1
|
Cummings KJ, Leiter JC, Trachtenberg FL, Okaty BW, Darnall RA, Haas EA, Harper RM, Nattie EE, Krous HF, Mena OJ, Richerson GB, Dymecki SM, Kinney HC, Haynes RL. Altered 5-HT2A/C receptor binding in the medulla oblongata in the sudden infant death syndrome (SIDS): Part II. Age-associated alterations in serotonin receptor binding profiles within medullary nuclei supporting cardiorespiratory homeostasis. J Neuropathol Exp Neurol 2024; 83:144-160. [PMID: 38323418 PMCID: PMC10880067 DOI: 10.1093/jnen/nlae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
The failure of chemoreflexes, arousal, and/or autoresuscitation to asphyxia may underlie some sudden infant death syndrome (SIDS) cases. In Part I, we showed that some SIDS infants had altered 5-hydroxytryptamine (5-HT)2A/C receptor binding in medullary nuclei supporting chemoreflexes, arousal, and autoresuscitation. Here, using the same dataset, we tested the hypotheses that the prevalence of low 5-HT1A and/or 5-HT2A/C receptor binding (defined as levels below the 95% confidence interval of controls-a new approach), and the percentages of nuclei affected are greater in SIDS versus controls, and that the distribution of low binding varied with age of death. The prevalence and percentage of nuclei with low 5-HT1A and 5-HT2A/C binding in SIDS were twice that of controls. The percentage of nuclei with low 5-HT2A/C binding was greater in older SIDS infants. In >80% of older SIDS infants, low 5-HT2A/C binding characterized the hypoglossal nucleus, vagal dorsal nucleus, nucleus of solitary tract, and nuclei of the olivocerebellar subnetwork (important for blood pressure regulation). Together, our findings from SIDS infants and from animal models of serotonergic dysfunction suggest that some SIDS cases represent a serotonopathy. We present new hypotheses, yet to be tested, about how defects within serotonergic subnetworks may lead to SIDS.
Collapse
Affiliation(s)
- Kevin J Cummings
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - James C Leiter
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | | | - Benjamin W Okaty
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert A Darnall
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Elisabeth A Haas
- Department of Research, Rady’s Children’s Hospital, San Diego, California, USA
| | - Ronald M Harper
- Department of Neurobiology and the Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Eugene E Nattie
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Henry F Krous
- Department of Pediatrics, University of California San Diego, San Diego, California, USA
- Departments of Pathology and Pediatrics, Rady Children’s Hospital, San Diego, California, USA
| | - Othon J Mena
- San Diego County Medical Examiner Office, San Diego, California, USA
| | - George B Richerson
- Departments of Neurology and Molecular Physiology & Biophysics, University of Iowa, Iowa City, Iowa, USA
| | - Susan M Dymecki
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Hannah C Kinney
- Department of Pathology, CJ Murphy Laboratory for SIDS Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Robin L Haynes
- Department of Pathology, CJ Murphy Laboratory for SIDS Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Haynes RL, Trachtenberg F, Darnall R, Haas EA, Goldstein RD, Mena OJ, Krous HF, Kinney HC. Altered 5-HT2A/C receptor binding in the medulla oblongata in the sudden infant death syndrome (SIDS): Part I. Tissue-based evidence for serotonin receptor signaling abnormalities in cardiorespiratory- and arousal-related circuits. J Neuropathol Exp Neurol 2023; 82:467-482. [PMID: 37226597 PMCID: PMC10209647 DOI: 10.1093/jnen/nlad030] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
The sudden infant death syndrome (SIDS), the leading cause of postneonatal infant mortality in the United States, is typically associated with a sleep period. Previously, we showed evidence of serotonergic abnormalities in the medulla (e.g. altered serotonin (5-HT)1A receptor binding), in SIDS cases. In rodents, 5-HT2A/C receptor signaling contributes to arousal and autoresuscitation, protecting brain oxygen status during sleep. Nonetheless, the role of 5-HT2A/C receptors in the pathophysiology of SIDS is unclear. We hypothesize that in SIDS, 5-HT2A/C receptor binding is altered in medullary nuclei that are key for arousal and autoresuscitation. Here, we report altered 5-HT2A/C binding in several key medullary nuclei in SIDS cases (n = 58) compared to controls (n = 12). In some nuclei the reduced 5-HT2A/C and 5-HT1A binding overlapped, suggesting abnormal 5-HT receptor interactions. The data presented here (Part 1) suggest that a subset of SIDS is due in part to abnormal 5-HT2A/C and 5-HT1A signaling across multiple medullary nuclei vital for arousal and autoresuscitation. In Part II to follow, we highlight 8 medullary subnetworks with altered 5-HT receptor binding in SIDS. We propose the existence of an integrative brainstem network that fails to facilitate arousal and/or autoresuscitation in SIDS cases.
