1
|
Andrade MR, Azeez TA, Montgomery MM, Caldwell JT, Park H, Kwok AT, Borg AM, Narayanan SA, Willey JS, Delp MD, La Favor JD. Neurovascular dysfunction associated with erectile dysfunction persists after long-term recovery from simulations of weightlessness and deep space irradiation. FASEB J 2023; 37:e23246. [PMID: 37990646 DOI: 10.1096/fj.202300506rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 11/23/2023]
Abstract
There has been growing interest within the space industry for long-duration manned expeditions to the Moon and Mars. During deep space missions, astronauts are exposed to high levels of galactic cosmic radiation (GCR) and microgravity which are associated with increased risk of oxidative stress and endothelial dysfunction. Oxidative stress and endothelial dysfunction are causative factors in the pathogenesis of erectile dysfunction, although the effects of spaceflight on erectile function have been unexplored. Therefore, the purpose of this study was to investigate the effects of simulated spaceflight and long-term recovery on tissues critical for erectile function, the distal internal pudendal artery (dIPA), and the corpus cavernosum (CC). Eighty-six adult male Fisher-344 rats were randomized into six groups and exposed to 4-weeks of hindlimb unloading (HLU) or weight-bearing control, and sham (0Gy), 0.75 Gy, or 1.5 Gy of simulated GCR at the ground-based GCR simulator at the NASA Space Radiation Laboratory. Following a 12-13-month recovery, ex vivo physiological analysis of the dIPA and CC tissue segments revealed differential impacts of HLU and GCR on endothelium-dependent and -independent relaxation that was tissue type specific. GCR impaired non-adrenergic non-cholinergic (NANC) nerve-mediated relaxation in the dIPA and CC, while follow-up experiments of the CC showed restoration of NANC-mediated relaxation of GCR tissues following acute incubation with the antioxidants mito-TEMPO and TEMPOL, as well as inhibitors of xanthine oxidase and arginase. These findings indicate that simulated spaceflight exerts a long-term impairment of neurovascular erectile function, which exposes a new health risk to consider with deep space exploration.
Collapse
Affiliation(s)
- Manuella R Andrade
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Tooyib A Azeez
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - McLane M Montgomery
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Jacob T Caldwell
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Hyerim Park
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Andy T Kwok
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Alexander M Borg
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - S Anand Narayanan
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Michael D Delp
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Justin D La Favor
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
2
|
Soni P, Anupom T, Lesanpezeshki L, Rahman M, Hewitt JE, Vellone M, Stodieck L, Blawzdziewicz J, Szewczyk NJ, Vanapalli SA. Microfluidics-integrated spaceflight hardware for measuring muscle strength of Caenorhabditis elegans on the International Space Station. NPJ Microgravity 2022; 8:50. [PMID: 36344513 PMCID: PMC9640571 DOI: 10.1038/s41526-022-00241-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
Caenorhabditis elegans is a low-cost genetic model that has been flown to the International Space Station to investigate the influence of microgravity on changes in the expression of genes involved in muscle maintenance. These studies showed that genes that encode muscle attachment complexes have decreased expression under microgravity. However, it remains to be answered whether the decreased expression leads to concomitant changes in animal muscle strength, specifically across multiple generations. We recently reported the NemaFlex microfluidic device for the measurement of muscle strength of C. elegans (Rahman et al., Lab Chip, 2018). In this study, we redesign our original NemaFlex device and integrate it with flow control hardware for spaceflight investigations considering mixed animal culture, constraints on astronaut time, crew safety, and on-orbit operations. The technical advances we have made include (i) a microfluidic device design that allows animals of a given size to be sorted from unsynchronized cultures and housed in individual chambers, (ii) a fluid handling protocol for injecting the suspension of animals into the microfluidic device that prevents channel clogging, introduction of bubbles, and crowding of animals in the chambers, and (iii) a custom-built worm-loading apparatus interfaced with the microfluidic device that allows easy manipulation of the worm suspension and prevents fluid leakage into the surrounding environment. Collectively, these technical advances enabled the development of new microfluidics-integrated hardware for spaceflight studies in C. elegans. Finally, we report Earth-based validation studies to test this new hardware, which has led to it being flown to the International Space Station.
Collapse
|
3
|
Cahill T, Cope H, Bass JJ, Overbey EG, Gilbert R, da Silveira WA, Paul AM, Mishra T, Herranz R, Reinsch SS, Costes SV, Hardiman G, Szewczyk NJ, Tahimic CGT. Mammalian and Invertebrate Models as Complementary Tools for Gaining Mechanistic Insight on Muscle Responses to Spaceflight. Int J Mol Sci 2021; 22:ijms22179470. [PMID: 34502375 PMCID: PMC8430797 DOI: 10.3390/ijms22179470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Bioinformatics approaches have proven useful in understanding biological responses to spaceflight. Spaceflight experiments remain resource intensive and rare. One outstanding issue is how to maximize scientific output from a limited number of omics datasets from traditional animal models including nematodes, fruitfly, and rodents. The utility of omics data from invertebrate models in anticipating mammalian responses to spaceflight has not been fully explored. Hence, we performed comparative analyses of transcriptomes of soleus and extensor digitorum longus (EDL) in mice that underwent 37 days of spaceflight. Results indicate shared stress responses and altered circadian rhythm. EDL showed more robust growth signals and Pde2a downregulation, possibly underlying its resistance to atrophy versus soleus. Spaceflight and hindlimb unloading mice shared differential regulation of proliferation, circadian, and neuronal signaling. Shared gene regulation in muscles of humans on bedrest and space flown rodents suggest targets for mitigating muscle atrophy in space and on Earth. Spaceflight responses of C. elegans were more similar to EDL. Discrete life stages of D. melanogaster have distinct utility in anticipating EDL and soleus responses. In summary, spaceflight leads to shared and discrete molecular responses between muscle types and invertebrate models may augment mechanistic knowledge gained from rodent spaceflight and ground-based studies.
Collapse
Affiliation(s)
- Thomas Cahill
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (G.H.)
| | - Henry Cope
- Nottingham Biomedical Research Centre (BRC), School of Computer Science, University of Nottingham, Nottingham NG7 2QL, UK;
| | - Joseph J. Bass
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham NG7 2QL, UK; (J.J.B.); (N.J.S.)
| | - Eliah G. Overbey
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA;
| | - Rachel Gilbert
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
- Universities Space Research Association, Columbia, MD 21046, USA
| | - Willian Abraham da Silveira
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (G.H.)
- Department of Biological Sciences, School of Life Sciences and Education, Staffordshire University, Stoke-on-Trent ST4 2DF, UK
| | - Amber M. Paul
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
| | - Tejaswini Mishra
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA 94305, USA;
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas–CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain;
| | - Sigrid S. Reinsch
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
| | - Sylvain V. Costes
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
| | - Gary Hardiman
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (G.H.)
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nathaniel J. Szewczyk
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham NG7 2QL, UK; (J.J.B.); (N.J.S.)
