1
|
Iturriaga R, Alcayaga J, Chapleau MW, Somers VK. Carotid body chemoreceptors: physiology, pathology, and implications for health and disease. Physiol Rev 2021; 101:1177-1235. [PMID: 33570461 PMCID: PMC8526340 DOI: 10.1152/physrev.00039.2019] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The carotid body (CB) is the main peripheral chemoreceptor for arterial respiratory gases O2 and CO2 and pH, eliciting reflex ventilatory, cardiovascular, and humoral responses to maintain homeostasis. This review examines the fundamental biology underlying CB chemoreceptor function, its contribution to integrated physiological responses, and its role in maintaining health and potentiating disease. Emphasis is placed on 1) transduction mechanisms in chemoreceptor (type I) cells, highlighting the role played by the hypoxic inhibition of O2-dependent K+ channels and mitochondrial oxidative metabolism, and their modification by intracellular molecules and other ion channels; 2) synaptic mechanisms linking type I cells and petrosal nerve terminals, focusing on the role played by the main proposed transmitters and modulatory gases, and the participation of glial cells in regulation of the chemosensory process; 3) integrated reflex responses to CB activation, emphasizing that the responses differ dramatically depending on the nature of the physiological, pathological, or environmental challenges, and the interactions of the chemoreceptor reflex with other reflexes in optimizing oxygen delivery to the tissues; and 4) the contribution of enhanced CB chemosensory discharge to autonomic and cardiorespiratory pathophysiology in obstructive sleep apnea, congestive heart failure, resistant hypertension, and metabolic diseases and how modulation of enhanced CB reactivity in disease conditions may attenuate pathophysiology.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile, and Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| | - Julio Alcayaga
- Laboratorio de Fisiología Celular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mark W Chapleau
- Department of Internal Medicine, University of Iowa and Department of Veterans Affairs Medical Center, Iowa City, Iowa
| | - Virend K Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
2
|
Exploring the Mediators that Promote Carotid Body Dysfunction in Type 2 Diabetes and Obesity Related Syndromes. Int J Mol Sci 2020; 21:ijms21155545. [PMID: 32756352 PMCID: PMC7432672 DOI: 10.3390/ijms21155545] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Carotid bodies (CBs) are peripheral chemoreceptors that sense changes in blood O2, CO2, and pH levels. Apart from ventilatory control, these organs are deeply involved in the homeostatic regulation of carbohydrates and lipid metabolism and inflammation. It has been described that CB dysfunction is involved in the genesis of metabolic diseases and that CB overactivation is present in animal models of metabolic disease and in prediabetes patients. Additionally, resection of the CB-sensitive nerve, the carotid sinus nerve (CSN), or CB ablation in animals prevents and reverses diet-induced insulin resistance and glucose intolerance as well as sympathoadrenal overactivity, meaning that the beneficial effects of decreasing CB activity on glucose homeostasis are modulated by target-related efferent sympathetic nerves, through a reflex initiated in the CBs. In agreement with our pre-clinical data, hyperbaric oxygen therapy, which reduces CB activity, improves glucose homeostasis in type 2 diabetes patients. Insulin, leptin, and pro-inflammatory cytokines activate the CB. In this manuscript, we review in a concise manner the putative pathways linking CB chemoreceptor deregulation with the pathogenesis of metabolic diseases and discuss and present new data that highlight the roles of hyperinsulinemia, hyperleptinemia, and chronic inflammation as major factors contributing to CB dysfunction in metabolic disorders.
Collapse
|
3
|
Pulgar-Sepúlveda R, Varas R, Iturriaga R, Del Rio R, Ortiz FC. Carotid Body Type-I Cells Under Chronic Sustained Hypoxia: Focus on Metabolism and Membrane Excitability. Front Physiol 2018; 9:1282. [PMID: 30283346 PMCID: PMC6157308 DOI: 10.3389/fphys.2018.01282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/24/2018] [Indexed: 12/23/2022] Open
Abstract
Chronic sustained hypoxia (CSH) evokes ventilatory acclimatization characterized by a progressive hyperventilation due to a potentiation of the carotid body (CB) chemosensory response to hypoxia. The transduction of the hypoxic stimulus in the CB begins with the inhibition of K+ currents in the chemosensory (type-I) cells, which in turn leads to membrane depolarization, Ca2+ entry and the subsequent release of one- or more-excitatory neurotransmitters. Several studies have shown that CSH modifies both the level of transmitters and chemoreceptor cell metabolism within the CB. Most of these studies have been focused on the role played by such putative transmitters and modulators of CB chemoreception, but less is known about the effect of CSH on metabolism and membrane excitability of type-I cells. In this mini-review, we will examine the effects of CSH on the ion channels activity and excitability of type-I cell, with a particular focus on the effects of CSH on the TASK-like background K+ channel. We propose that changes on TASK-like channel activity induced by CSH may contribute to explain the potentiation of CB chemosensory activity.
Collapse
Affiliation(s)
- Raúl Pulgar-Sepúlveda
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Rodrigo Varas
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| | - Fernando C. Ortiz
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
4
|
Leonard EM, Salman S, Nurse CA. Sensory Processing and Integration at the Carotid Body Tripartite Synapse: Neurotransmitter Functions and Effects of Chronic Hypoxia. Front Physiol 2018; 9:225. [PMID: 29615922 PMCID: PMC5864924 DOI: 10.3389/fphys.2018.00225] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/28/2018] [Indexed: 12/21/2022] Open
Abstract
Maintenance of homeostasis in the respiratory and cardiovascular systems depends on reflexes that are initiated at specialized peripheral chemoreceptors that sense changes in the chemical composition of arterial blood. In mammals, the bilaterally-paired carotid bodies (CBs) are the main peripheral chemoreceptor organs that are richly vascularized and are strategically located at the carotid bifurcation. The CBs contribute to the maintenance of O2, CO2/H+, and glucose homeostasis and have attracted much clinical interest because hyperactivity in these organs is associated with several pathophysiological conditions including sleep apnea, obstructive lung disease, heart failure, hypertension, and diabetes. In response to a decrease in O2 availability (hypoxia) and elevated CO2/H+ (acid hypercapnia), CB receptor type I (glomus) cells depolarize and release neurotransmitters that stimulate apposed chemoafferent nerve fibers. The central projections of those fibers in turn activate cardiorespiratory centers in the brainstem, leading to an increase in ventilation and sympathetic drive that helps restore blood PO2 and protect vital organs, e.g., the brain. Significant progress has been made in understanding how neurochemicals released from type I cells such as ATP, adenosine, dopamine, 5-HT, ACh, and angiotensin II help shape the CB afferent discharge during both normal and pathophysiological conditions. However, type I cells typically occur in clusters and in addition to their sensory innervation are ensheathed by the processes of neighboring glial-like, sustentacular type II cells. This morphological arrangement is reminiscent of a "tripartite synapse" and emerging evidence suggests that paracrine stimulation of type II cells by a variety of CB neurochemicals may trigger the release of "gliotransmitters" such as ATP via pannexin-1 channels. Further, recent data suggest novel mechanisms by which dopamine, acting via D2 receptors (D2R), may inhibit action potential firing at petrosal nerve endings. This review will update current ideas concerning the presynaptic and postsynaptic mechanisms that underlie chemosensory processing in the CB. Paracrine signaling pathways will be highlighted, and particularly those that allow the glial-like type II cells to participate in the integrated sensory response during exposures to chemostimuli, including acute and chronic hypoxia.
