1
|
Ludtka C, Allen JB. The Effects of Simulated and Real Microgravity on Vascular Smooth Muscle Cells. GRAVITATIONAL AND SPACE RESEARCH : PUBLICATION OF THE AMERICAN SOCIETY FOR GRAVITATIONAL AND SPACE RESEARCH 2024; 12:46-59. [PMID: 38846256 PMCID: PMC11156189 DOI: 10.2478/gsr-2024-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
As considerations are being made for the limitations and safety of long-term human spaceflight, the vasculature is important given its connection to and impact on numerous organ systems. As a major constituent of blood vessels, vascular smooth muscle cells are of interest due to their influence over vascular tone and function. Additionally, vascular smooth muscle cells are responsive to pressure and flow changes. Therefore, alterations in these parameters under conditions of microgravity can be functionally disruptive. As such, here we review and discuss the existing literature that assesses the effects of microgravity, both actual and simulated, on smooth muscle cells. This includes the various methods for achieving or simulating microgravity, the animal models or cells used, and the various durations of microgravity assessed. We also discuss the various reported findings in the field, which include changes to cell proliferation, gene expression and phenotypic shifts, and renin-angiotensin-aldosterone system (RAAS), nitric oxide synthase (NOS), and Ca2+ signaling. Additionally, we briefly summarize the literature on smooth muscle tissue engineering in microgravity as well as considerations of radiation as another key component of spaceflight to contextualize spaceflight experiments, which by their nature include radiation exposure. Finally, we provide general recommendations based on the existing literature's focus and limitations.
Collapse
Affiliation(s)
- Christopher Ludtka
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Josephine B. Allen
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
2
|
Samoilenko T, Shishkina V, Antakova L, Goryushkina Y, Kostin A, Buchwalow I, Tiemann M, Atiakshin D. Smooth Muscle Actin as a Criterion for Gravisensitivity of Stomach and Jejunum in Laboratory Rodents. Int J Mol Sci 2023; 24:16539. [PMID: 38003728 PMCID: PMC10671600 DOI: 10.3390/ijms242216539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Smooth muscle tissue (SMT) is one of the main structural components of visceral organs, acting as a key factor in the development of adaptive and pathological conditions. Despite the crucial part of SMT in the gastrointestinal tract activity, the mechanisms of its gravisensitivity are still insufficiently studied. The study evaluated the content of smooth muscle actin (α-SMA) in the membranes of the gastric fundus and jejunum in C57BL/6N mice (30-day space flight), in Mongolian gerbils Meriones unguiculatus (12-day orbital flight) and after anti-orthostatic suspension according to E.R. Morey-Holton. A morphometric analysis of α-SMA in the muscularis externa of the stomach and jejunum of mice and Mongolian gerbils from space flight groups revealed a decreased area of the immunopositive regions, a fact indicating a weakening of the SMT functional activity. Gravisensitivity of the contractile structures of the digestive system may be due to changes in the myofilament structural components of the smooth myocytes or myofibroblast actin. A simulated antiorthostatic suspension revealed no significant changes in the content of the α-SMA expression level, a fact supporting an alteration in the functional properties of the muscularis externa of the digestive hollow organs under weightless environment. The data obtained contribute to the novel mechanisms of the SMT contractile apparatus remodeling during orbital flights and can be used to improve preventive measures in space biomedicine.