Collapse
Affiliation(s)
- Robin L Haynes
- CJ Murphy Laboratory for SIDS Research, Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Robert’s Program on Sudden Unexpected Death in Pediatrics, Division of General Pediatrics, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, USA
| | | | - Ryan Darnall
- CJ Murphy Laboratory for SIDS Research, Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Elisabeth A Haas
- Department of Research, Rady Children’s Hospital, San Diego, California, USA
| | - Richard D Goldstein
- Robert’s Program on Sudden Unexpected Death in Pediatrics, Division of General Pediatrics, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Othon J Mena
- San Diego County Medical Examiner Office, San Diego, California, USA
| | - Henry F Krous
- University of California, San Diego, San Diego, California, USA
- Rady Children’s Hospital, San Diego, California, USA
| | - Hannah C Kinney
- CJ Murphy Laboratory for SIDS Research, Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Robert’s Program on Sudden Unexpected Death in Pediatrics, Division of General Pediatrics, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Moon RY, Carlin RF, Hand I. Evidence Base for 2022 Updated Recommendations for a Safe Infant Sleeping Environment to Reduce the Risk of Sleep-Related Infant Deaths. Pediatrics 2022; 150:188305. [PMID: 35921639 DOI: 10.1542/peds.2022-057991] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Every year in the United States, approximately 3500 infants die of sleep-related infant deaths, including sudden infant death syndrome (SIDS) (International Statistical Classification of Diseases and Related Health Problems 10th Revision [ICD-10] R95), ill-defined deaths (ICD-10 R99), and accidental suffocation and strangulation in bed (ICD-10 W75). After a substantial decline in sleep-related deaths in the 1990s, the overall death rate attributable to sleep-related infant deaths have remained stagnant since 2000, and disparities persist. The triple risk model proposes that SIDS occurs when an infant with intrinsic vulnerability (often manifested by impaired arousal, cardiorespiratory, and/or autonomic responses) undergoes an exogenous trigger event (eg, exposure to an unsafe sleeping environment) during a critical developmental period. The American Academy of Pediatrics recommends a safe sleep environment to reduce the risk of all sleep-related deaths. This includes supine positioning; use of a firm, noninclined sleep surface; room sharing without bed sharing; and avoidance of soft bedding and overheating. Additional recommendations for SIDS risk reduction include human milk feeding; avoidance of exposure to nicotine, alcohol, marijuana, opioids, and illicit drugs; routine immunization; and use of a pacifier. New recommendations are presented regarding noninclined sleep surfaces, short-term emergency sleep locations, use of cardboard boxes as a sleep location, bed sharing, substance use, home cardiorespiratory monitors, and tummy time. In addition, additional information to assist parents, physicians, and nonphysician clinicians in assessing the risk of specific bed-sharing situations is included. The recommendations and strength of evidence for each recommendation are published in the accompanying policy statement, which is included in this issue.