Collapse
Affiliation(s)
- Erin M Leonard
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Shaima Salman
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Colin A Nurse
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
5
|
Vivekanandarajah A, Aishah A, Waters KA, Machaalani R. Intermittent hypercapnic hypoxia effects on the nicotinic acetylcholine receptors in the developing piglet hippocampus and brainstem. Neurotoxicology 2017; 60:23-33. [PMID: 28235547 DOI: 10.1016/j.neuro.2017.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/07/2017] [Accepted: 02/20/2017] [Indexed: 12/14/2022]
Abstract
This study investigated the effects of acute (1 day) vs repeated (4 days) exposure to intermittent hypercapnic hypoxia (IHH) on the immunohistochemical expression of α2, α3, α5, α7, α9 and β2 nicotinic acetylcholine receptor (nAChR) subunits in the developing piglet hippocampus and brainstem medulla, and how prior nicotine exposure alters the response to acute IHH. Five piglet groups included: 1day IHH (1D IHH, n=9), 4days IHH (4D IHH, n=8), controls exposed only to air cycles for 1day (1D Air, n=6) or 4days (4D Air, n=5), and pre-exposed to nicotine for 13days prior to 1day IHH (Nic+1D IHH, n=7). The exposure period alternated 6min of HH (8%O2, 7%CO2, balance N2) and 6min of air over 48min, while controls were switched from air-to-air. Results showed that: 1. repeated IHH induces more changes in nAChR subunit expression than acute IHH in both the hippocampus and brainstem medulla, 2. In the hippocampus, α2 and β2 changed the most (increased) following IHH and the CA3, CA2 and DG were mostly affected. In the brainstem medulla, α2, α5, α9 and β2 were changed (decreased) in most nuclei with the hypoglossal and nucleus of the solitary tract being mostly affected. 3. Pre-exposure to nicotine enhanced the changes in the hippocampus but dampened those in the brainstem medulla. These findings indicate that the nAChRs (predominantly with the α2/β2 complex) are affected by IHH in critical hippocampal and brainstem nuclei during early brain development, and that pre-exposure to nicotine alters the pattern of susceptibility to IHH.
Collapse
Affiliation(s)
- Arunnjah Vivekanandarajah
- The BOSCH Institute, Blackburn Building, DO6, University of Sydney, NSW 2006, Australia; Department of Medicine, Blackburn Building, DO6, University of Sydney, NSW 2006, Australia
| | - Atqiya Aishah
- The BOSCH Institute, Blackburn Building, DO6, University of Sydney, NSW 2006, Australia; Discipline of Pharmacology, Blackburn Building, D06, University of Sydney, NSW 2006, Australia
| | - Karen A Waters
- The BOSCH Institute, Blackburn Building, DO6, University of Sydney, NSW 2006, Australia; Department of Medicine, Blackburn Building, DO6, University of Sydney, NSW 2006, Australia; The Children's Hospital, Westmead, Sydney, NSW 2145, Australia
| | - Rita Machaalani
- The BOSCH Institute, Blackburn Building, DO6, University of Sydney, NSW 2006, Australia; Department of Medicine, Blackburn Building, DO6, University of Sydney, NSW 2006, Australia; The Children's Hospital, Westmead, Sydney, NSW 2145, Australia.
| |
Collapse
|
6
|
Nunes AR, Holmes AP, Conde SV, Gauda EB, Monteiro EC. Revisiting cAMP signaling in the carotid body. Front Physiol 2014; 5:406. [PMID: 25389406 PMCID: PMC4211388 DOI: 10.3389/fphys.2014.00406] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/01/2014] [Indexed: 12/25/2022] Open
Abstract
Chronic carotid body (CB) activation is now recognized as being essential in the development of hypertension and promoting insulin resistance; thus, it is imperative to characterize the chemotransduction mechanisms of this organ in order to modulate its activity and improve patient outcomes. For several years, and although controversial, cyclic adenosine monophosphate (cAMP) was considered an important player in initiating the activation of the CB. However, its relevance was partially displaced in the 90s by the emerging role of the mitochondria and molecules such as AMP-activated protein kinase and O2-sensitive K+ channels. Neurotransmitters/neuromodulators binding to metabotropic receptors are essential to chemotransmission in the CB, and cAMP is central to this process. cAMP also contributes to raise intracellular Ca2+ levels, and is intimately related to the cellular energetic status (AMP/ATP ratio). Furthermore, cAMP signaling is a target of multiple current pharmacological agents used in clinical practice. This review (1) provides an outline on the classical view of the cAMP-signaling pathway in the CB that originally supported its role in the O2/CO2 sensing mechanism, (2) presents recent evidence on CB cAMP neuromodulation and (3) discusses how CB activity is affected by current clinical therapies that modify cAMP-signaling, namely dopaminergic drugs, caffeine (modulation of A2A/A2B receptors) and roflumilast (PDE4 inhibitors). cAMP is key to any process that involves metabotropic receptors and the intracellular pathways involved in CB disease states are likely to involve this classical second messenger. Research examining the potential modification of cAMP levels and/or interactions with molecules associated with CB hyperactivity is currently in its beginning and this review will open doors for future explorations.
Collapse
Affiliation(s)
- Ana R Nunes
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa Lisboa, Portugal
| | - Andrew P Holmes
- School of Clinical and Experimental Medicine, University of Birmingham Birmingham, UK
| | - Sílvia V Conde
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa Lisboa, Portugal
| | - Estelle B Gauda
- Neonatology Research Laboratories, Department of Pediatrics, Johns Hopkins Medical Institutions, Johns Hopkins University Baltimore, MD, USA
| | - Emília C Monteiro
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa Lisboa, Portugal
| |
Collapse
|
7
|
Reyes EP, Cerpa V, Corvalán L, Retamal MA. Cxs and Panx- hemichannels in peripheral and central chemosensing in mammals. Front Cell Neurosci 2014; 8:123. [PMID: 24847209 PMCID: PMC4023181 DOI: 10.3389/fncel.2014.00123] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/18/2014] [Indexed: 01/08/2023] Open
Abstract
Connexins (Cxs) and Pannexins (Panx) form hemichannels at the plasma membrane of animals. Despite their low open probability under physiological conditions, these hemichannels release signaling molecules (i.e., ATP, Glutamate, PGE2) to the extracellular space, thus subserving several important physiological processes. Oxygen and CO2 sensing are fundamental to the normal functioning of vertebrate organisms. Fluctuations in blood PO2, PCO2 and pH are sensed at the carotid bifurcations of adult mammals by glomus cells of the carotid bodies. Likewise, changes in pH and/or PCO2 of cerebrospinal fluid are sensed by central chemoreceptors, a group of specialized neurones distributed in the ventrolateral medulla (VLM), raphe nuclei, and some other brainstem areas. After many years of research, the molecular mechanisms involved in chemosensing process are not completely understood. This manuscript will review data regarding relationships between chemosensitive cells and the expression of channels formed by Cxs and Panx, with special emphasis on hemichannels.
Collapse
Affiliation(s)
- Edison Pablo Reyes
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile ; Dirección de Investigación, Universidad Autónoma de Chile Santiago, Chile
| | - Verónica Cerpa
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Liliana Corvalán
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Mauricio Antonio Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| |
Collapse
|
8
|
Petrosal ganglion responses to acetylcholine and ATP are enhanced by chronic normobaric hypoxia in the rabbit. Respir Physiol Neurobiol 2013; 189:624-31. [PMID: 23969181 DOI: 10.1016/j.resp.2013.07.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 11/21/2022]
Abstract
In mammals, adaptation to chronic hypoxia requires the integrity of the arterial chemoreceptors, specially the carotid body (CB). Chronic hypoxia increases the sensibility of the CB by acting on the receptor cells, but there is limited information on the effects of chronic hypoxia on the sensory neurons that innervate the CB. Therefore, we studied the responses evoked by ACh and ATP, the main transmitters that generate the chemoafferent activity, on the petrosal ganglion (PG) of rabbits exposed to chronic normobaric hypoxia (CNH) during fourteen days. ATP and ACh increased the activity of PG neurons in a dose-dependent manner, in a similar way than in rabbits not exposed to hypoxia (naïve). However, the duration of the responses were significantly increased by CNH, with the mean maximal responses to ACh and ATP increased by a factor of two and four, respectively. Our results suggest that CNH increases duration of the responses by modifying the expression and/or content of ACh and ATP receptors.