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Candice G. T. Tahimic
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
- Correspondence:
| |
Collapse
|
4
|
Tarasova OS, Kalenchuk VU, Borovik AS, Golubinskaya VO, Delp MD, Vinogradova OL. Simulated Microgravity Induces Regionally Distinct Neurovascular and Structural Remodeling of Skeletal Muscle and Cutaneous Arteries in the Rat. Front Physiol 2020; 11:675. [PMID: 32695017 PMCID: PMC7339929 DOI: 10.3389/fphys.2020.00675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/26/2020] [Indexed: 01/10/2023] Open
Abstract
Introduction: Mechanical forces and sympathetic influences are key determinants of vascular structure and function. This study tested the hypothesis that hindlimb unloading (HU) exerts diverse effects on forelimb and hindlimb small arteries of rats in functionally different regions of the skeletal muscle and skin. Methods: Male Wistar rats were subjected to HU for 2 weeks, then skeletal muscle arteries (deep brachial and sural) and skin arteries (median and saphenous) were examined in vitro using wire myography or isobaric perfusion and glyoxylic acid staining. Results: HU increased lumen diameter of both forelimb arteries but decreased diameter of the sural artery; the saphenous artery diameter was not affected. Following HU, maximal contractile responses to noradrenaline and serotonin increased in the forelimb but decreased in the hindlimb skeletal muscle feed arteries with no change in skin arteries; all region-specific alterations persisted after endothelium removal. HU increased the sensitivity to vasoconstrictors in the saphenous artery but not in the sural artery. In the saphenous artery, initially high sympathetic innervation density was reduced by HU, sparse innervation in the sural artery was not affected. Electrical stimulation of periarterial sympathetic nerves in isobarically perfused segments of the saphenous artery demonstrated a two-fold decrease of the contractile responses in HU rats compared to that of controls. Conclusion: HU induces contrasting structural and functional adaptations in forelimb and hindlimb skeletal muscle arteries. Additionally, HU had diverse effects in two hindlimb vascular regions. Hyper-sensitivity of the saphenous artery to vasoconstrictors appears to result from the shortage of trophic sympathetic influence. Importantly, HU impaired sympathetically induced arterial vasoconstriction, consistent with the decreased sympathetic constrictor response in humans following space flight.
Collapse
Affiliation(s)
- Olga S Tarasova
- State Research Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Anatoly S Borovik
- State Research Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | | | - Michael D Delp
- Department of Nutrition, Food and Exercise Sciences, College of Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Olga L Vinogradova
- State Research Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
- Faculty of Basic Medicine, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
5
|
Mao XW, Nishiyama NC, Byrum SD, Stanbouly S, Jones T, Drew A, Sridharan V, Boerma M, Tackett AJ, Zawieja D, Willey JS, Delp M, Pecaut MJ. Characterization of mouse ocular response to a 35-day spaceflight mission: Evidence of blood-retinal barrier disruption and ocular adaptations. Sci Rep 2019; 9:8215. [PMID: 31160660 PMCID: PMC6547757 DOI: 10.1038/s41598-019-44696-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/17/2019] [Indexed: 12/18/2022] Open
Abstract
The health risks associated with spaceflight-induced ocular structural and functional damage has become a recent concern for NASA. The goal of the present study was to characterize the effects of spaceflight and reentry to 1 g on the structure and integrity of the retina and blood-retinal barrier (BRB) in the eye. To investigate possible mechanisms, changes in protein expression profiles were examined in mouse ocular tissue after spaceflight. Ten week old male C57BL/6 mice were launched to the International Space Station (ISS) on Space-X 12 at the Kennedy Space Center (KSC) on August, 2017. After a 35-day mission, mice were returned to Earth alive. Within 38 +/− 4 hours of splashdown, mice were euthanized and ocular tissues were collected for analysis. Ground control (GC) and vivarium control mice were maintained on Earth in flight hardware or normal vivarium cages respectively. Repeated intraocular pressure (IOP) measurements were performed before the flight launch and re-measured before the mice were euthanized after splashdown. IOP was significantly lower in post-flight measurements compared to that of pre-flight (14.4–19.3 mmHg vs 16.3–20.3 mmHg) (p < 0.05) for the left eye. Flight group had significant apoptosis in the retina and retinal vascular endothelial cells compared to control groups (p < 0.05). Immunohistochemical analysis of the retina revealed that an increased expression of aquaporin-4 (AQP-4) in the flight mice compared to controls gave strong indication of disturbance of BRB integrity. There were also a significant increase in the expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) and a decrease in the expression of the BRB-related tight junction protein, Zonula occludens-1 (ZO-1). Proteomic analysis showed that many key proteins and pathways responsible for cell death, cell cycle, immune response, mitochondrial function and metabolic stress were significantly altered in the flight mice compared to ground control animals. These data indicate a complex cellular response that may alter retina structure and BRB integrity following long-term spaceflight.
Collapse
Affiliation(s)
- Xiao W Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, 92350, USA.
| | - Nina C Nishiyama
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, 92350, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA.,Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Seta Stanbouly
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, 92350, USA
| | - Tamako Jones
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, 92350, USA
| | - Alyson Drew
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, 92350, USA
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA.,Arkansas Children's Research Institute, Little Rock, AR, USA
| | - David Zawieja
- Department of Medical Physiology, Texas A&M University, College Station, Texas, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest School of Medicine, Bowman Gray Center, Winston-Salem, NC, 27101, USA
| | - Michael Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Michael J Pecaut
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, 92350, USA
| |
Collapse
|
6
|
Yin MZ, Kim HJ, Suh EY, Zhang YH, Yoo HY, Kim SJ. Endurance exercise training restores atrophy-induced decreases of myogenic response and ionic currents in rat skeletal muscle artery. J Appl Physiol (1985) 2019; 126:1713-1724. [DOI: 10.1152/japplphysiol.00962.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Atrophic limbs exhibit decreased blood flow and histological changes in the arteries perfusing muscles. However, the effect of atrophy on vascular smooth muscle function is poorly understood. Here, we investigated the effect of unilateral sciatic denervation on the myogenic response (MR) and the ionic currents in deep femoral artery (DFA) smooth muscles from Sprague-Dawley rats. Because denervated rats were capable of treadmill exercise (20 m/min, 30 min, 3 times/wk), the impact of exercise training on these effects was also assessed. Skeletal arteries were harvested 3 or 5 wk after surgery. Then skeletal arteries or myocytes were subjected to video analysis of pressurized artery, myography, whole-cell patch clamp, and real-time quantitative PCR to determine the effect of hindlimb paralysis in the presence/absence of exercise training on MR, contractility, ionic currents, and channel transcription, respectively. In sedentary rats, atrophy was associated with loss of MR in the DFA at 5 wk. The contralateral DFA had a normal MR. At 5 wk after surgery, DFA myocytes from the atrophic limbs exhibited depressed L-type Ca2+currents, GTPγS-induced transient receptor potential cation channel (TRPC)-like currents, 80 mM KCl-induced vasoconstriction, TRPC6 mRNA, and voltage-gated K+and inwardly rectifying K+currents. Exercise training abrogated the differences in all of these functions between atrophic side and contralateral side DFA myocytes. These results suggest that a probable increase in hemodynamic stimuli in skeletal artery smooth muscle plays an important role in maintaining MR and ionic currents in skeletal artery smooth muscle. This may also explain the observed benefits of exercise in patients with limb paralysis.NEW & NOTEWORTHY Myogenic responses (MRs) in rat skeletal arteries feeding the unilateral atrophic hindlimb were impaired. In addition, the L-type Ca2+channel current, the TRPC6-like current, and TRPC6 mRNA levels in the corresponding myocytes decreased. Voltage-gated K+channel currents and inwardly rectifying K+channel currents were also attenuated in atrophic side myocytes. Exercise training effectively abrogated electrophysiological dysfunction of atrophic side myocytes and prevented loss of the MR.