Collapse
Affiliation(s)
- Rachel Y Moon
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Rebecca F Carlin
- Division of Pediatric Critical Care and Hospital Medicine, Department of Pediatrics, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital, New York City, New York
| | - Ivan Hand
- Department of Pediatrics, SUNY-Downstate College of Medicine, NYC Health + Hospitals, Kings County, Brooklyn, New York
| | | |
Collapse
|
4
|
Su J, Meng Y, Fang Y, Sun L, Wang M, Liu Y, Zhao C, Dai L, Ouyang S. Role of raphe magnus 5-HT 1A receptor in increased ventilatory responses induced by intermittent hypoxia in rats. Respir Res 2022; 23:42. [PMID: 35241072 PMCID: PMC8892800 DOI: 10.1186/s12931-022-01970-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/22/2022] [Indexed: 11/11/2022] Open
Abstract
Background Intermittent hypoxia induces increased ventilatory responses in a 5-HT-dependent manner. This study aimed to explore that effect of raphe magnus serotonin 1A receptor (5-HT1A) receptor on the increased ventilatory responses induced by intermittent hypoxia. Methods Stereotaxic surgery was performed in adult male rats, and acute and chronic intermittent hypoxia models were established after recovery from surgery. The experimental group received microinjections of 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) into the raphe magnus nucleus (RMg). Meanwhile, the control group received microinjections of artificial cerebrospinal fluid instead of 8-OH-DPAT. Ventilatory responses were compared among the different groups of oxygen status. 5-HT expressions in the RMg region were assessed by immunohistochemistry after chronic intermittent hypoxia. Results Compared with the normoxia group, the acute intermittent hypoxia group exhibited higher ventilatory responses (e.g., shorter inspiratory time and higher tidal volume, frequency of breathing, minute ventilation, and mean inspiratory flow) (P < 0.05). 8-OH-DPAT microinjection partly weakened these changes in the acute intermittent hypoxia group. Further, compared with the acute intermittent hypoxia group, rats in chronic intermittent hypoxia group exhibited higher measures of ventilatory responses after 1 day of intermittent hypoxia (P < 0.05). These effects peaked after 3 days of intermittent hypoxia treatment and then decreased gradually. Moreover, these changes were diminished in the experimental group. 5-HT expression in the RMg region increased after chronic intermittent hypoxia, which was consistent with the changing trend of ventilatory responses. While activation of the 5-HT1A receptor in the RMg region alleviated this phenomenon. Conclusions The results indicate that RMg 5-HT1A receptor, via changing the expression level of 5-HT in the RMg region, is involved in the modulation of the increased ventilatory responses induced by intermittent hypoxia. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-01970-6.
Collapse
Affiliation(s)
- Jiao Su
- Department of Respiratory and Sleep Medicine, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Yang Meng
- Department of Respiratory and Sleep Medicine, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Yifei Fang
- Department of Respiratory and Sleep Medicine, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Linge Sun
- Department of Respiratory and Sleep Medicine, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Mengge Wang
- Department of Respiratory and Sleep Medicine, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Yanjun Liu
- Department of Respiratory and Sleep Medicine, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Chunling Zhao
- Department of Respiratory and Sleep Medicine, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Henan, 450052, China
| | - Songyun Ouyang
- Department of Respiratory and Sleep Medicine, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
5
|
Intensity of Respiratory Cortical Arousals Is a Distinct Pathophysiologic Feature and Is Associated with Disease Severity in Obstructive Sleep Apnea Patients. Brain Sci 2021; 11:brainsci11030282. [PMID: 33668974 PMCID: PMC7996607 DOI: 10.3390/brainsci11030282] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 11/23/2022] Open
Abstract
Background: We investigated whether the number, duration and intensity of respiratory arousals (RA) on C3-electroencephalographic (EEG) recordings correlate with polysomnography (PSG)-related disease severity in obstructive sleep apnea (OSA) patients. We also investigated if every patient might have an individual RA microstructure pattern, independent from OSA-severity. Methods: PSG recordings of 20 OSA patients (9 female; age 27–80 years) were analyzed retrospectively. Correlation coefficients were calculated between RA microstructure (duration, EEG-intensity) and RA number and respiratory disturbance index (RDI), oxygen desaturation index (ODI) and arousal index (AI). Intraclass correlations (ICC) for both RA duration and intensity were calculated. Sleep stage-specific and apnea- and hypopnea-specific analyses were also done. The probability distributions of duration and intensity were plotted, interpolated with a kernel which fits the distribution. A Bayesian posterior distribution analysis and pair-wise comparisons of each patient with all other 19 patients were performed. Results: Of the analyzed 2600 RA, strong positive correlations were found between average RA intensity and both RDI and AI. The number of PSG-recorded RA was strongly positively correlated with RDI. Significant correlations between average RA intensity in REM, NREM2 and NREM3 sleep stages and total ODI were identified. No sleep stage-specific correlations of arousal microstructure with age, sex, RDI or AI were identified. Although between-subjects ICC values were <0.25, within-subject ICC values were all >0.7 (all p < 0.05). While apnea-related RA duration did not differ from hypopnea-related RA duration, RA intensity was significantly higher (p = 0.00135) in hypopneas than in apneas. A clear individual pattern of arousal duration for each patient was made distinct. For arousal intensity, a Gaussian distribution was identified in most patients. The Bayesian statistics regarding the arousal microstructure showed significant differences between each pair of patients. Conclusions: Each individual patient with OSA might have an individual pattern of RA intensity and duration indicating a distinct individual pathophysiological feature. Arousal intensity was significantly higher in hypopneic than in apneic events and may be related causally to the diminished (compared to apneas) respiratory distress associated with hypopneas. RA intensity in REM, NREM2 and NREM3 strongly correlated with ODI.
