1
|
Strom J, Bull M, Gohlke J, Saripalli C, Methawasin M, Gotthardt M, Granzier H. Titin's cardiac-specific N2B element is critical to mechanotransduction during volume overload of the heart. J Mol Cell Cardiol 2024; 191:40-49. [PMID: 38604403 PMCID: PMC11229416 DOI: 10.1016/j.yjmcc.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/09/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
The heart has the ability to detect and respond to changes in mechanical load through a process called mechanotransduction. In this study, we focused on investigating the role of the cardiac-specific N2B element within the spring region of titin, which has been proposed to function as a mechanosensor. To assess its significance, we conducted experiments using N2B knockout (KO) mice and wildtype (WT) mice, subjecting them to three different conditions: 1) cardiac pressure overload induced by transverse aortic constriction (TAC), 2) volume overload caused by aortocaval fistula (ACF), and 3) exercise-induced hypertrophy through swimming. Under conditions of pressure overload (TAC), both genotypes exhibited similar hypertrophic responses. In contrast, WT mice displayed robust left ventricular hypertrophy after one week of volume overload (ACF), while the KO mice failed to undergo hypertrophy and experienced a high mortality rate. Similarly, swim exercise-induced hypertrophy was significantly reduced in the KO mice. RNA-Seq analysis revealed an abnormal β-adrenergic response to volume overload in the KO mice, as well as a diminished response to isoproterenol-induced hypertrophy. Because it is known that the N2B element interacts with the four-and-a-half LIM domains 1 and 2 (FHL1 and FHL2) proteins, both of which have been associated with mechanotransduction, we evaluated these proteins. Interestingly, while volume-overload resulted in FHL1 protein expression levels that were comparable between KO and WT mice, FHL2 protein levels were reduced by over 90% in the KO mice compared to WT. This suggests that in response to volume overload, FHL2 might act as a signaling mediator between the N2B element and downstream signaling pathways. Overall, our study highlights the importance of the N2B element in mechanosensing during volume overload, both in physiological and pathological settings.
Collapse
Affiliation(s)
- Joshua Strom
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, United States of America
| | - Mathew Bull
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, United States of America
| | - Jochen Gohlke
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, United States of America
| | - Chandra Saripalli
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, United States of America
| | - Mei Methawasin
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, United States of America
| | - Michael Gotthardt
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America.
| |
Collapse
|
2
|
Honetschlägerová Z, Husková Z, Kikerlová S, Sadowski J, Kompanowska-Jezierska E, Táborský M, Vaňourková Z, Kujal P, Červenka L. Renal sympathetic denervation improves pressure-natriuresis relationship in cardiorenal syndrome: insight from studies with Ren-2 transgenic hypertensive rats with volume overload induced using aorto-caval fistula. Hypertens Res 2024; 47:998-1016. [PMID: 38302775 PMCID: PMC10994851 DOI: 10.1038/s41440-024-01583-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 02/03/2024]
Abstract
The aim was to evaluate the effects of renal denervation (RDN) on autoregulation of renal hemodynamics and the pressure-natriuresis relationship in Ren-2 transgenic rats (TGR) with aorto-caval fistula (ACF)-induced heart failure (HF). RDN was performed one week after creation of ACF or sham-operation. Animals were prepared for evaluation of autoregulatory capacity of renal blood flow (RBF) and glomerular filtration rate (GFR), and of the pressure-natriuresis characteristics after stepwise changes in renal arterial pressure (RAP) induced by aortic clamping. Their basal values of blood pressure and renal function were significantly lower than with innervated sham-operated TGR (p < 0.05 in all cases): mean arterial pressure (MAP) (115 ± 2 vs. 160 ± 3 mmHg), RBF (6.91 ± 0.33 vs. 10.87 ± 0.38 ml.min-1.g-1), urine flow (UF) (11.3 ± 1.79 vs. 43.17 ± 3.24 µl.min-1.g-1) and absolute sodium excretion (UNaV) (1.08 ± 0.27 vs, 6.38 ± 0.76 µmol.min-1.g-1). After denervation ACF TGR showed improved autoregulation of RBF: at lowest RAP level (80 mmHg) the value was higher than in innervated ACF TGR (6.92 ± 0.26 vs. 4.54 ± 0.22 ml.min-1.g-1, p < 0.05). Also, the pressure-natriuresis relationship was markedly improved after RDN: at the RAP of 80 mmHg UF equaled 4.31 ± 0.99 vs. 0.26 ± 0.09 µl.min-1.g-1 recorded in innervated ACF TGR, UNaV was 0.31 ± 0.05 vs. 0.04 ± 0.01 µmol min-1.g-1 (p < 0.05 in all cases). In conclusion, in our model of hypertensive rat with ACF-induced HF, RDN improved autoregulatory capacity of RBF and the pressure-natriuresis relationship when measured at the stage of HF decompensation.
Collapse
Affiliation(s)
- Zuzana Honetschlägerová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Zuzana Husková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Soňa Kikerlová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Elzbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Miloš Táborský
- Department of Internal Medicine I, Cardiology, University Hospital Olomouc and Palacký University, Olomouc, Czech Republic
| | - Zdenka Vaňourková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petr Kujal
- Department of Pathology, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
- Department of Internal Medicine I, Cardiology, University Hospital Olomouc and Palacký University, Olomouc, Czech Republic.
| |
Collapse
|
3
|
Honetschlägerová Z, Sadowski J, Kompanowska-Jezierska E, Maxová H, Táborský M, Kujal P, Červenka L. Impaired renal autoregulation and pressure-natriuresis: any role in the development of heart failure in normotensive and angiotensin II-dependent hypertensive rats? Hypertens Res 2023; 46:2340-2355. [PMID: 37592042 PMCID: PMC10550820 DOI: 10.1038/s41440-023-01401-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/30/2023] [Accepted: 07/28/2023] [Indexed: 08/19/2023]
Abstract
The aim of the present study was to assess the autoregulatory capacity of renal blood flow (RBF) and of the pressure-natriuresis characteristics in the early phase of heart failure (HF) in rats, normotensive and with angiotensin II (ANG II)-dependent hypertension. Ren-2 transgenic rats (TGR) were employed as a model of ANG II-dependent hypertension. HF was induced by creating the aorto-caval fistula (ACF). One week after ACF creation or sham-operation, the animals were prepared for studies evaluating in vivo RBF autoregulatory capacity and the pressure-natriuresis characteristics after stepwise changes in renal arterial pressure (RAP) induced by aortic clamping. In ACF TGR the basal mean arterial pressure, RBF, urine flow (UF), and absolute sodium excretion (UNaV) were all significantly lower tha n in sham-operated TGR. In the latter, reductions in renal arterial pressure (RAP) significantly decreased RBF whereas in ACF TGR they did not change. Stepwise reductions in RAP resulted in marked decreases in UF and UNaV in sham-operated as well as in ACF TGR, however, these decreases were significantly greater in the former. Our data show that compared with sham-operated TGR, ACF TGR displayed well-maintained RBF autoregulatory capacity and improved slope of the pressure-natriuresis relationship. Thus, even though in the very early HF stage renal dysfunction was demonstrable, in the HF model of ANG II-dependent hypertensive rat such dysfunction and the subsequent HF decompensation cannot be simply ascribed to impaired renal autoregulation and pressure-natriuresis relationship.
Collapse
Affiliation(s)
- Zuzana Honetschlägerová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Elzbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Hana Maxová
- Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Miloš Táborský
- Department of Internal Medicine I, Cardiology, University Hospital Olomouc and Palacký University, Olomouc, Czech Republic
| | - Petr Kujal
- Department of Pathology, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Internal Medicine I, Cardiology, University Hospital Olomouc and Palacký University, Olomouc, Czech Republic
| |
Collapse
|
4
|
Kono T, Onohara D, Amedi A, Corporan D, Padala M. Effect of early versus late onset mitral regurgitation on left ventricular remodeling in ischemic cardiomyopathy in an animal model. J Thorac Cardiovasc Surg 2022; 164:e333-e347. [PMID: 34903384 PMCID: PMC9108127 DOI: 10.1016/j.jtcvs.2021.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/19/2021] [Accepted: 11/05/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND Patients who survive a myocardial infarction have progressive cardiac dysfunction and ventricular remodeling. Mitral regurgitation is often diagnosed in these patients, and is a risk factor that portends poor prognosis. Whether such postinfarction mitral regurgitation magnifies adverse left ventricular remodeling is unclear, which was studied in an animal model. METHODS Forty-one adult rats were induced with myocardial infarction using left coronary artery ligation and assigned to 3 groups: group 1, myocardial infarction only; group 2, myocardial infarction with severe mitral regurgitation introduced after 4 weeks; and group 3, myocardial infarction with severe mitral regurgitation introduced after 10 weeks. Valve regurgitation was introduced by advancing a transapical ultrasound-guided needle into the mitral valve anterior leaflet. Animals were survived to 20 weeks from the index procedure, with biweekly cardiac ultrasound, and invasive hemodynamics and histology at termination. RESULTS At 20 weeks, end diastolic volume was largest in the groups with mitral regurgitation, compared with the group without the valve lesion (group 1, 760.9 ± 124.6 μL; group 2, 958.0 ± 115.1 μL; group 3, 968.3 ± 214.9 μL). Similarly, end systolic volume was larger in groups with regurgitation (group 1, 431.2 ± 152.6 μL; group 2, 533.2 ± 130.8 μL; group 3, 533.1 ± 177.5 μL). In the infarction-only group, left ventricular remodeling was maximal until 6 weeks and plateaued thereafter. In groups with mitral regurgitation, left ventricular remodeling was significantly elevated at the onset of regurgitation and persisted. CONCLUSIONS Mitral regurgitation is a potent driver of adverse cardiac remodeling after a myocardial infarction, irrespective of the timing of its onset.
Collapse
Affiliation(s)
- Takanori Kono
- Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, Ga
| | - Daisuke Onohara
- Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, Ga; Division of Cardiothoracic Surgery, Emory University, Atlanta, Ga
| | - Alan Amedi
- Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, Ga
| | - Daniella Corporan
- Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, Ga; Division of Cardiothoracic Surgery, Emory University, Atlanta, Ga
| | - Muralidhar Padala
- Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, Ga; Division of Cardiothoracic Surgery, Emory University, Atlanta, Ga.
| |
Collapse
|
5
|
Tseliou E, Lavine KJ, Wever-Pinzon O, Topkara VK, Meyns B, Adachi I, Zimpfer D, Birks EJ, Burkhoff D, Drakos SG. Biology of myocardial recovery in advanced heart failure with long-term mechanical support. J Heart Lung Transplant 2022; 41:1309-1323. [PMID: 35965183 DOI: 10.1016/j.healun.2022.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022] Open
Abstract
Cardiac remodeling is an adaptive, compensatory biological process following an initial insult to the myocardium that gradually becomes maladaptive and causes clinical deterioration and chronic heart failure (HF). This biological process involves several pathophysiological adaptations at the genetic, molecular, cellular, and tissue levels. A growing body of clinical and translational investigations demonstrated that cardiac remodeling and chronic HF does not invariably result in a static, end-stage phenotype but can be at least partially reversed. One of the paradigms which shed some additional light on the breadth and limits of myocardial elasticity and plasticity is long term mechanical circulatory support (MCS) in advanced HF pediatric and adult patients. MCS by providing (a) ventricular mechanical unloading and (b) effective hemodynamic support to the periphery results in functional, structural, cellular and molecular changes, known as cardiac reverse remodeling. Herein, we analyze and synthesize the advances in our understanding of the biology of MCS-mediated reverse remodeling and myocardial recovery. The MCS investigational setting offers access to human tissue, providing an unparalleled opportunity in cardiovascular medicine to perform in-depth characterizations of myocardial biology and the associated molecular, cellular, and structural recovery signatures. These human tissue findings have triggered and effectively fueled a "bedside to bench and back" approach through a variety of knockout, inhibition or overexpression mechanistic investigations in vitro and in vivo using small animal models. These follow-up translational and basic science studies leveraging human tissue findings have unveiled mechanistic myocardial recovery pathways which are currently undergoing further testing for potential therapeutic drug development. Essentially, the field is advancing by extending the lessons learned from the MCS cardiac recovery investigational setting to develop therapies applicable to the greater, not end-stage, HF population. This review article focuses on the biological aspects of the MCS-mediated myocardial recovery and together with its companion review article, focused on the clinical aspects, they aim to provide a useful framework for clinicians and investigators.
