1
|
Ma X, Liu B, Jiang Z, Rao Z, Zheng L. Physical Exercise: A Promising Treatment Against Organ Fibrosis. Int J Mol Sci 2025; 26:343. [PMID: 39796197 PMCID: PMC11720236 DOI: 10.3390/ijms26010343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Fibrosis represents a terminal pathological manifestation encountered in numerous chronic diseases. The process involves the persistent infiltration of inflammatory cells, the transdifferentiation of fibroblasts into myofibroblasts, and the excessive deposition of extracellular matrix (ECM) within damaged tissues, all of which are characteristic features of organ fibrosis. Extensive documentation exists on fibrosis occurrence in vital organs such as the liver, heart, lungs, kidneys, and skeletal muscles, elucidating its underlying pathological mechanisms. Regular exercise is known to confer health benefits through its anti-inflammatory, antioxidant, and anti-aging effects. Notably, exercise exerts anti-fibrotic effects by modulating multiple pathways, including transforming growth factor-β1/small mother decapentaplegic protein (TGF-β1/Samd), Wnt/β-catenin, nuclear factor kappa-B (NF-kB), reactive oxygen species (ROS), microRNAs (miR-126, miR-29a, miR-101a), and exerkine (FGF21, irisin, FSTL1, and CHI3L1). Therefore, this paper aims to review the specific role and molecular mechanisms of exercise as a potential intervention to ameliorate organ fibrosis.
Collapse
Affiliation(s)
- Xiaojie Ma
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| | - Bing Liu
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| | - Ziming Jiang
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| | - Zhijian Rao
- College of Physical Education, Shanghai Normal University, Shanghai 200234, China
- Exercise Biological Center, China Institute of Sport Science, Beijing 100061, China
| | - Lifang Zheng
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| |
Collapse
|
2
|
Queiroz ALF, Garcia CB, Silva JPMO, Cavalini DFA, Alexandrino AV, Cunha AF, Vercesi AE, Castilho RF, Shiguemoto GE. Preventive Effects of Resistance Training on Hemodynamics and Kidney Mitochondrial Bioenergetic Function in Ovariectomized Rats. Int J Mol Sci 2024; 26:266. [PMID: 39796122 PMCID: PMC11720031 DOI: 10.3390/ijms26010266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Menopause occurs due to the depletion of the ovarian reserve, leading to a progressive decline in estrogen (E2) levels. This decrease in E2 levels increases the risk of developing several diseases and can coexist with chronic kidney disease (CKD). Arterial hypertension (AH) is another condition associated with menopause and may either contribute to or result from CKD. Ovariectomy (OVX) induces hypoestrogenism, which can lead to mitochondrial bioenergetic dysfunction in the kidneys. Previous studies have suggested that exercise training has beneficial effects on adults with CKD and AH. To investigate the effects of OVX and resistance training (RT) on hemodynamic parameters and mitochondrial bioenergetic function of the kidney, female Wistar rats were divided into ovariectomized (OVX) and intact (INT) groups. These rats were either kept sedentary (SED) or subjected to RT for thirteen weeks. The RT involved climbing a vertical ladder with a workload apparatus. Hemodynamic parameters were assessed via tail plethysmography. Mitochondrial respiratory function was evaluated with high-resolution respirometry. Gene expression related to the electron transport chain (ETC) and oxidative phosphorylation (OXPHOS) was evaluated by real-time qPCR. At week 13, key hemodynamic parameters (systolic blood pressure and mean arterial pressure) were significantly elevated in the OVX-SED group. Compared with those in the other groups, mitochondrial bioenergetics were impaired in the OVX-SED group. In contrast, the trained groups presented improved mitochondrial bioenergetic function compared with the sedentary groups. OVX led to reduced gene expression related to the mitochondrial ETC and OXPHOS, whereas RT both prevented this reduction and increased gene expression in the trained groups. Our results indicate that hypoestrogenism significantly decreases OXPHOS and ETC capacity in the kidneys of sedentary animals. However, RT effectively increased the expression of genes related to mitochondrial ETC and OXPHOS, thereby counteracting the effects of OVX.
Collapse
Affiliation(s)
- Anne L. F. Queiroz
- Department of Physiological Sciences, Interinstitutional Post-Graduate Program of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil; (A.L.F.Q.); (C.B.G.); (D.F.A.C.); (A.V.A.)
- Post-Graduate Program of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil
| | - Christopher B. Garcia
- Department of Physiological Sciences, Interinstitutional Post-Graduate Program of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil; (A.L.F.Q.); (C.B.G.); (D.F.A.C.); (A.V.A.)
| | - João P. M. O. Silva
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil; (J.P.M.O.S.); (A.F.C.)
| | - Diego F. A. Cavalini
- Department of Physiological Sciences, Interinstitutional Post-Graduate Program of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil; (A.L.F.Q.); (C.B.G.); (D.F.A.C.); (A.V.A.)
| | - André V. Alexandrino
- Department of Physiological Sciences, Interinstitutional Post-Graduate Program of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil; (A.L.F.Q.); (C.B.G.); (D.F.A.C.); (A.V.A.)
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil; (J.P.M.O.S.); (A.F.C.)
- Department of Biological Sicences, Central Paulista University Center (UNICEP), Campus São Carlos, São Carlos 13.570-300, SP, Brazil
| | - Anderson F. Cunha
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil; (J.P.M.O.S.); (A.F.C.)
| | - Anibal E. Vercesi
- Department of Pathology, University of Campinas (UNICAMP), Campinas 13.083-970, SP, Brazil; (A.E.V.); (R.F.C.)
| | - Roger F. Castilho
- Department of Pathology, University of Campinas (UNICAMP), Campinas 13.083-970, SP, Brazil; (A.E.V.); (R.F.C.)
| | - Gilberto E. Shiguemoto
- Department of Physiological Sciences, Interinstitutional Post-Graduate Program of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil; (A.L.F.Q.); (C.B.G.); (D.F.A.C.); (A.V.A.)
- Post-Graduate Program of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil
| |
Collapse
|
3
|
Gerges SH, El-Kadi AOS. Changes in cardiovascular arachidonic acid metabolism in experimental models of menopause and implications on postmenopausal cardiac hypertrophy. Prostaglandins Other Lipid Mediat 2024; 173:106851. [PMID: 38740361 DOI: 10.1016/j.prostaglandins.2024.106851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Menopause is a normal stage in the human female aging process characterized by the cessation of menstruation and the ovarian production of estrogen and progesterone hormones. Menopause is associated with an increased risk of several different diseases. Cardiovascular diseases are generally less common in females than in age-matched males. However, this female advantage is lost after menopause. Cardiac hypertrophy is a disease characterized by increased cardiac size that develops as a response to chronic overload or stress. Similar to other cardiovascular diseases, the risk of cardiac hypertrophy significantly increases after menopause. However, the exact underlying mechanisms are not yet fully elucidated. Several studies have shown that surgical or chemical induction of menopause in experimental animals is associated with cardiac hypertrophy, or aggravates cardiac hypertrophy induced by other stressors. Arachidonic acid (AA) released from the myocardial phospholipids is metabolized by cardiac cytochrome P450 (CYP), cyclooxygenase (COX), and lipoxygenase (LOX) enzymes to produce several eicosanoids. AA-metabolizing enzymes and their respective metabolites play an important role in the pathogenesis of cardiac hypertrophy. Menopause is associated with changes in the cardiovascular levels of CYP, COX, and LOX enzymes and the levels of their metabolites. It is possible that these changes might play a role in the increased risk of cardiac hypertrophy after menopause.