Collapse
Affiliation(s)
- Tatyana Samoilenko
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Moskovsky Prospekt 189a, 394036 Voronezh, Russia
| | - Viktoriya Shishkina
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Moskovsky Prospekt 189a, 394036 Voronezh, Russia
| | - Lyubov Antakova
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Moskovsky Prospekt 189a, 394036 Voronezh, Russia
| | - Yelena Goryushkina
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Moskovsky Prospekt 189a, 394036 Voronezh, Russia
| | - Andrey Kostin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia
| | - Igor Buchwalow
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia
- Institute for Hematopathology, 22547 Hamburg, Germany
| | | | - Dmitrii Atiakshin
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Moskovsky Prospekt 189a, 394036 Voronezh, Russia
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia
| |
Collapse
|
3
|
Dubayle D, Vanden-Bossche A, Peixoto T, Morel JL. Hypergravity Increases Blood-Brain Barrier Permeability to Fluorescent Dextran and Antisense Oligonucleotide in Mice. Cells 2023; 12:cells12050734. [PMID: 36899870 PMCID: PMC10000817 DOI: 10.3390/cells12050734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
The earliest effect of spaceflight is an alteration in vestibular function due to microgravity. Hypergravity exposure induced by centrifugation is also able to provoke motion sickness. The blood-brain barrier (BBB) is the crucial interface between the vascular system and the brain to ensure efficient neuronal activity. We developed experimental protocols of hypergravity on C57Bl/6JRJ mice to induce motion sickness and reveal its effects on the BBB. Mice were centrifuged at 2× g for 24 h. Fluorescent dextrans with different sizes (40, 70 and 150 kDa) and fluorescent antisense oligonucleotides (AS) were injected into mice retro-orbitally. The presence of fluorescent molecules was revealed by epifluorescence and confocal microscopies in brain slices. Gene expression was evaluated by RT-qPCR from brain extracts. Only the 70 kDa dextran and AS were detected in the parenchyma of several brain regions, suggesting an alteration in the BBB. Moreover, Ctnnd1, Gja4 and Actn1 were upregulated, whereas Jup, Tjp2, Gja1, Actn2, Actn4, Cdh2 and Ocln genes were downregulated, specifically suggesting a dysregulation in the tight junctions of endothelial cells forming the BBB. Our results confirm the alteration in the BBB after a short period of hypergravity exposure.
Collapse
Affiliation(s)
- David Dubayle
- CNRS, INCC, UMR 8002, Université Paris Cité, F-75006 Paris, France
- Correspondence: (D.D.); (J.-L.M.)
| | - Arnaud Vanden-Bossche
- INSERM, SAINBIOSE U1059, Mines Saint-Etienne, Université Jean Monnet Saint-Étienne, F-42023 Saint-Étienne, France
| | - Tom Peixoto
- University Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Jean-Luc Morel
- University Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
- University Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
- Correspondence: (D.D.); (J.-L.M.)
| |
Collapse
|
4
|
Sy MR, Keefe JA, Sutton JP, Wehrens XHT. Cardiac function, structural, and electrical remodeling by microgravity exposure. Am J Physiol Heart Circ Physiol 2023; 324:H1-H13. [PMID: 36399385 PMCID: PMC9762974 DOI: 10.1152/ajpheart.00611.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Space medicine is key to the human exploration of outer space and pushes the boundaries of science, technology, and medicine. Because of harsh environmental conditions related to microgravity and other factors and hazards in outer space, astronauts and spaceflight participants face unique health and medical challenges, including those related to the heart. In this review, we summarize the literature regarding the effects of spaceflight on cardiac structure and function. We also provide an in-depth review of the literature regarding the effects of microgravity on cardiac calcium handling. Our review can inform future mechanistic and therapeutic studies and is applicable to other physiological states similar to microgravity such as prolonged horizontal bed rest and immobilization.
Collapse
Affiliation(s)
- Mary R Sy
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas
| | - Joshua A Keefe
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas
| | - Jeffrey P Sutton
- Center for Space Medicine, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas
- Center for Space Medicine, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
5
|
Fujisawa K, Nishimura Y, Sakuragi A, Duponselle J, Matsumoto T, Yamamoto N, Murata T, Sakaida I, Takami T. Evaluation of the Effects of Microgravity on Activated Primary Human Hepatic Stellate Cells. Int J Mol Sci 2022; 23:ijms23137429. [PMID: 35806434 PMCID: PMC9266956 DOI: 10.3390/ijms23137429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 01/27/2023] Open
Abstract
In recent years, research has been conducted to develop new medical treatments by simulating environments existing in space, such as zero-gravity. In this study, we evaluated the cell proliferation and gene expression of activated primary human hepatic stellate cells (HHSteCs) under simulated microgravity (SMG). Under SMG, cell proliferation was slower than in 1 G, and the evaluation of gene expression changes on day 1 of SMG by serial analysis of gene expression revealed the presence of Sirtuin, EIF2 signaling, hippo signaling, and epithelial adherence junction signaling. Moreover, reactive oxygen species were upregulated under SMG, and when N-acetyl-cystein was added, no difference in proliferation between SMG and 1 G was observed, suggesting that the oxidative stress generated by mitochondrial dysfunction caused a decrease in proliferation. Upstream regulators such as smad3, NFkB, and FN were activated, and cell-permeable inhibitors such as Ly294002 and U0126 were inhibited. Immunohistochemistry performed to evaluate cytoskeletal changes showed that more β-actin was localized in the cortical layer under SMG.