Collapse
|
9
|
Zakharova EI, Germanova EL, Kopaladze RA, Dudchenko AM. Central cholinergic systems in the mechanisms of hypoxic preconditioning: Diverse pathways of synaptic reorganization in vivo. NEUROCHEM J+ 2013. [DOI: 10.1134/s1819712413010108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Nurse CA, Piskuric NA. Signal processing at mammalian carotid body chemoreceptors. Semin Cell Dev Biol 2012; 24:22-30. [PMID: 23022231 DOI: 10.1016/j.semcdb.2012.09.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 09/19/2012] [Indexed: 10/27/2022]
Abstract
Mammalian carotid bodies are richly vascularized chemosensory organs that sense blood levels of O(2), CO(2)/H(+), and glucose and maintain homeostatic regulation of these levels via the reflex control of ventilation. Carotid bodies consist of innervated clusters of type I (or glomus) cells in intimate association with glial-like type II cells. Carotid bodies make afferent connections with fibers from sensory neurons in the petrosal ganglia and receive efferent inhibitory innervation from parasympathetic neurons located in the carotid sinus and glossopharyngeal nerves. There are synapses between type I (chemosensory) cells and petrosal afferent terminals, as well as between neighboring type I cells. There is a broad array of neurotransmitters and neuromodulators and their ionotropic and metabotropic receptors in the carotid body. This allows for complex processing of sensory stimuli (e.g., hypoxia and acid hypercapnia) involving both autocrine and paracrine signaling pathways. This review summarizes and evaluates current knowledge of these pathways and presents an integrated working model on information processing in carotid bodies. Included in this model is a novel hypothesis for a potential role of type II cells as an amplifier for the release of a key excitatory carotid body neurotransmitter, ATP, via P2Y purinoceptors and pannexin-1 channels.
Collapse
Affiliation(s)
- Colin A Nurse
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada L8S 4K1.
| | | |
Collapse
|
11
|
Conde SV, Ribeiro MJ, Obeso A, Rigual R, Monteiro EC, Gonzalez C. Chronic caffeine intake in adult rat inhibits carotid body sensitization produced by chronic sustained hypoxia but maintains intact chemoreflex output. Mol Pharmacol 2012; 82:1056-65. [PMID: 22930709 DOI: 10.1124/mol.112.081216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sustained hypoxia produces a carotid body (CB) sensitization, known as acclimatization, which leads to an increase in carotid sinus nerve (CSN) activity and ensuing hyperventilation greater than expected from the prevailing partial pressure of oxygen. Whether sustained hypoxia is physiological (high altitude) or pathological (lung disease), acclimatization has a homeostatic implication because it tends to minimize hypoxia. Caffeine, the most commonly ingested psychoactive drug and a nonselective adenosine receptor antagonist, alters CB function and ventilatory responses when administered acutely. Our aim was to investigate the effect of chronic caffeine intake on CB function and acclimatization using four groups of rats: normoxic, caffeine-treated normoxic, chronically hypoxic (12% O₂, 15 days), and caffeine-treated chronically hypoxic rats. Caffeine was administered in drinking water (1 mg/ml). Caffeine ameliorated ventilatory responses to acute hypoxia in normoxic animals without altering the output of the CB (CSN neural activity). Caffeine-treated chronically hypoxic rats exhibited a decrease in the CSN response to acute hypoxia tests but maintained ventilation compared with chronically hypoxic animals. The findings related to CSN neural activity combined with the ventilatory responses indicate that caffeine alters central integration of the CB input to increase the gain of the chemoreflex and that caffeine abolishes CB acclimatization. The putative mechanisms involved in sensitization and its loss were investigated: expression of adenosine receptors in CB (A(2B)) was down-regulated and that in petrosal ganglion (A(2A)) was up-regulated in caffeine-treated chronically hypoxic rats; both adenosine and dopamine release from CB chemoreceptor cells was increased in chronic hypoxia and in caffeine-treated chronic hypoxia groups.
Collapse
Affiliation(s)
- Silvia V Conde
- Department of Pharmacology, Faculty of Medical Sciences, New University of Lisbon, Portugal.
| | | | | | | | | | | |
Collapse
|
12
|
Zakharova EI, Dudchenko AM, Germanova EL. Effects of preconditioning on the resistance to acute hypobaric hypoxia and their correction with selective antagonists of nicotinic receptors. Bull Exp Biol Med 2012; 151:179-82. [PMID: 22238744 DOI: 10.1007/s10517-011-1283-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Hypobaric hypoxic preconditioning increased the resistance of low resistant and highly resistant rats to acute hypobaric hypoxia at a critical height. Intergroup differences in the resistance of rats to acute hypobaric hypoxia were not observed after hypobaric hypoxia and one variational series with a wide range of resistance (4.5-24.5 min) appeared. Methyllycaconitine, an antagonist of subtype α(7) nicotinic cholinergic receptors, abolished the influence of hypobaric hypoxia on low resistant rats, but had no effect on highly resistant animals. Mecamylamine, a preferential antagonist of subtype α(4)β(2) and α(3)-containing cholinergic receptors, did not modulate the effect of hypobaric hypoxia. By contrast, hypobaric hypoxia abolished the effect of mecamylamine on the resistance of rats that were not trained under conditions of hypobaric hypoxia (low resistant and highly resistant animals with low sensitivity to hypobaric hypoxia). We conclude that the same effect of hypobaric hypoxia is mediated by various mechanisms, which involve different nicotinic cholinergic receptors. They differ from the resistance mechanisms in non-trained rats.
Collapse
Affiliation(s)
- E I Zakharova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia.
| | | | | |
Collapse
|
13
|
Rabbit ventilatory responses to peripheral chemoexcitators: effects of chronic hypoxia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 758:307-13. [PMID: 23080177 DOI: 10.1007/978-94-007-4584-1_42] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
14
|
Abstract
The discovery of the sensory nature of the carotid body dates back to the beginning of the 20th century. Following these seminal discoveries, research into carotid body mechanisms moved forward progressively through the 20th century, with many descriptions of the ultrastructure of the organ and stimulus-response measurements at the level of the whole organ. The later part of 20th century witnessed the first descriptions of the cellular responses and electrophysiology of isolated and cultured type I and type II cells, and there now exist a number of testable hypotheses of chemotransduction. The goal of this article is to provide a comprehensive review of current concepts on sensory transduction and transmission of the hypoxic stimulus at the carotid body with an emphasis on integrating cellular mechanisms with the whole organ responses and highlighting the gaps or discrepancies in our knowledge. It is increasingly evident that in addition to hypoxia, the carotid body responds to a wide variety of blood-borne stimuli, including reduced glucose and immune-related cytokines and we therefore also consider the evidence for a polymodal function of the carotid body and its implications. It is clear that the sensory function of the carotid body exhibits considerable plasticity in response to the chronic perturbations in environmental O2 that is associated with many physiological and pathological conditions. The mechanisms and consequences of carotid body plasticity in health and disease are discussed in the final sections of this article.