Collapse
Affiliation(s)
- Ming Zhe Yin
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hae Jin Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Yeong Suh
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yin Hua Zhang
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hae Young Yoo
- Chung-Ang University Red Cross College of Nursing, Seoul, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Frederick NE, Mitchell R, Hein TW, Bagher P. Morphological and pharmacological characterization of the porcine popliteal artery: A novel model for study of lower limb arterial disease. Microcirculation 2019; 26:e12527. [PMID: 30597676 DOI: 10.1111/micc.12527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/06/2018] [Accepted: 12/26/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This study was undertaken to characterize structural and pharmacological properties of the pig popliteal artery in order to develop a novel system for the examination of lower limb blood flow regulation in a variety of cardiovascular pathologies, such as diabetes-induced peripheral artery disease. METHODS Popliteal arteries were isolated from streptozocin-induced diabetic pigs or age-matched saline-injected control pigs for morphological study using transmission electron microscopy and for examination of vasoreactivity to pharmacological agents using wire myography. RESULTS Transmission electron microscopy of the porcine popliteal artery wall revealed the presence of endothelial cell-smooth muscle cell interactions (myoendothelial junctions) and smooth muscle cell-smooth muscle cell interactions, for which we have coined the term "myo-myo junctions." These myo-myo junctions were shown to feature plaques indicative of connexin expression. Further, the pig popliteal artery was highly responsive to a variety of vasoconstrictors including norepinephrine, phenylephrine, and U46619, and vasodilators including acetylcholine, adenosine 5'-[β-thio] diphosphate, and bradykinin. Finally, 2 weeks after streptozocin-induced diabetes, the normalized vasoconstriction of the pig popliteal artery to norepinephrine was unaltered compared to control. CONCLUSIONS The pig popliteal artery displays structural and pharmacological properties that might prove useful in future studies of diabetes-associated peripheral artery disease and other lower limb cardiovascular diseases.
Collapse
Affiliation(s)
- Norman E Frederick
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Temple, Texas
| | - Ray Mitchell
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Temple, Texas
| | - Travis W Hein
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Temple, Texas
| | - Pooneh Bagher
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Temple, Texas
| |
Collapse
|
8
|
Andreev-Andrievskiy AA, Popova AS, Lagereva EA, Vinogradova OL. Fluid shift versus body size: changes of hematological parameters and body fluid volume in hindlimb-unloaded mice, rats and rabbits. ACTA ACUST UNITED AC 2018; 221:jeb.182832. [PMID: 29950449 DOI: 10.1242/jeb.182832] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 06/11/2018] [Indexed: 01/12/2023]
Abstract
The cardiovascular system is adapted to gravity, and reactions to the loss of gravity in space are presumably dependent on body size. The dependence of hematological parameters and body fluid volume on simulated microgravity have never been studied as an allometric function before. Thus, we estimated red blood cell (RBC), blood and extracellular fluid volume in hindlimb-unloaded (HLU) or control (attached) mice, rats and rabbits. RBC decrease was found to be size independent, and the allometric dependency for RBC loss in HLU and control animals shared a common power (-0.054±0.008) but a different Y0 coefficient (8.66±0.40 and 10.73±0.49, respectively, P<0.05). Blood volume in HLU animals was unchanged compared with that of controls, disregarding body size. The allometric dependency of interstitial fluid volume in HLU and control mice shared Y0 (1.02±0.09) but had different powers N (0.708±0.017 and 0.648±0.016, respectively, P<0.05), indicating that the interstitial fluid volume increase during hindlimb unloading is more pronounced in larger animals. Our data underscore the importance of size-independent mechanisms of cardiovascular adaptation to weightlessness. Despite the fact that the use of mice hampers application of a straightforward translational approach, this species is useful for gravitational biology as a tool to investigate size-independent mechanisms of mammalian adaptation to microgravity.
Collapse
Affiliation(s)
- Alexander A Andreev-Andrievskiy
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow 123007, Russia .,M.V. Lomonosov Moscow State University, Biology Faculty, Moscow 119991, Russia
| | - Anfisa S Popova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow 123007, Russia.,M.V. Lomonosov Moscow State University, Biology Faculty, Moscow 119991, Russia
| | - Evgeniia A Lagereva
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow 123007, Russia
| | - Olga L Vinogradova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow 123007, Russia
| |
Collapse
|
9
|
Tahimic CGT, Globus RK. Redox Signaling and Its Impact on Skeletal and Vascular Responses to Spaceflight. Int J Mol Sci 2017; 18:ijms18102153. [PMID: 29035346 PMCID: PMC5666834 DOI: 10.3390/ijms18102153] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 09/30/2017] [Accepted: 10/10/2017] [Indexed: 12/16/2022] Open
Abstract
Spaceflight entails exposure to numerous environmental challenges with the potential to contribute to both musculoskeletal and vascular dysfunction. The purpose of this review is to describe current understanding of microgravity and radiation impacts on the mammalian skeleton and associated vasculature at the level of the whole organism. Recent experiments from spaceflight and ground-based models have provided fresh insights into how these environmental stresses influence mechanisms that are related to redox signaling, oxidative stress, and tissue dysfunction. Emerging mechanistic knowledge on cellular defenses to radiation and other environmental stressors, including microgravity, are useful for both screening and developing interventions against spaceflight-induced deficits in bone and vascular function.
Collapse
Affiliation(s)
- Candice G T Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA.
- KBRWyle, Moffett Field, CA 94035, USA.
| | - Ruth K Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| |
Collapse
|
10
|
Andreev-Andrievskiy A, Popova A, Lloret JC, Aubry P, Borovik A, Tsvirkun D, Vinogradova O, Ilyin E, Gauquelin-Koch G, Gharib C, Custaud MA. BION-M 1: First continuous blood pressure monitoring in mice during a 30-day spaceflight. LIFE SCIENCES IN SPACE RESEARCH 2017; 13:19-26. [PMID: 28554506 DOI: 10.1016/j.lssr.2017.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/19/2017] [Indexed: 06/07/2023]
Abstract
Animals are an essential component of space exploration and have been used to demonstrate that weightlessness does not disrupt essential physiological functions. They can also contribute to space research as models of weightlessness-induced changes in humans. Animal research was an integral component of the 30-day automated Russian biosatellite Bion-M 1 space mission. The aim of the hemodynamic experiment was to estimate cardiovascular function in mice, a species roughly 3000 times smaller than humans, during prolonged spaceflight and post-flight recovery, particularly, to investigate if mice display signs of cardiovascular deconditioning. For the first time, heart rate (HR) and blood pressure (BP) were continuously monitored using implantable telemetry during spaceflight and recovery. Decreased HR and unchanged BP were observed during launch, whereas both HR and BP dropped dramatically during descent. During spaceflight, BP did not change from pre-flight values. However, HR increased, particularly during periods of activity. HR remained elevated after spaceflight and was accompanied by increased levels of exercise-induced tachycardia. Loss of three of the five mice during the flight as a result of the hardware malfunction (unrelated to the telemetry system) and thus the limited sample number constitute the major limitation of the study. For the first time BP and HR were continuously monitored in mice during the 30-day spaceflight and 7-days of post-flight recovery. Cardiovascular deconditioning in these tiny quadruped mammals was reminiscent of that in humans. Therefore, the loss of hydrostatic pressure in space, which is thought to be the initiating event for human cardiovascular adaptation in microgravity, might be of less importance than other physiological mechanisms. Further experiments with larger number of mice are needed to confirm these findings.