Collapse
Affiliation(s)
- Eleni Tseliou
- Division of Cardiovascular Medicine, University of Utah Health, Salt Lake City, UT; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah Health, Salt Lake City, UT
| | - Kory J Lavine
- Division of Cardiology, Washington University School of Medicine, St Louis, MO
| | - Omar Wever-Pinzon
- Division of Cardiovascular Medicine, University of Utah Health, Salt Lake City, UT; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah Health, Salt Lake City, UT
| | - Veli K Topkara
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY
| | - Bart Meyns
- Department of Cardiology and Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Iki Adachi
- Division of Cardiac Surgery, Texas Children's Hospital, Houston, TX
| | - Daniel Zimpfer
- Department of Surgery, Division of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Daniel Burkhoff
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY; Cardiovascular Research Foundation (CRF), New York, NY
| | - Stavros G Drakos
- Division of Cardiovascular Medicine, University of Utah Health, Salt Lake City, UT; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah Health, Salt Lake City, UT.
| |
Collapse
|
6
|
Edavettal JM, Gardner JD. New insight into the regression of cardiac fibrosis. Am J Physiol Heart Circ Physiol 2022; 323:H201-H203. [PMID: 35749716 DOI: 10.1152/ajpheart.00306.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Joshua M Edavettal
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jason D Gardner
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
7
|
Hnat T, Veselka J, Honek J. Left ventricular reverse remodelling and its predictors in non-ischaemic cardiomyopathy. ESC Heart Fail 2022; 9:2070-2083. [PMID: 35437948 PMCID: PMC9288763 DOI: 10.1002/ehf2.13939] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/16/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
Adverse remodelling following an initial insult is the hallmark of heart failure (HF) development and progression. It is manifested as changes in size, shape, and function of the myocardium. While cardiac remodelling may be compensatory in the short term, further neurohumoral activation and haemodynamic overload drive this deleterious process that is associated with impaired prognosis. However, in some patients, the changes may be reversed. Left ventricular reverse remodelling (LVRR) is characterized as a decrease in chamber volume and normalization of shape associated with improvement in both systolic and diastolic function. LVRR might occur spontaneously or more often in response to therapeutic interventions that either remove the initial stressor or alleviate some of the mechanisms that contribute to further deterioration of the failing heart. Although the process of LVRR in patients with new‐onset HF may take up to 2 years after initiating treatment, there is a significant portion of patients who do not improve despite optimal therapy, which has serious clinical implications when considering treatment escalation towards more aggressive options. On the contrary, in patients that achieve delayed improvement in cardiac function and architecture, waiting might avoid untimely implantable cardioverter‐defibrillator implantation. Therefore, prognostication of successful LVRR based on clinical, imaging, and biomarker predictors is of utmost importance. LVRR has a positive impact on prognosis. However, reverse remodelled hearts continue to have abnormal features. In fact, most of the molecular, cellular, interstitial, and genome expression abnormalities remain and a susceptibility to dysfunction redevelopment under biomechanical stress persists in most patients. Hence, a distinction should be made between reverse remodelling and true myocardial recovery. In this comprehensive review, current evidence on LVRR, its predictors, and implications on prognostication, with a specific focus on HF patients with non‐ischaemic cardiomyopathy, as well as on novel drugs, is presented.
Collapse
Affiliation(s)
- Tomas Hnat
- Department of Cardiology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84/1, Prague, 15006, Czech Republic
| | - Josef Veselka
- Department of Cardiology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84/1, Prague, 15006, Czech Republic
| | - Jakub Honek
- Department of Cardiology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84/1, Prague, 15006, Czech Republic
| |
Collapse
|
8
|
Ebrahimi M, Arab MM, Zamani Moghadam H, Jalal Yazdi M, Rayat doost E, Foroughian M. Risk Stratification of Pulmonary Thromboembolism using Brain Natriuretic Peptide and Troponin I; a Brief Report. ARCHIVES OF ACADEMIC EMERGENCY MEDICINE 2022; 10:e8. [PMID: 35072097 PMCID: PMC8771149 DOI: 10.22037/aaem.v10i1.1453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Pulmonary thromboembolism (PTE) is one of the most prevalent medical disorders, with a notable annual fatality rate. This study aimed to evaluated the accuracy of serum pro-BNP and troponin I levels in PTE diagnosis. METHODS This cross-sectional study was implemented on 267 patients with suspected PTE (sudden chest pain or sudden dyspnea) in Imam Reza Hospital in Mashhad, Iran. All patients underwent pulmonary computed tomography (CT) angiography (as the gold standard test) and their serum levels of troponin I and pro-BNP were measured. The screening performance characteristics of pro-BNP in detection of PTE cases were measured and reported using receiver operating characteristic (ROC) curve analysis. RESULTS Two-hundred-sixty-seven patients with a mean age of 67.7 ±11.5 years were evaluated (60.1% male). PTE was confirmed via CT angiography in 121 patients. The area under the ROC curve of troponin I and pro-BNP in detection of PTE was 0.501 ng/mL and 0.972 pg/mL, respectively. The sensitivity and specificity of proBNP at the best cut-off point (100 pg/ml) were 85.4% and 80.2%, respectively. The sensitivity and specificity of troponin I at the best cut-off point (0.005 ng/ml) were 65.5% and 42%, respectively. CONCLUSION Due to the comparatively good sensitivity and specificity of proBNP in diagnosis of pulmonary thromboembolism, it can be employed as a diagnostic determinant in patients with suspected pulmonary thromboembolism along with other laboratory tests.
Collapse
Affiliation(s)
- Mohsen Ebrahimi
- Department of Emergency Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mohsen Arab
- Department of Emergency Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Zamani Moghadam
- Department of Emergency Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Jalal Yazdi
- Department of Cardiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Esmail Rayat doost
- Department of Emergency Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mahdi Foroughian
- Department of Emergency Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Jarkovská D, Miklovič M, Švíglerová J, Červenka L, Škaroupková P, Melenovský V, Štengl M. Effects of Trandolapril on Structural, Contractile and Electrophysiological Remodeling in Experimental Volume Overload Heart Failure. Front Pharmacol 2021; 12:729568. [PMID: 34566652 PMCID: PMC8460913 DOI: 10.3389/fphar.2021.729568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic volume overload induces multiple cardiac remodeling processes that finally result in eccentric cardiac hypertrophy and heart failure. We have hypothesized that chronic angiotensin-converting enzyme (ACE) inhibition by trandolapril might affect various remodeling processes differentially, thus allowing their dissociation. Cardiac remodeling due to chronic volume overload and the effects of trandolapril were investigated in rats with an aortocaval fistula (ACF rats). The aortocaval shunt was created using a needle technique and progression of cardiac remodeling to heart failure was followed for 24 weeks. In ACF rats, pronounced eccentric cardiac hypertrophy and contractile and proarrhythmic electrical remodeling were associated with increased mortality. Trandolapril substantially reduced the electrical proarrhythmic remodeling and mortality, whereas the effect on cardiac hypertrophy was less pronounced and significant eccentric hypertrophy was preserved. Effective suppression of electrical proarrhythmic remodeling and mortality but not hypertrophy indicates that the beneficial therapeutic effects of ACE inhibitor trandolapril in volume overload heart failure might be dissociated from pure antihypertrophic effects.
Collapse
Affiliation(s)
- Dagmar Jarkovská
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Matúš Miklovič
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia.,Department of Pathophysiology, 2 Faculty of Medicine, Charles University, Prague, Czechia
| | - Jitka Švíglerová
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia.,Department of Pathophysiology, 2 Faculty of Medicine, Charles University, Prague, Czechia
| | - Petra Škaroupková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Vojtěch Melenovský
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Milan Štengl
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| |
Collapse
|
10
|
Childers RC, Trask AJ, Liu J, Lucchesi PA, Gooch KJ. Paired Pressure-Volume Loop Analysis and Biaxial Mechanical Testing Characterize Differences in Left Ventricular Tissue Stiffness of Volume Overload and Angiotensin-Induced Pressure Overload Hearts. J Biomech Eng 2021; 143:081003. [PMID: 33729495 PMCID: PMC10782875 DOI: 10.1115/1.4050541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/29/2021] [Indexed: 12/18/2022]
Abstract
Pressure overload (PO) and volume overload (VO) of the heart result in distinctive changes to geometry, due to compensatory structural remodeling. This remodeling potentially leads to changes in tissue mechanical properties. Understanding such changes is important, as tissue modulus has an impact on cardiac performance, disease progression, and influences on cell phenotype. Pressure-volume (PV) loop analysis, a clinically relevant method for measuring left ventricular (LV) chamber stiffness, was performed in vivo on control rat hearts and rats subjected to either chronic PO through Angiotensin-II infusion (4-weeks) or VO (8-weeks). Immediately following PV loops, biaxial testing was performed on LV free wall tissue to directly measure tissue mechanical properties. The β coefficient, an index of chamber stiffness calculated from the PV loop analysis, increased 98% in PO (n = 4) and decreased 38% in VO (n = 5) compared to control (n = 6). Material constants of LV walls obtained from ex vivo biaxial testing (n = 9-10) were not changed in Angiotensin-II induced PO and decreased by about half in VO compared to control (47% in the circumferential and 57% the longitudinal direction). PV loop analysis showed the expected increase in chamber stiffness of PO and expected decrease in chamber stiffness of VO. Biaxial testing showed a decreased modulus of the myocardium of the VO model, but no changes in the PO model, this suggests the increased chamber stiffness in PO, as shown in the PV loop analysis, may be secondary to changes in tissue mass and/or geometry but not an increase in passive tissue mechanical properties.
Collapse
Affiliation(s)
- Rachel C. Childers
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210
| | - Aaron J. Trask
- Center for Cardiovascular Research and The Heart Center, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, OH 43205
| | - Jun Liu
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210
| | - Pamela A. Lucchesi
- Departments of Pharmacology and Physiology, New York Medical College, Valhalla, NY 10595
| | - Keith J. Gooch
- Institute Frick Center for Heart Failure, Department of Biomedical Engineering, Davis Heart Lung Research, The Ohio State University Fontana Labs, 140 W 19th Avenue, Columbus, OH 43210
| |
Collapse
|
11
|
Childers RC, Lucchesi PA, Gooch KJ. Decreased Substrate Stiffness Promotes a Hypofibrotic Phenotype in Cardiac Fibroblasts. Int J Mol Sci 2021; 22:ijms22126231. [PMID: 34207723 PMCID: PMC8230133 DOI: 10.3390/ijms22126231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
A hypofibrotic phenotype has been observed in cardiac fibroblasts (CFs) isolated from a volume overload heart failure model, aortocaval fistula (ACF). This paradoxical phenotype results in decreased ECM synthesis despite increased TGF-β presence. Since ACF results in decreased tissue stiffness relative to control (sham) hearts, this study investigates whether the effects of substrate stiffness could account for the observed hypofibrotic phenotype in CFs isolated from ACF. CFs isolated from ACF and sham hearts were plated on polyacrylamide gels of a range of stiffness (2 kPa to 50 kPa). Markers related to cytoskeletal and fibrotic proteins were measured. Aspects of the hypofibrotic phenotype observed in ACF CFs were recapitulated by sham CFs on soft substrates. For instance, sham CFs on the softest gels compared to ACF CFs on the stiffest gels results in similar CTGF (0.80 vs. 0.76) and transgelin (0.44 vs. 0.57) mRNA expression. The changes due to stiffness may be explained by the observed decreased nuclear translocation of transcriptional regulators, MRTF-A and YAP. ACF CFs appear to have a mechanical memory of a softer environment, supported by a hypofibrotic phenotype overall compared to sham with less YAP detected in the nucleus, and less CTGF and transgelin on all stiffnesses.
Collapse
Affiliation(s)
- Rachel C. Childers
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA;
| | - Pamela A. Lucchesi
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
- Correspondence: (P.A.L.); (K.J.G.)
| | - Keith J. Gooch
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA;
- Correspondence: (P.A.L.); (K.J.G.)
| |
Collapse
|
12
|
Abstract
This review provides a comprehensive overview of the past 25+ years of research into the development of left ventricular assist device (LVAD) to improve clinical outcomes in patients with severe end-stage heart failure and basic insights gained into the biology of heart failure gleaned from studies of hearts and myocardium of patients undergoing LVAD support. Clinical aspects of contemporary LVAD therapy, including evolving device technology, overall mortality, and complications, are reviewed. We explain the hemodynamic effects of LVAD support and how these lead to ventricular unloading. This includes a detailed review of the structural, cellular, and molecular aspects of LVAD-associated reverse remodeling. Synergisms between LVAD support and medical therapies for heart failure related to reverse remodeling, remission, and recovery are discussed within the context of both clinical outcomes and fundamental effects on myocardial biology. The incidence, clinical implications and factors most likely to be associated with improved ventricular function and remission of the heart failure are reviewed. Finally, we discuss recognized impediments to achieving myocardial recovery in the vast majority of LVAD-supported hearts and their implications for future research aimed at improving the overall rates of recovery.