Collapse
Affiliation(s)
- Koichi Fujisawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube 755-8505, Japan; (K.F.); (Y.N.); (A.S.); (T.M.); (I.S.)
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yuto Nishimura
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube 755-8505, Japan; (K.F.); (Y.N.); (A.S.); (T.M.); (I.S.)
| | - Akino Sakuragi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube 755-8505, Japan; (K.F.); (Y.N.); (A.S.); (T.M.); (I.S.)
| | - Jolien Duponselle
- Departement of Dermatology, University Hospital of Ghent, C. Heymanslaan 10, 9000 Ghent, Belgium;
| | - Toshihiko Matsumoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube 755-8505, Japan; (K.F.); (Y.N.); (A.S.); (T.M.); (I.S.)
| | - Naoki Yamamoto
- Health Administration Center, Yamaguchi University, Minami Kogushi 1-1-1, Ube 755-0046, Yamaguchi, Japan;
| | - Tomoaki Murata
- Institute of Laboratory Animals, Science Research Center, Yamaguchi University, Yamaguchi 755-8505, Japan;
| | - Isao Sakaida
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube 755-8505, Japan; (K.F.); (Y.N.); (A.S.); (T.M.); (I.S.)
| | - Taro Takami
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube 755-8505, Japan; (K.F.); (Y.N.); (A.S.); (T.M.); (I.S.)
- Correspondence: ; Tel.: +81-836-22-2887
| |
Collapse
|
6
|
Locatelli L, Castiglioni S, Maier JAM. From Cultured Vascular Cells to Vessels: The Cellular and Molecular Basis of Vascular Dysfunction in Space. Front Bioeng Biotechnol 2022; 10:862059. [PMID: 35480977 PMCID: PMC9036997 DOI: 10.3389/fbioe.2022.862059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/18/2022] [Indexed: 11/23/2022] Open
Abstract
Life evolved on this planet under the pull of gravity, shielded from radiation by the magnetosphere and shaped by circadian rhythms due to Earth’s rotation on its axis. Once living beings leave such a protective environment, adaptive responses are activated to grant survival. In view of long manned mission out of Earth’s orbit, it is relevant to understand how humans adapt to space and if the responses activated might reveal detrimental in the long run. Here we review present knowledge about the effects on the vessels of various extraterrestrial factors on humans as well as in vivo and in vitro experimental models. It emerges that the vasculature activates complex adaptive responses finalized to supply oxygen and nutrients to all the tissues and to remove metabolic waste and carbon dioxide. Most studies point to oxidative stress and mitochondrial dysfunction as mediators of vascular alterations in space. Unraveling the cellular and molecular mechanisms involved in these adaptive processes might offer hints to design proper and personalized countermeasures to predict a safe future in space.
Collapse
Affiliation(s)
- Laura Locatelli
- Department of Biomedical and Clinical Sciences L. Sacco, Università di Milano, Milano, Italy
| | - Sara Castiglioni
- Department of Biomedical and Clinical Sciences L. Sacco, Università di Milano, Milano, Italy
| | - Jeanette A M Maier
- Department of Biomedical and Clinical Sciences L. Sacco, Università di Milano, Milano, Italy.,Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa), Università di Milano, Milan, Italy
| |
Collapse
|
7
|
Costa F, Ambesi-Impiombato FS, Beccari T, Conte C, Cataldi S, Curcio F, Albi E. Spaceflight Induced Disorders: Potential Nutritional Countermeasures. Front Bioeng Biotechnol 2021; 9:666683. [PMID: 33968917 PMCID: PMC8096993 DOI: 10.3389/fbioe.2021.666683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Space travel is an extreme experience even for the astronaut who has received extensive basic training in various fields, from aeronautics to engineering, from medicine to physics and biology. Microgravity puts a strain on members of space crews, both physically and mentally: short-term or long-term travel in orbit the International Space Station may have serious repercussions on the human body, which may undergo physiological changes affecting almost all organs and systems, particularly at the muscular, cardiovascular and bone compartments. This review aims to highlight recent studies describing damages of human body induced by the space environment for microgravity, and radiation. All novel conditions, to ally unknown to the Darwinian selection strategies on Earth, to which we should add the psychological stress that astronauts suffer due to the inevitable forced cohabitation in claustrophobic environments, the deprivation from their affections and the need to adapt to a new lifestyle with molecular changes due to the confinement. In this context, significant nutritional deficiencies with consequent molecular mechanism changes in the cells that induce to the onset of physiological and cognitive impairment have been considered.