Collapse
Affiliation(s)
- Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
4
|
Han YS, Pakkam M, Fogarty MJ, Sieck GC, Brozovich FV. Alterations in cardiac contractile and regulatory proteins contribute to age-related cardiac dysfunction in male rats. Physiol Rep 2024; 12:e70012. [PMID: 39169429 PMCID: PMC11338742 DOI: 10.14814/phy2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
Aging is associated with cardiac contractile abnormalities, but the etiology of these contractile deficits is unclear. We hypothesized that cardiac contractile and regulatory protein expression is altered during aging. To investigate this possibility, left ventricular (LV) lysates were prepared from young (6 months) and old (24 months) Fischer344 rats. There are no age-related changes in SERCA2 expression or phospholamban phosphorylation. Additionally, neither titin isoform expression nor phosphorylation differed. However, there is a significant increase in β-isoform of the myosin heavy chain (MyHC) expression and phosphorylation of TnI and MyBP-C during aging. In permeabilized strips of papillary muscle, force and Ca2+ sensitivity are reduced during aging, consistent with the increase in β-MyHC expression and TnI phosphorylation. However, the increase in MyBP-C phosphorylation during aging may represent a mechanism to compensate for age-related contractile deficits. In isolated cardiomyocytes loaded with Fura-2, the peak of the Ca2+ transient is reduced, but the kinetics of the Ca2+ transient are not altered. Furthermore, the extent of shortening and the rates of both sarcomere shortening and re-lengthening are reduced. These results demonstrate that aging is associated with changes in contractile and regulatory protein expression and phosphorylation, which affect the mechanical properties of cardiac muscle.
Collapse
Affiliation(s)
- Young Soo Han
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Madona Pakkam
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Matthew J. Fogarty
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Gary C. Sieck
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Frank V. Brozovich
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
- Department of Cardiovascular DiseasesMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
5
|
Han YS, Bandi R, Fogarty MJ, Sieck GC, Brozovich FV. Aging related decreases in NM myosin expression and contractility in a resistance vessel. Front Physiol 2024; 15:1411420. [PMID: 38808359 PMCID: PMC11130448 DOI: 10.3389/fphys.2024.1411420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/01/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction: Vasodilatation in response to NO is a fundamental response of the vasculature, and during aging, the vasculature is characterized by an increase in stiffness and decrease in sensitivity to NO mediated vasodilatation. Vascular tone is regulated by the activation of smooth muscle and nonmuscle (NM) myosin, which are regulated by the activities of myosin light chain kinase (MLCK) and MLC phosphatase. MLC phosphatase is a trimeric enzyme with a catalytic subunit, myosin targeting subunit (MYPT1) and 20 kDa subunit of unknown function. Alternative mRNA splicing produces LZ+/LZ- MYPT1 isoforms and the relative expression of LZ+/LZ- MYPT1 determines the sensitivity to NO mediated vasodilatation. This study tested the hypothesis that aging is associated with changes in LZ+ MYPT1 and NM myosin expression, which alter vascular reactivity. Methods: We determined MYPT1 and NM myosin expression, force and the sensitivity of both endothelial dependent and endothelial independent relaxation in tertiary mesenteric arteries of young (6mo) and elderly (24mo) Fischer344 rats. Results: The data demonstrate that aging is associated with a decrease in both the expression of NM myosin and force, but LZ+ MYPT expression and the sensitivity to both endothelial dependent and independent vasodilatation did not change. Further, smooth muscle cell hypertrophy increases the thickness of the medial layer of smooth muscle with aging. Discussion: The reduction of NM myosin may represent an aging associated compensatory mechanism to normalize the stiffness of resistance vessels in response to the increase in media thickness observed during aging.
Collapse
Affiliation(s)
- Young Soo Han
- Departments of Physiology and Biomedical Engineering and Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
| | - Rishiraj Bandi
- Departments of Physiology and Biomedical Engineering and Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
| | - Matthew J Fogarty
- Departments of Physiology and Biomedical Engineering and Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
| | - Gary C Sieck
- Departments of Physiology and Biomedical Engineering and Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
| | - Frank V Brozovich
- Departments of Physiology and Biomedical Engineering and Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
6
|
Krzesiak A, Enea C, Faivre JF, Bescond J, Vanderbrouck C, Cognard C, Sebille S, Bosquet L, Delpech N. Combined cardiovascular effects of ovariectomy and high-intensity interval training in female spontaneously hypertensive rats. J Appl Physiol (1985) 2024; 136:1195-1208. [PMID: 38572539 DOI: 10.1152/japplphysiol.00518.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
Hypertensive postmenopausal women are more likely to develop adverse cardiac remodeling and respond less effectively to drug treatment than men. High-intensity interval exercise (HIIE) is a nonpharmacological strategy for the treatment of hypertension; however, the effectiveness in women remains uncertain. This study was designed to evaluate 1) the effects of HIIE training upon morphological and functional markers of cardiovascular health in female SHR and 2) to determine whether the hormonal shift induced by ovariectomy could influence cardiovascular responses to HIIE. Thirty-six SHR were randomly assigned to four groups: ovariectomized sedentary, ovariectomized trained, sham-operated sedentary, and sham-operated trained. The trained rats performed HIIE 5 days/wk for 8 wk. Blood pressure and echocardiographic measurements were performed before and after training in animals. Cardiac response to β-adrenergic stimulation and the expression of calcium regulatory proteins and estrogen receptors in heart samples were assessed. Endothelium-dependent vasorelaxation in response to acetylcholine was evaluated in aortic rings as well as the expression of nitric oxide synthase isoforms (eNOS and P-eNOS) by Western blotting. In both groups of trained SHR, HIIE induced eccentric cardiac remodeling with greater inotropic and chronotropic effects, as well as an increase in SERCA and β1AR expression. However, although the trained rats showed improved endothelial function and expression of eNOS and P-eNOS in the aorta, there was no demonstrated effect on blood pressure. In addition, the responses to HIIE training were not affected by ovariectomy. This work highlights the importance of assessing the cardiovascular efficacy and safety of different exercise modalities in women.NEW & NOTEWORTHY This study reports the effects of high-intensity interval exercise (HIIE) training on cardiac and endothelial function in female hypertensive rats. Despite a lack of effect on blood pressure (BP), HIIE training induces eccentric cardiac remodeling with greater functionals effects. Furthermore, training has beneficial effects on endothelial function. However, ovarian hormones do not seem to modulate cardiac and aortic adaptations to this training modality. All this underlines the need to consider training modalities on the cardiovascular system in women.