Collapse
Affiliation(s)
| | | | - Gabriel Sayer
- Cardiovascular Research Foundation, New York, NY (D.B.)
| | - Nir Uriel
- Cardiovascular Research Foundation, New York, NY (D.B.)
| |
Collapse
|
13
|
Lakatos BK, Ruppert M, Tokodi M, Oláh A, Braun S, Karime C, Ladányi Z, Sayour AA, Barta BA, Merkely B, Radovits T, Kovács A. Myocardial work index: a marker of left ventricular contractility in pressure- or volume overload-induced heart failure. ESC Heart Fail 2021; 8:2220-2231. [PMID: 33754487 PMCID: PMC8120402 DOI: 10.1002/ehf2.13314] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Aims While global longitudinal strain (GLS) is considered to be a sensitive marker of left ventricular (LV) function, it is significantly influenced by loading conditions. We hypothesized that global myocardial work index (GMWI), a novel marker of LV function, may show better correlation with load‐independent markers of LV contractility in rat models of pressure‐induced or volume overload‐induced heart failure. Methods and results Male Wistar rats underwent either transverse aortic constriction (TAC; n = 12) or aortocaval fistula creation (ACF; n = 12), inducing LV pressure or volume overload, respectively. Sham procedures were performed to establish control groups (n = 12/12). Echocardiographic loops were obtained to determine GLS and GMWI. Pressure‐volume analysis with transient occlusion of the inferior caval vein was carried out to calculate preload recruitable stroke work (PRSW), a load‐independent ‘gold‐standard’ parameter of LV contractility. Myocardial samples were collected to assess interstitial and perivascular fibrosis area and also myocardial atrial‐type natriuretic peptide (ANP) and brain‐type natriuretic peptide (BNP) relative mRNA expression. Compared with controls, GLS was substantially lower in the TAC group (−7.0 ± 2.8 vs. −14.5 ± 2.5%; P < 0.001) and was only mildly reduced in the ACF group (−13.2 ± 2.4 vs. −15.4 ± 2.0%, P < 0.05). In contrast with these findings, PRSW and GMWI were comparable with sham in TAC (110 ± 26 vs. 116 ± 68 mmHg; 1687 ± 275 mmHg% vs. 1537 ± 662 mmHg%; both P = NS), while it was found to be significantly reduced in ACF (58 ± 14 vs. 111 ± 40 mmHg; 1328 ± 411 vs. 1934 ± 308 mmHg%, both P < 0.01). In the pooled population, GMWI (r = 0.70; P < 0.001) but not GLS (r = −0.23; P = 0.12) showed a strong correlation with PRSW. GLS correlated with interstitial (r = 0.61; P < 0.001) and perivascular fibrosis area (r = 0.54; P < 0.001), and also with myocardial ANP (r = 0.85; P < 0.001) and BNP relative mRNA expression (r = 0.75; P < 0.001), while GMWI demonstrated no or only marginal correlation with these parameters. Conclusions Being significantly influenced by loading conditions, GLS may not be a reliable marker of LV contractility in heart failure induced by pressure or volume overload. GMWI better reflects contractility in haemodynamic overload states, making it a more robust marker of systolic function, while GLS should be considered as an integrative marker, incorporating systolic function, haemodynamic loading state, and adverse tissue remodelling of the LV.
Collapse
Affiliation(s)
- Bálint Károly Lakatos
- Heart and Vascular Center, Semmelweis University, Városmajor St. 68, Budapest, H-1122, Hungary
| | - Mihály Ruppert
- Heart and Vascular Center, Semmelweis University, Városmajor St. 68, Budapest, H-1122, Hungary
| | - Márton Tokodi
- Heart and Vascular Center, Semmelweis University, Városmajor St. 68, Budapest, H-1122, Hungary
| | - Attila Oláh
- Heart and Vascular Center, Semmelweis University, Városmajor St. 68, Budapest, H-1122, Hungary
| | - Szilveszter Braun
- Heart and Vascular Center, Semmelweis University, Városmajor St. 68, Budapest, H-1122, Hungary
| | - Christian Karime
- Heart and Vascular Center, Semmelweis University, Városmajor St. 68, Budapest, H-1122, Hungary
| | - Zsuzsanna Ladányi
- Heart and Vascular Center, Semmelweis University, Városmajor St. 68, Budapest, H-1122, Hungary
| | - Alex Ali Sayour
- Heart and Vascular Center, Semmelweis University, Városmajor St. 68, Budapest, H-1122, Hungary
| | - Bálint András Barta
- Heart and Vascular Center, Semmelweis University, Városmajor St. 68, Budapest, H-1122, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Városmajor St. 68, Budapest, H-1122, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Városmajor St. 68, Budapest, H-1122, Hungary
| | - Attila Kovács
- Heart and Vascular Center, Semmelweis University, Városmajor St. 68, Budapest, H-1122, Hungary
| |
Collapse
|
14
|
Wilcox JE, Fang JC, Margulies KB, Mann DL. Heart Failure With Recovered Left Ventricular Ejection Fraction: JACC Scientific Expert Panel. J Am Coll Cardiol 2021; 76:719-734. [PMID: 32762907 DOI: 10.1016/j.jacc.2020.05.075] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 12/25/2022]
Abstract
Reverse left ventricular (LV) remodeling and recovery of LV function are associated with improved clinical outcomes in patients with heart failure with reduced ejection fraction. A growing body of evidence suggests that even among patients who experience a complete normalization of LV ejection fraction, a significant proportion will develop recurrent LV dysfunction accompanied by recurrent heart failure events. This has led to intense interest in understanding how to manage patients with heart failure with recovered ejection fraction (HFrecEF). Because of the lack of a standard definition for HFrecEF, and the paucity of clinical data with respect to the natural history of HFrecEF patients, there are no current guidelines on how these patients should be followed up and managed. Accordingly, this JACC Scientific Expert Panel reviews the biology of reverse LV remodeling and the clinical course of patients with HFrecEF, as well as provides guidelines for defining, diagnosing, and managing patients with HFrecEF.
Collapse
Affiliation(s)
- Jane E Wilcox
- Division of Cardiovascular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| | - James C Fang
- Division of Cardiology, Department of Medicine, University of Utah, Salt Lake City, Utah
| | - Kenneth B Margulies
- Translational Research Center, Department of Medicine, University of Pennsylvania Pearlman School of Medicine, Philadelphia, Pennsylvania
| | - Douglas L Mann
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
15
|
Honetschlagerová Z, Gawrys O, Jíchová Š, Škaroupková P, Kikerlová S, Vaňourková Z, Husková Z, Melenovský V, Kompanowska-Jezierska E, Sadowski J, Kolář F, Novotný J, Hejnová L, Kujal P, Červenka L. Renal Sympathetic Denervation Attenuates Congestive Heart Failure in Angiotensin II-Dependent Hypertension: Studies with Ren-2 Transgenic Hypertensive Rats with Aortocaval Fistula. Kidney Blood Press Res 2021; 46:95-113. [PMID: 33530085 DOI: 10.1159/000513071] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 11/14/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE We examined if renal denervation (RDN) attenuates the progression of aortocaval fistula (ACF)-induced heart failure or improves renal hemodynamics in Ren-2 transgenic rats (TGR), a model of angiotensin II (ANG II)-dependent hypertension. METHODS Bilateral RDN was performed 1 week after creation of ACF. The animals studied were ACF TGR and sham-operated controls, and both groups were subjected to RDN or sham denervation. In separate groups, renal artery blood flow (RBF) responses were determined to intrarenal ANG II (2 and 8 ng), norepinephrine (NE) (20 and 40 ng) and acetylcholine (Ach) (10 and 40 ng) 3 weeks after ACF creation. RESULTS In nondenervated ACF TGR, the final survival rate was 10 versus 50% in RDN rats. RBF was significantly lower in ACF TGR than in sham-operated TGR (6.2 ± 0.3 vs. 9.7 ± 0.5 mL min-1 g-1, p < 0.05), the levels unaffected by RDN. Both doses of ANG II decreased RBF more in ACF TGR than in sham-operated TGR (-19 ± 3 vs. -9 ± 2% and -47 ± 3 vs. -22 ± 2%, p < 0.05 in both cases). RDN did not alter RBF responses to the lower dose, but increased it to the higher dose of ANG II in sham-operated as well as in ACF TGR. NE comparably decreased RBF in ACF TGR and sham-operated TGR, and RDN increased RBF responsiveness. Intrarenal Ach increased RBF significantly more in ACF TGR than in sham-operated TGR (29 ± 3 vs. 17 ± 3%, p < 0.05), the changes unaffected by RDN. ACF creation induced marked bilateral cardiac hypertrophy and lung congestion, both attenuated by RDN. In sham-operated but not in ACF TGR, RDN significantly decreased mean arterial pressure. CONCLUSION The results show that RDN significantly improved survival rate in ACF TGR; however, this beneficial effect was not associated with improvement of reduced RBF or with attenuation of exaggerated renal vascular responsiveness to ANG II.
Collapse
Affiliation(s)
- Zuzana Honetschlagerová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia,
| | - Olga Gawrys
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia.,Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Šárka Jíchová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Petra Škaroupková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Soňa Kikerlová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Zdeňka Vaňourková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Zuzana Husková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Vojtěch Melenovský
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Elzbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Science, Warsaw, Poland
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Science, Warsaw, Poland
| | - František Kolář
- Department of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jiří Novotný
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Lucie Hejnová
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Petr Kujal
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia.,Department of Pathology, 3rd Faculty of Medicine, Charles University, Prague, Czechia
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| |
Collapse
|
16
|
Ninh VK, El Hajj EC, Mouton AJ, Gardner JD. Prenatal Alcohol Exposure Causes Adverse Cardiac Extracellular Matrix Changes and Dysfunction in Neonatal Mice. Cardiovasc Toxicol 2019; 19:389-400. [PMID: 30684169 PMCID: PMC7261018 DOI: 10.1007/s12012-018-09503-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fetal alcohol syndrome (FAS) is the most severe condition of fetal alcohol spectrum disorders (FASD) and is associated with congenital heart defects. However, more subtle defects such as ventricular wall thinning and cardiac compliance may be overlooked in FASD. Our studies focus on the role of cardiac fibroblasts in the neonatal heart, and how they are affected by prenatal alcohol exposure (PAE). We hypothesize that PAE affects fibroblast function contributing to dysregulated collagen synthesis, which leads to cardiac dysfunction. To investigate these effects, pregnant C57/BL6 mice were intraperitoneally injected with 2.9 g EtOH/kg dose to achieve a blood alcohol content of approximately 0.35 on gestation days 6.75 and 7.25. Pups were sacrificed on neonatal day 5 following echocardiography measurements of left ventricular (LV) chamber dimension and function. Hearts were used for primary cardiac fibroblast isolation or protein expression analysis. PAE animals had thinner ventricular walls than saline exposed animals, which was associated with increased LV wall stress and decreased ejection fraction. In isolated fibroblasts, PAE decreased collagen I/III ratio and increased gene expression of profibrotic markers, including α-smooth muscle actin and lysyl oxidase. Notch1 signaling was assessed as a possible mechanism for fibroblast activation, and indicated that gene expression of Notch1 receptor and downstream Hey1 transcription factor were increased. Cardiac tissue analysis revealed decreased collagen I/III ratio and increased protein expression of α-smooth muscle actin and lysyl oxidase. However, Notch1 signaling components decreased in whole heart tissue. Our study demonstrates that PAE caused adverse changes in the cardiac collagen profile and a decline in cardiac function in the neonatal heart.
Collapse
Affiliation(s)
- Van K Ninh
- Department of Physiology, LSU Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Elia C El Hajj
- Department of Physiology, LSU Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Alan J Mouton
- Department of Physiology, LSU Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Jason D Gardner
- Department of Physiology, LSU Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA.
| |
Collapse
|
17
|
Vacková Š, Kikerlová S, Melenovsky V, Kolář F, Imig JD, Kompanowska-Jezierska E, Sadowski J, Červenka L. Altered Renal Vascular Responsiveness to Vasoactive Agents in Rats with Angiotensin II-Dependent Hypertension and Congestive Heart Failure. Kidney Blood Press Res 2019; 44:792-809. [PMID: 31430751 PMCID: PMC10107072 DOI: 10.1159/000501688] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/22/2019] [Indexed: 11/19/2022] Open
Abstract
Objective: We evaluated the hypothesis that the development of renal dysfunction and congestive heart failure (CHF) caused by volume overload in rats with angiotensin II (ANG II)-dependent hypertension is associated with altered renal vascular responsiveness to ANG II and to epoxyeicosatrienoic acids (EETs). Methods: Ren-2 transgenic rats (TGRs) were used as a model of ANG II-dependent hypertension. CHF was induced by volume overload achieved by the creation of the aorto-caval fistula (ACF). Renal blood flow (RBF) responses were determined to renal arterial administration of ANG II, native 11,12-EET, an analog of 14,15-EETs (EET-A), norepinephrine (NE), acetylcholine (Ach) and bradykinin (Bk) in healthy (i.e., sham-operated) TGR and ACF TGR (5 weeks after ACF creation). Results: Selective intrarenal administration of neither vasoactive drug altered mean arterial pressure in any group. Administration of ANG II caused greater decreases in RBF in ACF TGR than in sham-operated TGR, whereas after administration of NE the respective decreases were comparable in the 2 groups. Administration of Ach and Bk elicited significantly higher RBF increases in ACF TGR as compared with sham-operated TGR. In contrast, administration of 11,12-EET and EET-A caused significantly smaller RBF increases in ACF TGR than in sham-operated TGR. Conclusion: The findings show that 5 weeks after creation of ACF, the TGR exhibit exaggerated renal vasoconstrictor responses to ANG II and reduced renal vasodilatory responses to EETs, suggesting that both these alterations might play an important role in the development of renal dysfunction in this model of CHF.