Collapse
Affiliation(s)
- Prem Kumar
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, United Kingdom.
| | | |
Collapse
|
15
|
Liu X, He L, Dinger B, Fidone SJ. Chronic hypoxia-induced acid-sensitive ion channel expression in chemoafferent neurons contributes to chemoreceptor hypersensitivity. Am J Physiol Lung Cell Mol Physiol 2011; 301:L985-92. [PMID: 21890510 DOI: 10.1152/ajplung.00132.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Previously we demonstrated that chronic hypoxia (CH) induces an inflammatory condition characterized by immune cell invasion and increased expression of inflammatory cytokines in rat carotid body. It is well established that chronic inflammatory pain induces the expression of acid-sensitive ion channels (ASIC) in primary sensory neurons, where they contribute to hyperalgesia and allodynia. The present study examines the effect of CH on ASIC expression in petrosal ganglion (PG), which contains chemoafferent neurons that innervate oxygen-sensitive type I cells in the carotid body. Five isoforms of ASIC transcript were increased ∼1.5-2.5-fold in PG following exposure of rats to 1, 3, or 7 days of hypobaric hypoxia (380 Torr). ASIC transcript was not increased in the sympathetic superior cervical ganglion (SCG). In the PG, CH also increased the expression of channel-interacting PDZ domain protein, a scaffolding protein known to enhance the surface expression and the low pH-induced current density mediated by ASIC3. Western immunoblot analysis showed that CH elevated ASIC3 protein in PG, but not in SCG or the (sensory) nodose ganglion. ASIC3 transcript was likewise elevated in PG neurons cultured in the presence of inflammatory cytokines. Increased ASIC expression was blocked in CH rats concurrently treated with the nonsteroidal anti-inflammatory drug ibuprofen (4 mg·kg(-1)·day(-1)). Electrophysiological recording of carotid sinus nerve (CSN) activity in vitro showed that the specific ASIC antagonist A-317567 (100 μM) did not significantly alter hypoxia-evoked activity in normal preparations but blocked ∼50% of the hypoxic response following CH. Likewise, a high concentration of ibuprofen, which is known to block ASIC1a, reduced hypoxia-evoked CSN activity by ∼50% in CH preparations. Our findings indicate that CH induces inflammation-dependent phenotypic adjustments in chemoafferent neurons. Following CH, ASIC are important participants in chemotransmission between type I cells and chemoafferent nerve terminals, and these proton-gated channels appear to enhance chemoreceptor sensitivity.
Collapse
Affiliation(s)
- X Liu
- Department of Physiology, University of Utah School of Medicine, Salt Lake City, USA
| | | | | | | |
Collapse
|
16
|
A chronic pain: inflammation-dependent chemoreceptor adaptation in rat carotid body. Respir Physiol Neurobiol 2011; 178:362-9. [PMID: 21397054 DOI: 10.1016/j.resp.2011.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 11/20/2022]
Abstract
Experiments in recent years have revealed labile electrophysiological and neurochemical phenotypes in primary afferent neurons exposed to specific stimulus conditions associated with the development of chronic pain. These studies collectively demonstrate that the mechanisms responsible for functional plasticity are primarily mediated by novel neuroimmune interactions involving circulating and resident immune cells and their secretory products, which together induce hyperexcitability in the primary sensory neurons. In another peripheral sensory modality, namely the arterial chemoreceptors, sustained stimulation in the form of chronic hypoxia (CH) elicits increased chemoafferent excitability from the mammalian carotid body. Previous studies which focused on functional changes in oxygen-sensitive type I cells in this organ have only partially elucidated the molecular and cellular mechanisms which initiate and control this adaptive response. Recent studies in our laboratory indicate a unique role for the immune system in regulating the chemo-adaptive response of the carotid body to physiologically relevant levels of hypoxia.
Collapse
|
17
|
Zakharova EI, Dudchenko AM, Svinov MM, Fedorova MM, Germanova EL. Cholinergic systems of the rat brain and neuronal reorganization under conditions of acute hypoxia. NEUROCHEM J+ 2010. [DOI: 10.1134/s1819712410040082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Teppema LJ, Dahan A. The Ventilatory Response to Hypoxia in Mammals: Mechanisms, Measurement, and Analysis. Physiol Rev 2010; 90:675-754. [DOI: 10.1152/physrev.00012.2009] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The respiratory response to hypoxia in mammals develops from an inhibition of breathing movements in utero into a sustained increase in ventilation in the adult. This ventilatory response to hypoxia (HVR) in mammals is the subject of this review. The period immediately after birth contains a critical time window in which environmental factors can cause long-term changes in the structural and functional properties of the respiratory system, resulting in an altered HVR phenotype. Both neonatal chronic and chronic intermittent hypoxia, but also chronic hyperoxia, can induce such plastic changes, the nature of which depends on the time pattern and duration of the exposure (acute or chronic, episodic or not, etc.). At adult age, exposure to chronic hypoxic paradigms induces adjustments in the HVR that seem reversible when the respiratory system is fully matured. These changes are orchestrated by transcription factors of which hypoxia-inducible factor 1 has been identified as the master regulator. We discuss the mechanisms underlying the HVR and its adaptations to chronic changes in ambient oxygen concentration, with emphasis on the carotid bodies that contain oxygen sensors and initiate the response, and on the contribution of central neurotransmitters and brain stem regions. We also briefly summarize the techniques used in small animals and in humans to measure the HVR and discuss the specific difficulties encountered in its measurement and analysis.
Collapse
Affiliation(s)
- Luc J. Teppema
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
19
|
Nurse CA. Neurotransmitter and neuromodulatory mechanisms at peripheral arterial chemoreceptors. Exp Physiol 2010; 95:657-67. [PMID: 20360424 DOI: 10.1113/expphysiol.2009.049312] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The control of breathing depends critically on sensory inputs to the central pattern generator of the brainstem, arising from peripheral arterial chemoreceptors located principally in the carotid bodies (CBs). The CB receptors, i.e. glomus or type I cells, are excited by chemical stimuli in arterial blood, particularly hypoxia, hypercapnia, acidosis and low glucose, which initiate corrective reflex cardiorespiratory and cardiovascular adjustments. Type I cells occur in clusters and are innervated by petrosal afferent fibres. Synaptic specializations (both chemical and electrical) occur between type I cells and petrosal terminals, and between neighbouring type I cells. This, together with the presence of a wide array of neurotransmitters and neuromodulators linked to both ionotropic and metabotropic receptors, allows for a complex modulation of CB sensory output. Studies in several laboratories over the last 20 years have provided much insight into the transduction mechanisms. More recent studies, aided by the development of a co-culture model of the rat CB, have shed light on the role of neurotransmitters and neuromodulators in shaping the afferent response. This review highlights some of these developments, which have contributed to our current understanding of information processing at CB chemoreceptors.
Collapse
Affiliation(s)
- Colin A Nurse
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1.
| |
Collapse
|
20
|
Areza-Fegyveres R, Kairalla RA, Carvalho CRR, Nitrini R. Cognition and chronic hypoxia in pulmonary diseases. Dement Neuropsychol 2010; 4:14-22. [PMID: 29213655 PMCID: PMC5619525 DOI: 10.1590/s1980-57642010dn40100003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Lung disease with chronic hypoxia has been associated with cognitive impairment
of the subcortical type.
