1
|
McNamara SL, Seo BR, Freedman BR, Roloson EB, Alvarez JT, O'Neill CT, Vandenburgh HH, Walsh CJ, Mooney DJ. Anti-inflammatory therapy enables robot-actuated regeneration of aged muscle. Sci Robot 2023; 8:eadd9369. [PMID: 36947599 DOI: 10.1126/scirobotics.add9369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Robot-actuated mechanical loading (ML)-based therapies ("mechanotherapies") can promote regeneration after severe skeletal muscle injury, but the effectiveness of such approaches during aging is unknown and may be influenced by age-associated decline in the healing capacity of skeletal muscle. To address this knowledge gap, this work used a noninvasive, load-controlled robotic device to impose highly defined tissue stresses to evaluate the age dependence of ML on muscle repair after injury. The response of injured muscle to robot-actuated cyclic compressive loading was found to be age sensitive, revealing not only a lack of reparative benefit of ML on injured aged muscles but also exacerbation of tissue inflammation. ML alone also disrupted the normal regenerative processes of aged muscle stem cells. However, these negative effects could be reversed by introducing anti-inflammatory therapy alongside ML application, leading to enhanced skeletal muscle regeneration even in aged mice.
Collapse
Affiliation(s)
- S L McNamara
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - B R Seo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - B R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - E B Roloson
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - J T Alvarez
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - C T O'Neill
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - H H Vandenburgh
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - C J Walsh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - D J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
2
|
Schoenfeld BJ, Wackerhage H, De Souza E. Inter-set stretch: A potential time-efficient strategy for enhancing skeletal muscle adaptations. Front Sports Act Living 2022; 4:1035190. [PMID: 36457663 PMCID: PMC9706104 DOI: 10.3389/fspor.2022.1035190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/02/2022] [Indexed: 08/10/2023] Open
Abstract
Time is considered a primary barrier to exercise adherence. Therefore, developing time-efficient resistance training (RT) strategies that optimize muscular adaptations is of primary interest to practitioners. A novel approach to the problem involves combining intensive stretch protocols with RT. Conceivably, integrating stretch into the inter-set period may provide an added stimulus for muscle growth without increasing session duration. Mechanistically, stretch can regulate anabolic signaling via both active and passive force sensors. Emerging evidence indicates that both lengthening contractions against a high load as well as passive stretch can acutely activate anabolic intracellular signaling pathways involved in muscle hypertrophy. Although longitudinal research investigating the effects of stretching between RT sets is limited, some evidence suggests it may in fact enhance hypertrophic adaptations. Accordingly, the purpose of this paper is threefold: (1) to review how the active force of a muscle contraction and the force of a passive stretched are sensed; (2) to present evidence for the effectiveness of RT with inter-set stretch for muscle hypertrophy (3) to provide practical recommendations for application of inter-set stretch in program design as well as directions for future research.
Collapse
Affiliation(s)
- Brad J. Schoenfeld
- Department of Exercise Science and Recreation, Lehman College, Bronx, NY, United States
| | - Henning Wackerhage
- Department of Sport and Exercise Sciences, Technical University of Munich, Munich, Germany
| | - Eduardo De Souza
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, FL, United States
| |
Collapse
|
3
|
Shirai T, Kitaoka Y, Uemichi K, Tokinoya K, Takeda K, Takemasa T. Effects of lactate administration on hypertrophy and mTOR signaling activation in mouse skeletal muscle. Physiol Rep 2022; 10:e15436. [PMID: 35993446 PMCID: PMC9393907 DOI: 10.14814/phy2.15436] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/01/2022] [Accepted: 05/16/2022] [Indexed: 04/12/2023] Open
Abstract
Lactate is a metabolic product of glycolysis and has recently been shown to act as a signaling molecule that induces adaptations in oxidative metabolism. In this study, we investigated whether lactate administration enhanced muscle hypertrophy and protein synthesis responses during resistance exercise in animal models. We used male ICR mice (7-8 weeks old) were used for chronic (mechanical overload induced by synergist ablation: [OL]) and acute (high-intensity muscle contraction by electrical stimulation: [ES]) resistance exercise models. The animals were intraperitoneally administrated a single dose of sodium lactate (1 g/kg of body weight) in the ES study, and once a day for 14 consecutive days in the OL study. Two weeks of mechanical overload increased plantaris muscle wet weight (main effect of OL: p < 0.05) and fiber cross-sectional area (main effect of OL: p < 0.05), but those were not affected by lactate administration. Following the acute resistance exercise by ES, protein synthesis and phosphorylation of p70 S6 kinase and ribosomal protein S6, which are downstream molecules in the anabolic signaling cascade, were increased (main effect of ES: p < 0.05), but lactate administration had no effect. This study demonstrated that exogenous lactate administration has little effect on the muscle hypertrophic response during resistance exercise using acute ES and chronic OL models. Our results do not support the hypothesis that elevated blood lactate concentration induces protein synthesis responses in skeletal muscle.