Collapse
|
6
|
Avraam J, Wu Y, Richerson GB. Perinatal Nicotine Reduces Chemosensitivity of Medullary 5-HT Neurons after Maturation in Culture. Neuroscience 2020; 446:80-93. [PMID: 32818601 DOI: 10.1016/j.neuroscience.2020.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 01/19/2023]
Abstract
Perinatal exposure to nicotine produces ventilatory and chemoreflex deficits in neonatal mammals. Medullary 5-HT neurons are putative central chemoreceptors that innervate respiratory nuclei and promote ventilation, receive cholinergic input and express nicotinic acetylcholine receptors (nAChRs). Perforated patch clamp recordings were made from cultured 5-HT neurons dissociated from the medullary raphé of 0-3 day old mice expressing enhanced yellow fluorescent protein driven by the enhancer region for PET1 (ePet-EYFP). The effect of exposure to low (6 mg kg-1day-1) or high (60 mg kg-1day-1) doses of nicotine in utero (prenatal), in culture (postnatal), or both and the effect of acute nicotine exposure (10 μM), were examined on baseline firing rate (FR at 5% CO2, pH = 7.4) and the change in FR with acidosis (9% CO2, pH 7.2) in young (12-21 days in vitro, DIV) and older (≥22 DIV) acidosis stimulated 5-HT neurons. Nicotine exposed neurons exhibited ∼67% of the response to acidosis recorded in neurons given vehicle (p = 0.005), with older neurons exposed to high dose prenatal and postnatal nicotine, exhibiting only 28% of that recorded in the vehicle neurons (p < 0.01). In neurons exposed to low or high dose prenatal and postnatal nicotine, acute nicotine exposure led to a smaller increase in FR (∼+51% vs +168%, p = 0.026) and response to acidosis (+6% vs +67%, p = 0.014) compared to vehicle. These data show that exposure to nicotine during development reduces chemosensitivity of 5-HT neurons as they mature, an effect that may be related to the abnormal chemoreflexes reported in rodents exposed to nicotine in utero, and may cause a greater risk for sudden infant death syndrome (SIDS).