Collapse
Affiliation(s)
- Šárka Vacková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Soňa Kikerlová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Vojtěch Melenovsky
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - František Kolář
- Department of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Elzbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Science, Warsaw, Poland
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Science, Warsaw, Poland
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia,
| |
Collapse
|
18
|
N-Acetylcysteine prevents the decreases in cardiac collagen I/III ratio and systolic function in neonatal mice with prenatal alcohol exposure. Toxicol Lett 2019; 315:87-95. [PMID: 31425726 DOI: 10.1016/j.toxlet.2019.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/23/2022]
Abstract
Prenatal alcohol exposure (PAE) is often associated with congenital heart defects, most commonly septal, valvular, and great vessel defects. However, there have been no known studies on whether PAE affects the resulting fibroblast population after development, and whether this has any consequences in the postnatal period. Our previous study focused on the effects of PAE on the postnatal fibroblast population, which translated into changes in cardiac extracellular matrix (ECM) composition and cardiac function in the neonatal heart. Moreover, our lab has previously demonstrated that alcohol-induced fibrosis is mediated by oxidative stress mechanisms in adult rat hearts following chronic alcohol exposure. Thus, we hypothesize that PAE alters cardiac ECM composition that persists into the postnatal period, leading to cardiac dysfunction, and these effects are prevented by antioxidant treatment. To investigate these effects, pregnant mice were intraperitoneally injected with 2.9 g EtOH/kg body weight on gestation days 6.75 and 7.25. Controls were injected with vehicle saline. Randomly selected dams in both groups were then treated with 100 mg/kg body weight of the antioxidant N-acetylcysteine (NAC) immediately after EtOH or vehicle administration. Left ventricular (LV) chamber dimension and function were assessed in sedated animals on neonatal day 5 using echocardiography. Ejection fraction decreased in the PAE group. NAC treatment prevented this depression of systolic function in PAE neonates. Hearts were analyzed for expression of fibroblast activation markers. Alpha smooth muscle actin (α-SMA) increased in PAE neonatal hearts, and this increase was prevented by NAC treatment. In PAE pups, collagen I decreased, but collagen III expression increased compared to saline animals; the overall collagen I/III ratio significantly decreased. When PAE mice were treated with NAC, collagen I/III ratio did not change. Overall, our data demonstrate that prenatal alcohol exposure produces changes in collagen subtype in neonatal cardiac ECM and a decline in systolic function, and these adverse effects were prevented by NAC treatment.
Collapse
|
19
|
Jamei Khosroshahi A, Molaei A, Samadi M, Eskandartash E. The correlation between serum level of brain natriuretic peptide and amount of left to right shunt. J Cardiovasc Thorac Res 2019; 11:68-71. [PMID: 31024675 PMCID: PMC6477107 DOI: 10.15171/jcvtr.2019.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/01/2019] [Indexed: 12/28/2022] Open
Abstract
Introduction: Natriuretic peptides such as brain natriuretic peptide (BNP), atrial natriuretic peptide (ANP) and pro-BNP are secreted in response to atrial and/or ventricular stretch. Left to right shunts such as ventricular septal defect (VSD), atrial septal defect (ASD), and patent ductus arteriosus (PDA), are treated medically or surgically. We aimed to evaluate whether the serum level of pro-BNP would be useful to measure the amount of the shunt.
Methods: In this cross sectional study, 60 infants and children, in whom physical examinations approved heart murmur, and had undergone echocardiography by which VSD, ASD, or PDA had been proven, were included in the study. The relationship between serum BNP levels and severity of shunt (Qp/Qs) based on echocardiographic and hemodynamic evaluations, was studied.
Results: There was a significant relationship between serum level of pro-BNP and the amount of the shunt in the patients with VSD, ASD, and PDA (P=0.01). A positive correlation was seen between pro-BNP serum level and Qp/Qs ratio. The mean ± SE serum level of pro-BNP in patients with Qp/Qs ratio of less than 1.5, equal to 1.5-2, and more than 2 was 30.83±2.4, 217.88±44.6, and 217.13±51.8, respectively showing a significant relationship (P=0.0001). The cut-off point of pro-BNP demonstrating a Qp/Qs ratio more than 1.5 was measured at the level of 40.36 pg/mL, with a sensitivity and specificity of 92% and 79%, respectively.
Conclusion: Based on our study, the cut-off point of 40.36 pg/mL or more for pro-BNP, showing a Qp/Qs ratio more than 1.5, can be considered as an indication for interventional procedures.
Collapse
Affiliation(s)
| | - Akbar Molaei
- Cardiovascular Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mahmoud Samadi
- Cardiovascular Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Elnaz Eskandartash
- Pediatric Health Reserch Center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
20
|
Childers RC, Sunyecz I, West TA, Cismowski MJ, Lucchesi PA, Gooch KJ. Role of the cytoskeleton in the development of a hypofibrotic cardiac fibroblast phenotype in volume overload heart failure. Am J Physiol Heart Circ Physiol 2018; 316:H596-H608. [PMID: 30575422 DOI: 10.1152/ajpheart.00095.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hemodynamic load regulates cardiac remodeling. In contrast to pressure overload (increased afterload), hearts subjected to volume overload (VO; preload) undergo a distinct pattern of eccentric remodeling, chamber dilation, and decreased extracellular matrix content. Critical profibrotic roles of cardiac fibroblasts (CFs) in postinfarct remodeling and in response to pressure overload have been well established. Little is known about the CF phenotype in response to VO. The present study characterized the phenotype of primary cultures of CFs isolated from hearts subjected to 4 wk of VO induced by an aortocaval fistula. Compared with CFs isolated from sham hearts, VO CFs displayed a "hypofibrotic" phenotype, characterized by a ~50% decrease in the profibrotic phenotypic markers α-smooth muscle actin, connective tissue growth factor, and collagen type I, despite increased levels of profibrotic transforming growth factor-β1 and an intact canonical transforming growth factor-β signaling pathway. Actin filament dynamics were characterized, which regulate the CF phenotype in response to biomechanical signals. Actin polymerization was determined by the relative amounts of G-actin monomers versus F-actin. Compared with sham CFs, VO CFs displayed ~78% less F-actin and an increased G-actin-to-F-actin ratio (G/F ratio). In sham CFs, treatment with the Rho kinase inhibitor Y-27632 to increase the G/F ratio resulted in recapitulation of the hypofibrotic CF phenotype observed in VO CFs. Conversely, treatment of VO CFs with jasplakinolide to decrease the G/F ratio restored a more profibrotic response (>2.5-fold increase in α-smooth muscle actin, connective tissue growth factor, and collagen type I). NEW & NOTEWORTHY The present study is the first to describe a "hypofibrotic" phenotype of cardiac fibroblasts isolated from a volume overload model. Our results suggest that biomechanical regulation of actin microfilament stability and assembly is a critical mediator of cardiac fibroblast phenotypic modulation.
Collapse
Affiliation(s)
- Rachel C Childers
- Department of Biomedical Engineering, The Ohio State University , Columbus, Ohio.,The Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University , Columbus, Ohio
| | - Ian Sunyecz
- Department of Biomedical Engineering, The Ohio State University , Columbus, Ohio.,The Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - T Aaron West
- The Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Mary J Cismowski
- The Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Pamela A Lucchesi
- The Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,Department of Pediatrics, The Ohio State University , Columbus, Ohio
| | - Keith J Gooch
- Department of Biomedical Engineering, The Ohio State University , Columbus, Ohio.,The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University , Columbus, Ohio
| |
Collapse
|
21
|
KALA P, SEDLÁKOVÁ L, ŠKAROUPKOVÁ P, KOPKAN L, VAŇOURKOVÁ Z, TÁBORSKÝ M, NISHIYAMA A, HWANG SH, HAMMOCK BD, SADOWSKI J, MELENOVSKÝ V, IMIG JD, ČERVENKA L. Effect of Angiotensin-Converting Enzyme Blockade, Alone or Combined With Blockade of Soluble Epoxide Hydrolase, on the Course of Congestive Heart Failure and Occurrence of Renal Dysfunction in Ren-2 Transgenic Hypertensive Rats With Aorto-Caval Fistula. Physiol Res 2018. [DOI: 10.33549/physiolres.933757] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We showed recently that increasing kidney epoxyeicosatrienoic acids (EETs) by blocking soluble epoxide hydrolase (sEH), an enzyme responsible for EETs degradation, retarded the development of renal dysfunction and progression of aorto-caval fistula(ACF)-induced congestive heart failure (CHF) in Ren-2 transgenic hypertensive rats (TGR). In that study the final survival rate of untreated ACF TGR was only 14 % but increased to 41 % after sEH blockade. Here we examined if sEH inhibition added to renin-angiotensin system (RAS) blockade would further enhance protection against ACF-induced CHF in TGR. The treatment regimens were started one week after ACF creation and the follow-up period was 50 weeks. RAS was blocked using angiotensin-converting enzyme inhibitor (ACEi, trandolapril, 6 mg/l) and sEH with an sEH inhibitor (sEHi, c-AUCB, 3 mg/l). Renal hemodynamics and excretory function were determined two weeks post-ACF, just before the onset of decompensated phase of CHF. 29 weeks post-ACF no untreated animal survived. ACEi treatment greatly improved the survival rate, to 84 % at the end of study. Surprisingly, combined treatment with ACEi and sEHi worsened the rate (53 %). Untreated ACF TGR exhibited marked impairment of renal function and the treatment with ACEi alone or combined with sEH inhibition did not prevent it. In conclusion, addition of sEHi to ACEi treatment does not provide better protection against CHF progression and does not increase the survival rate in ACF TGR: indeed, the rate decreases significantly. Thus, combined treatment with sEHi and ACEi is not a promising approach to further attenuate renal dysfunction and retard progression of CHF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - L. ČERVENKA
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
22
|
El Hajj EC, El Hajj MC, Ninh VK, Bradley JM, Claudino MA, Gardner JD. Detrimental role of lysyl oxidase in cardiac remodeling. J Mol Cell Cardiol 2017; 109:17-26. [DOI: 10.1016/j.yjmcc.2017.06.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/15/2017] [Accepted: 06/27/2017] [Indexed: 01/02/2023]
|
23
|
Reddy S, Hu DQ, Zhao M, Blay E, Sandeep N, Ong SG, Jung G, Kooiker KB, Coronado M, Fajardo G, Bernstein D. miR-21 is associated with fibrosis and right ventricular failure. JCI Insight 2017; 2:91625. [PMID: 28469078 DOI: 10.1172/jci.insight.91625] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/23/2017] [Indexed: 12/14/2022] Open
Abstract
Combined pulmonary insufficiency (PI) and stenosis (PS) is a common long-term sequela after repair of many forms of congenital heart disease, causing progressive right ventricular (RV) dilation and failure. Little is known of the mechanisms underlying this combination of preload and afterload stressors. We developed a murine model of PI and PS (PI+PS) to identify clinically relevant pathways and biomarkers of disease progression. Diastolic dysfunction was induced (restrictive RV filling, elevated RV end-diastolic pressures) at 1 month after generation of PI+PS and progressed to systolic dysfunction (decreased RV shortening) by 3 months. RV fibrosis progressed from 1 month (4.4% ± 0.4%) to 3 months (9.2% ± 1%), along with TGF-β signaling and tissue expression of profibrotic miR-21. Although plasma miR-21 was upregulated with diastolic dysfunction, it was downregulated with the onset of systolic dysfunction), correlating with RV fibrosis. Plasma miR-21 in children with PI+PS followed a similar pattern. A model of combined RV volume and pressure overload recapitulates the evolution of RV failure unique to patients with prior RV outflow tract surgery. This progression was characterized by enhanced TGF-β and miR-21 signaling. miR-21 may serve as a plasma biomarker of RV failure, with decreased expression heralding the need for valve replacement.