Collapse
Affiliation(s)
- Takanaga Shirai
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukubaIbarakiJapan
- Research Fellow of Japan Society for Promotion ScienceChiyoda‐kuTokyoJapan
| | - Yu Kitaoka
- Department of Human SciencesKanagawa UniversityYokohama‐shiKanagawaJapan
| | - Kazuki Uemichi
- Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaIbarakiJapan
| | - Katsuyuki Tokinoya
- Research Fellow of Japan Society for Promotion ScienceChiyoda‐kuTokyoJapan
- Division of Clinical Medicine, Faculty of MedicineUniversity of TsukubaTsukubaIbarakiJapan
- Department of Health Promotion SciencesGraduate School of Human Health SciencesTokyo Metropolitan UniversityHachiojiTokyoJapan
| | - Kohei Takeda
- School of Political Science and EconomicsMeiji UniversitySuginami‐kuTokyoJapan
| | - Tohru Takemasa
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukubaIbarakiJapan
| |
Collapse
|
4
|
Wirth K, Keiner M, Fuhrmann S, Nimmerichter A, Haff GG. Strength Training in Swimming. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095369. [PMID: 35564764 PMCID: PMC9100337 DOI: 10.3390/ijerph19095369] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022]
Abstract
This narrative review deals with the topic of strength training in swimming, which has been a controversial issue for decades. It is not only about the importance for the performance at start, turn and swim speed, but also about the question of how to design a strength training program. Different approaches are discussed in the literature, with two aspects in the foreground. On the one hand is the discussion about the optimal intensity in strength training and, on the other hand, is the question of how specific strength training should be designed. In addition to a summary of the current state of research regarding the importance of strength training for swimming, the article shows which physiological adaptations should be achieved in order to be able to increase performance in the long term. Furthermore, an attempt is made to explain why some training contents seem to be rather unsuitable when it comes to increasing strength as a basis for higher performance in the start, turn and clean swimming. Practical training consequences are then derived from this. Regardless of the athlete's performance development, preventive aspects should also be considered in the discussion. The article provides a critical overview of the abovementioned key issues. The most important points when designing a strength training program for swimming are a sufficiently high-load intensity to increase maximum strength, which in turn is the basis for power, year-round strength training, parallel to swim training and working on the transfer of acquired strength skills in swim training, and not through supposedly specific strength training exercises on land or in the water.