Collapse
Affiliation(s)
- Amandine Krzesiak
- Laboratoire MOVE (UR 20296), Faculty of Sport Sciences, University of Poitiers, Poitiers, France
- Laboratoire PRéTI (UR 24184), University of Poitiers, Poitiers, France
| | - Carina Enea
- Laboratoire MOVE (UR 20296), Faculty of Sport Sciences, University of Poitiers, Poitiers, France
| | | | - Jocelyn Bescond
- Laboratoire PRéTI (UR 24184), University of Poitiers, Poitiers, France
| | | | - Christian Cognard
- Laboratoire PRéTI (UR 24184), University of Poitiers, Poitiers, France
| | - Stéphane Sebille
- Laboratoire PRéTI (UR 24184), University of Poitiers, Poitiers, France
| | - Laurent Bosquet
- Laboratoire MOVE (UR 20296), Faculty of Sport Sciences, University of Poitiers, Poitiers, France
| | - Nathalie Delpech
- Laboratoire MOVE (UR 20296), Faculty of Sport Sciences, University of Poitiers, Poitiers, France
| |
Collapse
|
7
|
Hastings MH, Castro C, Freeman R, Abdul Kadir A, Lerchenmüller C, Li H, Rhee J, Roh JD, Roh K, Singh AP, Wu C, Xia P, Zhou Q, Xiao J, Rosenzweig A. Intrinsic and Extrinsic Contributors to the Cardiac Benefits of Exercise. JACC Basic Transl Sci 2024; 9:535-552. [PMID: 38680954 PMCID: PMC11055208 DOI: 10.1016/j.jacbts.2023.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 05/01/2024]
Abstract
Among its many cardiovascular benefits, exercise training improves heart function and protects the heart against age-related decline, pathological stress, and injury. Here, we focus on cardiac benefits with an emphasis on more recent updates to our understanding. While the cardiomyocyte continues to play a central role as both a target and effector of exercise's benefits, there is a growing recognition of the important roles of other, noncardiomyocyte lineages and pathways, including some that lie outside the heart itself. We review what is known about mediators of exercise's benefits-both those intrinsic to the heart (at the level of cardiomyocytes, fibroblasts, or vascular cells) and those that are systemic (including metabolism, inflammation, the microbiome, and aging)-highlighting what is known about the molecular mechanisms responsible.
Collapse
Affiliation(s)
- Margaret H. Hastings
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Claire Castro
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca Freeman
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Azrul Abdul Kadir
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carolin Lerchenmüller
- Department of Cardiology, University Hospital Heidelberg, German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Haobo Li
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James Rhee
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason D. Roh
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kangsan Roh
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anand P. Singh
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Chao Wu
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Peng Xia
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Qiulian Zhou
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Anthony Rosenzweig
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Wang L, Tu W, Li X, Li C, Lu J, Dai P, Chen Y, Gu M, Li M, Jiang S, Yang G, Li S. Exercise improves cardiac function and attenuates myocardial inflammation and apoptosis by regulating APJ/STAT3 in mice with stroke. Life Sci 2023; 332:122041. [PMID: 37657526 DOI: 10.1016/j.lfs.2023.122041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/05/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Stroke can induce cardiac dysfunction without a primary cardiac disease. Exercise can promote the overall rehabilitation of stroke patients and be beneficial for all kinds of heart diseases. However, the mechanisms underlying the protective effects of exercise in stroke-induced cardiac dysfunction are poorly understood. Hence, we aimed to distinguish the different effects of acute and long-term exercise and further study the mechanism of protection against cardiomyopathy caused by stroke. Mice underwent a single acute session or long-term exercise for 30 days, followed by middle cerebral artery occlusion surgery. The expression of apoptosis-related proteins and proinflammatory factors in the heart was evaluated. Then, overexpression of apelin peptide jejunum (APJ) transfected adeno-associated virus type 9 (AAV9) and inhibition of signal transducer and activator of transcription 3 (STAT3) by Stattic were used in stroke mice or hypoxic cardiomyocytes. ML221 were used to inhibit APJ activity in exercise mouse. Thereafter, changes in apoptotic and proinflammatory factors were evaluated. The results demonstrated that chronic exercise prevented myocardial inflammation, apoptosis and cardiac dysfunction after stroke. However, acute exercise did not have similar effects. Exercise maintained the levels of APJ expression and decreased phosphorylated-STAT3 (p-STAT3) activation to protect cardiomyocytes. Moreover, APJ overexpression promoted cardiomyocyte survival and reduced p-STAT3 levels. STAT3 inhibition also reduced apoptosis and proinflammatory factors in mice hearts. Conversely, the protective effect of exercise was eliminated by APJ inhibition. This study showed that exercise can maintain APJ expression and inhibit p-STAT3, thus, conferring protection against myocardial inflammation and apoptosis induced by stroke.
Collapse
Affiliation(s)
- Li Wang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Wenzhan Tu
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xuqing Li
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Caiyan Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Junhong Lu
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Peng Dai
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yuewei Chen
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Meilin Gu
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Ming Li
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; The Wenzhou Key Laboratory for Rehabilitation Research, The Provincial Key Laboratory for Acupuncture and Rehabilitation in Zhejiang Province, Wenzhou 325027, Zhejiang, China
| | - Songhe Jiang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; The Wenzhou Key Laboratory for Rehabilitation Research, The Provincial Key Laboratory for Acupuncture and Rehabilitation in Zhejiang Province, Wenzhou 325027, Zhejiang, China
| | - Guanhu Yang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; The Wenzhou Key Laboratory for Rehabilitation Research, The Provincial Key Laboratory for Acupuncture and Rehabilitation in Zhejiang Province, Wenzhou 325027, Zhejiang, China; Department of Specialty Medicine, Ohio University, Athens, OH 45701, United States
| | - Shengcun Li
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; The Wenzhou Key Laboratory for Rehabilitation Research, The Provincial Key Laboratory for Acupuncture and Rehabilitation in Zhejiang Province, Wenzhou 325027, Zhejiang, China.
| |
Collapse
|
9
|
Trillaud E, Klemmer P, Malin SK, Erdbrügger U. Tracking Biomarker Responses to Exercise in Hypertension. Curr Hypertens Rep 2023; 25:299-311. [PMID: 37428393 PMCID: PMC10505098 DOI: 10.1007/s11906-023-01252-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE OF REVIEW Strong evidence is evolving that physical exercise prevents hypertension and reduces blood pressure in patients with pre- and manifest HTN. Yet, identifying and confirming the effectiveness of exercise are challenging. Herein, we discuss conventional and novel biomarkers such as extracellular vesicles (EVs) which may track responses to HTN before and after exercise. RECENT FINDINGS Evolving data shows that improved aerobic fitness and vascular function as well as lowered oxidative stress, inflammation, and gluco-lipid toxicity are leading biomarkers considered to promote HTN, but they explain only about a half of the pathophysiology. Novel biomarkers such as EVs or microRNA are providing additional input to understand the complex mechanisms involved in exercise therapy for HTN patients. Conventional and novel biomarkers are needed to fully understand the integrative "cross-talk" between tissues to regulate vasculature physiology for blood pressure control. These biomarker studies will lead to more specific disease markers and the development of even more personalized therapy in this field. However, more systematic approaches and randomized controlled trials in larger cohorts are needed to assess exercise effectiveness across the day and with different exercise types.