Collapse
Affiliation(s)
- Sushma Reddy
- Department of Pediatrics, Division of Cardiology, Stanford University, Stanford, California, USA
| | - Dong-Qing Hu
- Department of Pediatrics, Division of Cardiology, Stanford University, Stanford, California, USA
| | - Mingming Zhao
- Department of Pediatrics, Division of Cardiology, Stanford University, Stanford, California, USA
| | - Eddie Blay
- Department of Surgery, Temple University, Philadelphia, Pennsylvania, USA
| | - Nefthi Sandeep
- Department of Pediatrics, Division of Cardiology, Stanford University, Stanford, California, USA
| | - Sang-Ging Ong
- Cardiovascular Institute, Stanford University, Stanford, California, USA
| | - Gwanghyun Jung
- Department of Pediatrics, Division of Cardiology, Stanford University, Stanford, California, USA
| | - Kristina B Kooiker
- Department of Pediatrics, Division of Cardiology, Stanford University, Stanford, California, USA
| | - Michael Coronado
- Department of Pediatrics, Division of Cardiology, Stanford University, Stanford, California, USA
| | - Giovanni Fajardo
- Department of Pediatrics, Division of Cardiology, Stanford University, Stanford, California, USA
| | - Daniel Bernstein
- Department of Pediatrics, Division of Cardiology, Stanford University, Stanford, California, USA
| |
Collapse
|
24
|
Järve A, Mühlstedt S, Qadri F, Nickl B, Schulz H, Hübner N, Özcelik C, Bader M. Adverse left ventricular remodeling by glycoprotein nonmetastatic melanoma protein B in myocardial infarction. FASEB J 2016; 31:556-568. [DOI: 10.1096/fj.201600613r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/11/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Anne Järve
- Max Delbrück Center for Molecular MedicineBerlinGermany
- Berlin‐Brandenburg School of Regenerative TherapiesBerlinGermany
| | - Silke Mühlstedt
- Max Delbrück Center for Molecular MedicineBerlinGermany
- Faculty of Mathematics and Natural Sciences IHumboldt‐University BerlinGermany
- Berlin Institute of HealthBerlinGermany
| | | | - Bernadette Nickl
- Max Delbrück Center for Molecular MedicineBerlinGermany
- Berlin Institute of HealthBerlinGermany
| | | | | | | | - Michael Bader
- Max Delbrück Center for Molecular MedicineBerlinGermany
- Berlin Institute of HealthBerlinGermany
- Charité‐University MedicineBerlinGermany
- German Center for Cardiovascular Research (DZHK)BerlinGermany
- Institute for BiologyUniversity of LübeckLübeckGermany
| |
Collapse
|
25
|
Duggan DJ, Tabrizchi R. Angiotensin II control of regional haemodynamics in rats with aortocaval fistula. Exp Physiol 2016; 101:1192-1205. [PMID: 27427425 DOI: 10.1113/ep085717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/12/2016] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the central question of this study? Hyperdynamic circulation because of arteriovenous fistula results in reduction of blood flow to organs but is a model of low circulatory resistance with activated renin-angiotensin system. The aim was to determine contributions of different subtypes of angiotensin II receptors to regional blood flow and vascular conductance in a hyperdynamic circulatory state. What is the main finding and its importance? The renin-angiotensin system plays a pivotal role in control of regional blood flow in animals with arteriovenous fistula and makes a major contribution to the maintenance of normal arterial blood pressure. In this hyperdynamic circulatory state model, angiotensin II type 1 receptors predominated in regulating regional haemodynamics. Regional perfusion is reduced and the renin-angiotensin system activated in rats with aortocaval fistula. The effects of captopril (angiotensin-converting enzyme inhibitor), losartan (angiotensin II type 1 receptor antagonist) and PD 123319 (angiotensin II type 2 receptor antagonist) on regional blood flow and vascular conductance were assessed in rats with aortocaval fistula and sham-operated rats. Control of blood flow and vascular conductance by angiotensin II was evaluated by serial bolus injections of captopril, losartan and PD 123319 in anaesthetized rats. In rats with fistula, PD 123319 significantly decreased, whereas captopril and losartan increased, mesenteric blood flow. The decrease in mesenteric blood flow induced by PD 123319 was significantly greater in rats with fistula compared with sham operation. Captopril and PD 123319 significantly decreased renal blood flow compared with losartan, which increased it. In sham-operated rats, captopril and losartan significantly increased, whereas PD 123319 decreased, mesenteric and renal conductance. In rats with fistula, captopril and losartan significantly increased, whereas PD 123319 decreased, mesenteric conductance. The significant increase produced by losartan on mesenteric conductance was greater in rats with fistula compared with sham operation. PD 123319 produced a significantly greater decrease in renal conductance of rats with aortocaval fistula compared with sham-operated rats. Captopril, losartan and PD 123319 did not significantly affect perfusion in the hindquarter in rats with fistula or sham-operated. The renin-angiotensin system is more active in the control of regional haemodynamics in rats with aortocaval fistula and acts as a mechanism of maintaining normal arterial blood pressure in these animals. In rats with fistula, angiotensin II type 1 receptors predominate in regulating regional haemodynamics.
Collapse
Affiliation(s)
- Daniel J Duggan
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St John's, Newfoundland and Labrador, Canada
| | - Reza Tabrizchi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St John's, Newfoundland and Labrador, Canada
| |
Collapse
|
26
|
Sedmera D, Neckar J, Benes J, Pospisilova J, Petrak J, Sedlacek K, Melenovsky V. Changes in Myocardial Composition and Conduction Properties in Rat Heart Failure Model Induced by Chronic Volume Overload. Front Physiol 2016; 7:367. [PMID: 27610087 PMCID: PMC4997968 DOI: 10.3389/fphys.2016.00367] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/09/2016] [Indexed: 11/13/2022] Open
Abstract
Volume overload leads to development of eccentric cardiac hypertrophy and heart failure. In our previous report, we have shown myocyte hypertrophy with no fibrosis and decrease in gap junctional coupling via connexin43 in a rat model of aorto-caval fistula at 21 weeks. Here we set to analyze the electrophysiological and protein expression changes in the left ventricle and correlate them with phenotypic severity based upon ventricles to body weight ratio. ECG analysis showed increased amplitude and duration of the P wave, prolongation of PR and QRS interval, ST segment elevation and decreased T wave amplitude in the fistula group. Optical mapping showed a prolongation of action potential duration in the hypertrophied hearts. Minimal conduction velocity (CV) showed a bell-shaped curve, with a significant increase in the mild cases and there was a negative correlation of both minimal and maximal CV with heart to body weight ratio. Since the CV is influenced by gap junctional coupling as well as the autonomic nervous system, we measured the amounts of tyrosine hydroxylase (TH) and choline acetyl transferase (ChAT) as a proxy for sympathetic and parasympathetic innervation, respectively. At the protein level, we confirmed a significant decrease in total and phosphorylated connexin43 that was proportional to the level of hypertrophy, and similarly decreased levels of TH and ChAT. Even at a single time-point, severity of morphological phenotype correlates with progression of molecular and electrophysiological changes, with the most hypertrophied hearts showing the most severe changes that might be related to arrhythmogenesis.
Collapse
Affiliation(s)
- David Sedmera
- Institute of Physiology, Czech Academy of SciencesPrague, Czech Republic; First Faculty of Medicine, Institute of Anatomy, Charles University in PraguePrague, Czech Republic
| | - Jan Neckar
- Institute of Physiology, Czech Academy of SciencesPrague, Czech Republic; Institute of Clinical and Experimental MedicinePrague, Czech Republic
| | - Jiri Benes
- Institute of Physiology, Czech Academy of SciencesPrague, Czech Republic; First Faculty of Medicine, Institute of Anatomy, Charles University in PraguePrague, Czech Republic; Department of Radiology, First Faculty of Medicine, Charles University in PraguePrague, Czech Republic
| | - Jana Pospisilova
- First Faculty of Medicine, Institute of Pathological Physiology, Charles University in Prague Prague, Czech Republic
| | - Jiri Petrak
- First Faculty of Medicine, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec Vestec, Czech Republic
| | - Kamil Sedlacek
- Institute of Clinical and Experimental Medicine Prague, Czech Republic
| | | |
Collapse
|
27
|
Louzao-Martinez L, Vink A, Harakalova M, Asselbergs FW, Verhaar MC, Cheng C. Characteristic adaptations of the extracellular matrix in dilated cardiomyopathy. Int J Cardiol 2016; 220:634-46. [PMID: 27391006 DOI: 10.1016/j.ijcard.2016.06.253] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/31/2016] [Accepted: 06/26/2016] [Indexed: 12/20/2022]
Abstract
Dilated cardiomyopathy (DCM) is a relatively common heart muscle disease characterized by the dilation and thinning of the left ventricle accompanied with left ventricular systolic dysfunction. Myocardial fibrosis is a major feature in DCM and therefore it is inevitable that corresponding extracellular matrix (ECM) changes are involved in DCM onset and progression. Increasing our understanding of how ECM adaptations are involved in DCM could be important for the development of future interventions. This review article discusses the molecular adaptations in ECM composition and structure that have been reported in both animal and human studies of DCM. Furthermore, we provide a transcriptome-based catalogue of ECM genes that are associated with DCM, generated by using NCBI Gene Expression Omnibus database sets for DCM. Based on this in silico analysis, many novel ECM components involved in DCM are identified and discussed in this review. With the information gathered, we propose putative pathways of ECM adaptations in onset and progression of DCM.
Collapse
Affiliation(s)
- Laura Louzao-Martinez
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, The Netherlands; Netherlands Heart Institute, University Medical Center Utrecht, The Netherlands
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, The Netherlands
| | - Magdalena Harakalova
- Netherlands Heart Institute, University Medical Center Utrecht, The Netherlands; Department of Pathology, University Medical Center Utrecht, The Netherlands; Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Netherlands Heart Institute, University Medical Center Utrecht, The Netherlands; Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, The Netherlands; Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, United Kingdom
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, The Netherlands
| | - Caroline Cheng
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, The Netherlands; Department of Cardiology, Thoraxcenter, Division of Experimental Cardiology, Erasmus University Medical Center Rotterdam, The Netherlands.
| |
Collapse
|
28
|
Mouton AJ, Ninh VK, El Hajj EC, El Hajj MC, Gilpin NW, Gardner JD. Exposure to chronic alcohol accelerates development of wall stress and eccentric remodeling in rats with volume overload. J Mol Cell Cardiol 2016; 97:15-23. [PMID: 27107489 DOI: 10.1016/j.yjmcc.2016.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 01/19/2023]
Abstract
Chronic alcohol abuse is one of the leading causes of dilated cardiomyopathy (DCM) in the United States. Volume overload (VO) also produces DCM characterized by left ventricular (LV) dilatation and reduced systolic and diastolic function, eventually progressing to congestive heart failure. For this study, we hypothesized that chronic alcohol exposure would exacerbate cardiac dysfunction and remodeling due to VO. Aortocaval fistula surgery was used to induce VO, and compensatory cardiac remodeling was allowed to progress for either 3days (acute) or 8weeks (chronic). Alcohol was administered via chronic intermittent ethanol vapor (EtOH) for 2weeks before the acute study and for the duration of the 8week chronic study. Temporal alterations in LV function were assessed by echocardiography. At the 8week end point, pressure-volume loop analysis was performed by LV catheterization and cardiac tissue collected. EtOH did not exacerbate LV dilatation (end-systolic and diastolic diameter) or systolic dysfunction (fractional shortening, ejection fraction) due to VO. The combined stress of EtOH and VO decreased the eccentric index (posterior wall thickness to end-diastolic diameter ratio), increased end-diastolic pressure (EDP), and elevated diastolic wall stress. VO also led to increases in posterior wall thickness, which was not observed in the VO+EtOH group, and wall thickness significantly correlated with LV BNP expression. VO alone led to increases in interstitial collagen staining (picrosirius red), which while not statistically significant, tended to be decreased by EtOH. VO increased LV collagen I protein expression, whereas in rats with VO+EtOH, LV collagen I was not elevated relative to Sham. The combination of VO and EtOH also led to increases in LV collagen III expression relative to Sham. Rats with VO+EtOH had significantly lower collagen I/III ratio than rats with VO alone. During the acute remodeling phase of VO (3days), VO significantly increased collagen III expression, whereas this effect was not observed in rats with VO+EtOH. In conclusion, chronic EtOH accelerates the development of elevated wall stress and promotes early eccentric remodeling in rats with VO. Our data indicate that these effects may be due to disruptions in compensatory hypertrophy and extracellular matrix remodeling in response to volume overload.