Collapse
Affiliation(s)
- Renata Areza-Fegyveres
- Neurologist, collaborating researcher of the Cognitive and Behavioral Neurology Unit, Hospital das Clínicas, University of São Paulo Medical School
| | - Ronaldo A Kairalla
- Assistant Professor, Pulmonary Division, Heart Institute (InCor), University of São Paulo Medical School
| | - Carlos R R Carvalho
- Associate Professor, Pulmonary Division, Heart Institute (InCor), University of São Paulo Medical School
| | - Ricardo Nitrini
- Associate Professor of the Department of Neurology and Director of the Cognitive and Behavioral Neurology Unit, Hospital das Clínicas, University of São Paulo Medical School
| |
Collapse
|
21
|
Abstract
Acclimatization to long-term hypoxia takes place at high altitude and allows gradual improvement of the ability to tolerate the hypoxic environment. An important component of this process is the hypoxic ventilatory acclimatization (HVA) that develops over several days. HVA reveals profound cellular and neurochemical re-organization occurring both in the peripheral chemoreceptors and in the central nervous system (in brainstem respiratory groups). These changes lead to an enhanced activity of peripheral chemoreceptor and re-inforce the central translation of peripheral inputs to efficient respiratory motor activity under the steady low O(2) pressure. We will review the cellular processes underlying these changes with a particular emphasis on changes of neurotransmitter function and ion channel properties in peripheral chemoreceptors, and present evidence that low O(2) level acts directly on brainstem nuclei to induce cellular changes contributing to maintain a high tonic respiratory drive under chronic hypoxia.
Collapse
Affiliation(s)
- Vincent Joseph
- Department of Pediatrics, Laval University, Centre de Recherche (D0-711), Hôpital St-François d'Assise, 10 rue de l'Espinay, Quebec, QC, G1L 3L5, Canada.
| | | |
Collapse
|
22
|
Donnelly DF. Nicotinic acetylcholine receptors do not mediate excitatory transmission in young rat carotid body. J Appl Physiol (1985) 2009; 107:1806-16. [PMID: 19762524 DOI: 10.1152/japplphysiol.00135.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carotid body chemoreceptors transduce a decrease in arterial oxygen tension into increased action potential (AP) activity on the sinus nerve, which increases the drive to breathe. The mechanism by which AP activity increases is unresolved, but acetylcholine (ACh), acting through nicotinic receptors, is postulated to be a major contributor to nerve excitation based partly on the demonstration that pharmacological antagonism of nicotinic receptors reduces the afferent nerve response in some studies. However, most previous studies relied on indirect measures of chemoreceptor activity or utilized a recording configuration that is sensitive to AP morphology in addition to AP frequency. In the present study, single-unit AP activity was recorded from the soma of rat chemoreceptor neurons in vitro. The nicotinic blocker mecamylamine (50 microM) ablated the excitatory actions of exogenous ACh and increased, rather than decreased, AP activity during moderate hypoxia. At higher dosage (500 microM) AP height was reduced, conduction velocity slowed, and conduction failure occurred, especially during hypoxia, producing the appearance of a decreased response to hypoxia. Recovery from mecamylamine block was slow (>10 min). In contrast to mecamylamine, suramin, a P2X receptor blocker, reversibly inhibited the response to hypoxia, suggesting relatively free diffusion of drugs to the glomus cell/nerve synaptic site. These results strongly suggest that ACh acting through nicotinic receptors does not mediate excitatory transmission in rat carotid body and that previous results demonstrating such a role may have been partially influenced by changes in AP morphology or conduction failure.
Collapse
Affiliation(s)
- David F Donnelly
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| |
Collapse
|
23
|
Lumbroso D, Joseph V. Impaired acclimatization to chronic hypoxia in adult male and female rats following neonatal hypoxia. Am J Physiol Regul Integr Comp Physiol 2009; 297:R421-7. [PMID: 19494172 DOI: 10.1152/ajpregu.00068.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We tested the hypothesis that neonatal exposure to hypoxia alters acclimatization to chronic hypoxia later in life. Rat pups were exposed to normobaric hypoxia (12% O(2); nHx group) in a sealed chamber, or to normoxia (21% O(2); nNx group) from the day before birth to postnatal day 10. The animals were then raised in normal conditions until reaching 12 wk of age. At this age, we assessed ventilatory and hematological acclimatization to chronic hypoxia by exposing male and female nHx and nNx rats for 2 wk to 10% O(2). Minute ventilation, metabolic rate, hypoxic ventilatory response, hematocrit, and hemoglobin levels were measured both before and after acclimatization. We also quantified right ventricular hypertrophy as an index of pulmonary hypertension both before and after acclimatization. There was a significant effect of neonatal hypoxia that decreases ventilatory response (relative to metabolic rate, VE/VCO(2)) to acute hypoxia before acclimatization in males but not in females. nHx rats had an impaired acclimatization to chronic hypoxia characterized by altered respiratory pattern and elevated hematocrit and hemoglobin levels after acclimatization, in both males and females. Right ventricular hypertrophy was present before and after acclimatization in nHx rats, indicating that neonatal hypoxia results in pulmonary hypertension in adults. We conclude that neonatal hypoxia impairs acclimatization to chronic hypoxia in adults and may be a factor contributing to the establishment of chronic mountain sickness in humans living at high altitude.
Collapse
Affiliation(s)
- Delphine Lumbroso
- Department of Pediatrics, Laval University, Centre de Recherche, Hôpital St-François d'Assise, Quebec, Canada
| | | |
Collapse
|
24
|
Catassi A, Paleari L, Servent D, Sessa F, Dominioni L, Ognio E, Cilli M, Vacca P, Mingari M, Gaudino G, Bertino P, Paolucci M, Calcaterra A, Cesario A, Granone P, Costa R, Ciarlo M, Alama A, Russo P. Targeting alpha7-nicotinic receptor for the treatment of pleural mesothelioma. Eur J Cancer 2008; 44:2296-311. [PMID: 18722110 DOI: 10.1016/j.ejca.2008.06.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 06/16/2008] [Accepted: 06/30/2008] [Indexed: 10/21/2022]
Abstract
Human malignant pleural mesothelioma (MPM) is a dreadful disease and there is still no standard therapy available for a consistent therapeutic approach. This research is aimed at the evaluation of the potential therapeutic effect of a specific nicotinic receptor (nAChR) antagonist, namely alpha-Cobratoxin (alpha-CbT). Its effectiveness was tested in mesothelioma cell lines and in primary mesothelioma cells in vitro, as well as in vivo, in orthotopically xenotransplanted NOD/SCID mice. Cells showed alpha7-nAChR expression and their growth was significantly inhibited by alpha-CbT. Severe induction of apoptosis was observed after exposure to alpha-CbT [IC(80-90)]. Apoptosis was characterised by: change in mitochondrial potential, caspase-3 cleavage, down-regulation of mRNA and protein for survivin, XIAP, IAP1, IAP2 and Bcl-XL, inhibition by caspase-3 inhibitor. In vivo, the alpha-CbT acute LD(50) was 0.15 mg/kg. The LD(100) [0.24 mg/kg] induced fatal respiratory failure and massive kidney necrosis. Phase II experiments with 0.12 ng/kg alpha-CbT (1/1000 of LD(10)) were done in 53 xenotransplanted mice, inhibiting tumour development as confirmed by chest X-ray examinations, autopsy and microscopical findings. The growth of human proliferating T lymphocytes and of mesothelial cells in primary culture was not affected by alpha-CbT. Non-immunogenic derivatives of the alpha-CbT molecule need to be developed for possible human use.
Collapse
Affiliation(s)
- Alessia Catassi
- Lung Cancer Unit, National Cancer Research Institute, 16032 Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Donnelly DF. Spontaneous action potential generation due to persistent sodium channel currents in simulated carotid body afferent fibers. J Appl Physiol (1985) 2008; 104:1394-401. [DOI: 10.1152/japplphysiol.01169.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanism by which action potentials (APs) are generated in afferent nerve fibers in the carotid body is unknown, but it is generally speculated to be release of an excitatory transmitter and synaptic depolarizing events. However, previous results suggested that Na+channels in the afferent nerve fibers play an important role in this process. To better understand the potential mechanism by which Na+channels may generate APs, a mathematical model of chemoreceptor nerve fibers that incorporated Hodgkin-Huxley-type Na+channels with kinetics of activation and inactivation, as determined previously from recordings of petrosal chemoreceptor neurons, was constructed. While the density of Na+channels was kept constant, spontaneous APs arose in nerve terminals as the axonal diameter was reduced to that in rat carotid body. AP excitability and pattern were similar to those observed in chemoreceptor recordings: 1) a random pattern at low- and high-frequency discharge rates, 2) a high sensitivity to reductions in extracellular Na+concentration, and 3) a variation in excitability that increased with AP generation rate. Taken together, the results suggest that an endogenous process in chemoreceptor nerve terminals may underlie AP generation, a process independent of synaptic depolarizing events.
