODS In accord with the ISO 10993-12, we extracted a mixture of ZOE cement and sealer after a specified time. The extract was analyzed by two types of mass spectrometry (ICP-MS and GC-MS). Cell viability was evaluated with extract and serial concentrations of ZnCl2, ZnSO4, and eugenol liquid by WST assay. The immunomodulatory/anti-inflammatory effect of a ZOE component was determined by RT-PCR to detect the downregulatory effect of inflammatory mRNA expression after lipopolysaccharide (LPS)-induced inflammation. RESULTS Zn2+ and eugenol (2-20ppm) were detected in the ZOE cement and sealer extracts. During the early stage of setting, significant cytotoxicity was observed in IHDPSCs and IMBMMs (p<0.05). The half maximal effective concentration of Zn2+ was 5-8ppm, whereas that of eugenol could not be detected within 80ppm. After extract treatment, the expression of inflammatory mRNA was significantly lower in inflamed IHDPSCs, but not inflamed IMBMMs, than in the LPS control (p<0.05). However, eugenol, not Zn2+, at 5-20ppm downregulated inflammatory mRNA expression in the inflamed IMBMMs with and without the exchange of LPS-pretreated medium. SIGNIFICANCE ZOE was highly cytotoxic, especially during setting, to both cells due to Zn2+ while the immunomodulatory/anti-inflammatory effect of ZOE was induced by eugenol.
Collapse
Affiliation(s)
- Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department and Research Institute of Dental Biomaterials and Bioengineering, BK21 PLUS Project, College of Dentistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Je-Wook Yu
- Department of Microbiology, BK 21 Project for Medical Science, Institute for Immunology and Immunological Diseases, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyoung-Nam Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, BK21 PLUS Project, College of Dentistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, BK21 PLUS Project, College of Dentistry, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
43
|
Kim KN, Ko SC, Ye BR, Kim MS, Kim J, Ko EY, Cho SH, Kim D, Heo SJ, Jung WK. 5-Bromo-2-hydroxy-4-methyl-benzaldehyde inhibited LPS-induced production of pro-inflammatory mediators through the inactivation of ERK, p38, and NF-κB pathways in RAW 264.7 macrophages. Chem Biol Interact 2016; 258:108-14. [DOI: 10.1016/j.cbi.2016.08.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/27/2016] [Accepted: 08/24/2016] [Indexed: 01/09/2023]
|
44
|
Kong M, Hwang DS, Yoon SW, Kim J. The effect of clove-based herbal mouthwash on radiation-induced oral mucositis in patients with head and neck cancer: a single-blind randomized preliminary study. Onco Targets Ther 2016; 9:4533-8. [PMID: 27524909 PMCID: PMC4966496 DOI: 10.2147/ott.s108769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose This study was performed to evaluate the efficacy and safety of clove-based herbal mouthwash in ameliorating radiation-induced oral mucositis in patients with head and neck cancer. Methods Fourteen patients were prospectively enrolled in this study and randomized to either an experimental group or a control group. The patients of the experimental group swished their mouths with a clove-based herbal mouthwash during radiotherapy (RT), while the patients of the control group swished with clear water. The primary end point of this study was incidence of radiation-induced oral mucositis. The secondary end points were time to onset of radiation-induced oral mucositis, duration of radiation-induced oral mucositis, incidence of supplemental nutrition through feeding tube, maximum pain score, body weight loss, incidence of RT interruption, and duration of RT interruption. Results The use of clove-based herbal mouthwash shortened the duration of grade ≥2 mucositis (24.3 days vs 37.1 days, P=0.044) and reduced body weight loss during RT (3.1% vs 7.4%, P=0.023) compared with clear water. The use of clove-based herbal mouthwash also reduced the incidence of grade 3 mucositis (28.6% vs 57.1%), supplemental nutrition (0% vs 28.6%), and RT interruption (14.3% vs 28.6%), and reduced the duration of grade 3 mucositis (5.1 days vs 17.7 days) and RT interruption (1 days vs 8.5 days). In addition, clove-based herbal mouthwash delayed the time to onset of mucositis (26.6 days vs 24.5 days) and reduced the maximum pain score (4.1 vs 4.9). However, these differences were not statistically significant. Conclusion Although we could not find significant differences in some end points, this single-blind randomized study showed that a clove-based herbal mouthwash can have a potentially beneficial effect on minimizing or preventing radiation-induced oral mucositis in patients with head and neck cancer. To confirm the results of our study, well-designed randomized studies with large sample sizes will be required.