Collapse
Affiliation(s)
- Joanne Avraam
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States; Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Yuanming Wu
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | - George Bradley Richerson
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States; Veteran's Affairs Medical Center, Iowa City, IA 52242, United States; Department of Molecular Physiology & Biophysics, University of Iowa, Iowa City, IA 52242, United States; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
7
|
Silva JDN, Oliveira LM, Souza FC, Moreira TS, Takakura AC. GABAergic neurons of the medullary raphe regulate active expiration during hypercapnia. J Neurophysiol 2020; 123:1933-1943. [PMID: 32267190 DOI: 10.1152/jn.00698.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The parafacial respiratory group (pFRG), located in the lateral aspect of the rostroventral lateral medulla, has been described as a conditional expiratory oscillator that emerges mainly in conditions of high metabolic challenges to increase breathing. The convergence of inhibitory and excitatory inputs to pFRG and the generation of active expiration may be more complex than previously thought. We hypothesized that the medullary raphe, a region that has long been described to be involved in breathing activity, is also responsible for the expiratory activity under hypercapnic condition. To test this hypothesis, we performed anatomical and physiological experiments in urethane-anesthetized adult male Wistar rats. Our data showed anatomical projections from serotonergic (5-HT-ergic) and GABAergic neurons of raphe magnus (RMg) and obscurus (ROb) to the pFRG region. Pharmacological inhibition of RMg or ROb with muscimol (60 pmol/30 nL) did not change the frequency or amplitude of diaphragm activity and did not generate active expiration. However, under hypercapnia (9-10% CO2), the inhibition of RMg or ROb increased the amplitude of abdominal activity, without changing the increased amplitude of diaphragm activity. Depletion of serotonergic neurons with saporin anti-SERT injections into ROb and RMg did not increase the amplitude of abdominal activity during hypercapnia. These results show that the presumably GABAergic neurons within the RMg and ROb may be the inhibitory source to modulate the activity of pFRG during hypercapnia condition.NEW & NOTEWORTHY Medullary raphe has been involved in the inspiratory response to central chemoreflex; however, these reports have never addressed the role of raphe neurons on active expiration induced by hypercapnia. Here, we showed that a subset of GABA cells within the medullary raphe directly project to the parafacial respiratory region, modulating active expiration under high levels of CO2.
Collapse
Affiliation(s)
- Josiane do N Silva
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Luiz M Oliveira
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Felipe C Souza
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Thiago S Moreira
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Ana C Takakura
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Cummings KJ, Leiter JC. Take a deep breath and wake up: The protean role of serotonin preventing sudden death in infancy. Exp Neurol 2020; 326:113165. [PMID: 31887304 PMCID: PMC6956249 DOI: 10.1016/j.expneurol.2019.113165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/14/2019] [Accepted: 12/26/2019] [Indexed: 01/24/2023]
Abstract
Recordings from infants who died suddenly and unexpectedly demonstrate the occurrence of recurring apneas, ineffective gasping, and finally, failure to restore eupnea and arouse prior to death. Immunohistochemical and autoradiographic data demonstrate a constellation of serotonergic defects in the caudal raphe nuclei in infants who died of Sudden Infant Death Syndrome (SIDS). The purpose of this review is to synthesize what is known about adaptive responses of the infant to severely hypoxic conditions, which unleash a flood of neuromodulators that inhibit cardiorespiratory function, thermogenesis, and arousal and the emerging role of serotonin, which combats this cardiorespiratory inhibition to foster autoresuscitation, eupnea, and arousal to ensure survival following an hypoxic episode. The laryngeal and carotid body chemoreflexes are potent in newborns and infants, and both reflexes can induce apnea and bradycardia, which may be adaptive initially, but must be terminated if an infant is to survive. Serotonin has a unique ability to touch on each of the processes that may be required to recover from hypoxic reflex apnea: gasping, the restoration of heart rate and blood pressure, termination of apneas and, eventually, stimulation of eupnea and arousal. Recurrent apneic events, bradycardia, ineffective gasping and a failure to terminate apneas and restore eupnea are observed in animals harboring defects in the caudal serotonergic system models - all of these phenotypes are reminiscent of and compatible with the cardiorespiratory recordings made in infants who subsequently died of SIDS. The caudal serotonergic system provides an organized, multi-pronged defense against reflex cardiorespiratory inhibition and the hypoxia that accompanies prolonged apnea, bradycardia and hypotension, and any deficiency of caudal serotonergic function will increase the propensity for sudden unexplained infant death.