Collapse
Affiliation(s)
- Klaus Wirth
- Faculty of Training and Sports Sciences, University of Applied Sciences Wiener Neustadt, 2700 Wiener Neustadt, Austria;
- Correspondence:
| | - Michael Keiner
- Department of Sport Science, University of Health and Sports, 85737 Ismaning, Germany;
| | - Stefan Fuhrmann
- Olympic Training and Testing Centre Hamburg/Schleswig-Holstein, 22049 Hamburg, Germany;
| | - Alfred Nimmerichter
- Faculty of Training and Sports Sciences, University of Applied Sciences Wiener Neustadt, 2700 Wiener Neustadt, Austria;
| | - G. Gregory Haff
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia;
| |
Collapse
|
5
|
Hettinger ZR, Hamagata K, Confides AL, Lawrence MM, Miller BF, Butterfield TA, Dupont-Versteegden EE. Age-Related Susceptibility to Muscle Damage Following Mechanotherapy in Rats Recovering From Disuse Atrophy. J Gerontol A Biol Sci Med Sci 2021; 76:2132-2140. [PMID: 34181006 PMCID: PMC8599051 DOI: 10.1093/gerona/glab186] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
The inability to fully recover lost muscle mass following periods of disuse atrophy predisposes older adults to lost independence and poor quality of life. We have previously shown that mechanotherapy at a moderate load (4.5 N) enhances muscle mass recovery following atrophy in adult, but not older adult rats. We propose that elevated transverse stiffness in aged muscle inhibits the growth response to mechanotherapy and hypothesize that a higher load (7.6 N) will overcome this resistance to mechanical stimuli. F344/BN adult and older adult male rats underwent 14 days of hindlimb suspension, followed by 7 days of recovery with (RE + M) or without (RE) mechanotherapy at 7.6 N on gastrocnemius muscle. The 7.6 N load was determined by measuring transverse passive stiffness and linearly scaling up from 4.5 N. No differences in protein turnover or mean fiber cross-sectional area were observed between RE and RE + M for older adult rats or adult rats at 7.6 N. However, there was a higher number of small muscle fibers present in older adult, but not adult rats, which was explained by a 16-fold increase in the frequency of small fibers expressing embryonic myosin heavy chain. Elevated central nucleation, satellite cell abundance, and dystrophin-/laminin+ fibers were present in older adult rats only following 7.6 N, while 4.5 N did not induce damage at either age. We conclude that age is an important variable when considering load used during mechanotherapy and age-related transverse stiffness may predispose older adults to damage during the recovery period following disuse atrophy.
Collapse
Affiliation(s)
- Zachary R Hettinger
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, USA
- Center for Muscle Biology, University of Kentucky, Lexington, USA
| | - Kyoko Hamagata
- Center for Muscle Biology, University of Kentucky, Lexington, USA
| | - Amy L Confides
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, USA
- Center for Muscle Biology, University of Kentucky, Lexington, USA
| | - Marcus M Lawrence
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA
| | - Timothy A Butterfield
- Center for Muscle Biology, University of Kentucky, Lexington, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, USA
| | - Esther E Dupont-Versteegden
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, USA
- Center for Muscle Biology, University of Kentucky, Lexington, USA
| |
Collapse
|
6
|
Moustogiannis A, Philippou A, Zevolis E, Taso O, Chatzigeorgiou A, Koutsilieris M. Characterization of Optimal Strain, Frequency and Duration of Mechanical Loading on Skeletal Myotubes' Biological Responses. In Vivo 2021; 34:1779-1788. [PMID: 32606147 DOI: 10.21873/invivo.11972] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND/AIM Mechanical loading of differentiated myoblasts in vitro may mimic loading patterns of skeletal muscle in vivo. However, it is still uncharacterized the loading conditions that can produce the most effective muscle cells' biological responses, in vitro. This study investigated the effects of different loading protocols on the expression of myogenic regulatory factors, anabolic, atrophy and pro-apoptotic factors in skeletal myotubes. MATERIALS AND METHODS C2C12 myoblasts were differentiated and underwent various stretching protocols by altering their elongation, frequency and duration, utilizing an in vitro cell tension system. The loading-induced expression changes of MyoD, Myogenin, MRF4, IGF-1 isoforms, Murf1, Atrogin, Myostatin, Foxo and Fuca were measured by Real Time-PCR. RESULTS Stretching by 2% elongation at 0.25 Hz for 12 h was overall the most effective in inducing beneficial responses. CONCLUSION A low strain, low frequency intermediate duration stretching can most effectively up-regulate myogenic/anabolic factors and down-regulate pro-apoptotic and atrophy genes in myotubes.
Collapse
Affiliation(s)
- Athanasios Moustogiannis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastassios Philippou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Zevolis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Orjona Taso
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Van Pelt DW, Lawrence MM, Miller BF, Butterfield TA, Dupont-Versteegden EE. Massage as a Mechanotherapy for Skeletal Muscle. Exerc Sport Sci Rev 2021; 49:107-114. [PMID: 33720912 PMCID: PMC8320327 DOI: 10.1249/jes.0000000000000244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Massage is anecdotally associated with many health benefits, but physiological and clinically relevant mechanisms recently have begun to be investigated in a controlled manner. Herein, we describe research supporting our hypothesis that massage can be used as a mechanotherapy imparting biologically relevant adaptations in skeletal muscle and improving muscle properties.