Collapse
Affiliation(s)
- Moonkyoo Kong
- Department of Radiation Oncology, Kyung Hee University Medical Center, Kyung Hee University School of Medicine
| | - Deok-Sang Hwang
- Department of Korean Medicine Obstetrics & Gynecology, Kyung Hee University Medical Center
| | - Seong Woo Yoon
- Department of Korean Internal Medicine, Korean Medicine Cancer Center, Kyung Hee University Hospital at Gangdong
| | - Jinsung Kim
- Department of Korean Internal Medicine, Kyung Hee University Medical Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
45
|
Inhibition of endotoxin-induced airway epithelial cell injury by a novel family of pyrrol derivates. J Transl Med 2016; 96:632-40. [PMID: 26999659 DOI: 10.1038/labinvest.2016.46] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/18/2016] [Accepted: 02/02/2016] [Indexed: 01/14/2023] Open
Abstract
Inflammation and apoptosis are crucial mechanisms for the development of the acute respiratory distress syndrome (ARDS). Currently, there is no specific pharmacological therapy for ARDS. We have evaluated the ability of a new family of 1,2,3,5-tetrasubstituted pyrrol compounds for attenuating lipopolysaccharide (LPS)-induced inflammation and apoptosis in an in vitro LPS-induced airway epithelial cell injury model based on the first steps of the development of sepsis-induced ARDS. Human alveolar A549 and human bronchial BEAS-2B cells were exposed to LPS, either alone or in combination with the pyrrol derivatives. Rhein and emodin, two representative compounds with proven activity against the effects of LPS, were used as reference compounds. The pyrrol compound that was termed DTA0118 had the strongest inhibitory activity and was selected as the lead compound to further explore its properties. Exposure to LPS caused an intense inflammatory response and apoptosis in both A549 and BEAS-2B cells. DTA0118 treatment downregulated Toll-like receptor-4 expression and upregulated nuclear factor-κB inhibitor-α expression in cells exposed to LPS. These anti-inflammatory effects were accompanied by a significantly lower secretion of interleukin-6 (IL-6), IL-8, and IL-1β. The observed antiapoptotic effect of DTA0118 was associated with the upregulation of antiapoptotic Bcl-2 and downregulation of proapoptotic Bax and active caspase-3 protein levels. Our findings demonstrate the potent anti-inflammatory and antiapoptotic properties of the pyrrol DTA0118 compound and suggest that it could be considered as a potential drug therapy for the acute phase of sepsis and septic ARDS. Further investigations are needed to examine and validate these mechanisms and effects in a clinically relevant animal model of sepsis and sepsis-induced ARDS.