Collapse
Affiliation(s)
- Alan J Mouton
- LSU Health Sciences Center, Department of Physiology, 1901 Perdido Street, New Orleans, LA 70112, United States.
| | - Van K Ninh
- LSU Health Sciences Center, Department of Physiology, 1901 Perdido Street, New Orleans, LA 70112, United States.
| | - Elia C El Hajj
- LSU Health Sciences Center, Department of Physiology, 1901 Perdido Street, New Orleans, LA 70112, United States.
| | - Milad C El Hajj
- LSU Health Sciences Center, Department of Physiology, 1901 Perdido Street, New Orleans, LA 70112, United States.
| | - Nicholas W Gilpin
- LSU Health Sciences Center, Department of Physiology, 1901 Perdido Street, New Orleans, LA 70112, United States.
| | - Jason D Gardner
- LSU Health Sciences Center, Department of Physiology, 1901 Perdido Street, New Orleans, LA 70112, United States.
| |
Collapse
|
29
|
Fu L, Wei CC, Powell PC, Bradley WE, Ahmad S, Ferrario CM, Collawn JF, Dell'Italia LJ. Increased fibroblast chymase production mediates procollagen autophagic digestion in volume overload. J Mol Cell Cardiol 2016; 92:1-9. [PMID: 26807691 DOI: 10.1016/j.yjmcc.2016.01.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Previous work has identified mast cells as the major source of chymase largely associated with a profibrotic phenotype. We recently reported increased fibroblast autophagic procollagen degradation in a rat model of pure volume overload (VO). Here we demonstrate a connection between increased fibroblast chymase production and autophagic digestion of procollagen in the pure VO of aortocaval fistula (ACF) in the rat. METHODS AND RESULTS Isolated LV fibroblasts taken from 4 and 12week ACF Sprague-Dawley rats have significant increases in chymase mRNA and chymase activity. Increased intracellular chymase protein is documented by immunocytochemistry in the ACF fibroblasts compared to cells obtained from age-matched sham rats. To implicate VO as a stimulus for chymase production, we show that isolated adult rat LV fibroblasts subjected to 24h of 20% cyclical stretch induces chymase mRNA and protein production. Exogenous chymase treatment of control isolated adult cardiac fibroblasts demonstrates that chymase is internalized through a dynamin-dependent mechanism. Chymase treatment leads to an increased formation of autophagic vacuoles, LC3-II production, autophagic flux, resulting in increased procollagen degradation. Chymase inhibitor treatment reduces cyclical stretch-induced autophagy in isolated cardiac fibroblasts, demonstrating chymase's role in autophagy induction. CONCLUSION In a pure VO model, chymase produced in adult cardiac fibroblasts leads to autophagic degradation of newly synthesized intracellular procollagen I, suggesting a new role of chymase in extracellular matrix degradation.
Collapse
Affiliation(s)
- Lianwu Fu
- Birmingham Veteran Affairs Medical Center, University of Alabama at Birmingham, Birmingham, AL, United States; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Chih-Chang Wei
- Birmingham Veteran Affairs Medical Center, University of Alabama at Birmingham, Birmingham, AL, United States; Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Pamela C Powell
- Birmingham Veteran Affairs Medical Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Wayne E Bradley
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sarfaraz Ahmad
- Division of Surgical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Carlos M Ferrario
- Division of Surgical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Louis J Dell'Italia
- Birmingham Veteran Affairs Medical Center, University of Alabama at Birmingham, Birmingham, AL, United States; Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
30
|
Volume overload induces autophagic degradation of procollagen in cardiac fibroblasts. J Mol Cell Cardiol 2015; 89:241-250. [PMID: 26596413 DOI: 10.1016/j.yjmcc.2015.10.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/07/2015] [Accepted: 10/22/2015] [Indexed: 12/31/2022]
Abstract
In a pure volume overloaded (VO) heart, interstitial collagen loss is degraded by matrix metalloproteinases (MMPs) that leads to left ventricular (LV) dilatation and heart failure. Cardiac fibroblasts are the primary source of extracellular matrix proteins that connect cardiomyocytes. The goal of this study was to determine how VO affects intracellular procollagen in cardiac fibroblasts. Using the aortocaval fistula (ACF) model in Sprague-Dawley rats, we demonstrate that cardiac fibroblasts isolated from 4 and 12 wk ACF animals have decreased intracellular procollagen I compared to the fibroblasts from age-matched shams. The reduction of procollagen I is associated with increased autophagy as demonstrated by increased autophagic vacuoles and LC3-II expression. To test the relationship between autophagy and procollagen degradation, we treated adult cardiac fibroblasts with either an autophagy inducer, rapamycin, or an inhibitor, wortmannin, and found that procollagen I protein levels were decreased in fibroblasts treated with rapamycin and elevated in wortmannin-treated cells. In addition, we demonstrated that VO induces oxidative stresses in cardiac fibroblasts from 4 and 12 wk ACF rats. Treatment of cultured cardiac fibroblasts with an oxidative stress-inducing agent (DMNQ) induces autophagy and intracellular procollagen I and fibronectin degradation, which is reversed by wortmannin but not by the global MMP inhibitor (PD166793). Mechanical stretch of cardiac fibroblasts also induces oxidative stress and autophagic degradation of procollagen I and fibronectin. Our results suggest that in addition to the well-known effects of MMPs on extracellular collagen degradation in VO, there is a concurrent degradation of intracellular procollagen and fibronectin mediated by oxidative stress-induced autophagy in cardiac fibroblasts.
Collapse
|
31
|
Zhang N, Yang Z, Yuan Y, Li F, Liu Y, Ma Z, Liao H, Bian Z, Zhang Y, Zhou H, Deng W, Zhou M, Tang Q. Naringenin attenuates pressure overload-induced cardiac hypertrophy. Exp Ther Med 2015; 10:2206-2212. [PMID: 26668617 DOI: 10.3892/etm.2015.2816] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 09/01/2015] [Indexed: 01/09/2023] Open
Abstract
Cardiac hypertrophy is characterized by abnormal enlargement of cardiomyocytes and disproportionate accumulation of extracellular interstitial fibrosis, which are major predictors of the development of coronary artery disease and heart failure. Naringenin is a bitter principle component of grapefruit that has numerous pharmacological effects, including anti-inflammatory, hypolipidemic, antithrombotic and antiatherogenic properties. In order to investigate whether naringenin is able to exert a protective effect against cardiac hypertrophy induced by pressure overload, aortic banding (AB) was performed to induce cardiac hypertrophy in mice, and naringenin was administered for 7 weeks. A total of 60 mice were allocated into four groups: Sham + vehicle, AB + vehicle, sham + naringenin and AB + naringenin. Naringenin treatment attenuated cardiac dysfunction, as indicated by the results of echocardiography and catheter-based measurements at 8 weeks post-surgery. The extent of cardiac hypertrophy was assessed by the heart weight/body weight, heart weight/tibial length and lung weight/body weight ratios, in addition to the cardiomyocyte cross-sectional area and the mRNA expression levels of hypertrophic maker, all of which were mitigated by naringenin administration. Naringenin also inhibited the expression of transforming growth factor-β1, connective tissue growth factor, collagen Iα and collagen IIIα, and attenuated interstitial fibrosis. In addition, naringenin downregulated the activation of the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathways. In conclusion, naringenin attenuated cardiac hypertrophy and interstitial fibrosis, in addition to improving left ventricular function in pressure-overloaded mice. The cardioprotective effect exerted by naringenin may be associated with the inhibition of PI3K/Akt, ERK and JNK signaling pathways.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fangfang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhenguo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Haihan Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhouyan Bian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yao Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Mengqiao Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
32
|
Schaefer U, Lubos E, Deuschl F, Schofer N, Grahn H, Conradi L, Schirmer J, Reichenspurner H, Schmidt T, Frerker C, Kuck KH, Westermann D, Blankenberg S, Treede H. Transseptal and transmitral Parachute® implantation in conjunction with "MitraClipping". EUROINTERVENTION 2015; 11:673-81. [PMID: 26348676 DOI: 10.4244/eijy15m09_05] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIMS Parachute® implantation (PI) is an attractive treatment option for patients with left ventricular apical aneurysms (LVAA). So far, only the retrograde approach has been approved for PI. Unfortunately, severe functional mitral regurgitation (MR) restricts PI. Thus, we were intrigued to combine PI and MitraClip therapy (MCT) as a new transvenous hybrid concept. METHODS AND RESULTS PI was performed via a transseptally placed MitraClip guide in six consecutive patients (age 73.8±5.2; 66% male). Immediately after PI, MR was treated by MCT. Invasive right and left heart haemodynamics were taken before and after PI and MCT, respectively. Procedural success was 100%. PI induced a numerical increase in cardiac output (CO: +36.4; p=0.15) and stroke volume (SV: +30.1%; p=0.09), despite some evidence of MR aggravation. Subsequent MCT successfully reduced MR at least to mild in five patients and to moderate in one patient. SV and CO demonstrated a further increase (SV: +44.3%, p=0.03; CO: +44.5%; p=0.03). CONCLUSIONS The study documents for the first time the feasibility of transseptal and transmitral PI. Nevertheless, pre-procedural MR seems to counteract the beneficial effects of PI. Hence, the combined transseptal approach of PI and MCT seems to be the appropriate strategy in patients with significant MR and LVAA.
Collapse
Affiliation(s)
- Ulrich Schaefer
- Division of Cardiology, University Heart Center Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Červenka L, Melenovský V, Husková Z, Škaroupková P, Nishiyama A, Sadowski J. Inhibition of soluble epoxide hydrolase counteracts the development of renal dysfunction and progression of congestive heart failure in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Clin Exp Pharmacol Physiol 2015; 42:795-807. [DOI: 10.1111/1440-1681.12419] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/27/2015] [Accepted: 05/01/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Luděk Červenka
- Centre for Experimental Medicine; Institute for Clinical and Experimental Medicine; Prague Czech Republic
- Department of Pathophysiology; 2nd Faculty of Medicine; Charles University; Prague Czech Republic
| | - Vojtěch Melenovský
- Department of Cardiology; Institute for Clinical and Experimental Medicine; Prague Czech Republic
| | - Zuzana Husková
- Centre for Experimental Medicine; Institute for Clinical and Experimental Medicine; Prague Czech Republic
| | - Petra Škaroupková
- Centre for Experimental Medicine; Institute for Clinical and Experimental Medicine; Prague Czech Republic
| | | | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology; M. Mossakowski Medical Research Centre; Polish Academy of Science; Warsaw Poland
| |
Collapse
|
34
|
Schmidt T, Frerker C, Thielsen T, Dotz I, Wohlmuth P, Kuck KH, Schäfer U. New evidence for favourable effects on haemodynamics and ventricular performance after Parachute(®) implantation in humans. Eur J Heart Fail 2015; 16:1112-9. [PMID: 25298333 DOI: 10.1002/ejhf.160] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/30/2014] [Accepted: 08/01/2014] [Indexed: 11/06/2022] Open
Abstract
AIMS The Parachute(®) Ventricular Partitioning Device offers an additional strategy for heart failure patients with exclusion of the infarcted wall to decrease left ventricular volumes, myocardial work, and wall stress. The aim of the present study was to evaluate if Parachute implantation might influence acute haemodynamic and functional performance in patients with left ventricular aneurysm after anteroapical infarction. METHODS AND RESULTS Sixteen patients underwent a Parachute device implantation. Invasive right and left heart haemodynamic assessments as well as left ventricular analysis for evaluating left ventricle end-diastolic and end-systolic volumes, and regional ventricular function were analysed. After implantation a significant increase in stroke volume (+25.4%, P = 0.0005), stroke volume index (+26.5%, P = 0.0005), cardiac output (+25.8%, P < 0.0001) and cardiac index (+25.9%, P < 0.0001) was found. In addition to an increase in mean aortic (P = 0.0050) and pulmonary pressure (P = 0.0347), there were significant increases in stroke work index (P = 0.0003), left (P = 0.0015) and right (P = 0.0024) ventricular stroke work index as well as left and right cardiac work index (both P = 0.0001), while the remaining haemodynamic parameters remained unchanged. Left ventricular analysis showed an acute reduction of the left ventricular end-diastolic volume (-18.0%, P < 0.0001) and left ventricular end-systolic volume (-26.3%, P < 0.0001) and an increase in ejection fraction from 22.9 to 30.6% (+38.4%, P < 0.0001). Most interestingly, the basal wall segments displayed an increased contribution to the left ventricular ejection fraction with increased wall motion in nearly all segments (except the apex region). CONCLUSION The data demonstrate the acute haemodynamic efficacy of Parachute device implantation. The implantation of the device displays immediate significant left ventricular volume reduction leading to an acute improved right and left cardiac function, proving the concept of left ventricular partitioning.