Collapse
Affiliation(s)
- Kevin J Cummings
- Department of Biomedical Sciences, University of Missouri-Columbia, Dalton Cardiovascular Research Center, 134 Research Park Drive, Columbia, MO 65203, USA
| | - James C Leiter
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, One Rope Ferry Road, Hanover, NH 03755, USA.
| |
Collapse
|
9
|
Erickson JT. Central serotonin and autoresuscitation capability in mammalian neonates. Exp Neurol 2020; 326:113162. [DOI: 10.1016/j.expneurol.2019.113162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/04/2019] [Accepted: 12/23/2019] [Indexed: 01/08/2023]
|
10
|
Spinelli J, Byard RW, Van Den Heuvel C, Collins-Praino LE. Medullary Astrogliosis in Sudden Infant Death Syndrome Varies With Sleeping Environment: Evidence for Different Mechanisms of Death in Alone Versus Co-sleepers? J Child Neurol 2018; 33:269-274. [PMID: 29357731 DOI: 10.1177/0883073817750498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sudden infant death syndrome remains the leading cause of death in infants under 1 year, and underlying pathophysiological mechanisms are poorly understood. The current study investigated the hypothesis that co-sleepers die more rapidly from causes such as suffocation from overlaying by comparing levels of reactive astrogliosis in the medulla of infants who died sleeping alone to those who died co-sleeping. The amount of glial fibrillary acidic protein (GFAP) staining in alone sleepers was significantly higher than shared sleepers in 3 specific areas of the medulla, the inferior vestibular nucleus, the medial vestibular nucleus and the cochlear nucleus. Given that glial fibrillary acidic protein elevations follow a delayed time course, this suggests that death in co-sleepers was more rapid, not allowing for reactive gliosis to occur. This provides evidence of pathological differences in mechanisms of death in infants who are classified as having died from sudden infant death syndrome, suggesting potential need for refinement of categorization of these cases.
Collapse
Affiliation(s)
- Jade Spinelli
- 1 Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Roger W Byard
- 1 Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Corinna Van Den Heuvel
- 1 Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Lyndsey E Collins-Praino
- 1 Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| |
Collapse
|
11
|
Saini JK, Pagliardini S. Breathing During Sleep in the Postnatal Period of Rats: The Contribution of Active Expiration. Sleep 2017; 40:4411430. [DOI: 10.1093/sleep/zsx172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Jasmeen K Saini
- Neuroscience and Mental Health Institute, University of Alberta, , Canada
- Women and Children Research Institute, University of Alberta, Canada
| | - Silvia Pagliardini
- Neuroscience and Mental Health Institute, University of Alberta, , Canada
- Women and Children Research Institute, University of Alberta, Canada
- Department of Physiology, University of Alberta, Canada
| |
Collapse
|
12
|
Donnelly WT, Xia L, Bartlett D, Leiter JC. Activation of serotonergic neurons in the medullary caudal raphe shortens the laryngeal chemoreflex in anaesthetized neonatal rats. Exp Physiol 2017; 102:1007-1018. [PMID: 28675564 DOI: 10.1113/ep086082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 05/25/2017] [Indexed: 12/29/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does activation of serotonergic neurons in the caudal medullary raphe, some of which project to the nucleus of the solitary tract, shorten the laryngeal chemoreflex? What is the main finding and its importance? We found that serotonin originating from neurons in the caudal raphe acts through a 5-HT3 receptor located in the nucleus of the solitary tract to terminate reflex apnoea. Failure or deficiency of this arousal-related process is likely to be relevant to the pathogenesis of sudden infant death syndrome. Failure to terminate apnoea and arouse is likely to contribute to sudden infant death syndrome (SIDS). Serotonin is deficient in the brainstems of babies who have died of SIDS. We tested the hypothesis that activation of serotoninergic neurons in the caudal medullary raphe, some of which project to the nucleus of the solitary tract (NTS), would shorten the laryngeal chemoreflex (LCR). We studied anaesthetized neonatal rat pups between postnatal days 9 and 17. We injected 5-40 μl of water into the larynx to elicit the LCR and measured the duration of respiratory disruption. Microinjection of 50 nl of 100 μm AMPA into the caudal medullary raphe shortened the apnoeas (P < 0.001) and respiratory inhibition (P < 0.005) associated with the LCR. When 50 nl of 30 mm ondansetron, a 5-HT3 antagonist, was microinjected bilaterally into the NTS, AMPA microinjected into the caudal raphe no longer shortened the LCR. After bilateral microinjection of vehicle into the NTS, AMPA microinjection into the caudal raphe significantly shortened the LCR. AMPA, a glutamate receptor agonist, may activate many neurons within the caudal raphe, but blocking the 5-HT3 receptor-dependent responses in the NTS prevented the shortening of the LCR associated with AMPA microinjections into the caudal raphe. Thus, serotonin originating from neurons in the caudal raphe acts through a 5-HT3 receptor located in the NTS to terminate or shorten the LCR. Serotonin is deficient in the brainstems of babies who have died of SIDS, and deficient serotonergic termination of apnoea is likely to be relevant to the pathogenesis of SIDS.