Collapse
Affiliation(s)
- Eric Trillaud
- Department of Medicine, Division of Nephrology, University of Virginia Health System, Charlottesville, VA, USA.
- Footwear R&D, On AG, Zurich, 8005, Switzerland.
| | - Philip Klemmer
- Department of Medicine, Division of Nephrology, University of North Carolina, Chapel Hill, NC, USA
| | - Steven K Malin
- Department of Kinesiology & Health, Rutgers University, New Brunswick, NJ, USA
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, New Brunswick, NJ, USA
- The New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
- Institute of Translational Medicine and Science, Rutgers University, New Brunswick, NJ, USA
| | - Uta Erdbrügger
- Department of Medicine, Division of Nephrology, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
10
|
Zhang M, Alemasi A, Zhao M, Xu W, Zhang Y, Gao W, Yu H, Xiao H. Exercise Training Attenuates Acute β-Adrenergic Receptor Activation-Induced Cardiac Inflammation via the Activation of AMP-Activated Protein Kinase. Int J Mol Sci 2023; 24:ijms24119263. [PMID: 37298222 DOI: 10.3390/ijms24119263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Exercise has proven cardiac benefits, but the underlying mechanisms of exercise that protect the heart from acute sympathetic stress injuries remain unknown. In this study, adult C57BL/6J mice and their AMP-activated protein kinase α2 knockout (AMPKα2-/-) littermates were either subjected to 6 weeks of exercise training or housed under sedentary conditions and then treated with or without a single subcutaneous injection of the β-adrenergic receptor (β-AR) agonist isoprenaline (ISO). We investigated the differences in the protective effects of exercise training on ISO-induced cardiac inflammation in wild-type (WT) and AMPKα2-/- mice using histology, enzyme-linked immunosorbent assay (ELISA) and Western blotting analyses. The results indicated that exercise training alleviated ISO-induced cardiac macrophage infiltration, chemokines and the expression of proinflammatory cytokines in wild-type mice. A mechanism study showed that exercise training attenuated the ISO-induced production of reactive oxygen species (ROS) and the activation of NLR Family, pyrin domain-containing 3 (NLRP3) inflammasomes. In cardiomyocytes, the ISO-induced effects on these processes were inhibited by AMP-activated protein kinase (AMPK) activator (metformin) pretreatment and reversed by the AMPK inhibitor (compound C). AMPKα2-/- mice showed more extensive cardiac inflammation following ISO exposure than their wild-type littermates. These results indicated that exercise training could attenuate ISO-induced cardiac inflammation by inhibiting the ROS-NLRP3 inflammasome pathway in an AMPK-dependent manner. Our findings suggested the identification of a novel mechanism for the cardioprotective effects of exercise.
Collapse
Affiliation(s)
- Mi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Akehu Alemasi
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Mingming Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Wenli Xu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Youyi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Wei Gao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Haiyi Yu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing 100191, China
| |
Collapse
|
11
|
Exercise and Cardiac Fibrosis. CURRENT OPINION IN PHYSIOLOGY 2023. [DOI: 10.1016/j.cophys.2022.100630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Trager LE, Lyons M, Kuznetsov A, Sheffield C, Roh K, Freeman R, Rhee J, Guseh JS, Li H, Rosenzweig A. Beyond cardiomyocytes: Cellular diversity in the heart's response to exercise. JOURNAL OF SPORT AND HEALTH SCIENCE 2022:S2095-2546(22)00125-9. [PMID: 36549585 PMCID: PMC10362490 DOI: 10.1016/j.jshs.2022.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Cardiomyocytes comprise ∼70% to 85% of the total volume of the adult mammalian heart but only about 25% to 35% of its total number of cells. Advances in single cell and single nuclei RNA sequencing have greatly facilitated investigation into and increased appreciation of the potential functions of non-cardiomyocytes in the heart. While much of this work has focused on the relationship between non-cardiomyocytes, disease, and the heart's response to pathological stress, it will also be important to understand the roles that these cells play in the healthy heart, cardiac homeostasis, and the response to physiological stress such as exercise. The present review summarizes recent research highlighting dynamic changes in non-cardiomyocytes in response to the physiological stress of exercise. Of particular interest are changes in fibrotic pathways, the cardiac vasculature, and immune or inflammatory cells. In many instances, limited data are available about how specific lineages change in response to exercise or whether the changes observed are functionally important, underscoring the need for further research.
Collapse
Affiliation(s)
- Lena E Trager
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; University of Minnesota Medical School, Minneapolis, MI 55455, USA
| | - Margaret Lyons
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alexandra Kuznetsov
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Cedric Sheffield
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kangsan Roh
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rebecca Freeman
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - James Rhee
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - J Sawalla Guseh
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Haobo Li
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Anthony Rosenzweig
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
13
|
Heart Failure in Menopause: Treatment and New Approaches. Int J Mol Sci 2022; 23:ijms232315140. [PMID: 36499467 PMCID: PMC9735523 DOI: 10.3390/ijms232315140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Aging is an important risk factor for the development of heart failure (HF) and half of patients with HF have preserved ejection fraction (HFpEF) which is more common in elderly women. In general, sex differences that lead to discrepancies in risk factors and to the development of cardiovascular disease (CVD) have been attributed to the reduced level of circulating estrogen during menopause. Estrogen receptors adaptively modulate fibrotic, apoptotic, inflammatory processes and calcium homeostasis, factors that are directly involved in the HFpEF. Therefore, during menopause, estrogen depletion reduces the cardioprotection. Preclinical menopause models demonstrated that several signaling pathways and organ systems are closely involved in the development of HFpEF, including dysregulation of the renin-angiotensin system (RAS), chronic inflammatory process and alteration in the sympathetic nervous system. Thus, this review explores thealterations observed in the condition of HFpEF induced by menopause and the therapeutic targets with potential to interfere with the disease progress.