Collapse
Affiliation(s)
- Tobias Schmidt
- ASKLEPIOS Klinik St. Georg Hospital, Division of Cardiology, Lohmühlenstrasse 5, 20099, Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Červenka L, Melenovský V, Husková Z, Sporková A, Bürgelová M, Škaroupková P, Hwang SH, Hammock BD, Imig JD, Sadowski J. Inhibition of soluble epoxide hydrolase does not improve the course of congestive heart failure and the development of renal dysfunction in rats with volume overload induced by aorto-caval fistula. Physiol Res 2015; 64:857-73. [PMID: 26047375 DOI: 10.33549/physiolres.932977] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The detailed mechanisms determining the course of congestive heart failure (CHF) and associated renal dysfunction remain unclear. In a volume overload model of CHF induced by creation of aorto-caval fistula (ACF) in Hannover Sprague-Dawley (HanSD) rats we explored the putative pathogenetic contribution of epoxyeicosatrienoic acids (EETs), active products of CYP-450 dependent epoxygenase pathway of arachidonic acid metabolism, and compared it with the role of the renin-angiotensin system (RAS). Chronic treatment with cis-4-[4-(3-adamantan-1-yl-ureido) cyclohexyloxy]benzoic acid (c-AUCB, 3 mg/l in drinking water), an inhibitor of soluble epoxide hydrolase (sEH) which normally degrades EETs, increased intrarenal and myocardial EETs to levels observed in sham-operated HanSD rats, but did not improve the survival or renal function impairment. In contrast, chronic angiotensin-converting enzyme inhibition (ACEi, trandolapril, 6 mg/l in drinking water) increased renal blood flow, fractional sodium excretion and markedly improved survival, without affecting left ventricular structure and performance. Hence, renal dysfunction rather than cardiac remodeling determines long-term mortality in advanced stage of CHF due to volume overload. Strong protective actions of ACEi were associated with suppression of the vasoconstrictor/sodium retaining axis and activation of vasodilatory/natriuretic axis of the renin-angiotensin system in the circulating blood and kidney tissue.
Collapse
Affiliation(s)
- L Červenka
- Department of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chalikias GK, Tziakas DN. Biomarkers of the extracellular matrix and of collagen fragments. Clin Chim Acta 2015; 443:39-47. [DOI: 10.1016/j.cca.2014.06.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 06/15/2014] [Accepted: 06/27/2014] [Indexed: 02/06/2023]
|
37
|
Hutchinson KR, Saripalli C, Chung CS, Granzier H. Increased myocardial stiffness due to cardiac titin isoform switching in a mouse model of volume overload limits eccentric remodeling. J Mol Cell Cardiol 2015; 79:104-14. [PMID: 25450617 PMCID: PMC4302034 DOI: 10.1016/j.yjmcc.2014.10.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 01/09/2023]
Abstract
We investigated the cellular and molecular mechanisms of diastolic dysfunction in pure volume overload induced by aortocaval fistula (ACF) surgery in the mouse. Four weeks of volume overload resulted in significant biventricular hypertrophy; protein expression analysis in left ventricular (LV) tissue showed a marked decrease in titin's N2BA/N2B ratio with no change in phosphorylation of titin's spring region. Titin-based passive tensions were significantly increased; a result of the decreased N2BA/N2B ratio. Conscious echocardiography in ACF mice revealed eccentric remodeling and pressure volume analysis revealed systolic dysfunction: reductions in ejection fraction (EF), +dP/dt, and the slope of the end-systolic pressure volume relationships (ESPVR). ACF mice also had diastolic dysfunction: increased LV end-diastolic pressure and reduced relaxation rates. Additionally, a decrease in the slope of the end diastolic pressure volume relationship (EDPVR) was found. However, correcting for altered geometry of the LV normalized the change in EDPVR and revealed, in line with our skinned muscle data, increased myocardial stiffness in vivo. ACF mice also had increased expression of the signaling proteins FHL-1, FHL-2, and CARP that bind to titin's spring region suggesting that titin stiffening is important to the volume overload phenotype. To test this we investigated the effect of volume overload in the RBM20 heterozygous (HET) mouse model, which exhibits reduced titin stiffness. It was found that LV hypertrophy was attenuated and that LV eccentricity was exacerbated. We propose that pure volume overload induces an increase in titin stiffness that is beneficial and limits eccentric remodeling.
Collapse
Affiliation(s)
- Kirk R Hutchinson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85724, USA
| | - Chandra Saripalli
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85724, USA
| | - Charles S Chung
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85724, USA
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
38
|
Yancey DM, Guichard JL, Ahmed MI, Zhou L, Murphy MP, Johnson MS, Benavides GA, Collawn J, Darley-Usmar V, Dell'Italia LJ. Cardiomyocyte mitochondrial oxidative stress and cytoskeletal breakdown in the heart with a primary volume overload. Am J Physiol Heart Circ Physiol 2015; 308:H651-63. [PMID: 25599572 DOI: 10.1152/ajpheart.00638.2014] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Left ventricular (LV) volume overload (VO) results in cardiomyocyte oxidative stress and mitochondrial dysfunction. Because mitochondria are both a source and target of ROS, we hypothesized that the mitochondrially targeted antioxidant mitoubiquinone (MitoQ) will improve cardiomyocyte damage and LV dysfunction in VO. Isolated cardiomyocytes from Sprague-Dawley rats were exposed to stretch in vitro and VO of aortocaval fistula (ACF) in vivo. ACF rats were treated with and without MitoQ. Isolated cardiomyocytes were analyzed after 3 h of cyclical stretch or 8 wk of ACF with MitoSox red or 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate to measure ROS and with tetramethylrhodamine to measure mitochondrial membrane potential. Transmission electron microscopy and immunohistochemistry were used for cardiomyocyte structural assessment. In vitro cyclical stretch and 8-wk ACF resulted in increased cardiomyocyte mitochondrial ROS production and decreased mitochondrial membrane potential, which were significantly improved by MitoQ. ACF had extensive loss of desmin and β₂-tubulin that was paralleled by mitochondrial disorganization, loss of cristae, swelling, and clustering identified by mitochondria complex IV staining and transmission electron microscopy. MitoQ improved mitochondrial structural damage and attenuated desmin loss/degradation evidenced by immunohistochemistry and protein expression. However, LV dilatation and fractional shortening were unaffected by MitoQ treatment in 8-wk ACF. In conclusion, although MitoQ did not affect LV dilatation or function in ACF, these experiments suggest a connection of cardiomyocyte mitochondria-derived ROS production with cytoskeletal disruption and mitochondrial damage in the VO of ACF.
Collapse
Affiliation(s)
- Danielle M Yancey
- UAB Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama; Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jason L Guichard
- UAB Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama; Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mustafa I Ahmed
- UAB Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama; Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lufang Zhou
- UAB Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama; Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Michelle S Johnson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; UAB Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gloria A Benavides
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; UAB Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - James Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; UAB Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Louis J Dell'Italia
- Department of Veterans Affairs Medical Center, Birmingham, Alabama; UAB Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama; Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama;
| |
Collapse
|
39
|
Wilson K, Guggilam A, West TA, Zhang X, Trask AJ, Cismowski MJ, de Tombe P, Sadayappan S, Lucchesi PA. Effects of a myofilament calcium sensitizer on left ventricular systolic and diastolic function in rats with volume overload heart failure. Am J Physiol Heart Circ Physiol 2014; 307:H1605-17. [PMID: 25260618 DOI: 10.1152/ajpheart.00423.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Aortocaval fistula (ACF)-induced volume overload (VO) heart failure (HF) results in progressive left ventricular (LV) dysfunction. Hemodynamic load reversal during pre-HF (4 wk post-ACF; REV) results in rapid structural but delayed functional recovery. This study investigated myocyte and myofilament function in ACF and REV and tested the hypothesis that a myofilament Ca(2+) sensitizer would improve VO-induced myofilament dysfunction in ACF and REV. Following the initial sham or ACF surgery in male Sprague-Dawley rats (200-240 g) at week 0, REV surgery and experiments were performed at weeks 4 and 8, respectively. In ACF, decreased LV function is accompanied by impaired sarcomeric shortening and force generation and decreased Ca(2+) sensitivity, whereas, in REV, impaired LV function is accompanied by decreased Ca(2+) sensitivity. Intravenous levosimendan (Levo) elicited the best inotropic and lusitropic responses and was selected for chronic oral studies. Subsets of ACF and REV rats were given vehicle (water) or Levo (1 mg/kg) in drinking water from weeks 4-8. Levo improved systolic (% fractional shortening, end-systolic elastance, and preload-recruitable stroke work) and diastolic (τ, dP/dtmin) function in ACF and REV. Levo improved Ca(2+) sensitivity without altering the amplitude and kinetics of the intracellular Ca(2+) transient. In ACF-Levo, increased cMyBP-C Ser-273 and Ser-302 and cardiac troponin I Ser-23/24 phosphorylation correlated with improved diastolic relaxation, whereas, in REV-Levo, increased cMyBP-C Ser-273 phosphorylation and increased α-to-β-myosin heavy chain correlated with improved diastolic relaxation. We concluded that Levo improves LV function, and myofilament composition and regulatory protein phosphorylation likely play a key role in improving function.
Collapse
Affiliation(s)
- Kristin Wilson
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio; Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Anuradha Guggilam
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio
| | - T Aaron West
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio
| | - Xiaojin Zhang
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio
| | - Aaron J Trask
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Mary J Cismowski
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Pieter de Tombe
- Department of Cellular and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Sakthivel Sadayappan
- Department of Cellular and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Pamela A Lucchesi
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio;
| |
Collapse
|
40
|
Wilson K, Lucchesi PA. Myofilament dysfunction as an emerging mechanism of volume overload heart failure. Pflugers Arch 2014; 466:1065-77. [PMID: 24488008 DOI: 10.1007/s00424-014-1455-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/17/2014] [Accepted: 01/19/2014] [Indexed: 11/28/2022]
Abstract
Two main hemodynamic overload mechanisms [i.e., volume and pressure overload (VO and PO, respectively] result in heart failure (HF), and these two mechanisms have divergent pathologic alterations and different pathophysiological mechanisms. Extensive evidence from animal models and human studies of PO demonstrate a clear association with alterations in Ca(2+) homeostasis. By contrast, emerging evidence from animal models and patients with regurgitant valve disease and dilated cardiomyopathy point toward a more prominent role of myofilament dysfunction. With respect to VO HF, key features of excitation-contraction coupling defects, myofilament dysfunction, and extracellular matrix composition will be discussed.
Collapse
Affiliation(s)
- Kristin Wilson
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | | |
Collapse
|
41
|
A modified approach to induce predictable congestive heart failure by volume overload in rats. PLoS One 2014; 9:e87531. [PMID: 24498127 PMCID: PMC3909118 DOI: 10.1371/journal.pone.0087531] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 12/28/2013] [Indexed: 01/15/2023] Open
Abstract
The model of infrarenal aortocaval fistula (ACF) has recently gained new interest in its use to investigate cardiac pathophysiology. Since in previous investigations the development of congestive heart failure (CHF) was inconsistent and started to develop earliest 8–10 weeks after fistula induction using a 18G needle, this project aimed to induce a predictable degree of CHF within a definite time period using a modified approach. An aortocaval fistula was induced in male Wistar rats using a 16G needle as a modification of the former 18G needle-technique described by Garcia and Diebold. Results revealed within 28±2 days of ACF significantly increased heart and lung weight indices in the ACF group accompanied by elevated filling pressure. All hemodynamic parameters derived from a pressure-volume conductance-catheter in vivo were significantly altered in the ACF consistent with severe systolic and diastolic left ventricular dysfunction. This was accompanied by systemic neurohumoral activation as demonstrated by elevated rBNP-45 plasma concentrations in every rat of the ACF group. Furthermore, the restriction in overall cardiac function was associated with a β1- and β2-adrenoreceptor mRNA downregulation in the left ventricle. In contrast, β3-adrenoreceptor mRNA was upregulated. Finally, electron microscopy of the left ventricle of rats in the ACF group showed signs of progressive subcellular myocardial fragmentation. In conclusion, the morphometric, hemodynamic and neurohumoral characterization of the modified approach revealed predictable and consistent signs of congestive heart failure within 28±2 days. Therefore, this modified approach might facilitate the examination of various questions specific to CHF and allow for pharmacological interventions to determine pathophysiological pathways.