Collapse
Affiliation(s)
- Fabio Costa
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Samuela Cataldi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
8
|
Effects of centrifugation and whole-body vibrations on blood-brain barrier permeability in mice. NPJ Microgravity 2020; 6:1. [PMID: 31934612 PMCID: PMC6946672 DOI: 10.1038/s41526-019-0094-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
Modifications of gravity levels induce generalized adaptation of mammalian physiology, including vascular, brain, muscle, bone and immunity functions. As a crucial interface between the vascular system and the brain, the blood–brain barrier (BBB) acts as a filter to protect neurons from pathogens and inflammation. Here we compare the effects of several protocols of hypergravity induced by centrifugation and whole-body vibrations (WBV) on BBB integrity. The immunohistochemistry revealed immunoglobulin G (IgG) extravasation from blood to hippocampal parenchyma of mice centrifuged at 2 × g during 1 or 50 days, whereas short exposures to higher hypergravity mimicking the profiles of spaceflight landing and take-off (short exposures to 5 × g) had no effects. These results suggest prolonged centrifugation (>1 days) at 2 × g induced a BBB leakage. Moreover, WBV were similarly tested. The short exposure to +2 × g vibrations (900 s/day at 90 Hz) repeated for 63 days induced IgG extravasation in hippocampal parenchyma, whereas the progressive increase of vibrations from +0.5 to +2 × g for 63 days was not able to affect the IgG crossing through the BBB. Overall, these results suggest that the BBB permeability is sensitive to prolonged external accelerations. In conclusion, we advise that the protocols of WBV and centrifugation, proposed as countermeasure to spaceflight, should be designed with progressively increasing exposure to reduce potential side effects on the BBB.
Collapse
|
9
|
Tahimic CGT, Globus RK. Redox Signaling and Its Impact on Skeletal and Vascular Responses to Spaceflight. Int J Mol Sci 2017; 18:ijms18102153. [PMID: 29035346 PMCID: PMC5666834 DOI: 10.3390/ijms18102153] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 09/30/2017] [Accepted: 10/10/2017] [Indexed: 12/16/2022] Open
Abstract
Spaceflight entails exposure to numerous environmental challenges with the potential to contribute to both musculoskeletal and vascular dysfunction. The purpose of this review is to describe current understanding of microgravity and radiation impacts on the mammalian skeleton and associated vasculature at the level of the whole organism. Recent experiments from spaceflight and ground-based models have provided fresh insights into how these environmental stresses influence mechanisms that are related to redox signaling, oxidative stress, and tissue dysfunction. Emerging mechanistic knowledge on cellular defenses to radiation and other environmental stressors, including microgravity, are useful for both screening and developing interventions against spaceflight-induced deficits in bone and vascular function.
Collapse
Affiliation(s)
- Candice G T Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA.
- KBRWyle, Moffett Field, CA 94035, USA.
| | - Ruth K Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| |
Collapse
|
10
|
Kitazawa T, Kitazawa K. Prolonged bed rest impairs rapid CPI-17 phosphorylation and contraction in rat mesenteric resistance arteries to cause orthostatic hypotension. Pflugers Arch 2017; 469:1651-1662. [PMID: 28717991 DOI: 10.1007/s00424-017-2031-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/03/2017] [Accepted: 07/09/2017] [Indexed: 02/07/2023]
Abstract
Prolonged bed rest (PBR) causes orthostatic hypotension (OH). Rapid constriction of splanchnic resistance arteries in response to a sudden increase in sympathetic tone contributes to the recovery of orthostatic arterial pressure upon standing. However, the molecular mechanism of PBR-induced dysfunction in arterial constriction is not fully understood. Previously, we showed that CPI-17, a regulatory protein for myosin phosphatase, mediates α1A-adrenergic receptor-induced rapid contraction of small mesenteric arteries. Here, we tested whether PBR associated with OH affects the α1-adrenergic receptor-induced CPI-17 signaling pathway in mesenteric arteries using rats treated by head-down tail-suspension hindlimb unloading (HDU), an experimental OH model. In normal anesthetized rats, mean arterial pressure (MAP) rapidly reduced upon 90° head-up tilt from supine position and then immediately recovered without change in heart rate, suggesting a rapid arterial constriction. On the other hand, after a 4-week HDU treatment, the fast orthostatic MAP recovery failed for 1 min. Alpha1A subtype-specific antagonist suppressed the orthostatic MAP recovery with a small decrease in basal blood pressure, whereas non-specific α1-antagonist prazosin strongly reduced both basal MAP and orthostatic recovery. The HDU treatment resulted in 68% reduction in contraction in parallel with 83% reduction in CPI-17 phosphorylation in denuded mesenteric arteries 10 s after α1-agonist stimulation. The treatment with either Ca2+-release channel opener or PKC inhibitor mimicked the deficiency in HDU arteries. These results suggest that an impairment of the rapid PKC/CPI-17 signaling pathway downstream of α1A-adrenoceptors in peripheral arterial constriction, as an end organ of orthostatic blood pressure reflex, is associated with OH in prolonged bed rest patients.