Collapse
Affiliation(s)
- Alexander Andreev-Andrievskiy
- SSC RF Institute for Biomedical Problems RAS, 76A Khoroshevskoe sh., 123007, Moscow, Russia; Lomonosov Moscow State University, Biology Faculty, 1-12, Leninskie Gory, 119234, Moscow, Russia.
| | - Anfisa Popova
- SSC RF Institute for Biomedical Problems RAS, 76A Khoroshevskoe sh., 123007, Moscow, Russia; Lomonosov Moscow State University, Biology Faculty, 1-12, Leninskie Gory, 119234, Moscow, Russia
| | | | - Patrick Aubry
- CNES, French Space Agency, 8 av Edouard Belin, 31401, Toulouse, France
| | - Anatoliy Borovik
- SSC RF Institute for Biomedical Problems RAS, 76A Khoroshevskoe sh., 123007, Moscow, Russia
| | - Daria Tsvirkun
- Laboratory of Integrated Neurovascular and Mitochondrial Biology (BNMI), UMR CNRS 6214, INSERM 1083, Faculté de Médecine d'Angers, 49045 Angers, France; CaDyWEC International Laboratory, Angers University, Angers, France
| | - Olga Vinogradova
- SSC RF Institute for Biomedical Problems RAS, 76A Khoroshevskoe sh., 123007, Moscow, Russia
| | - Eugeniy Ilyin
- SSC RF Institute for Biomedical Problems RAS, 76A Khoroshevskoe sh., 123007, Moscow, Russia
| | | | - Claude Gharib
- Laboratory of Physiology, Medical School Lyon Est, 8, Avenue Rockfeller, 69373, Lyon, France
| | - Marc-Antoine Custaud
- Laboratory of Integrated Neurovascular and Mitochondrial Biology (BNMI), UMR CNRS 6214, INSERM 1083, Faculté de Médecine d'Angers, 49045 Angers, France; CaDyWEC International Laboratory, Angers University, Angers, France.
| |
Collapse
|
11
|
Sultemeier DR, Choy KR, Schweizer FE, Hoffman LF. Spaceflight-induced synaptic modifications within hair cells of the mammalian utricle. J Neurophysiol 2017; 117:2163-2178. [PMID: 28228581 DOI: 10.1152/jn.00240.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 02/08/2023] Open
Abstract
Exposure to the microgravity conditions of spaceflight alleviates the load normally imposed by the Earth's gravitational field on the inner ear utricular epithelia. Previous ultrastructural investigations have shown that spaceflight induces an increase in synapse density within hair cells of the rat utricle. However, the utricle exhibits broad physiological heterogeneity across different epithelial regions, and it is unknown whether capabilities for synaptic plasticity generalize to hair cells across its topography. To achieve systematic and broader sampling of the epithelium than was previously conducted, we used immunohistochemistry and volumetric image analyses to quantify synapse distributions across representative utricular regions in specimens from mice exposed to spaceflight (a 15-day mission of the space shuttle Discovery). These measures were compared with similarly sampled Earth-bound controls. Following paraformaldehyde fixation and microdissection, immunohistochemistry was performed on intact specimens to label presynaptic ribbons (anti-CtBP2) and postsynaptic receptor complexes (anti-Shank1A). Synapses were identified as closely apposed pre- and postsynaptic puncta. Epithelia from horizontal semicircular canal cristae served as "within-specimen" controls, whereas utricles and cristae from Earth-bound cohorts served as experimental controls. We found that synapse densities decreased in the medial extrastriolae of microgravity specimens compared with experimental controls, whereas they were unchanged in the striolae and horizontal cristae from the two conditions. These data demonstrate that structural plasticity was topographically localized to the utricular region that encodes very low frequency and static changes in linear acceleration, and illuminates the remarkable capabilities of utricular hair cells for synaptic plasticity in adapting to novel gravitational environments.NEW & NOTEWORTHY Spaceflight imposes a radically different sensory environment from that in which the inner ear utricle normally operates. We investigated synaptic modifications in utricles from mice flown aboard a space shuttle mission. Structural synaptic plasticity was detected in the medial extrastriola, a region associated with encoding static head position, as decreased synapse density. These results are remarkably congruent with a recent report of decreased utricular function in astronauts immediately after returning from the International Space Station.
Collapse
Affiliation(s)
- David R Sultemeier
- Department of Head & Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Kristel R Choy
- Department of Head & Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Felix E Schweizer
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California; and.,Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Larry F Hoffman
- Department of Head & Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, California; .,Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
12
|
Alwood JS, Ronca AE, Mains RC, Shelhamer MJ, Smith JD, Goodwin TJ. From the bench to exploration medicine: NASA life sciences translational research for human exploration and habitation missions. NPJ Microgravity 2017. [PMID: 28649627 PMCID: PMC5460236 DOI: 10.1038/s41526-016-0002-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NASA’s Space Biology and Human Research Program entities have recently spearheaded communications both internally and externally to coordinate the agency’s translational research efforts. In this paper, we strongly advocate for translational research at NASA, provide recent examples of NASA sponsored early-stage translational research, and discuss options for a path forward. Our overall objective is to help in stimulating a collaborative research across multiple disciplines and entities that, working together, will more effectively and more rapidly achieve NASA’s goals for human spaceflight.
Collapse
Affiliation(s)
- Joshua S Alwood
- Space BioSciences Division, NASA Ames Research Center, Moffett Field, CA USA
| | - April E Ronca
- Space BioSciences Division, NASA Ames Research Center, Moffett Field, CA USA.,Wake Forest School of Medicine, Winston-Salem, NC USA
| | | | - Mark J Shelhamer
- Human Research Program, NASA Johnson Space Center, Houston, TX USA
| | - Jeffrey D Smith
- Space BioSciences Division, NASA Ames Research Center, Moffett Field, CA USA
| | - Thomas J Goodwin
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX USA
| |
Collapse
|
13
|
Delp MD, Charvat JM, Limoli CL, Globus RK, Ghosh P. Apollo Lunar Astronauts Show Higher Cardiovascular Disease Mortality: Possible Deep Space Radiation Effects on the Vascular Endothelium. Sci Rep 2016; 6:29901. [PMID: 27467019 PMCID: PMC4964660 DOI: 10.1038/srep29901] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/22/2016] [Indexed: 01/30/2023] Open
Abstract
As multiple spacefaring nations contemplate extended manned missions to Mars and the Moon, health risks could be elevated as travel goes beyond the Earth's protective magnetosphere into the more intense deep space radiation environment. The primary purpose of this study was to determine whether mortality rates due to cardiovascular disease (CVD), cancer, accidents and all other causes of death differ in (1) astronauts who never flew orbital missions in space, (2) astronauts who flew only in low Earth orbit (LEO), and (3) Apollo lunar astronauts, the only humans to have traveled beyond Earth's magnetosphere. Results show there were no differences in CVD mortality rate between non-flight (9%) and LEO (11%) astronauts. However, the CVD mortality rate among Apollo lunar astronauts (43%) was 4-5 times higher than in non-flight and LEO astronauts. To test a possible mechanistic basis for these findings, a secondary purpose was to determine the long-term effects of simulated weightlessness and space-relevant total-body irradiation on vascular responsiveness in mice. The results demonstrate that space-relevant irradiation induces a sustained vascular endothelial cell dysfunction. Such impairment is known to lead to occlusive artery disease, and may be an important risk factor for CVD among astronauts exposed to deep space radiation.