Collapse
|
46
|
Cytotoxicity and anti-inflammatory effects of zinc ions and eugenol during setting of ZOE in immortalized human oral keratinocytes grown as three-dimensional spheroids. Dent Mater 2016; 32:e93-104. [DOI: 10.1016/j.dental.2016.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 10/22/2015] [Accepted: 01/15/2016] [Indexed: 11/22/2022]
|
47
|
Higashi Y. Simple HPLC–fluorescence determination of eugenol in clove oil after pre-column derivatization with 4-(N-chloroformylmethyl-Nmethylamino)-7-nitro-2,1,3-benzoxadiazole. JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1134/s1061934815110179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Porto MDP, da Silva GN, Luperini BCO, Bachiega TF, de Castro Marcondes JP, Sforcin JM, Salvadori DMF. Citral and eugenol modulate DNA damage and pro-inflammatory mediator genes in murine peritoneal macrophages. Mol Biol Rep 2015; 41:7043-51. [PMID: 25103019 DOI: 10.1007/s11033-014-3657-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Citral and eugenol have been broadly studied because of their anti-inflammatory, antioxidant and antiparasitic potentials. In this study, the effects of citral (25, 50 and 100 µg/mL) and eugenol (0.31, 0.62, 1.24 and 2.48 µg/mL) on the expression (RT-PCR) of the pro-inflammatory mediator genes NF-κB1, COX-2 and TNF-α were evaluated in mouse peritoneal macrophages with or without activation by a bacterial lipopolysaccharide (LPS). Additionally, the genotoxic potentials of two compounds and their capacities to modulate the DNA damage induced by doxorubicin (DXR) were investigated using the comet assay. The data revealed that neither citral nor eugenol changed COX-2, NF-κB1 or TNF-α expression in resting macrophages. However, in LPS-activated cells, citral induced the hypoexpression of COX-2 (100 µg/mL) and TNF-α (50 and 100 µg/mL). Hypoexpression of TNF-α was also detected after cellular exposure to eugenol at the highest concentration (2.48 µg/mL). Both compounds exhibited genotoxic potential (citral at 50 and 100 µg/mL and eugenol at all concentrations) but also showed chemopreventive effects, in various treatment protocols. Both citral and eugenol might modulate inflammatory processes and DXR-induced DNA damage, but the use of these compounds must be viewed with caution because they are also able to induce primary DNA lesions.
Collapse
Affiliation(s)
- Marilia de Paula Porto
- Departamento de Patologia, Faculdade de Medicina de Botucatu, UNESP - Universidade Estadual Paulista, Botucatu, SP, 18618-000, Brazil,
| | | | | | | | | | | | | |
Collapse
|
49
|
Deepak V, Kasonga A, Kruger MC, Coetzee M. Inhibitory effects of eugenol on RANKL-induced osteoclast formation via attenuation of NF-κB and MAPK pathways. Connect Tissue Res 2015; 56:195-203. [PMID: 25405641 DOI: 10.3109/03008207.2014.989320] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bone loss diseases are often associated with increased receptor activator of NF-κB ligand (RANKL)-induced osteoclast formation. Compounds that can attenuate RANKL-mediated osteoclast formation are of great biomedical interest. Eugenol, a phenolic constituent of clove oil possesses medicinal properties; however, its anti-osteoclastogenic potential is unexplored hitherto. Here, we found that eugenol dose-dependently inhibited the RANKL-induced multinucleated osteoclast formation and TRAP activity in RAW264.7 macrophages. The underlying molecular mechanisms included the attenuation of RANKL-mediated degradation of IκBα and subsequent activation of NF-κB pathway. Furthermore, increase in phosphorylation and activation of RANKL-induced mitogen-activated protein kinase pathways (MAPK) was perturbed by eugenol. RANKL-induced expression of osteoclast-specific marker genes such as TRAP, cathepsin K (CtsK) and matrix metalloproteinase-9 (MMP-9) was remarkably downregulated by eugenol. These findings provide the first line of evidence that eugenol mediated attenuation of RANKL-induced NF-κB and MAPK pathways could synergistically contribute to the inhibition of osteoclast formation. Eugenol could be developed as therapeutic agent against diseases with excessive osteoclast activity.
Collapse
Affiliation(s)
- Vishwa Deepak
- Department of Physiology, University of Pretoria , Pretoria , South Africa
| | | | | | | |
Collapse
|
50
|
Oliveira VR, Avila MB, Carvalho GMC, Azevedo SMF, Lima LM, Barreiro EJ, Carvalho AR, Zin WA. Investigating the therapeutic effects of LASSBio-596 in an in vivo model of cylindrospermopsin-induced lung injury. Toxicon 2015; 94:29-35. [DOI: 10.1016/j.toxicon.2014.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 10/24/2022]
|