Collapse
Affiliation(s)
- Toshio Kitazawa
- Boston Biomedical Research Institute, Watertown, MA, 02472, USA. .,Department of Molecular Physiology and Biophysics, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA.
| | - Kazuyo Kitazawa
- Boston Biomedical Research Institute, Watertown, MA, 02472, USA
| |
Collapse
|
11
|
Long-term effects of simulated microgravity and/or chronic exposure to low-dose gamma radiation on behavior and blood-brain barrier integrity. NPJ Microgravity 2016; 2:16019. [PMID: 28725731 PMCID: PMC5516431 DOI: 10.1038/npjmgrav.2016.19] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/05/2016] [Accepted: 04/22/2016] [Indexed: 12/11/2022] Open
Abstract
Astronauts on lengthy voyages will be exposed to an environment of microgravity and ionizing radiation that may have adverse effects on physical abilities, mood, and cognitive functioning. However, little is known about the long-term effects of combined microgravity and low-dose radiation. We exposed mice to gamma radiation using a cobalt-57 plate (0.01 cGy/h for a total dose of 0.04 Gy), hindlimb unloading to simulate microgravity, or a combination of both for 3 weeks. Mice then underwent a behavioral test battery after 1 week, 1 month, 4 months, and 8 months to assess sensorimotor coordination/balance (rotarod), activity levels (open field), learned helplessness/depression-like behavior (tail suspension test), risk-taking (elevated zero maze), and spatial learning/memory (water maze). Aquaporin-4 (AQP4) expression was assessed in the brain after behavioral testing to determine blood–brain barrier (BBB) integrity. Mice that received unloading spent significantly more time in the exposed portions of the elevated zero maze, were hypoactive in the open field, and spent less time struggling on the tail suspension test than mice that did not receive unloading. Mice in the combination group expressed more AQP4 immunoactivity than controls. Elevated zero maze and AQP4 data were correlated. No differences were seen on the water maze or rotarod, and no radiation-only effects were observed. These results suggest that microgravity may lead to changes in exploratory/risk-taking behaviors in the absence of other sensorimotor or cognitive deficits and that combined microgravity and a chronic, low dose of gamma radiation may lead to BBB dysfunction.
Collapse
|
12
|
Globus RK, Morey-Holton E. Hindlimb unloading: rodent analog for microgravity. J Appl Physiol (1985) 2016; 120:1196-206. [PMID: 26869711 DOI: 10.1152/japplphysiol.00997.2015] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/02/2016] [Indexed: 11/22/2022] Open
Abstract
The rodent hindlimb unloading (HU) model was developed in the 1980s to make it possible to study mechanisms, responses, and treatments for the adverse consequences of spaceflight. Decades before development of the HU model, weightlessness was predicted to yield deficits in the principal tissues responsible for structure and movement on Earth, primarily muscle and bone. Indeed, results from early spaceflight and HU experiments confirmed the expected sensitivity of the musculoskeletal system to gravity loading. Results from human and animal spaceflight and HU experiments show that nearly all organ systems and tissues studied display some measurable changes, albeit sometimes minor and of uncertain relevance to astronaut health. The focus of this review is to examine key HU results for various organ systems including those related to stress; the immune, cardiovascular, and nervous systems; vision changes; and wound healing. Analysis of the validity of the HU model is important given its potential value for both hypothesis testing and countermeasure development.