Collapse
|
14
|
Ho JH, Baskaran R, Wang MF, Mohammedsaleh ZM, Yang HS, Balasubramanian B, Lin WT. Dipeptide IF and Exercise Training Attenuate Hypertension in SHR Rats by Inhibiting Fibrosis and Hypertrophy and Activating AMPKα1, SIRT1, and PGC1α. Int J Mol Sci 2022; 23:ijms23158167. [PMID: 35897743 PMCID: PMC9330102 DOI: 10.3390/ijms23158167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 01/27/2023] Open
Abstract
Bioactive peptides are physiologically active peptides produced from proteins by gastrointestinal digestion, fermentation, or hydrolysis by proteolytic enzymes. Bioactive peptides are resorbed in their whole form and have a preventive effect against various disease conditions, including hypertension, dyslipidemia, inflammation, and oxidative stress. In recent years, there has been a growing body of evidence showing that physiologically active peptides may have a function in sports nutrition. The present study aimed to evaluate the synergistic effect of dipeptide (IF) from alcalase potato protein hydrolysates and exercise training in hypertensive (SHR) rats. Animals were divided into five groups. Bioactive peptide IF and swimming exercise training normalized the blood pressure and decreased the heart weight. Cardiac, hepatic, and renal functional markers also normalized in SHR rats. The combined administration of IF peptide and exercise offer better protection in SHR rats by downregulating proteins associated with myocardial fibrosis, hypertrophy, and inflammation. Remarkably, peptide treatment alongside exercise activates the PI3K/AKT cell survival pathway in the myocardial tissue of SHR animals. Further, the mitochondrial biogenesis pathway (AMPKα1, SIRT1, and PGC1α) was synergistically activated by the combinatorial treatment of IF and exercise. Exercise training along with IF administration could be a possible approach to alleviating hypertension.
Collapse
Affiliation(s)
- Jou-Hsuan Ho
- Department of Food Science, Tunghai University, Taichung 407224, Taiwan; (J.-H.H.); (H.-S.Y.)
| | - Rathinasamy Baskaran
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413305, Taiwan;
| | - Ming-Fu Wang
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan;
| | - Zuhair M. Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Hong-Siang Yang
- Department of Food Science, Tunghai University, Taichung 407224, Taiwan; (J.-H.H.); (H.-S.Y.)
| | | | - Wan-Teng Lin
- Department of Hospitality Management, College of Agriculture, Tunghai University, Taichung 407224, Taiwan
- Correspondence: ; Tel.: +886-4-2359-0121 (ext. 37709)
| |
Collapse
|
15
|
Hastings MH, Herrera JJ, Guseh JS, Atlason B, Houstis NE, Abdul Kadir A, Li H, Sheffield C, Singh AP, Roh JD, Day SM, Rosenzweig A. Animal Models of Exercise From Rodents to Pythons. Circ Res 2022; 130:1994-2014. [PMID: 35679366 PMCID: PMC9202075 DOI: 10.1161/circresaha.122.320247] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acute and chronic animal models of exercise are commonly used in research. Acute exercise testing is used, often in combination with genetic, pharmacological, or other manipulations, to study the impact of these manipulations on the cardiovascular response to exercise and to detect impairments or improvements in cardiovascular function that may not be evident at rest. Chronic exercise conditioning models are used to study the cardiac phenotypic response to regular exercise training and as a platform for discovery of novel pathways mediating cardiovascular benefits conferred by exercise conditioning that could be exploited therapeutically. The cardiovascular benefits of exercise are well established, and, frequently, molecular manipulations that mimic the pathway changes induced by exercise recapitulate at least some of its benefits. This review discusses approaches for assessing cardiovascular function during an acute exercise challenge in rodents, as well as practical and conceptual considerations in the use of common rodent exercise conditioning models. The case for studying feeding in the Burmese python as a model for exercise-like physiological adaptation is also explored.
Collapse
Affiliation(s)
- Margaret H Hastings
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Jonathan J Herrera
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor (J.J.H.)
| | - J Sawalla Guseh
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Bjarni Atlason
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Nicholas E Houstis
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Azrul Abdul Kadir
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Haobo Li
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Cedric Sheffield
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Anand P Singh
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Jason D Roh
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Sharlene M Day
- Cardiovascular Medicine, Perelman School of Medicine' University of Pennsylvania, Philadelphia (S.M.D.)
| | - Anthony Rosenzweig
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| |
Collapse
|
16
|
Wu XB, Lai CH, Ho YJ, Kuo CH, Lai PF, Tasi CY, Jin G, Wei M, Asokan Shibu M, Huang CY, Lee SD. Anti-apoptotic effects of diosgenin on ovariectomized hearts. Steroids 2022; 179:108980. [PMID: 35157911 DOI: 10.1016/j.steroids.2022.108980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/19/2022] [Accepted: 02/03/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND The anti-apoptotic effects of diosgenin, a steroid saponin, on hearts in female with estrogen deficiency have been less studied. This study aimed to evaluate the anti-apoptotic effects of diosgenin on cardiac widely dispersed apoptosis in a bilateral ovariectomized animal model. METHODS A total of 60 female Wistar rats, aged 6-7 months, were divided into the sham-operated group (Sham), bilateral ovariectomized rats for 2 months, and ovariectomized rats administered with 0, 10, 50, or 100 mg/kg diosgenin daily (OVX, OVX 10, OVX 50, and OVX 100, respectively) in the second month. The excised hearts were analyzed by H&E staining, TUNEL(+) assays and Western Blot. RESULT Cardiac TUNEL(+) apoptotic cells, the levels of Fas ligand, Fas death receptors, Fas-associated death domain, active caspase-8, and active caspase-3 (FasL/Fas-mediated pathways) as well as the levels of Bax, Bad, Bax/Bcl2, Bad/p-Bad, cytosolic Cytochrome c, active caspase-9, and active caspase-3 (mitochondria-initiated pathway) were increased in OVX compared with Sham group but those were decreased in OVX 50 compared with OVX. CONCLUSION Diosgenin appeared to prevent or suppress ovariectomy-induced cardiac FasL/Fas-mediated and mitochondria-initiated apoptosis. These findings might provide one of the possible therapeutic approaches of diosgenin for potentially preventing cardiac apoptosis in women after bilateral ovariectomy or women with estrogen deficiency.
Collapse
Affiliation(s)
- Xu-Bo Wu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Departmental of Rehabilitation, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Chin-Hu Lai
- Division of Cardiovascular Surgery, Department of Surgery, Taichung Armed Force General Hospital, Taichung, Taiwan; National Defense Medical Center, Taipei, Taiwan.
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University, Taichung, Taiwan.