Collapse
Affiliation(s)
- Michael D. Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Jacqueline M. Charvat
- Wyle Science, Technology and Engineering Group, Johnson Space Center, Houston TX 77058, USA
| | - Charles L. Limoli
- Department of Radiation Oncology, University of California Irvine, Irvine, CA 92697, USA
| | - Ruth K. Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Payal Ghosh
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
14
|
Ghosh P, Behnke BJ, Stabley JN, Kilar CR, Park Y, Narayanan A, Alwood JS, Shirazi-Fard Y, Schreurs AS, Globus RK, Delp MD. Effects of High-LET Radiation Exposure and Hindlimb Unloading on Skeletal Muscle Resistance Artery Vasomotor Properties and Cancellous Bone Microarchitecture in Mice. Radiat Res 2016; 185:257-66. [PMID: 26930379 DOI: 10.1667/rr4308.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Weightlessness during spaceflight leads to functional changes in resistance arteries and loss of cancellous bone, which may be potentiated by radiation exposure. The purpose of this study was to assess the effects of hindlimb unloading (HU) and total-body irradiation (TBI) on the vasomotor responses of skeletal muscle arteries. Male C57BL/6 mice were assigned to control, HU (13-16 days), TBI (1 Gy (56)Fe, 600 MeV, 10 cGy/min) and HU-TBI groups. Gastrocnemius muscle feed arteries were isolated for in vitro study. Endothelium-dependent (acetylcholine) and -independent (Dea-NONOate) vasodilator and vasoconstrictor (KCl, phenylephrine and myogenic) responses were evaluated. Arterial endothelial nitric oxide synthase (eNOS), superoxide dismutase-1 (SOD-1) and xanthine oxidase (XO) protein content and tibial cancellous bone microarchitecture were quantified. Endothelium-dependent and -independent vasodilator responses were impaired in all groups relative to control, and acetylcholine-induced vasodilation was lower in the HU-TBI group relative to that in the HU and TBI groups. Reductions in endothelium-dependent vasodilation correlated with a lower cancellous bone volume fraction. Nitric oxide synthase inhibition abolished all group differences in endothelium-dependent vasodilation. HU and HU-TBI resulted in decreases in eNOS protein levels, while TBI and HU-TBI produced lower SOD-1 and higher XO protein content. Vasoconstrictor responses were not altered. Reductions in NO bioavailability (eNOS), lower anti-oxidant capacity (SOD-1) and higher pro-oxidant capacity (XO) may contribute to the deficits in NOS signaling in skeletal muscle resistance arteries. These findings suggest that the combination of insults experienced in spaceflight leads to impairment of vasodilator function in resistance arteries that is mediated through deficits in NOS signaling.
Collapse
Affiliation(s)
- Payal Ghosh
- a Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida 32306
| | - Brad J Behnke
- b Department of Kinesiology and the Johnson Cancer Research Center, Kansas State University, Manhattan, Kansas 66506
| | - John N Stabley
- c Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Cody R Kilar
- d Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida 32611
| | - Yoonjung Park
- e Department of Health and Human Performance, University of Houston, Houston, Texas 77204
| | - Anand Narayanan
- f Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, Texas 77807; and
| | - Joshua S Alwood
- g Space Biosciences Division, NASA Ames Research Center, Moffett Field, California 94035
| | - Yasaman Shirazi-Fard
- g Space Biosciences Division, NASA Ames Research Center, Moffett Field, California 94035
| | - Ann-Sofie Schreurs
- g Space Biosciences Division, NASA Ames Research Center, Moffett Field, California 94035
| | - Ruth K Globus
- g Space Biosciences Division, NASA Ames Research Center, Moffett Field, California 94035
| | - Michael D Delp
- a Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida 32306
| |
Collapse
|
15
|
Globus RK, Morey-Holton E. Hindlimb unloading: rodent analog for microgravity. J Appl Physiol (1985) 2016; 120:1196-206. [PMID: 26869711 DOI: 10.1152/japplphysiol.00997.2015] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/02/2016] [Indexed: 11/22/2022] Open
Abstract
The rodent hindlimb unloading (HU) model was developed in the 1980s to make it possible to study mechanisms, responses, and treatments for the adverse consequences of spaceflight. Decades before development of the HU model, weightlessness was predicted to yield deficits in the principal tissues responsible for structure and movement on Earth, primarily muscle and bone. Indeed, results from early spaceflight and HU experiments confirmed the expected sensitivity of the musculoskeletal system to gravity loading. Results from human and animal spaceflight and HU experiments show that nearly all organ systems and tissues studied display some measurable changes, albeit sometimes minor and of uncertain relevance to astronaut health. The focus of this review is to examine key HU results for various organ systems including those related to stress; the immune, cardiovascular, and nervous systems; vision changes; and wound healing. Analysis of the validity of the HU model is important given its potential value for both hypothesis testing and countermeasure development.
Collapse
Affiliation(s)
- Ruth K Globus
- Space Biosciences Division, NASA-Ames Research Center, Moffett Field, California
| | - Emily Morey-Holton
- Space Biosciences Division, NASA-Ames Research Center, Moffett Field, California
| |
Collapse
|
16
|
Ghosh P, Stabley JN, Behnke BJ, Allen MR, Delp MD. Effects of spaceflight on the murine mandible: Possible factors mediating skeletal changes in non-weight bearing bones of the head. Bone 2016; 83:156-161. [PMID: 26545335 DOI: 10.1016/j.bone.2015.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/01/2015] [Accepted: 11/02/2015] [Indexed: 11/22/2022]
Abstract
Spaceflight-induced remodeling of the skull is characterized by greater bone volume, mineral density, and mineral content. To further investigate the effects of spaceflight on other non-weight bearing bones of the head, as well as to gain insight into potential factors mediating the remodeling of the skull, the purpose of the present study was to determine the effects of spaceflight on mandibular bone properties. Female C57BL/6 mice were flown 15d on the STS-131 Space Shuttle mission (n=8) and 13d on the STS-135 mission (n=5) or remained as ground controls (GC). Upon landing, mandibles were collected and analyzed via micro-computed tomography for tissue mineralization, bone volume (BV/TV), and distance from the cemento-enamel junction to the alveolar crest (CEJ-AC). Mandibular mineralization was not different between spaceflight (SF) and GC mice for either the STS-131 or STS-135 missions. Mandibular BV/TV (combined cortical and trabecular bone) was lower in mandibles from SF mice on the STS-131 mission (80.7±0.8%) relative to that of GC (n=8) animals (84.2±1.2%), whereas BV/TV from STS-135 mice was not different from GC animals (n=7). The CEJ-AC distance was shorter in mandibles from STS-131 mice (0.217±0.004mm) compared to GC animals (0.283±0.009mm), indicating an anabolic (or anti-catabolic) effect of spaceflight, while CEJ-AC distance was similar between STS-135 and GC mice. These findings demonstrate that mandibular bones undergo skeletal changes during spaceflight and are susceptible to the effects of weightlessness. However, adaptation of the mandible to spaceflight is dissimilar to that of the cranium, at least in terms of changes in BV/TV.
Collapse
Affiliation(s)
- Payal Ghosh
- Department of Nutrition, Food and Exercise Science, Florida State University, Tallahassee, FL 32306, USA
| | - John N Stabley
- Sanford-Burnham Medical Research Institute, Orlando, FL 3282, USA
| | - Bradley J Behnke
- Department of Kinesiology and Johnson Cancer Research Center, Kansas State University, Manhattan, KS 66506, USA
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael D Delp
- Department of Nutrition, Food and Exercise Science, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
17
|
Prisby RD, Alwood JS, Behnke BJ, Stabley JN, McCullough DJ, Ghosh P, Globus RK, Delp MD. Effects of hindlimb unloading and ionizing radiation on skeletal muscle resistance artery vasodilation and its relation to cancellous bone in mice. J Appl Physiol (1985) 2015; 120:97-106. [PMID: 26472865 DOI: 10.1152/japplphysiol.00423.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/08/2015] [Indexed: 01/10/2023] Open
Abstract
Spaceflight has profound effects on vascular function as a result of weightlessness that may be further compounded by radiation exposure. The purpose of the present study was to assess the individual and combined effects of hindlimb unloading (HU) and radiation (Rad) on vasodilator responses in the skeletal muscle vasculature. Adult male C57BL/6J mice were randomized to one of four groups: control (Con), HU (tail suspension for 15 days), Rad (200 cGy of (137)Cs), and HU-Rad (15-day tail suspension and 200 cGy of (137)Cs). Endothelium-dependent vasodilation of gastrocnemius feed arteries was assessed in vitro using acetylcholine (ACh, 10(-9)-10(-4) M) and inhibitors of nitric oxide synthase (NOS) and cyclooxygenase (COX). Endothelium-independent vasodilation was assessed using Dea-NONOate (10(-9)-10(-4) M). Endothelium-dependent and -independent vasodilator responses were impaired relative to Con responses in all treatment groups; however, there was no further impairment from the combination of treatments (HU-Rad) relative to that in the HU and Rad groups. The NOS-mediated contribution to endothelium-dependent vasodilation was depressed with HU and Rad. This impairment in NOS signaling may have been partially compensated for by an enhancement of PGI2-mediated dilation. Changes in endothelium-dependent vasodilation were also associated with decrements in trabecular bone volume in the proximal tibia metaphysis. These data demonstrate that the simulated space environment (i.e., radiation exposure and unloading of muscle and bone) significantly impairs skeletal muscle artery vasodilation, mediated through endothelium-dependent reductions in NOS signaling and decrements in vascular smooth muscle cell responsiveness to NO.