Collapse
Affiliation(s)
- Ruth K Globus
- Space Biosciences Division, NASA-Ames Research Center, Moffett Field, California
| | - Emily Morey-Holton
- Space Biosciences Division, NASA-Ames Research Center, Moffett Field, California
| |
Collapse
|
13
|
TRPP2 modulates ryanodine- and inositol-1,4,5-trisphosphate receptors-dependent Ca2+ signals in opposite ways in cerebral arteries. Cell Calcium 2015; 58:467-75. [DOI: 10.1016/j.ceca.2015.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/17/2015] [Accepted: 07/27/2015] [Indexed: 12/12/2022]
|
14
|
Deng C, Wang P, Zhang X, Wang Y. Short-term, daily exposure to cold temperature may be an efficient way to prevent muscle atrophy and bone loss in a microgravity environment. LIFE SCIENCES IN SPACE RESEARCH 2015; 5:1-5. [PMID: 25821722 PMCID: PMC4374360 DOI: 10.1016/j.lssr.2015.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Microgravity induces less pressure on muscle/bone, which is a major reason for muscle atrophy as well as bone loss. Currently, physical exercise is the only countermeasure used consistently in the U.S. human space program to counteract the microgravity-induced skeletal muscle atrophy and bone loss. However, the routinely almost daily time commitment is significant and represents a potential risk to the accomplishment of other mission operational tasks. Therefore, development of more efficient exercise programs (with less time) to prevent astronauts from muscle atrophy and bone loss are needed. Consider the two types of muscle contraction: exercising forces muscle contraction and prevents microgravity-induced muscle atrophy/bone loss, which is a voluntary response through the motor nervous system; and cold temperature exposure-induced muscle contraction is an involuntary response through the vegetative nervous system, we formed a new hypothesis. The main purpose of this pilot study was to test our hypothesis that exercise at 4 °C is more efficient than at room temperature to prevent microgravity-induced muscle atrophy/bone loss and, consequently reduces physical exercise time. Twenty mice were divided into two groups with or without daily short-term (10 min × 2, at 12 h interval) cold temperature (4 °C) exposure for 30 days. The whole bodyweight, muscle strength and bone density were measured after terminating the experiments. The results from the one-month pilot study support our hypothesis and suggest that it would be reasonable to use more mice, in a microgravity environment and observe for a longer period to obtain a conclusion. We believe that the results from such a study will help to develop efficient exercise, which will finally benefit astronauts' heath and NASA's missions.
Collapse
Affiliation(s)
| | | | | | - Ya Wang
- Correspondence to: Ya Wang, M.D., Ph.D., Professor and Director, Division of Experimental Radiation Oncology, Department of Radiation Oncology, Winship Cancer Institute of Emory University, 1365 Clifton Road NE, Room C5090, Atlanta, GA 30322, Tel: 404-778-1832, Fax: 404-778-1750, , http://radiationoncology.emory.edu/
| |
Collapse
|
15
|
Sofronova SI, Tarasova OS, Gaynullina D, Borzykh AA, Behnke BJ, Stabley JN, McCullough DJ, Maraj JJ, Hanna M, Muller-Delp JM, Vinogradova OL, Delp MD. Spaceflight on the Bion-M1 biosatellite alters cerebral artery vasomotor and mechanical properties in mice. J Appl Physiol (1985) 2015; 118:830-8. [PMID: 25593287 PMCID: PMC4385880 DOI: 10.1152/japplphysiol.00976.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/13/2015] [Indexed: 01/03/2023] Open
Abstract
Conditions during spaceflight, such as the loss of the head-to-foot gravity vector, are thought to potentially alter cerebral blood flow and vascular resistance. The purpose of the present study was to determine the effects of long-term spaceflight on the functional, mechanical, and structural properties of cerebral arteries. Male C57BL/6N mice were flown 30 days in a Bion-M1 biosatellite. Basilar arteries isolated from spaceflight (SF) (n = 6), habitat control (HC) (n = 6), and vivarium control (VC) (n = 16) mice were used for in vitro functional and mechanical testing and histological structural analysis. The results demonstrate that vasoconstriction elicited through a voltage-gated Ca(2+) mechanism (30-80 mM KCl) and thromboxane A2 receptors (10(-8) - 3 × 10(-5) M U46619) are lower in cerebral arteries from SF mice. Inhibition of Rho-kinase activity (1 μM Y27632) abolished group differences in U46619-evoked contractions. Endothelium-dependent vasodilation elicited by acetylcholine (10 μM, 2 μM U46619 preconstriction) was virtually absent in cerebral arteries from SF mice. The pressure-diameter relation was lower in arteries from SF mice relative to that in HC mice, which was not related to differences in the extracellular matrix protein elastin or collagen content or the elastin/collagen ratio in the basilar arteries. Diameter, medial wall thickness, and medial cross-sectional area of unpressurized basilar arteries were not different among groups. These results suggest that the microgravity-induced attenuation of both vasoconstrictor and vasodilator properties may limit the range of vascular control of cerebral perfusion or impair the distribution of brain blood flow during periods of stress.