Collapse
|
42
|
Regulation of expression of atrial and brain natriuretic peptide, biomarkers for heart development and disease. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2403-13. [DOI: 10.1016/j.bbadis.2013.07.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 11/17/2022]
|
43
|
Song Y, Lee S, Kwak YL, Shim CY, Chang BC, Shim JK. Tissue Doppler Imaging Predicts Left Ventricular Reverse Remodeling After Surgery for Mitral Regurgitation. Ann Thorac Surg 2013; 96:2109-15. [DOI: 10.1016/j.athoracsur.2013.06.087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/16/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
|
44
|
Chemaly ER, Kang S, Zhang S, McCollum L, Chen J, Bénard L, Purushothaman KR, Hajjar RJ, Lebeche D. Differential patterns of replacement and reactive fibrosis in pressure and volume overload are related to the propensity for ischaemia and involve resistin. J Physiol 2013; 591:5337-55. [PMID: 24018949 DOI: 10.1113/jphysiol.2013.258731] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pathological left ventricle (LV) hypertrophy (LVH) results in reactive and replacement fibrosis. Volume overload LVH (VOH) is less profibrotic than pressure overload LVH (POH). Studies attribute subendocardial fibrosis in POH to ischaemia, and reduced fibrosis in VOH to collagen degradation favouring dilatation. However, the mechanical origin of the relative lack of fibrosis in VOH is incompletely understood. We hypothesized that reduced ischaemia propensity in VOH compared to POH accounted for the reduced replacement fibrosis, along with reduced reactive fibrosis. Rats with POH (ascending aortic banding) evolved into either compensated-concentric POH (POH-CLVH) or dilated cardiomyopathy (POH-DCM); they were compared to VOH (aorta-caval fistula). We quantified LV fibrosis, structural and haemodynamic factors of ischaemia propensity, and the activation of profibrotic pathways. Fibrosis in POH-DCM was severe, subendocardial and subepicardial, in contrast with subendocardial fibrosis in POH-CLVH and nearly no fibrosis in VOH. The propensity for ischaemia was more important in POH versus VOH, explaining different patterns of replacement fibrosis. LV collagen synthesis and maturation, and matrix metalloproteinase-2 expression, were more important in POH. The angiotensin II-transforming growth-factor β axis was enhanced in POH, and connective tissue growth factor (CTGF) was overexpressed in all types of LVH. LV resistin expression was markedly elevated in POH, mildly elevated in VOH and independently reflected chronic ischaemic injury after myocardial infarction. In vitro, resistin is induced by angiotensin II and induces CTGF in cardiomyocytes. Based on these findings, we conclude that a reduced ischaemia propensity and attenuated upstream reactive fibrotic pathways account for the attenuated fibrosis in VOH versus POH.
Collapse
Affiliation(s)
- Elie R Chemaly
- D. Lebeche: Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Reddy S, Zhao M, Hu DQ, Fajardo G, Katznelson E, Punn R, Spin JM, Chan FP, Bernstein D. Physiologic and molecular characterization of a murine model of right ventricular volume overload. Am J Physiol Heart Circ Physiol 2013; 304:H1314-27. [PMID: 23504182 DOI: 10.1152/ajpheart.00776.2012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pulmonary insufficiency (PI) is a common long-term sequel after repair of tetralogy of Fallot, causing progressive right ventricular (RV) dilation and failure. We describe the physiologic and molecular characteristics of the first murine model of RV volume overload. PI was created by entrapping the pulmonary valve leaflets with sutures. Imaging, catheterization, and exercise testing were performed at 1, 3, and 6 mo and compared with sham controls. RNA from the RV free wall was hybridized to Agilent whole genome oligonucleotide microarrays. Volume overload resulted in RV enlargement, decreased RV outflow tract shortening fraction at 1 mo followed by normalization at 3 and 6 mo (39 ± 2, 44 ± 2, and 41 ± 2 vs. 46 ± 3% in sham), early reversal of early and late diastolic filling velocities (E/A ratio) followed by pseudonormalization (0.87 ± 0.08, 0.82 ± 0.08, and 0.96 ± 0.08 vs. 1.04 ± 0.03; P < 0.05), elevated end-diastolic pressure (7.6 ± 0.7, 6.9 ± 0.8, and 7 ± 0.5 vs. 2.7 ± 0.2 mmHg; P < 0.05), and decreased exercise duration (26 ± 0.4, 26 ± 1, and 22 ± 1.3 vs. 30 ± 1.1 min; P < 0.05). Subendocardial RV fibrosis was evident by 1 mo. At 1 mo, 372 genes were significantly downregulated. Mitochondrial pathways and G protein-coupled receptor signaling were the most represented categories. At 3 mo, 434 genes were upregulated and 307 downregulated. While many of the same pathways continued to be downregulated, TNF-α, transforming growth factor-β(1) (TGF-β(1)), p53-signaling, and extracellular matrix (ECM) remodeling transitioned from down- to upregulated. We describe a novel murine model of chronic RV volume overload recapitulating aspects of the clinical disease with gene expression changes suggesting early mitochondrial bioenergetic dysfunction, enhanced TGF-β signaling, ECM remodeling, and apoptosis.
Collapse
Affiliation(s)
- Sushma Reddy
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhou H, Yang HX, Yuan Y, Deng W, Zhang JY, Bian ZY, Zong J, Dai J, Tang QZ. Paeoniflorin attenuates pressure overload-induced cardiac remodeling via inhibition of TGFβ/Smads and NF-κB pathways. J Mol Histol 2013; 44:357-67. [PMID: 23417833 DOI: 10.1007/s10735-013-9491-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/08/2013] [Indexed: 11/24/2022]
Abstract
Cardiac remodeling is a key determinant in the clinical course and outcome of heart failure and characterized by cardiac hypertrophy, fibrosis, cardiomyocyte apoptosis and inflammation. The anti-inflammatory, anti-apoptotic and anti-fibrotic effects of paeoniflorin have been identified in various types of tissue and cells. However, the role of paeoniflorin in cardiac remodeling remains unclear. We performed aortic banding (AB) in mice to induce a cardiac remodeling model in response to pressure overload. Paeoniflorin (20 mg/kg) was administered by daily intraperitoneal (i.p.) injection. Paeoniflorin treatment promoted the survival rate and improved cardiac function of mice at 8 weeks post surgery. AB-induced cardiac hypertrophy, as assessed by heart weight, gross heart, HE and WGA staining, cross-sectional area of cardiomyocyte and mRNA expresssion of hypertrophic makers, was attenuated by paeoniflorin. Paeoniflorin also inhibited collagen deposition, expression of TGFβ, CTGF, collagen Iα and collagen IIIα, and phosphorylation of Smad2 and Smad3 in the heart exposed to pressure overload. Cardiomyocyte apoptosis and induction of Bax and cleaved caspase3 in response to AB were suppressed by paeoniflorin. Furthermore, paeoniflorin decreased the quantity of CD68+ cells, protein levels of TNF-α and IL-1β, and phosphorylation of IκBα and NFκB-p65 in the heart after AB. In conclusion, paeoniflorin attenuated cardiac hypertrophy, fibrosis, apoptosis and inflammation, and improved left ventricular function in pressure overloaded mice. The cardioprotective effect of paeoniflorin is associated with the inhibition of TGFβ/Smads and NF-κB pathways.
Collapse
Affiliation(s)
- Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Guggilam A, Hutchinson KR, West TA, Kelly AP, Galantowicz ML, Davidoff AJ, Sadayappan S, Lucchesi PA. In vivo and in vitro cardiac responses to beta-adrenergic stimulation in volume-overload heart failure. J Mol Cell Cardiol 2012; 57:47-58. [PMID: 23220155 DOI: 10.1016/j.yjmcc.2012.11.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 11/08/2012] [Accepted: 11/22/2012] [Indexed: 01/26/2023]
Abstract
Hearts in volume overload (VO) undergo progressive ventricular hypertrophy resulting in chronic heart failure that is unresponsive to β-adrenergic agonists. This study compared left ventricular (LV) and isolated cardiomyocyte contractility and β-adrenergic responsiveness in rats with end-stage VO heart failure (HF). Adult male Sprague-Dawley rats were studied 21 weeks after aortocaval fistula (ACF) or sham surgery. Echocardiography revealed decreased fractional shortening accompanied by increased LV chamber diameter and decreased eccentric dilatation index at end-stage ACF compared to sham. Hemodynamic measurements showed a decrease in the slope of end-systolic pressure-volume relationship, indicating systolic dysfunction. Isolated LV myocytes from ACF exhibited decreased peak sarcomere shortening and kinetics. Both Ca2+ transient amplitude and kinetics were increased in ACF myocytes, with no change under the integrated Ca2+ curves relating to contraction and relaxation phases. Increases in ryanodine receptor and phospholamban phosphorylation, along with a decrease in SERCA2 levels, were observed in ACF. These changes were associated with decreased expression of β-myosin heavy chain, cardiac troponin I and cardiac myosin binding protein-C. In vivo inotropic responses to β-adrenergic stimulation were attenuated in ACF. Interestingly, ACF myocytes exhibited a similar peak shortening to those of sham in response to a β-adrenergic agonist. The protein expression of the gap junction protein connexin-43 was decreased, although its phosphorylation at Ser-368 increased. These changes were associated with alterations in Src and ZO-1. In summary, these data suggest that the disconnect in β-adrenergic responsiveness between in vivo and in vitro conditions may be associated with altered myofilament Ca2+ sensitivity and connexin-43 degradation.
Collapse
Affiliation(s)
- Anuradha Guggilam
- Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Chemaly ER, Chaanine AH, Sakata S, Hajjar RJ. Stroke volume-to-wall stress ratio as a load-adjusted and stiffness-adjusted indicator of ventricular systolic performance in chronic loading. J Appl Physiol (1985) 2012; 113:1267-84. [PMID: 22923502 DOI: 10.1152/japplphysiol.00785.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Load-adjusted measures of left ventricle (LV) systolic performance are limited by dependence on LV stiffness and afterload. To our knowledge, no stiffness-adjusted and afterload-adjusted indicator was tested in models of pressure (POH) and volume overload hypertrophy (VOH). We hypothesized that wall stress reflects changes in loading, incorporating chamber stiffness and afterload; therefore, stroke volume-to-wall stress ratio more accurately reflects systolic performance. We used rat models of POH (ascending aortic banding) and VOH (aorto-cava shunt). Animals underwent echocardiography and pressure-volume analysis at baseline and dobutamine challenge. We achieved extreme bidirectional alterations in LV systolic performance, end-systolic elastance (Ees), passive stiffness, and arterial elastance (Ea). In POH with LV dilatation and failure, some load-independent indicators of systolic performance remained elevated compared with controls, while some others failed to decrease with wide variability. In VOH, most, but not all indicators, including LV ejection fraction, were significantly reduced compared with controls, despite hyperdynamic circulation, lack of heart failure, and preserved contractile reserve. We related systolic performance to Ees adjusted for Ea and LV passive stiffness in multivariate models. Calculated residual Ees was not reduced in POH with heart failure and was reduced in VOH, while it positively correlated to dobutamine dose. Conversely, stroke volume-to-wall stress ratio was normal in compensated POH, markedly decreased in POH with heart failure, and, in contrast with LV ejection fraction, normal in VOH. Our results support stroke volume-to-wall stress ratio as a load-adjusted and stiffness-adjusted indicator of systolic function in models of POH and VOH.
Collapse
Affiliation(s)
- Elie R Chemaly
- Cardiovascular Research Center, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | |
Collapse
|
49
|
Activating transcription factor 3 deficiency promotes cardiac hypertrophy, dysfunction, and fibrosis induced by pressure overload. PLoS One 2011; 6:e26744. [PMID: 22053207 PMCID: PMC3203896 DOI: 10.1371/journal.pone.0026744] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 10/02/2011] [Indexed: 12/20/2022] Open
Abstract
Activating transcription factor 3 (ATF3), which is encoded by an adaptive-response gene induced by various stimuli, plays an important role in the cardiovascular system. However, the effect of ATF3 on cardiac hypertrophy induced by a pathological stimulus has not been determined. Here, we investigated the effects of ATF3 deficiency on cardiac hypertrophy using in vitro and in vivo models. Aortic banding (AB) was performed to induce cardiac hypertrophy in mice. Cardiac hypertrophy was estimated by echocardiographic and hemodynamic measurements and by pathological and molecular analysis. ATF3 deficiency promoted cardiac hypertrophy, dysfunction and fibrosis after 4 weeks of AB compared to the wild type (WT) mice. Furthermore, enhanced activation of the MEK-ERK1/2 and JNK pathways was found in ATF3-knockout (KO) mice compared to WT mice. In vitro studies performed in cultured neonatal mouse cardiomyocytes confirmed that ATF3 deficiency promotes cardiomyocyte hypertrophy induced by angiotensin II, which was associated with the amplification of MEK-ERK1/2 and JNK signaling. Our results suggested that ATF3 plays a crucial role in the development of cardiac hypertrophy via negative regulation of the MEK-ERK1/2 and JNK pathways.
Collapse
|