Collapse
Affiliation(s)
- Rhonda D Prisby
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Joshua S Alwood
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California
| | - Brad J Behnke
- Department of Applied Physiology and Kinesiology and the Center for Exercise Science, University of Florida, Gainesville, Florida; Department of Kinesiology and the Johnson Cancer Research Center, Kansas State University, Manhattan, Kansas; and
| | - John N Stabley
- Department of Applied Physiology and Kinesiology and the Center for Exercise Science, University of Florida, Gainesville, Florida
| | - Danielle J McCullough
- Department of Applied Physiology and Kinesiology and the Center for Exercise Science, University of Florida, Gainesville, Florida
| | - Payal Ghosh
- Department of Applied Physiology and Kinesiology and the Center for Exercise Science, University of Florida, Gainesville, Florida; Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida
| | - Ruth K Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California
| | - Michael D Delp
- Department of Applied Physiology and Kinesiology and the Center for Exercise Science, University of Florida, Gainesville, Florida; Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida
| |
Collapse
|
18
|
Wang Z, Bai Y, Yu J, Liu H, Cheng Y, Liu Y, Xie X, Ma J, Bao J. Caveolae regulate vasoconstriction of conduit arteries to angiotensin II in hindlimb unweighted rats. J Physiol 2015; 593:4561-74. [PMID: 26260249 DOI: 10.1113/jp270823] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 08/03/2015] [Indexed: 01/16/2023] Open
Abstract
Weightlessness induces the functional remodelling of arteries, but the changes to angiotensin II (Ang II)-elicited vasoconstriction and the underlying mechanism have never been reported. Caveolae are invaginations of the cell membrane crucial for the contraction of vascular smooth muscle cells, so we investigated the adaptation of Ang II-elicited vasoconstriction to simulated weightlessness and the role of caveolae in it. The 4 week hindlimb unweighted (HU) rat was used to simulate the effects of weightlessness. Ang II-elicited vasoconstriction was measured by isometric force recording. The morphology of caveolae was examined by transmission electron microscope. The binding of the angiotensin II type 1 receptor (AT1 ) and caveolin-1 (cav-1) was examined by coimmunoprecipitation and Western blot. We found that the maximal developing force (E(max)) of Ang II-elicited vasoconstriction was decreased in abdominal aorta by 30.6%, unchanged in thoracic aorta and increased in carotid artery by 17.9% after HU, while EC50 of the response was increased in all three arteries (P < 0.05). AT1 desensitization upon activation was significantly reduced by HU in all three arteries, as was the number of caveolae (P < 0.05). Furthermore, Ang II promoted the binding of AT1 and cav-1 significantly in control but not HU arteries. Both the number of caveolae and the binding of AT1 and cav-1 in HU arteries were restored by cholesterol pretreatment which also reinstated the change in EC50 as well as the level of AT1 desensitization. These results indicate that modified caveolae in vascular smooth muscle cells could interfere with the binding of AT1 and cav-1 mediating the adaptation of Ang II-elicited vasoconstriction to HU.
Collapse
Affiliation(s)
- Zhongchao Wang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Yungang Bai
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Jinwen Yu
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Huan Liu
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Yaoping Cheng
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Yonghong Liu
- Department of Neurology, Xi Jing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Xiaoping Xie
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Jin Ma
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Junxiang Bao
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, 710032, P. R. China
| |
Collapse
|
19
|
Platts SH, Bairey Merz CN, Barr Y, Fu Q, Gulati M, Hughson R, Levine BD, Mehran R, Stachenfeld N, Wenger NK. Effects of sex and gender on adaptation to space: cardiovascular alterations. J Womens Health (Larchmt) 2015; 23:950-5. [PMID: 25401939 DOI: 10.1089/jwh.2014.4912] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sex and gender differences in the cardiovascular adaptation to spaceflight were examined with the goal of optimizing the health and safety of male and female astronauts at the forefront of space exploration. Female astronauts are more susceptible to orthostatic intolerance after space flight; the visual impairment intracranial pressure syndrome predominates slightly in males. Since spaceflight simulates vascular aging, sex-specific effects on vascular endothelium and thrombotic risk warrant examination as predisposing factors to atherosclerosis, important as the current cohort of astronauts ages. Currently, 20% of astronauts are women, and the recently selected astronaut recruits are 50% women. Thus there should be expectation that future research will reflect the composition of the overall population to determine potential benefits or risks. This should apply both to clinical studies and to basic science research.
Collapse
Affiliation(s)
- Steven H Platts
- 1 National Aeronautics and Space Administration Johnson Space Center , Houston, Texas
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sofronova SI, Tarasova OS, Gaynullina D, Borzykh AA, Behnke BJ, Stabley JN, McCullough DJ, Maraj JJ, Hanna M, Muller-Delp JM, Vinogradova OL, Delp MD. Spaceflight on the Bion-M1 biosatellite alters cerebral artery vasomotor and mechanical properties in mice. J Appl Physiol (1985) 2015; 118:830-8. [PMID: 25593287 PMCID: PMC4385880 DOI: 10.1152/japplphysiol.00976.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/13/2015] [Indexed: 01/03/2023] Open
Abstract
Conditions during spaceflight, such as the loss of the head-to-foot gravity vector, are thought to potentially alter cerebral blood flow and vascular resistance. The purpose of the present study was to determine the effects of long-term spaceflight on the functional, mechanical, and structural properties of cerebral arteries. Male C57BL/6N mice were flown 30 days in a Bion-M1 biosatellite. Basilar arteries isolated from spaceflight (SF) (n = 6), habitat control (HC) (n = 6), and vivarium control (VC) (n = 16) mice were used for in vitro functional and mechanical testing and histological structural analysis. The results demonstrate that vasoconstriction elicited through a voltage-gated Ca(2+) mechanism (30-80 mM KCl) and thromboxane A2 receptors (10(-8) - 3 × 10(-5) M U46619) are lower in cerebral arteries from SF mice. Inhibition of Rho-kinase activity (1 μM Y27632) abolished group differences in U46619-evoked contractions. Endothelium-dependent vasodilation elicited by acetylcholine (10 μM, 2 μM U46619 preconstriction) was virtually absent in cerebral arteries from SF mice. The pressure-diameter relation was lower in arteries from SF mice relative to that in HC mice, which was not related to differences in the extracellular matrix protein elastin or collagen content or the elastin/collagen ratio in the basilar arteries. Diameter, medial wall thickness, and medial cross-sectional area of unpressurized basilar arteries were not different among groups. These results suggest that the microgravity-induced attenuation of both vasoconstrictor and vasodilator properties may limit the range of vascular control of cerebral perfusion or impair the distribution of brain blood flow during periods of stress.