Collapse
Affiliation(s)
- Svetlana I Sofronova
- Institute for Biomedical Problems, Russian Academy of Sciences, Moscow; Faculty of Biology, M.V. Lomonosov Moscow State University
| | - Olga S Tarasova
- Institute for Biomedical Problems, Russian Academy of Sciences, Moscow; Faculty of Biology, M.V. Lomonosov Moscow State University
| | - Dina Gaynullina
- Institute for Biomedical Problems, Russian Academy of Sciences, Moscow; Faculty of Biology, M.V. Lomonosov Moscow State University; Department of Physiology, Russian National Research Medical University, Moscow, Russia
| | - Anna A Borzykh
- Institute for Biomedical Problems, Russian Academy of Sciences, Moscow
| | - Bradley J Behnke
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - John N Stabley
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Danielle J McCullough
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Joshua J Maraj
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Mina Hanna
- Department of Materials Science and Engineering, Stanford University, Stanford, California
| | - Judy M Muller-Delp
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida; and
| | | | - Michael D Delp
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida
| |
Collapse
|
16
|
Boursereau R, Donadieu A, Dabertrand F, Dubayle D, Morel JL. Blood brain barrier precludes the cerebral arteries to intravenously-injected antisense oligonucleotide. Eur J Pharmacol 2014; 747:141-9. [PMID: 25510229 DOI: 10.1016/j.ejphar.2014.11.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/20/2014] [Accepted: 11/24/2014] [Indexed: 11/25/2022]
Abstract
Alternative splicing of the ryanodine receptor subtype 3 (RyR3) produces a short isoform (RyR3S) able to negatively regulate the ryanodine receptor subtype 2 (RyR2), as shown in cultured smooth muscle cells from mice. The RyR2 subtype has a crucial role in the control of vascular reactivity via the fine tuning of Ca(2+) signaling to regulate cerebral vascular tone. In this study, we have shown that the inhibition of RyR3S expression by a specific antisense oligonucleotide (asRyR3S) was able to increase the Ca(2+) signals implicating RyR2 in cerebral arteries ex vivo. Moreover, we tried to inhibit the expression of RyR3S in vivo. The asRyR3S was complexed with JetPEI and injected intravenously coupled with several methods known to induce a blood brain barrier disruption. We tested solutions to induce osmotic choc (mannitol), inflammation (bacteria lipopolysaccharide and pertussis toxin), vasoconstriction or dilatation (sumatriptan, phenylephrine, histamine), CD73 activation (NECA) and lipid instability (Tween80). All tested technics failed to target asRyR3 in the cerebral arteries wall, whereas the molecule was included in hepatocytes or cardiomyocytes. Our results showed that the RyR3 alternative splicing could have a function in cerebral arteries ex vivo; however, the disruption of the blood brain barrier could not induce the internalization of antisense oligonucleotides in the cerebral arteries, in order to prove the function of RYR3 short isoform in vivo.
Collapse
Affiliation(s)
- Raphael Boursereau
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Arnaud Donadieu
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Fabrice Dabertrand
- University of Vermont, Department of Pharmacology, UVM College of Medicine, Burlington, VT, USA.
| | - David Dubayle
- Centre de Neurophysique, Physiologie, Pathologie, CNRS UMR 8119, Faculté des Sciences fondamentales et Biomédicales, Université Paris Descartes, 45, rue des Saints-Pères, 75006 Paris, France.