Collapse
Affiliation(s)
- Douglas W Van Pelt
- Department of Physical Therapy and Center for Muscle Biology, University of Kentucky, Lexington, KY
| | - Marcus M Lawrence
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Timothy A Butterfield
- Department of Athletic Training and Clinical Nutrition and Center for Muscle Biology, University of Kentucky, Lexington, KY
| | | |
Collapse
|
8
|
Lawrence MM, Van Pelt DW, Confides AL, Hettinger ZR, Hunt ER, Reid JJ, Laurin JL, Peelor FF, Butterfield TA, Miller BF, Dupont-Versteegden EE. Muscle from aged rats is resistant to mechanotherapy during atrophy and reloading. GeroScience 2021; 43:65-83. [PMID: 32588343 PMCID: PMC8050124 DOI: 10.1007/s11357-020-00215-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/09/2020] [Indexed: 12/22/2022] Open
Abstract
Massage is a viable mechanotherapy to improve protein turnover during disuse atrophy and improve muscle regrowth during recovery from disuse atrophy in adult muscle. Therefore, we investigated whether massage can cause beneficial adaptations in skeletal muscle from aged rats during normal weight-bearing (WB) conditions, hindlimb suspension (HS), or reloading (RE) following HS. Aged (30 months) male Fischer 344/Brown Norway rats were divided into two experiments: (1) WB for 7 days (WB, n = 8), WB with massage (WBM, n = 8), HS for 7 days (HS7, n = 8), or HS with massage (HSM, n = 8), and (2) WB for 14 days (WB14, n = 8), HS for 14 days (HS14, n = 8), reloading (RE, n = 10), or reloading with massage (REM, n = 10) for 7 days following HS. Deuterium oxide (D2O) labeling was used to assess dynamic protein and ribosome turnover in each group and anabolic signaling pathways were assessed. Massage did have an anabolic benefit during RE or WB. In contrast, massage during HS enhanced myofibrillar protein turnover in both the massaged limb and contralateral non-massaged limb compared with HS, but this did not prevent muscle loss. Overall, the data demonstrate that massage is not an effective mechanotherapy for prevention of atrophy during muscle disuse or recovery of muscle mass during reloading in aged rats.
Collapse
Affiliation(s)
- Marcus M Lawrence
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Douglas W Van Pelt
- Department of Physical Therapy, University of Kentucky, Lexington, KY, 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Amy L Confides
- Department of Physical Therapy, University of Kentucky, Lexington, KY, 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Zachary R Hettinger
- Department of Physical Therapy, University of Kentucky, Lexington, KY, 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Emily R Hunt
- Department of Physical Therapy, University of Kentucky, Lexington, KY, 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Justin J Reid
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Jaime L Laurin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Timothy A Butterfield
- Center for Muscle Biology, University of Kentucky, Lexington, KY, 40536, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, 40536, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Esther E Dupont-Versteegden
- Department of Physical Therapy, University of Kentucky, Lexington, KY, 40536, USA.
- Center for Muscle Biology, University of Kentucky, Lexington, KY, 40536, USA.
- College of Health Sciences, University of Kentucky, 900 S. Limestone CTW210E, Lexington, KY, 40536-0200, USA.
| |
Collapse
|
9
|
Lawrence MM, Zwetsloot KA, Arthur ST, Sherman CA, Huot JR, Badmaev V, Grace M, Lila MA, Nieman DC, Shanely RA. Phytoecdysteroids Do Not Have Anabolic Effects in Skeletal Muscle in Sedentary Aging Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020370. [PMID: 33418916 PMCID: PMC7825148 DOI: 10.3390/ijerph18020370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 01/07/2023]
Abstract
Skeletal muscle mass and strength are lost with aging. Phytoecdysteroids, in particular 20-hydroxyecdysone (20E), increase protein synthesis in C2C12 skeletal muscle cells and muscle strength in young rats. The objective of this study was to determine whether an extract from Ajuga turkestanica (ATE), enriched in phytoecdysteroids, and 20E affect skeletal muscle mass and fiber size, fiber type, activation of the PI3K–Akt signaling pathway, and the mRNA levels of MAFbx, MuRF-1, and myostatin in sedentary aging mice. Aging male C57BL/6 mice (20 months old) received ATE, 20E, or vehicle (CT) once per day for 28 days or a single acute dose. Treatment did not alter body, muscle, or organ mass; fiber cross-sectional area; or fiber type in the triceps brachii or plantaris muscles. Likewise, protein synthesis signaling markers (i.e., phosphorylation of AktSer473 and p70S6kThr389) measured after either 28 days or acutely were unchanged. Neither ATE nor 20E treatment for 28 days affected the mRNA levels of MAFbx, MuRF-1, and myostatin. In conclusion, these data indicate that phytoecdysteroid treatment does not alter muscle mass or fiber type, nor does it activate protein synthesis signaling in the skeletal muscle of sedentary aging mice.