Collapse
Affiliation(s)
- Svetlana I Sofronova
- Institute for Biomedical Problems, Russian Academy of Sciences, Moscow; Faculty of Biology, M.V. Lomonosov Moscow State University
| | - Olga S Tarasova
- Institute for Biomedical Problems, Russian Academy of Sciences, Moscow; Faculty of Biology, M.V. Lomonosov Moscow State University
| | - Dina Gaynullina
- Institute for Biomedical Problems, Russian Academy of Sciences, Moscow; Faculty of Biology, M.V. Lomonosov Moscow State University; Department of Physiology, Russian National Research Medical University, Moscow, Russia
| | - Anna A Borzykh
- Institute for Biomedical Problems, Russian Academy of Sciences, Moscow
| | - Bradley J Behnke
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - John N Stabley
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Danielle J McCullough
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Joshua J Maraj
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Mina Hanna
- Department of Materials Science and Engineering, Stanford University, Stanford, California
| | - Judy M Muller-Delp
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida; and
| | | | - Michael D Delp
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida
| |
Collapse
|
21
|
Prisby RD, Behnke BJ, Allen MR, Delp MD. Effects of skeletal unloading on the vasomotor properties of the rat femur principal nutrient artery. J Appl Physiol (1985) 2015; 118:980-8. [PMID: 25635000 DOI: 10.1152/japplphysiol.00576.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 01/26/2015] [Indexed: 11/22/2022] Open
Abstract
Spaceflight and prolonged bed rest induce deconditioning of the cardiovascular system and bone loss. Previous research has shown declines in femoral bone and marrow perfusion during unloading and with subsequent reloading in hindlimb-unloaded (HU) rats, an animal model of chronic disuse. We hypothesized that the attenuated bone and marrow perfusion may result from altered vasomotor properties of the bone resistance vasculature. Therefore, the purpose of this study was to determine the effects of unloading on the vasoconstrictor and vasodilator properties of the femoral principal nutrient artery (PNA), the main conduit for blood flow to the femur, in 2 wk HU and control (CON) rats. Vasoconstriction of the femoral PNA was assessed in vitro using norepinephrine, phenylephrine, clonidine, KCl, endothelin-1, arginine vasopressin, and myogenic responsiveness. Vasodilation through endothelium-dependent [acetylcholine, bradykinin, and flow-mediated dilation (FMD)] and endothelium-independent mechanisms [sodium nitroprusside (SNP) and adenosine] were also determined. Vasoconstrictor responsiveness of the PNA from HU rats was not enhanced through any of the mechanisms tested. Endothelium-dependent vasodilation to acetylcholine (CON, 86 ± 3%; HU, 48 ± 7% vasodilation) and FMD (CON, 61 ± 9%; HU, 11 ± 11% vasodilation) were attenuated in PNAs from HU rats, while responses to bradykinin were not different between groups. Endothelium-independent vasodilation to SNP and adenosine were not different between groups. These data indicate that unloading-induced decrements in bone and marrow perfusion and increases in vascular resistance are not the result of enhanced vasoconstrictor responsiveness of the bone resistance arteries but are associated with reductions in endothelium-dependent vasodilation.
Collapse
Affiliation(s)
- Rhonda D Prisby
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Bradley J Behnke
- Department of Applied Physiology and Kinesiology, and the Center for Exercise Science, University of Florida, Gainesville, Florida; Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Michael D Delp
- Department of Applied Physiology and Kinesiology, and the Center for Exercise Science, University of Florida, Gainesville, Florida; Department of Nutrition, Food and Exercise Science, Florida State University, Tallahassee, Florida
| |
Collapse
|
22
|
Latchney SE, Rivera PD, Mao XW, Ferguson VL, Bateman TA, Stodieck LS, Nelson GA, Eisch AJ. The effect of spaceflight on mouse olfactory bulb volume, neurogenesis, and cell death indicates the protective effect of novel environment. J Appl Physiol (1985) 2014; 116:1593-604. [PMID: 24744382 DOI: 10.1152/japplphysiol.01174.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Space missions necessitate physiological and psychological adaptations to environmental factors not present on Earth, some of which present significant risks for the central nervous system (CNS) of crewmembers. One CNS region of interest is the adult olfactory bulb (OB), as OB structure and function are sensitive to environmental- and experience-induced regulation. It is currently unknown how the OB is altered by spaceflight. In this study, we evaluated OB volume and neurogenesis in mice shortly after a 13-day flight on Space Shuttle Atlantis [Space Transport System (STS)-135] relative to two groups of control mice maintained on Earth. Mice housed on Earth in animal enclosure modules that mimicked the conditions onboard STS-135 (AEM-Ground mice) had greater OB volume relative to mice maintained in standard housing on Earth (Vivarium mice), particularly in the granule (GCL) and glomerular (GL) cell layers. AEM-Ground mice also had more OB neuroblasts and fewer apoptotic cells relative to Vivarium mice. However, the AEM-induced increase in OB volume and neurogenesis was not seen in STS-135 mice (AEM-Flight mice), suggesting that spaceflight may have negated the positive effects of the AEM. In fact, when OB volume of AEM-Flight mice was considered, there was a greater density of apoptotic cells relative to AEM-Ground mice. Our findings suggest that factors present during spaceflight have opposing effects on OB size and neurogenesis, and provide insight into potential strategies to preserve OB structure and function during future space missions.