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan.
| | - Pei-Fang Lai
- Emergency Department, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan.
| | - Ching-Yi Tasi
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan.
| | - Guohua Jin
- Departmental of Rehabilitation, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Minqian Wei
- Departmental of Rehabilitation, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | | | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Department of Biological Science and Technology, Asia University, Taichung, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| | - Shin-Da Lee
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Departmental of Rehabilitation, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan; Department of Physical Therapy, Asia University, Taichung; School of Rehabilitation Medicine, Weifang Medical University, Shandong, China.
| |
Collapse
|
17
|
Xia WJ, Xu ML, Yu XJ, Du MM, Li XH, Yang T, Li L, Li Y, Kang KB, Su Q, Xu JX, Shi XL, Wang XM, Li HB, Kang YM. Antihypertensive effects of exercise involve reshaping of gut microbiota and improvement of gut-brain axis in spontaneously hypertensive rat. Gut Microbes 2022; 13:1-24. [PMID: 33382364 PMCID: PMC7781639 DOI: 10.1080/19490976.2020.1854642] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Exercise (Ex) has long been recognized to produce beneficial effects on hypertension (HTN). This coupled with evidence of gut dysbiosis and an impaired gut-brain axis led us to hypothesize that reshaping of gut microbiota and improvement in impaired gut-brain axis would, in part, be associated with beneficial influence of exercise. Male spontaneously hypertensive rats (SHR) and Wistar Kyoto (WKY) rats were randomized into sedentary, trained, and detrained groups. Trained rats underwent moderate-intensity exercise for 12 weeks, whereas, detrained groups underwent 8 weeks of moderate-intensity exercise followed by 4 weeks of detraining. Fecal microbiota, gut pathology, intestinal inflammation, and permeability, brain microglia and neuroinflammation were analyzed. We observed that exercise training resulted in a persistent decrease in systolic blood pressure in the SHR. This was associated with increase in microbial α diversity, altered β diversity, and enrichment of beneficial bacterial genera. Furthermore, decrease in the number of activated microglia, neuroinflammation in the hypothalamic paraventricular nucleus, improved gut pathology, inflammation, and permeability were also observed in the SHR following exercise. Interestingly, short-term detraining did not abolish these exercise-mediated improvements. Finally, fecal microbiota transplantation from exercised SHR into sedentary SHR resulted in attenuated SBP and an improved gut-brain axis. These observations support our concept that an impaired gut-brain axis is linked to HTN and exercise ameliorates this impairment to induce antihypertensive effects.
Collapse
Affiliation(s)
- Wen-Jie Xia
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’anChina,CONTACT Hong-Bao Li, Xi’an 710061, China
| | - Meng-Lu Xu
- Department of Nephrology, The First Affiliated Hospital of Xi’an Medical University, Xi’anChina,CONTACT Hong-Bao Li, Xi’an 710061, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’anChina,CONTACT Hong-Bao Li, Xi’an 710061, China
| | - Meng-Meng Du
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’anChina
| | - Xu-Hui Li
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi’an Jiaotong University, Xi’anChina
| | - Tao Yang
- Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OHUSA
| | - Lu Li
- Department of Nephrology, The First Affiliated Hospital of Xi’an Medical University, Xi’anChina
| | - Ying Li
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’anChina
| | - Kai B. Kang
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Qing Su
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’anChina
| | - Jia-Xi Xu
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’anChina
| | - Xiao-Lian Shi
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’anChina
| | - Xiao-Min Wang
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’anChina
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’anChina,CONTACT Hong-Bao Li, Xi’an 710061, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi’anChina,CONTACT Hong-Bao Li, Xi’an 710061, China
| |
Collapse
|
18
|
Pettersson H, Alexanderson H, Poole JL, Varga J, Regardt M, Russell AM, Salam Y, Jensen K, Mansour J, Frech T, Feghali-Bostwick C, Varjú C, Baldwin N, Heenan M, Fligelstone K, Holmner M, Lammi MR, Scholand MB, Shapiro L, Volkmann ER, Saketkoo LA. Exercise as a multi-modal disease-modifying medicine in systemic sclerosis: An introduction by The Global Fellowship on Rehabilitation and Exercise in Systemic Sclerosis (G-FoRSS). Best Pract Res Clin Rheumatol 2021; 35:101695. [PMID: 34217607 PMCID: PMC8478716 DOI: 10.1016/j.berh.2021.101695] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Systemic sclerosis (SSc) is a heterogeneous multisystem autoimmune disease whereby its main pathological drivers of disability and damage are vascular injury, inflammatory cell infiltration, and fibrosis. These mechanisms result in diffuse and diverse impairments arising from ischemic circulatory dysfunction leading to painful skin ulceration and calcinosis, neurovascular aberrations hindering gastrointestinal (GI) motility, progressive painful, incapacitating or immobilizing effects of inflammatory and fibrotic effects on the lungs, skin, articular and periarticular structures, and muscle. SSc-related impairments impede routine activities of daily living (ADLs) and disrupt three critical life areas: work, family, social/leisure, and also impact on psychological well-being. Physical activity and exercise are globally recommended; however, for connective tissue diseases, this guidance carries greater impact on inflammatory disease manifestations, recovery, and cardiovascular health. Exercise, through myogenic and vascular phenomena, naturally targets key pathogenic drivers by downregulating multiple inflammatory and fibrotic pathways in serum and tissue, while increasing circulation and vascular repair. G-FoRSS, The Global Fellowship on Rehabilitation and Exercise in Systemic Sclerosis recognizes the scientific basis of and advocates for education and research of exercise as a systemic and targeted SSc disease-modifying treatment. An overview of biophysiological mechanisms of physical activity and exercise are herein imparted for patients, clinicians, and researchers, and applied to SSc disease mechanisms, manifestations, and impairment. A preliminary guidance on exercise in SSc, a research agenda, and the current state of research and outcome measures are set forth.
Collapse
Affiliation(s)
- Henrik Pettersson
- Women's Health and Allied Health Professionals, Medical Unit Occupational Therapy and Physiotherapy, Karolinska University Hospital, Stockholm, Sweden; Division of Rheumatology, Department of Medicin, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Helene Alexanderson
- Women's Health and Allied Health Professionals, Medical Unit Occupational Therapy and Physiotherapy, Karolinska University Hospital, Stockholm, Sweden; Division of Rheumatology, Department of Medicin, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Janet L Poole
- Occupational Therapy Graduate Program, University of New Mexico, Albuquerque, NM, USA
| | - Janos Varga
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Malin Regardt
- Women's Health and Allied Health Professionals, Medical Unit Occupational Therapy and Physiotherapy, Karolinska University Hospital, Stockholm, Sweden; Department of Occupational Therapy, Karolinska Institutet, Stockholm, Sweden
| | - Anne-Marie Russell
- University of Exeter, College of Medicine and Health, Exeter, UK; National Institute of Health Research, Senior Nurse Research Leader, London, UK
| | - Yasser Salam
- Department of Physical Therapy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Kelly Jensen
- Oregon Health and Science University, Portland, OR, USA; New Orleans Scleroderma and Sarcoidosis Patient Care and Research Center, New Orleans, USA; Tulane University School of Medicine, New Orleans, USA
| | - Jennifer Mansour
- New Orleans Scleroderma and Sarcoidosis Patient Care and Research Center, New Orleans, USA; Tulane University School of Medicine, New Orleans, USA
| | - Tracy Frech
- Vanderbilt University, Division of Rheumatology, Nashville, TN, USA
| | | | - Cecília Varjú
- Department of Rheumatology and Immunology, University of Pécs Clinical Center, Pecs, Hungary
| | | | - Matty Heenan
- Scleroderma Foundation/Pulmonary Hypertension Association, Tucson, AZ, USA
| | - Kim Fligelstone
- Scleroderma & Raynaud Society UK (SRUK), London, UK; Royal Free Hospital, London, UK
| | - Monica Holmner
- The Swedish Rheumatism Association National Association for Systemic Sclerosis, Sweden
| | - Matthew R Lammi
- New Orleans Scleroderma and Sarcoidosis Patient Care and Research Center, New Orleans, USA; University Medical Center - Comprehensive Pulmonary Hypertension Center and Interstitial Lung Disease Clinic Programs, New Orleans, USA; Louisiana State University School of Medicine, Section of Pulmonary Medicine, New Orleans, USA
| | - Mary Beth Scholand
- University of Utah, Division of Pulmonary Medicine, Pulmonary Fibrosis Center, Salt Lake City, UT, USA
| | - Lee Shapiro
- Division of Rheumatology, Albany Medical Center, Albany, NY, USA; Steffens Scleroderma Foundation, Albany, NY, USA
| | - Elizabeth R Volkmann
- University of California, David Geffen School of Medicine, UCLA Scleroderma Program and UCLA CTD-ILD Program, Division of Rheumatology, Department of Medicine, Los Angeles, CA, USA
| | - Lesley Ann Saketkoo
- New Orleans Scleroderma and Sarcoidosis Patient Care and Research Center, New Orleans, USA; Tulane University School of Medicine, New Orleans, USA; University Medical Center - Comprehensive Pulmonary Hypertension Center and Interstitial Lung Disease Clinic Programs, New Orleans, USA; Louisiana State University School of Medicine, Section of Pulmonary Medicine, New Orleans, USA.