Collapse
Affiliation(s)
- Marcus M. Lawrence
- Department of Health and Exercise Science, Appalachian State University, Boone, NC 28608, USA; (M.M.L.); (K.A.Z.); (C.A.S.)
- Human Performance Laboratory, North Carolina Research Campus, Kannapolis, NC 28081, USA;
- Integrated Muscle Physiology Laboratory, Boone, NC 28607, USA
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT 84720, USA
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina Charlotte, Charlotte, NC 28223, USA; (S.T.A.); (J.R.H.)
| | - Kevin A. Zwetsloot
- Department of Health and Exercise Science, Appalachian State University, Boone, NC 28608, USA; (M.M.L.); (K.A.Z.); (C.A.S.)
- Integrated Muscle Physiology Laboratory, Boone, NC 28607, USA
- Department of Biology, Appalachian State University, Boone, NC 20608, USA
| | - Susan T. Arthur
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina Charlotte, Charlotte, NC 28223, USA; (S.T.A.); (J.R.H.)
| | - Chase A. Sherman
- Department of Health and Exercise Science, Appalachian State University, Boone, NC 28608, USA; (M.M.L.); (K.A.Z.); (C.A.S.)
- Integrated Muscle Physiology Laboratory, Boone, NC 28607, USA
| | - Joshua R. Huot
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina Charlotte, Charlotte, NC 28223, USA; (S.T.A.); (J.R.H.)
| | | | - Mary Grace
- Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC 28081, USA; (M.G.); (M.A.L.)
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC 28081, USA; (M.G.); (M.A.L.)
| | - David C. Nieman
- Human Performance Laboratory, North Carolina Research Campus, Kannapolis, NC 28081, USA;
- Department of Biology, Appalachian State University, Boone, NC 20608, USA
| | - R. Andrew Shanely
- Department of Health and Exercise Science, Appalachian State University, Boone, NC 28608, USA; (M.M.L.); (K.A.Z.); (C.A.S.)
- Human Performance Laboratory, North Carolina Research Campus, Kannapolis, NC 28081, USA;
- Integrated Muscle Physiology Laboratory, Boone, NC 28607, USA
- Correspondence: ; Tel.: +1-828-262-6319
| |
Collapse
|
10
|
The ties that bind: functional clusters in limb-girdle muscular dystrophy. Skelet Muscle 2020; 10:22. [PMID: 32727611 PMCID: PMC7389686 DOI: 10.1186/s13395-020-00240-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
The limb-girdle muscular dystrophies (LGMDs) are a genetically pleiomorphic class of inherited muscle diseases that are known to share phenotypic features. Selected LGMD genetic subtypes have been studied extensively in affected humans and various animal models. In some cases, these investigations have led to human clinical trials of potential disease-modifying therapies, including gene replacement strategies for individual subtypes using adeno-associated virus (AAV) vectors. The cellular localizations of most proteins associated with LGMD have been determined. However, the functions of these proteins are less uniformly characterized, thus limiting our knowledge of potential common disease mechanisms across subtype boundaries. Correspondingly, broad therapeutic strategies that could each target multiple LGMD subtypes remain less developed. We believe that three major "functional clusters" of subcellular activities relevant to LGMD merit further investigation. The best known of these is the glycosylation modifications associated with the dystroglycan complex. The other two, mechanical signaling and mitochondrial dysfunction, have been studied less systematically but are just as promising with respect to the identification of significant mechanistic subgroups of LGMD. A deeper understanding of these disease pathways could yield a new generation of precision therapies that would each be expected to treat a broader range of LGMD patients than a single subtype, thus expanding the scope of the molecular medicines that may be developed for this complex array of muscular dystrophies.