| | - Jean-Luc Morel
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
| |
Collapse
|
17
|
Up-regulation of ryanodine receptor expression increases the calcium-induced calcium release and spontaneous calcium signals in cerebral arteries from hindlimb unloaded rats. Pflugers Arch 2013; 466:1517-28. [DOI: 10.1007/s00424-013-1387-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/02/2013] [Accepted: 10/15/2013] [Indexed: 10/26/2022]
|
18
|
Dabertrand F, Nelson MT, Brayden JE. Ryanodine receptors, calcium signaling, and regulation of vascular tone in the cerebral parenchymal microcirculation. Microcirculation 2013; 20:307-16. [PMID: 23216877 PMCID: PMC3612564 DOI: 10.1111/micc.12027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 11/21/2012] [Indexed: 11/27/2022]
Abstract
The cerebral blood supply is delivered by a surface network of pial arteries and arterioles from which arise (parenchymal) arterioles that penetrate into the cortex and terminate in a rich capillary bed. The critical regulation of CBF, locally and globally, requires precise vasomotor regulation of the intracerebral microvasculature. This vascular region is anatomically unique as illustrated by the presence of astrocytic processes that envelope almost the entire basolateral surface of PAs. There are, moreover, notable functional differences between pial arteries and PAs. For example, in pial VSMCs, local calcium release events ("calcium sparks") through ryanodine receptor (RyR) channels in SR membrane activate large conductance, calcium-sensitive potassium channels to modulate vascular diameter. In contrast, VSMCs in PAs express functional RyR and BK channels, but under physiological conditions, these channels do not oppose pressure-induced vasoconstriction. Here, we summarize the roles of ryanodine receptors in the parenchymal microvasculature under physiologic and pathologic conditions, and discuss their importance in the control of CBF.
Collapse
Affiliation(s)
- Fabrice Dabertrand
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, Vermont, USA.
| | | | | |
Collapse
|
19
|
Effect of aging on calcium signaling in C57Bl6J mouse cerebral arteries. Pflugers Arch 2012; 465:829-38. [DOI: 10.1007/s00424-012-1195-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 01/08/2023]
|
20
|
Behnke BJ, Stabley JN, McCullough DJ, Davis RT, Dominguez JM, Muller-Delp JM, Delp MD. Effects of spaceflight and ground recovery on mesenteric artery and vein constrictor properties in mice. FASEB J 2012; 27:399-409. [PMID: 23099650 DOI: 10.1096/fj.12-218503] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Following exposure to microgravity, there is a reduced ability of astronauts to augment peripheral vascular resistance, often resulting in orthostatic hypotension. The purpose of this study was to test the hypothesis that mesenteric arteries and veins will exhibit diminished vasoconstrictor responses after spaceflight. Mesenteric arteries and veins from female mice flown on the Space Transportation System (STS)-131 (n=11), STS-133 (n=6), and STS-135 (n=3) shuttle missions and respective ground-based control mice (n=30) were isolated for in vitro experimentation. Vasoconstrictor responses were evoked in arteries via norepinephrine (NE), potassium chloride (KCl), and caffeine, and in veins through NE across a range of intraluminal pressures (2-12 cmH(2)O). Vasoconstriction to NE was also determined in mesenteric arteries at 1, 5, and 7 d postlanding. In arteries, maximal constriction to NE, KCl, and caffeine were reduced immediately following spaceflight and 1 d postflight. Spaceflight also reduced arterial ryanodine receptor-3 mRNA levels. In mesenteric veins, there was diminished constriction to NE after flight. The results indicate that the impaired vasoconstriction following spaceflight occurs through the ryanodine receptor-mediated intracellular Ca(2+) release mechanism. Such vascular changes in astronauts could compromise the maintenance of arterial pressure during orthostatic stress.
Collapse
Affiliation(s)
- Bradley J Behnke
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611-8205, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Porte Y, Morel JL. Learning on Jupiter, learning on the Moon: the dark side of the G-force. Effects of gravity changes on neurovascular unit and modulation of learning and memory. Front Behav Neurosci 2012; 6:64. [PMID: 23015785 PMCID: PMC3449275 DOI: 10.3389/fnbeh.2012.00064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/06/2012] [Indexed: 12/14/2022] Open
Abstract
On earth, gravity vector conditions the development of all living beings by physically imposing an axis along which to build their organism. Thus, during their whole life, they have to fight against this force not only to maintain their architectural organization but also to coordinate the communication between organs and keep their physiology in a balanced steady-state. In space, astronauts show physiological, psychological, and cognitive deregulations, ranging from bone decalcification or decrease of musculature, to depressive-like disorders, and spatial disorientation. Nonetheless, they are confronted to a great amount of physical changes in their environment such as solar radiations, loss of light-dark cycle, lack of spatial landmarks, confinement, and obviously a dramatic decrease of gravity force. It is thus very hard to selectively discriminate the strict role of gravity level alterations on physiological, and particularly cerebral, dysfunction. To this purpose, it is important to design autonomous models and apparatuses for behavioral phenotyping utilizable under modified gravity environments. Our team actually aims at working on this area of research.
Collapse
Affiliation(s)
- Yves Porte
- Université de Bordeaux Bordeaux, France ; Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives Talence, France
| | | |
Collapse
|