Collapse
Affiliation(s)
- Sarah E Latchney
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Phillip D Rivera
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xiao W Mao
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University and Medical Center, Loma Linda, California
| | - Virginia L Ferguson
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado; and
| | - Ted A Bateman
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina
| | - Louis S Stodieck
- BioServe Space Technologies, Aerospace Engineering Sciences, University of Colorado at Boulder, Boulder, Colorado
| | - Gregory A Nelson
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University and Medical Center, Loma Linda, California
| | - Amelia J Eisch
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas;
| |
Collapse
|
23
|
Abete P, Adlbrecht C, Assimakopoulos SF, Côté N, Dullaart RP, Evsyukova HV, Fang TC, Goswami N, Hinghofer-Szalkay H, Ho YL, Hoebaus C, Hülsmann M, Indridason OS, Kholová I, Lin YH, Maniscalco M, Mathieu P, Mizukami H, Ndrepepa G, Roessler A, Sánchez-Ramón S, Santamaria F, Schernthaner GH, Scopa CD, Sharp KM, Skuladottir GV, Steichen O, Stenvinkel P, Tejera-Alhambra M, Testa G, Visseren FL, Westerink J, Witasp A, Yagihashi S, Ylä-Herttuala S. Research update for articles published in EJCI in 2011. Eur J Clin Invest 2013. [DOI: 10.1111/eci.12131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Pasquale Abete
- Dipartimento di Scienze Mediche Traslazionali; Università degli Studi di Napoli “Federico II”; Naples Italy
| | - Christopher Adlbrecht
- Division of Cardiology; Department of Internal Medicine II; Medical University of Vienna; Vienna Austria
| | | | - Nancy Côté
- Department of Surgery; Laboratoire d'Études Moléculaires des Valvulopathies (LEMV); Institut Universitaire de Cardiologie et de Pneumologie de Québec/Research Center; Laval University; Québec Canada
| | - Robin P.F. Dullaart
- Department of Endocrinology; University of Groningen and University Medical Centre Groningen; Groningen The Netherlands
| | - Helen V. Evsyukova
- Department of Hospital Therapy; Medical Faculty; St Petersburg State University; St. Petersburg Russia
| | - Te-Chao Fang
- Division of Nephrology; Department of Internal Medicine; Buddhist Tzu Chi General Hospital; Hualien Taiwan
| | - Nandu Goswami
- Institute of Physiology; Medical University of Graz; Austria
| | | | - Yi-Lwun Ho
- Department of Internal Medicine; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| | - Clemens Hoebaus
- Department of Medicine II; Angiology, Medical University and General Hospital of Vienna; Vienna Austria
| | - Martin Hülsmann
- Division of Cardiology; Department of Internal Medicine II; Medical University of Vienna; Vienna Austria
| | - Olafur S. Indridason
- Internal Medicine Services; Landspitali - The National University Hospital of Iceland; Reykjavik Iceland
| | - Ivana Kholová
- Pathology; Fimlab Laboratories; Tampere University Hospital; Tampere Finland
| | - Yen-Hung Lin
- Department of Internal Medicine; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| | - Mauro Maniscalco
- Section of Respiratory Diseases; Hospital “S. Maria della Pietà”; Casoria Naples Italy
| | - Patrick Mathieu
- Department of Surgery; Laboratoire d'Études Moléculaires des Valvulopathies (LEMV); Institut Universitaire de Cardiologie et de Pneumologie de Québec/Research Center; Laval University; Québec Canada
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| | - Gjin Ndrepepa
- Herz- und Kreislauferkrankungen; Deutsches Herzzentrum München; Technische Universität; Munich Germany
| | | | | | - Francesca Santamaria
- Department of Translational Medical Sciences; Federico II University; Naples Italy
| | | | | | | | - Gudrun V. Skuladottir
- Department of Physiology; Faculty of Medicine; School of Health Sciences; University of Iceland; Reykjavik Iceland
| | - Olivier Steichen
- Internal Medicine Department; Assistance Publique-Hôpitaux de Paris; Tenon Hospital; Paris France
- Faculty of Medicine; Université Pierre et Marie Curie-Paris 6; Paris France
| | - Peter Stenvinkel
- Divisions of Renal Medicine and Baxter Novum; Department of Clinical Science; Intervention and Technology; Karolinska Institutet; Stockholm Sweden
| | - Marta Tejera-Alhambra
- Laboratory of Neuroimmunology; Hospital General Universitario Gregorio Marañón; Madrid Spain
| | - Gianluca Testa
- Dipartimento di Medicina e Scienze della Salute; Università del Molise; Campobasso Italy
| | - Frank L.J. Visseren
- Department of Vascular Medicine; University Medical Center Utrecht; Utrecht The Netherlands
| | - Jan Westerink
- Department of Vascular Medicine; University Medical Center Utrecht; Utrecht The Netherlands
| | - Anna Witasp
- Divisions of Renal Medicine and Baxter Novum; Department of Clinical Science; Intervention and Technology; Karolinska Institutet; Stockholm Sweden
| | - Soroku Yagihashi
- Department of Pathology and Molecular Medicine; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| | - Seppo Ylä-Herttuala
- A.I.Virtanen Institute for Molecular Sciences; University of Eastern Finland; Kuopio Finland
| |
Collapse
|
24
|
Taylor CR, Hanna M, Behnke BJ, Stabley JN, McCullough DJ, Davis RT, Ghosh P, Papadopoulos A, Muller-Delp JM, Delp MD. Spaceflight-induced alterations in cerebral artery vasoconstrictor, mechanical, and structural properties: implications for elevated cerebral perfusion and intracranial pressure. FASEB J 2013; 27:2282-92. [PMID: 23457215 PMCID: PMC3659353 DOI: 10.1096/fj.12-222687] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 02/11/2013] [Indexed: 11/11/2022]
Abstract
Evidence indicates that cerebral blood flow is both increased and diminished in astronauts on return to Earth. Data from ground-based animal models simulating the effects of microgravity have shown that decrements in cerebral perfusion are associated with enhanced vasoconstriction and structural remodeling of cerebral arteries. Based on these results, the purpose of this study was to test the hypothesis that 13 d of spaceflight [Space Transportation System (STS)-135 shuttle mission] enhances myogenic vasoconstriction, increases medial wall thickness, and elicits no change in the mechanical properties of mouse cerebral arteries. Basilar and posterior communicating arteries (PCAs) were isolated from 9-wk-old female C57BL/6 mice for in vitro vascular and mechanical testing. Contrary to that hypothesized, myogenic vasoconstrictor responses were lower and vascular distensibility greater in arteries from spaceflight group (SF) mice (n=7) relative to ground-based control group (GC) mice (n=12). Basilar artery maximal diameter was greater in SF mice (SF: 236±9 μm and GC: 215±5 μm) with no difference in medial wall thickness (SF: 12.4±1.6 μm; GC: 12.2±1.2 μm). Stiffness of the PCA, as characterized via nanoindentation, was lower in SF mice (SF: 3.4±0.3 N/m; GC: 5.4±0.8 N/m). Collectively, spaceflight-induced reductions in myogenic vasoconstriction and stiffness and increases in maximal diameter of cerebral arteries signify that elevations in brain blood flow may occur during spaceflight. Such changes in cerebral vascular control of perfusion could contribute to increases in intracranial pressure and an associated impairment of visual acuity in astronauts during spaceflight.
Collapse
Affiliation(s)
| | - Mina Hanna
- Department of Mechanical and Aerospace Engineering
- Department of Applied Physiology and Kinesiology
| | - Bradley J. Behnke
- Department of Applied Physiology and Kinesiology
- Center for Exercise Science, and
| | - John N. Stabley
- Department of Applied Physiology and Kinesiology
- Center for Exercise Science, and
| | | | - Robert T. Davis
- Department of Applied Physiology and Kinesiology
- Center for Exercise Science, and
| | - Payal Ghosh
- Department of Applied Physiology and Kinesiology
- Center for Exercise Science, and
| | | | - Judy M. Muller-Delp
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA; and
| | - Michael D. Delp
- Department of Applied Physiology and Kinesiology
- Center for Exercise Science, and
| |
Collapse
|
25
|
Behnke BJ, Stabley JN, McCullough DJ, Davis RT, Dominguez JM, Muller-Delp JM, Delp MD. Effects of spaceflight and ground recovery on mesenteric artery and vein constrictor properties in mice. FASEB J 2012; 27:399-409. [PMID: 23099650 DOI: 10.1096/fj.12-218503] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Following exposure to microgravity, there is a reduced ability of astronauts to augment peripheral vascular resistance, often resulting in orthostatic hypotension. The purpose of this study was to test the hypothesis that mesenteric arteries and veins will exhibit diminished vasoconstrictor responses after spaceflight. Mesenteric arteries and veins from female mice flown on the Space Transportation System (STS)-131 (n=11), STS-133 (n=6), and STS-135 (n=3) shuttle missions and respective ground-based control mice (n=30) were isolated for in vitro experimentation. Vasoconstrictor responses were evoked in arteries via norepinephrine (NE), potassium chloride (KCl), and caffeine, and in veins through NE across a range of intraluminal pressures (2-12 cmH(2)O). Vasoconstriction to NE was also determined in mesenteric arteries at 1, 5, and 7 d postlanding. In arteries, maximal constriction to NE, KCl, and caffeine were reduced immediately following spaceflight and 1 d postflight. Spaceflight also reduced arterial ryanodine receptor-3 mRNA levels. In mesenteric veins, there was diminished constriction to NE after flight. The results indicate that the impaired vasoconstriction following spaceflight occurs through the ryanodine receptor-mediated intracellular Ca(2+) release mechanism. Such vascular changes in astronauts could compromise the maintenance of arterial pressure during orthostatic stress.
Collapse
Affiliation(s)
- Bradley J Behnke
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611-8205, USA
| | | | | | | | | | | | | |
Collapse
|