Collapse
|
26
|
Conde SV, Obeso A, Gonzalez C. Low glucose effects on rat carotid body chemoreceptor cells' secretory responses and action potential frequency in the carotid sinus nerve. J Physiol 2007; 585:721-30. [PMID: 17947309 DOI: 10.1113/jphysiol.2007.144261] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glucose deprivation (hypoglycaemia) is counterbalanced by a neuroendocrine response in order to induce fast delivery of glucose to blood. Some central neurons can sense glucose, but nevertheless the most important glucose sensors/glycaemia regulators are located outside the brain. Some recent experimental evidence obtained in carotid body (CB) slices and isolated chemoreceptor cells in culture supports a role for the CB in glucose sensing and presumably glucose homeostasis, but this role has been questioned on the basis of a lack of effect of low glucose on the carotid sinus nerve activity. This work was performed in an attempt to clarify if low glucose is or is not a stimulus for the rat CB chemoreceptors. Using freshly isolated intact CB preparations we have monitored the release of catecholamines (CAs) and ATP from chemoreceptor cells in response to several concentrations of glucose, as indices of chemoreceptor cell sensitivity to glycaemia, and the electrical activity in the carotid sinus nerve (CSN), as an index of reflex-triggering output of the CB. We have observed that basal (20% O(2)) and hypoxia (7 and 10% O(2))-evoked release of CAs was identical in the presence of normal (5.55 mm) and low (3, 1 and 0 mm) glucose concentrations. 0 mm glucose did not activate the release of ATP from the CB, while hypoxia (5% O(2)) did. Basal and hypoxia (5% O(2))-induced CSN action potential frequency was identical with 5.55 and 1 mm glucose. Our results indicate that low glucose is not a direct stimulus for the rat carotid body chemoreceptors.
Collapse
Affiliation(s)
- S V Conde
- Departamento de Bioquímica y, Biología Molecular y Fisiología, Facultad de Medicina. Universidad de Valladolid, Valladolid, Spain
| | | | | |
Collapse
|
27
|
He L, Chen J, Liu X, Dinger B, Fidone S. Enhanced nitric oxide-mediated chemoreceptor inhibition and altered cyclic GMP signaling in rat carotid body following chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 2007; 293:L1463-8. [PMID: 17921345 DOI: 10.1152/ajplung.00249.2007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multiple studies have shown that chronic hypoxia (CH) elicits a time-dependent upregulation of carotid body chemoreceptor sensitivity in mammals. In the present study, we demonstrate that enhanced excitation is accompanied by a parallel increase of nitric oxide (NO)-dependent inhibition, which acts via a CH-induced modification of the normal mechanism in O(2)-sensitive type I cells. The NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), elicits a progressively larger increase in carotid sinus nerve (CSN) chemoreceptor activity following incremental increases in CH exposure lasting 1-16 days. The inhibitory effect of the NO donor, S-nitroso-N-acetyl-penicillamine (SNAP), on CSN activity is enhanced following CH. However, the activation of soluble guanylate cyclase (sGC) by SNAP, assessed via production of cGMP, is impaired, along with decreased expression of sGC mRNA transcript. Inhibition of hypoxia-evoked Ca(2+) responses by SNAP is mediated via a cGMP/protein kinase G (PKG)-dependent mechanism in normal type I cells that is sensitive to the PKG inhibitor KT-5823, but following CH, inhibitory responses are minimally sensitive to PKG inhibition. The data are consistent with the hypothesis that CH hampers cGMP-mediated inhibition of type I cells in favor of an alternative mechanism.
Collapse
Affiliation(s)
- L He
- Department of Physiology, University of Utah School of Medicine, Salt Lake City, UT 84108-6500, USA
| | | | | | | | | |
Collapse
|
28
|
Eyzaguirre C. Electric synapses in the carotid body–nerve complex. Respir Physiol Neurobiol 2007; 157:116-22. [PMID: 17336600 DOI: 10.1016/j.resp.2007.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 01/16/2007] [Accepted: 01/22/2007] [Indexed: 11/23/2022]
Abstract
Slices of rat carotid bodies, or cultured glomus cells, were used to study intercellular coupling. This phenomenon occurs because gap junctions allow passage of currents and dyes from one cell to another. There is a two-way resistive coupling between glomus cells (GC/GC coupling), which is accompanied by activity of intercellular channels. Coupling between glomus cells and nerve endings is more complex. Coupling is mostly resistive from cell to nerve (GC/NE) but it is mostly capacitive in the opposite direction (NE/GC). Thus, slow electric events originating in the glomus cells can be transferred to the nerve endings. But, only electric transients can pass from nerve to cell. There is also coupling between nerve endings (NE/NE), which is mostly capacitive in either direction. Chemoreceptor stimulants (acute and chronic hypoxia, hypercapnia, acidity, cholinergic agents and dopamine) uncouple most glomus cells, accompanied by cell depolarization and decreased amplitude of junction channels. Chronic hypobaric hypoxia increases GC/NE, NE/GC and NE/NE coupling. GC/GC uncoupling seems related to transmitter secretion. Transmission across chemical synapses is aided by increased coupling from glomus cell to nerve ending.
Collapse
Affiliation(s)
- Carlos Eyzaguirre
- Department of Physiology, School of Medicine, University of Utah, Salt Lake City, UT 84108, USA.
| |
Collapse
|
29
|
Balbir A, Lee H, Okumura M, Biswal S, Fitzgerald RS, Shirahata M. A search for genes that may confer divergent morphology and function in the carotid body between two strains of mice. Am J Physiol Lung Cell Mol Physiol 2007; 292:L704-15. [PMID: 17098806 DOI: 10.1152/ajplung.00383.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The carotid body (CB) is the primary hypoxic chemosensory organ. Its hypoxic response appears to be genetically controlled. We have hypothesized that: 1) genes related to CB function are expressed less in the A/J mice (low responder to hypoxia) compared with DBA/2J mice (high responder to hypoxia); and 2) gene expression levels of morphogenic and trophic factors of the CB are significantly lower in the A/J mice than DBA/2J mice. This study utilizes microarray analysis to test these hypotheses. Three sets of CBs were harvested from both strains. RNA was isolated and used for global gene expression profiling (Affymetrix Mouse 430 v2.0 array). Statistically significant gene expression was determined as a minimum six counts of nine pairwise comparisons, a minimum 1.5-fold change, and P ≤ 0.05. Our results demonstrated that 793 genes were expressed less and that 568 genes were expressed more in the A/J strain vs. the DBA/2J strain. Analysis of individual genes indicates that genes encoding ion channels are differentially expressed between the two strains. Genes related to neurotransmitter metabolism, synaptic vesicles, and the development of neural crest-derived cells are expressed less in the A/J CB vs. the DBA/2J CB. Through pathway analysis, we have constructed a model that shows gene interactions and offers a roadmap to investigate CB development and hypoxic chemosensing/chemotransduction processes. Particularly, Gdnf, Bmp2, Kcnmb2, Tph1, Hif1a, and Arnt2 may contribute to the functional differences in the CB between the two strains. Bmp2, Phox2b, Dlx2, and Msx2 may be important for the morphological differences.