| |
Collapse
|
19
|
Jaconiano E, Moreira-Gonçalves D. Unveiling the role of exercise training in targeting the inflammatory paradigm of heart failure with preserved ejection fraction: a narrative review. Heart Fail Rev 2021; 27:163-190. [PMID: 34244870 DOI: 10.1007/s10741-021-10138-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 12/30/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is currently lacking an effective pharmacological treatment with impact on major outcomes such as hospitalization and mortality. Exercise training (EXT) is recognized as an important nonpharmacological tool, capable of improving exercise capacity and quality of life, and has even been associated with a reduction in hospitalization and cardiovascular mortality risk. However, this positive impact largely lacks a physiological explanation. The aim of this narrative review was to provide an overview of the available data supporting the hypothesis that the beneficial role of EXT in HFpEF might be due to its effects on targeting the inflammatory paradigm described for this disease. A comprehensive literature search was conducted using the PubMed-NCBI database. We reviewed the effects of EXT throughout each step of the pathophysiological pathway leading to HFpEF and found clinical and/or preclinical evidence supporting the reduction of systemic inflammation, endothelial dysfunction, microvascular rarefaction, and myocardial stiffness. We also highlighted some gaps in the knowledge or topics that deserve further clarification in future studies. In conclusion, despite the scarcity of clinical studies in this population, there is compelling evidence suggesting that EXT modulates crucial aspects of the inflammatory pathway described for HFpEF and future investigation on cellular and molecular mechanisms are encouraged.
Collapse
Affiliation(s)
- Eliane Jaconiano
- Cardiovascular R&D Center (UnIC) and Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Daniel Moreira-Gonçalves
- Centre of Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
20
|
Saketkoo LA, Russell AM, Jensen K, Mandizha J, Tavee J, Newton J, Rivera F, Howie M, Reese R, Goodman M, Hart P, Strookappe B, De Vries J, Rosenbach M, Scholand MB, Lammi MR, Elfferich M, Lower E, Baughman RP, Sweiss N, Judson MA, Drent M. Health-Related Quality of Life (HRQoL) in Sarcoidosis: Diagnosis, Management, and Health Outcomes. Diagnostics (Basel) 2021; 11:1089. [PMID: 34203584 PMCID: PMC8232334 DOI: 10.3390/diagnostics11061089] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Health-related quality of life (HRQoL), though rarely considered as a primary endpoint in clinical trials, may be the single outcome reflective of patient priorities when living with a health condition. HRQoL is a multi-dimensional concept that reflects the degree to which a health condition interferes with participation in and fulfillment of important life areas. HRQoL is intended to capture the composite degree of physical, physiologic, psychological, and social impairment resulting from symptom burden, patient-perceived disease severity, and treatment side effects. Diminished HRQoL expectedly correlates to worsening disability and death; but interventions addressing HRQoL are linked to increased survival. Sarcoidosis, being a multi-organ system disease, is associated with a diffuse array of manifestations resulting in multiple symptoms, complications, and medication-related side effects that are linked to reduced HRQoL. Diminished HRQoL in sarcoidosis is related to decreased physical function, pain, significant loss of income, absence from work, and strain on personal relationships. Symptom distress can result clearly from a sarcoidosis manifestation (e.g., ocular pain, breathlessness, cough) but may also be non-specific, such as pain or fatigue. More complex, a single non-specific symptom, e.g., fatigue may be directly sarcoidosis-derived (e.g., inflammatory state, neurologic, hormonal, cardiopulmonary), medication-related (e.g., anemia, sleeplessness, weight gain, sub-clinical infection), or an indirect complication (e.g., sleep apnea, physical deconditioning, depression). Identifying and distinguishing underlying causes of impaired HRQoL provides opportunity for treatment strategies that can greatly impact a patient's function, well-being, and disease outcomes. Herein, we present a reference manual that describes the current state of knowledge in sarcoidosis-related HRQoL and distinguish between diverse causes of symptom distress and other influences on sarcoidosis-related HRQoL. We provide tools to assess, investigate, and diagnose compromised HRQoL and its influencers. Strategies to address modifiable HRQoL factors through palliation of symptoms and methods to improve the sarcoidosis health profile are outlined; as well as a proposed research agenda in sarcoidosis-related HRQoL.
Collapse
Affiliation(s)
- Lesley Ann Saketkoo
- New Orleans Scleroderma and Sarcoidosis Patient Care and Research Center, New Orleans, LA 70112, USA; (K.J.); (M.R.L.)
- Comprehensive Pulmonary Hypertension Center and Interstitial Lung Disease Clinic Programs, University Medical Center, New Orleans, LA 70112, USA
- Section of Pulmonary Medicine, Louisiana State University School of Medicine, New Orleans, LA 70112, USA
- Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Anne-Marie Russell
- College of Medicine and Health, University of Exeter, Devon EX1 2LU, UK
- Imperial College Healthcare NHS Foundation Trust, London W2 1NY, UK
| | - Kelly Jensen
- New Orleans Scleroderma and Sarcoidosis Patient Care and Research Center, New Orleans, LA 70112, USA; (K.J.); (M.R.L.)
- Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Department of Internal Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jessica Mandizha
- Respiratory Medicine, Royal Devon and Exeter Hospital NHS Foundation Trust, Exeter EX2 5DW, UK;
| | - Jinny Tavee
- Department of Neurology, National Jewish Health, Denver, CO 80206, USA;
| | - Jacqui Newton
- Sarcoidosis UK, China Works, Black Prince Road, London SE1 7SJ, UK; (J.N.); (M.H.)
| | - Frank Rivera
- Foundation for Sarcoidosis Research, Chicago, IL 60614, USA; (F.R.); (R.R.)