Collapse
|
11
|
Van Pelt DW, Confides AL, Abshire SM, Hunt ER, Dupont-Versteegden EE, Butterfield TA. Age-related responses to a bout of mechanotherapy in skeletal muscle of rats. J Appl Physiol (1985) 2019; 127:1782-1791. [PMID: 31670600 PMCID: PMC6962605 DOI: 10.1152/japplphysiol.00641.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/14/2019] [Accepted: 10/24/2019] [Indexed: 12/25/2022] Open
Abstract
Cyclic compressive loading (CCL) is a massage mimetic that improves muscle regrowth from atrophy in adult rats. Therefore, we tested if a single bout of CCL increases anabolic signaling and protein synthesis in muscle during normal, weight-bearing conditions in gastrocnemius muscle from adult and aged rats. Male Brown Norway/F344 rats at 10 (adult) and 30 (aged) months of age were assigned control or CCL (receiving a single bout of CCL). Twenty-four hours following a single bout of CCL there was no change in protein synthesis, Akt, or GSK3β signaling at either age, despite adult rats having higher abundance and activation of mechanosensitive pathways (integrins and integrin-linked kinase). Murf1 was elevated in response to CCL in both age groups, potentially indicating muscle remodeling. Muscle from aged rats exhibited an increase in heat shock protein (HSP) 25 and HSP70 and in the cold shock protein RNA-binding motif 3 (RBM3), demonstrating a unique stress response to CCL in aged muscle only. Finally, muscle from aged rats exhibited higher basal protein synthesis that was corroborated by elevated eIF2Bε and rpS6 signaling, without an additional effect of CCL. In summary, a single bout of CCL does not have anabolic effects on skeletal muscle during normal, weight-bearing conditions, even though it has previously been shown to improve regrowth from atrophy. These data demonstrate that interventions that may help recover from atrophy do not necessarily induce muscle hypertrophy in unperturbed conditions.NEW & NOTEWORTHY Massage has been demonstrated to be an effective mechanotherapy to improve recovery from atrophy in adult skeletal muscle; however, this study shows that a single bout of massage fails to increase protein synthesis or anabolic signaling in adult or aged skeletal muscle during normal, weight-bearing conditions. Altogether, our data suggest massage is a useful mechanotherapy for preserving skeletal muscle when combined with other interventions but is not an anabolic stimulus on its own.
Collapse
Affiliation(s)
- Douglas W Van Pelt
- Department of Physical Therapy, University of Kentucky, Lexington, Kentucky
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Amy L Confides
- Department of Physical Therapy, University of Kentucky, Lexington, Kentucky
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Sarah M Abshire
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, Kentucky
| | - Emily R Hunt
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Rehabilitation Sciences PhD Program, University of Kentucky, Lexington, Kentucky
| | - Esther E Dupont-Versteegden
- Department of Physical Therapy, University of Kentucky, Lexington, Kentucky
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Timothy A Butterfield
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
12
|
Dunham CL, Chamberlain AM, Meyer GA, Lake SP. Muscle does not drive persistent posttraumatic elbow contracture in a rat model. Muscle Nerve 2018; 58:843-851. [PMID: 30230560 DOI: 10.1002/mus.26344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/19/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Posttraumatic elbow contracture is clinically challenging because injury often disrupts multiple periarticular soft tissues. Tissue specific contribution to contracture, particularly muscle, remains poorly understood. METHODS In this study we used a previously developed animal model of elbow contracture. After surgically inducing a unilateral soft tissue injury, injured limbs were immobilized for 3, 7, 21, and 42 days (IM) or for 42 IM with 42 days of free mobilization (42/42 IM-FM). Biceps brachii active/passive mechanics and morphology were evaluated at 42 IM and 42/42 IM-FM, whereas biceps brachii and brachialis gene expression was evaluated at all time points. RESULTS Injured limb muscle exhibited significantly altered active/passive mechanics and decreased fiber area at 42 IM but returned to control levels by 42/42 IM-FM. Gene expression suggested muscle growth rather than a fibrotic response at 42/42 IM-FM. DISCUSSION Muscle is a transient contributor to motion loss in our rat model of posttraumatic elbow contracture. Muscle Nerve 58:843-851, 2018.