Collapse
Affiliation(s)
- Alexander Balbir
- Division of Physiology, Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, E7610, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
30
|
Shirahata M, Balbir A, Otsubo T, Fitzgerald RS. Role of acetylcholine in neurotransmission of the carotid body. Respir Physiol Neurobiol 2007; 157:93-105. [PMID: 17284361 DOI: 10.1016/j.resp.2006.12.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 12/11/2006] [Accepted: 12/27/2006] [Indexed: 01/19/2023]
Abstract
Acetylcholine (ACh) has been considered an important excitatory neurotransmitter in the carotid body (CB). Its physiological and pharmacological effects, metabolism, release, and receptors have been well documented in several species. Various nicotinic and muscarinic ACh receptors are present in both afferent nerve endings and glomus cells. Therefore, ACh can depolarize or hyperpolarize the cell membrane depending on the available receptor type in the vicinity. Binding of ACh to its receptor can create a wide variety of cellular responses including opening cation channels (nicotinic ACh receptor activation), releasing Ca(2+) from intracellular storage sites (via muscarinic ACh receptors), and modulating activities of K(+) and Ca(2+) channels. Interactions between ACh and other neurotransmitters (dopamine, adenosine, nitric oxide) have been known, and they may induce complicated responses. Cholinergic biology in the CB differs among species and even within the same species due to different genetic composition. Development and environment influence cholinergic biology. We discuss these issues in light of current knowledge of neuroscience.
Collapse
Affiliation(s)
- Machiko Shirahata
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
31
|
Zhang M, Buttigieg J, Nurse CA. Neurotransmitter mechanisms mediating low-glucose signalling in cocultures and fresh tissue slices of rat carotid body. J Physiol 2006; 578:735-50. [PMID: 17124268 PMCID: PMC2151341 DOI: 10.1113/jphysiol.2006.121871] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The mammalian carotid body (CB) is a polymodal chemosensor which can detect low blood glucose (hypoglycaemia), leading to increased afferent discharge and activation of counter-regulatory autonomic pathways. The underlying neurotransmitter mechanisms are unknown and controversy surrounds whether the action of low glucose is direct or indirect. To address this, we used a coculture model containing functional chemosensory units of rat CB receptor (type I) cell clusters and afferent petrosal neurones (PN). During perforated-patch, whole-cell recordings, low glucose (0-2 mM) stimulated sensory discharge in cocultured PN. When the background P(O2) was lowered to levels typical of arterial blood (approximately 90 mmHg), robust PN chemoexcitation could be induced by physiological hypoglycaemia (3.3-4 mM glucose). These sensory responses were reversibly inhibited by a combination of purinergic (suramin, 50 microM) and nicotinic (mecamylamine, 1 microM) receptor blockers, suggesting that transmission depended on corelease of ATP and ACh. Hypoglycaemic responses were additive with those evoked by hypoxia or hypercapnia; further, they could be potentiated by the GABAB receptor blocker (CGP 55845) and inhibited by 5-HT2A receptor blockers (ketanserin or ritanserin). During paired simultaneous recordings from a PN and a type I cell in an adjacent cluster, the afferent PN response coincided with type I cell depolarization, which was associated with a decrease in input resistance. In fresh tissue slices of rat CB, low glucose stimulated ATP secretion as determined by the luciferin-luciferase assay; this secretion was cadmium sensitive, potentiated by CGP 55845, and inhibited by ketanserin. Taken together these data indicate that CB receptors act as direct glucosensors, and that processing of hypoglycaemia utilizes similar neurotransmitter and neuromodulatory mechanisms as hypoxia.
Collapse
Affiliation(s)
- Min Zhang
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada, L8S 4K1
| | | | | |
Collapse
|
32
|
Lahiri S, Roy A, Baby SM, Hoshi T, Semenza GL, Prabhakar NR. Oxygen sensing in the body. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2006; 91:249-86. [PMID: 16137743 DOI: 10.1016/j.pbiomolbio.2005.07.001] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This review is divided into three parts: (a) The primary site of oxygen sensing is the carotid body which instantaneously respond to hypoxia without involving new protein synthesis, and is historically known as the first oxygen sensor and is therefore placed in the first section (Lahiri, Roy, Baby and Hoshi). The carotid body senses oxygen in acute hypoxia, and produces appropriate responses such as increases in breathing, replenishing oxygen from air. How this oxygen is sensed at a relatively high level (arterial PO2 approximately 50 Torr) which would not be perceptible by other cells in the body, is a mystery. This response is seen in afferent nerves which are connected synaptically to type I or glomus cells of the carotid body. The major effect of oxygen sensing is the increase in cytosolic calcium, ultimately by influx from extracellular calcium whose concentration is 2 x 10(4) times greater. There are several contesting hypotheses for this response: one, the mitochondrial hypothesis which states that the electron transport from the substrate to oxygen through the respiratory chain is retarded as the oxygen pressure falls, and the mitochondrial membrane is depolarized leading to the calcium release from the complex of mitochondria-endoplasmic reticulum. This is followed by influx of calcium. Also, the inhibitors of the respiratory chain result in mitochondrial depolarization and calcium release. The other hypothesis (membrane model) states that K(+) channels are suppressed by hypoxia which depolarizes the membrane leading to calcium influx and cytosolic calcium increase. Evidence supports both the hypotheses. Hypoxia also inhibits prolyl hydroxylases which are present in all the cells. This inhibition results in membrane K(+) current suppression which is followed by cell depolarization. The theme of this section covers first what and where the oxygen sensors are; second, what are the effectors; third, what couples oxygen sensors and the effectors. (b) All oxygen consuming cells have a built-in mechanism, the transcription factor HIF-1, the discovery of which has led to the delineation of oxygen-regulated gene expression. This response to chronic hypoxia needs new protein synthesis, and the proteins of these genes mediate the adaptive physiological responses. HIF-1alpha, which is a part of HIF-1, has come to be known as master regulator for oxygen homeostasis, and is precisely regulated by the cellular oxygen concentration. Thus, the HIF-1 encompasses the chronic responses (gene expression in all cells of the body). The molecular biology of oxygen sensing is reviewed in this section (Semenza). (c) Once oxygen is sensed and Ca(2+) is released, the neurotransmittesr will be elaborated from the glomus cells of the carotid body. Currently it is believed that hypoxia facilitates release of one or more excitatory transmitters from glomus cells, which by depolarizing the nearby afferent terminals, leads to increases in the sensory discharge. The transmitters expressed in the carotid body can be classified into two major categories: conventional and unconventional. The conventional neurotransmitters include those stored in synaptic vesicles and mediate their action via activation of specific membrane bound receptors often coupled to G-proteins. Unconventional neurotransmitters are those that are not stored in synaptic vesicles, but spontaneously generated by enzymatic reactions and exert their biological responses either by interacting with cytosolic enzymes or by direct modifications of proteins. The gas molecules such as NO and CO belong to this latter category of neurotransmitters and have unique functions. Co-localization and co-release of neurotransmitters have also been described. Often interactions between excitatory and inhibitory messenger molecules also occur. Carotid body contains all kinds of transmitters, and an interplay between them must occur. But very little has come to be known as yet. Glimpses of these interactions are evident in the discussion in the last section (Prabhakar).