- National Sarcoidosis Support Group, Stronger than Sarcoidosis, New York, NY 11727, USA
| | - Mike Howie
- Sarcoidosis UK, China Works, Black Prince Road, London SE1 7SJ, UK; (J.N.); (M.H.)
- CGI UK, Space Defense & Intelligence (Cyber Security Operations), London EC3M 3BY, UK
| | - Rodney Reese
- Foundation for Sarcoidosis Research, Chicago, IL 60614, USA; (F.R.); (R.R.)
- National Sarcoidosis Support Group, Stronger than Sarcoidosis, New York, NY 11727, USA
- Sarcoidosis Awareness Foundation of Louisiana, Baton Rouge, LA 70812, USA
| | - Melanie Goodman
- New Orleans Sarcoidosis Support Group, New Orleans, LA 70112, USA;
| | - Patricia Hart
- iHart Wellness Holistic Approach to Sarcoidosis Certified Health & Wellness Coach, International Association of Professionals, New York, NY 11727, USA;
| | - Bert Strookappe
- Department of Physiotherapy, Gelderse Vallei Hospital, 10, 6716 RP Ede, The Netherlands; (B.S.); (M.E.)
- ildcare Foundation Research Team, 6711 NR Ede, The Netherlands; (M.D.)
| | - Jolanda De Vries
- Admiraal de Ruyter Hospital (Adrz), 114, 4462 RA Goes, The Netherlands;
- Department of Medical and Clinical Psychology, Tilburg University, 5037 AB Tilburg, The Netherlands
| | - Misha Rosenbach
- Cutaneous Sarcoidosis Clinic, Department of Dermatology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Mary Beth Scholand
- Division of Pulmonary Medicine, Interstitial Lung Disease Center, University of Utah, Salt Lake City, UT 84132, USA;
| | - Mathew R. Lammi
- New Orleans Scleroderma and Sarcoidosis Patient Care and Research Center, New Orleans, LA 70112, USA; (K.J.); (M.R.L.)
- Comprehensive Pulmonary Hypertension Center and Interstitial Lung Disease Clinic Programs, University Medical Center, New Orleans, LA 70112, USA
- Section of Pulmonary Medicine, Louisiana State University School of Medicine, New Orleans, LA 70112, USA
| | - Marjon Elfferich
- Department of Physiotherapy, Gelderse Vallei Hospital, 10, 6716 RP Ede, The Netherlands; (B.S.); (M.E.)
- ildcare Foundation Research Team, 6711 NR Ede, The Netherlands; (M.D.)
| | - Elyse Lower
- Department of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (E.L.); (R.P.B.)
| | - Robert P. Baughman
- Department of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (E.L.); (R.P.B.)
| | - Nadera Sweiss
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Marc A. Judson
- Division of Pulmonary Medicine and Critical Care, Albany Medical College, Albany, NY 12208, USA;
| | - Marjolein Drent
- ildcare Foundation Research Team, 6711 NR Ede, The Netherlands; (M.D.)
- Interstitial Lung Diseases (ILD) Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Koekoekslaan 1, 3435 CM Nieuwegein, The Netherlands
- Department of Pharmacology and Toxicology, Faculty of Health and Life Sciences, Maastricht University, 40, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
21
|
Hemanthakumar KA, Fang S, Anisimov A, Mäyränpää MI, Mervaala E, Kivelä R. Cardiovascular disease risk factors induce mesenchymal features and senescence in mouse cardiac endothelial cells. eLife 2021; 10:62678. [PMID: 33661096 PMCID: PMC8043751 DOI: 10.7554/elife.62678] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Aging, obesity, hypertension, and physical inactivity are major risk factors for endothelial dysfunction and cardiovascular disease (CVD). We applied fluorescence-activated cell sorting (FACS), RNA sequencing, and bioinformatic methods to investigate the common effects of CVD risk factors in mouse cardiac endothelial cells (ECs). Aging, obesity, and pressure overload all upregulated pathways related to TGF-β signaling and mesenchymal gene expression, inflammation, vascular permeability, oxidative stress, collagen synthesis, and cellular senescence, whereas exercise training attenuated most of the same pathways. We identified collagen chaperone Serpinh1 (also called as Hsp47) to be significantly increased by aging and obesity and repressed by exercise training. Mechanistic studies demonstrated that increased SERPINH1 in human ECs induced mesenchymal properties, while its silencing inhibited collagen deposition. Our data demonstrate that CVD risk factors significantly remodel the transcriptomic landscape of cardiac ECs inducing inflammatory, senescence, and mesenchymal features. SERPINH1 was identified as a potential therapeutic target in ECs. Cardiovascular diseases are the number one cause of death in the western world. Endothelial cells that line the blood vessels of the heart play a central role in the development of these diseases. In addition to helping transport blood, these cells support the normal running of the heart, and help it to grow and regenerate. Over time as the body ages and experiences stress, endothelial cells start to deteriorate. This can cause the cells to undergo senescence and stop dividing, and lay down scar-like tissue via a process called fibrosis. As a result, the blood vessels start to stiffen and become less susceptible to repair. Ageing, obesity, high blood pressure, and inactivity all increase the risk of developing cardiovascular diseases, whereas regular exercise has a protective effect. But it was unclear how these different factors affect endothelial cells. To investigate this, Hemanthakumar et al. compared the gene activity of different sets of mice: old vs young, obese vs lean, heart problems vs healthy, and fit vs sedentary. All these risk factors – age, weight, inactivity and heart defects – caused the mice’s endothelial cells to activate mechanisms that lead to stress, senescence and fibrosis. Whereas exercise training had the opposite effect, and turned off the same genes and pathways. All of the at-risk groups also had high levels of a gene called SerpinH1, which helps produce tissue fiber and collagen. Experiments increasing the levels of SerpinH1 in human endothelial cells grown in the laboratory recreated the effects seen in mice, and switched on markers of stress, senescence and fibrosis. According to the World Health Organization, cardiovascular disease now accounts for 10% of the disease burden worldwide. Revealing the affects it has on gene activity could help identify new targets for drug development, such as SerpinH1. Understanding the molecular effects of exercise on blood vessels could also aid in the design of treatments that mimic exercise. This could help people who are unable to follow training programs to reduce their risk of cardiovascular disease.
Collapse
Affiliation(s)
- Karthik Amudhala Hemanthakumar
- Wihuri Research Institute, Helsinki, Finland.,Stem cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Shentong Fang
- Wihuri Research Institute, Helsinki, Finland.,Translational Cancer Medicine Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Andrey Anisimov
- Wihuri Research Institute, Helsinki, Finland.,Translational Cancer Medicine Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikko I Mäyränpää
- Pathology, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Eero Mervaala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riikka Kivelä
- Wihuri Research Institute, Helsinki, Finland.,Stem cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|