Collapse
Affiliation(s)
- William T Donnelly
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Luxi Xia
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Donald Bartlett
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - J C Leiter
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
13
|
Joubert F, Loiseau C, Perrin-Terrin AS, Cayetanot F, Frugière A, Voituron N, Bodineau L. Key Brainstem Structures Activated during Hypoxic Exposure in One-day-old Mice Highlight Characteristics for Modeling Breathing Network in Premature Infants. Front Physiol 2016; 7:609. [PMID: 28018238 PMCID: PMC5145891 DOI: 10.3389/fphys.2016.00609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/22/2016] [Indexed: 11/26/2022] Open
Abstract
We mapped and characterized changes in the activity of brainstem cell groups under hypoxia in one-day-old newborn mice, an animal model in which the central nervous system at birth is particularly immature. The classical biphasic respiratory response characterized by transient hyperventilation, followed by severe ventilation decline, was associated with increased c-FOS immunoreactivity in brainstem cell groups: the nucleus of the solitary tract, ventral reticular nucleus of the medulla, retrotrapezoid/parafacial region, parapyramidal group, raphe magnus nucleus, lateral, and medial parabrachial nucleus, and dorsal subcoeruleus nucleus. In contrast, the hypoglossal nucleus displayed decreased c-FOS immunoreactivity. There were fewer or no activated catecholaminergic cells activated in the medulla oblongata, whereas ~45% of the c-FOS-positive cells in the dorsal subcoeruleus were co-labeled. Approximately 30% of the c-FOS-positive cells in the parapyramidal group were serotoninergic, whereas only a small portion were labeled for serotonin in the raphe magnus nucleus. None of the c-FOS-positive cells in the retrotrapezoid/parafacial region were co-labeled for PHOX2B. Thus, the hypoxia-activated brainstem neuronal network of one-day-old mice is characterized by (i) the activation of catecholaminergic cells of the dorsal subcoeruleus nucleus, a structure implicated in the strong depressive pontine influence previously reported in the fetus but not in newborns, (ii) the weak activation of catecholaminergic cells of the ventral reticular nucleus of the medulla, an area involved in hypoxic hyperventilation, and (iii) the absence of PHOX2B-positive cells activated in the retrotrapezoid/parafacial region. Based on these results, one-day-old mice could highlight characteristics for modeling the breathing network of premature infants.
Collapse
Affiliation(s)
- Fanny Joubert
- Sorbonne Universités, UPMC Univ Paris 06, Institut National de la Santé et de la Recherche Médicale, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique Paris, France
| | - Camille Loiseau
- Sorbonne Universités, UPMC Univ Paris 06, Institut National de la Santé et de la Recherche Médicale, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique Paris, France
| | - Anne-Sophie Perrin-Terrin
- Sorbonne Universités, UPMC Univ Paris 06, Institut National de la Santé et de la Recherche Médicale, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et CliniqueParis, France; Sorbonne Paris Cité, Université Paris 13, EA2363 Hypoxie et PoumonsBobigny, France
| | - Florence Cayetanot
- Institut de Neurosciences de la Timone, Aix Marseille Université, Centre National de la Recherche Scientifique, UMR 7289 Marseille, France
| | - Alain Frugière
- Sorbonne Universités, UPMC Univ Paris 06, Institut National de la Santé et de la Recherche Médicale, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique Paris, France
| | - Nicolas Voituron
- Sorbonne Paris Cité, Université Paris 13, EA2363 Hypoxie et Poumons Bobigny, France
| | - Laurence Bodineau
- Sorbonne Universités, UPMC Univ Paris 06, Institut National de la Santé et de la Recherche Médicale, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique Paris, France
| |
Collapse
|