Collapse
Affiliation(s)
- S Lahiri
- Department of Physiology, University of Pennsylvania Medical Center, Philadelphia, 19104-6085, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Jiang RG, Eyzaguirre C. Effects of prolonged hypobaric hypoxia on carotid nerve endings and glomus cells. Changes in intercellular coupling. Brain Res 2006; 1076:198-208. [PMID: 16472784 DOI: 10.1016/j.brainres.2005.08.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 08/25/2005] [Accepted: 08/28/2005] [Indexed: 11/29/2022]
Abstract
Carotid bodies were removed from anesthetized rats kept under normobaric (640 Torr) and hypobaric conditions (380 Torr for 2-3 weeks). Slices (100-150 microm) of the organ were viewed under an inverted microscope for simultaneous stimulation and recording of coupled glomus cells and carotid nerve endings. The latter were identified by their more negative Em, high input resistance (Ro) and time-dependent rectification in response to negative current pulses. Also, when nerve endings had an Em more negative than -40 mV showed spontaneous activity in the form of mini-receptor potentials (mrps). Glomus cells had less negative Em and lower Ro. Prolonged hypobaric hypoxia did not change the Em of nerve endings and glomus cells. However, in both structures, Ro increased. Also, the mrps became smaller and occurred less frequently. Intercellular coupling was recognized when currents applied to one cell spread to adjoining ones. In the case of glomus cells (GC/GC coupling), it was mostly resistive and bidirectional. Coupling between nerve endings and glomus cells was more complex, When a glomus cell was stimulated, current spread to the nerve ending (GC/NE coupling) was similar in magnitude (2-3%) to coupling between GCs. However, when NE was stimulated current spread to GC (NE/GC coupling) was minimal (less than 0.1%) and transient (capacitive). Nerve endings were also bidirectionally and capacitively coupled (NE/NE coupling) with a median of 2,8%. Intracellularly injected Lucifer Yellow or Alexa 488 diffused to neighboring structures. Prolonged hypobaric hypoxia significantly tightened coupling modes GC/NE, NE/GC, and NE/NE but reduced GC/GC coupling. Tighter coupling was accompanied by lower coupling resistance, and the opposite occurred when intercellular coupling decreased. Increased GC/NE and reduced GC/GC coupling during hypobaric hypoxia may be partly responsible for the increased reactivity of these receptors under this condition.
Collapse
Affiliation(s)
- R G Jiang
- Department of Physiology, University of Utah School of Medicine, Research Park, Salt Lake City, UT 84108-1297, USA
| | | |
Collapse
|
34
|
He L, Chen J, Dinger B, Stensaas L, Fidone S. Effect of chronic hypoxia on purinergic synaptic transmission in rat carotid body. J Appl Physiol (1985) 2006; 100:157-62. [PMID: 16357082 DOI: 10.1152/japplphysiol.00859.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies indicate that chemoafferent nerve fiber excitation in the rat carotid body is mediated by acetylcholine and ATP, acting at nicotinic cholinergic receptors and P2X2 purinoceptors, respectively. We previously demonstrated that, after a 10- to 14-day exposure to chronic hypoxia (CH), the nicotinic cholinergic receptor blocker mecamylamine no longer inhibits rat carotid sinus nerve (CSN) activity evoked by an acute hypoxic challenge. The present experiments examined the effects of CH (9–16 days at 380 Torr) on the expression of P2X2 purinoceptors in carotid body and chemoafferent neurons, as well as the effectiveness of P2X2 receptor blocking drugs on CSN activity evoked by hypoxia. In the normal carotid body, immunocytochemical studies demonstrated a dense plexus of P2X2-positive nerve fibers penetrating lobules of type I cells. In addition, type I cells were lightly stained, indicating P2X2 receptor expression. After CH, the intensity of P2X2 receptor immunostaining was maintained in chemosensory type I cells and in the soma of chemoafferent neurons. P2 receptor expression on type I cells was confirmed by demonstrations of ATP-evoked increased intracellular Ca2+; this response was modulated by simultaneous exposure to hypoxia. In normal preparations, CSN activity evoked by hypoxia in vitro was 65% inhibited in the presence of specific P2X2 receptor antagonists. However, unlike the absence of mecamylamine action after CH, P2X2 antagonists remained effective against hypoxia-evoked activity after CH. Our findings indicate that ATP acting at P2X2 receptors contributes to adjusted chemoreceptor activity after CH, indicating a possible role for purinergic mechanisms in the adaptation of the carotid body in a chronic low-O2 environment.
Collapse
Affiliation(s)
- L He
- Department of Physiology, University of Utah School of Medicine, 410 Chipeta Way, Salt Lake City, Utah 84108, USA
| | | | | | | | | |
Collapse
|
35
|
Nurse CA. Neurotransmission and neuromodulation in the chemosensory carotid body. Auton Neurosci 2005; 120:1-9. [PMID: 15955746 DOI: 10.1016/j.autneu.2005.04.008] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 04/12/2005] [Accepted: 04/14/2005] [Indexed: 11/20/2022]
Abstract
The mammalian carotid body is a small chemosensory organ that helps maintain the chemical composition of arterial blood via reflex control of ventilation. Thus, in response to decreased PO2 (hypoxia), increased PCO2 (hypercapnia), or decreased pH (acidity), chemoreceptor glomus or type I cells become stimulated and release neuroactive agents that excite apposed sensory terminals of the carotid sinus nerve. The resulting increase in afferent discharge ultimately leads to corrective changes in ventilation so as to maintain blood gas and pH homeostasis. Recent evidence that the organ can also sense low glucose further emphasizes its role as a polymodal sensor of blood-borne stimuli. The chemoreceptors occur in organized cell clusters that receive sensory innervation from petrosal afferents and are intimately associated with the blood supply. Additionally, synaptic specializations between neighboring receptor cells allow for autocrine and paracrine regulation of the sensory output. Though not without controversy, significant progress has been made in elucidating the various chemotransductive pathways, as well as the neurotransmitter and neuromodulatory mechanisms that translate the receptor potential into an afferent sensory discharge. Progress in the latter has been hampered by the presence of a wide variety of endogenous ligands, and an even broader spectrum of receptor subtypes, that apparently help shape the chemoreceptor output and afferent discharge. This review will highlight recent advances in understanding the role of these neuroactive ligands in carotid body function.
Collapse
Affiliation(s)
- Colin A Nurse
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada L8S 4K1.
| |
Collapse
|
36
|
Wilson DF, Roy A, Lahiri S. Immediate and long-term responses of the carotid body to high altitude. High Alt Med Biol 2005; 6:97-111. [PMID: 16060845 PMCID: PMC2784888 DOI: 10.1089/ham.2005.6.97] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
High altitude and the decreased environmental oxygen pressure have both immediate and chronic effects on the carotid body. An immediate effect is to limit the oxygen available for mitochondrial oxidative phosphorylation, and this leads to increased activity on the afferent nerves leading to the brain. In the isolated carotid body preparation, the afferent nerve activity depends on the ratio of carbon monoxide (CO), an inhibitor of respiratory chain function, to oxygen. The CO-induced increase in afferent neural activity is reversed by light, and the wavelength dependence of this reversal shows that the site of CO (and therefore oxygen) interaction is cytochrome a3 of the mitochondrial respiratory chain. Thus, primary sensing of ambient oxygen pressure is through the oxygen dependence of mitochondrial oxidative phosphorylation. The conductance of ion channels in the cellular membranes may also be sensitive to oxygen pressure and, through this, modulate the sensitivity to oxygen pressure. Longer-term exposure to high altitude results in progressive changes in the carotid body that involve several mechanisms, including cellular energy metabolism and hypoxia inducible factor-1alpha (HIF-1alpha). These changes begin within minutes of exposure, but progress such that chronic exposure results in morphological and biochemical alterations in the carotid body, including enlarged cells, increased catecholamine levels, altered cellular appearance, and others. In the chronically adapted carotid body, responses to acute changes in oxygen pressure are enhanced. The adaptive changes due to chronic hypoxia are largely reversed upon return to lower altitudes.
Collapse
Affiliation(s)
- David F Wilson
- Department of Biochemistry & Biophysics, University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|