Collapse
Affiliation(s)
- Chelsey L Dunham
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, Missouri, USA
| | - Aaron M Chamberlain
- Department of Orthopaedic Surgery, Washington University in St Louis, St Louis, Missouri, USA
| | - Gretchen A Meyer
- Program in Physical Therapy, Washington University in St Louis, St Louis, Missouri, USA
| | - Spencer P Lake
- Department of Mechanical Engineering and Materials Science, Washington University in St Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, Missouri, 63130, USA
| |
Collapse
|
13
|
Franchi MV, Ruoss S, Valdivieso P, Mitchell KW, Smith K, Atherton PJ, Narici MV, Flück M. Regional regulation of focal adhesion kinase after concentric and eccentric loading is related to remodelling of human skeletal muscle. Acta Physiol (Oxf) 2018; 223:e13056. [PMID: 29438584 DOI: 10.1111/apha.13056] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 12/31/2022]
Abstract
AIMS We assessed focal adhesion kinase (FAK) response to concentric (CON) vs eccentric (ECC) resistance training (RT) at two vastus lateralis (VL) sites, and the relationships between FAK, muscle protein synthesis (MPS) and morphological remodelling. METHODS Six young males trained both legs unilaterally 3 times/week for 8 weeks; one leg performed CON RT, the contralateral performed ECC RT. Muscle biopsies were collected after training from VL mid-belly (MID) and distal (distal) sites at 0, 4, 8 weeks. Focal adhesion kinase content and activation were evaluated by immunoblotting. MPS was assessed by deuterium oxide tracer; morphological adaptations were evaluated by ultrasound and DXA. RESULTS pY397-FAK 8 weeks levels were ~4-fold greater after ECC at the distal site compared to CON (P < .05); pY397FAK to total FAK ratio was greater in ECC vs CON at 4 (~2.2-fold, P < .05) and 8 weeks (~9-fold, P < .001) at the distal site. Meta-vinculin was found transiently increased at 4 weeks at the distal site only after ECC RT. ECC presented greater fascicle length (Lf) increases (10.5% vs 4%), whereas CON showed greater in pennation angle (PA) changes (12.3% vs 2.1%). MPS did not differ between exercise types or muscle sites at all time points. distal pY397-FAK and pY397-FAK/FAK values correlated to changes in Lf at 8 weeks (r = .76, P < .01 and r = .66, P < .05 respectively). CONCLUSION Focal adhesion kinase phosphorylation was greater at 8 weeks after ECC RT and was muscle region-specific. FAK activity correlated to contraction-dependent architectural remodelling, suggesting a potential role of FAK in orienting muscle structural changes in response to distinct mechanical stimuli.
Collapse
Affiliation(s)
- M V Franchi
- Laboratory for Muscle Plasticity, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- MRC-ARUK Centre for Musculoskeletal Ageing, Royal Derby Hospital, University of Nottingham, Derby, UK
| | - S Ruoss
- Laboratory for Muscle Plasticity, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - P Valdivieso
- Laboratory for Muscle Plasticity, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - K W Mitchell
- MRC-ARUK Centre for Musculoskeletal Ageing, Royal Derby Hospital, University of Nottingham, Derby, UK
| | - K Smith
- MRC-ARUK Centre for Musculoskeletal Ageing, Royal Derby Hospital, University of Nottingham, Derby, UK
| | - P J Atherton
- MRC-ARUK Centre for Musculoskeletal Ageing, Royal Derby Hospital, University of Nottingham, Derby, UK
| | - M V Narici
- MRC-ARUK Centre for Musculoskeletal Ageing, Royal Derby Hospital, University of Nottingham, Derby, UK
- Department of Biomedical Sciences, Institute of Physiology, University of Padua, Padua, Italy
| | - M Flück
- Laboratory for Muscle Plasticity, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Santos AL, Sinha S, Lindner AB. The Good, the Bad, and the Ugly of ROS: New Insights on Aging and Aging-Related Diseases from Eukaryotic and Prokaryotic Model Organisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1941285. [PMID: 29743972 PMCID: PMC5878877 DOI: 10.1155/2018/1941285] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/18/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022]
Abstract
Aging is associated with the accumulation of cellular damage over the course of a lifetime. This process is promoted in large part by reactive oxygen species (ROS) generated via cellular metabolic and respiratory pathways. Pharmacological, nonpharmacological, and genetic interventions have been used to target cellular and mitochondrial networks in an effort to decipher aging and age-related disorders. While ROS historically have been viewed as a detrimental byproduct of normal metabolism and associated with several pathologies, recent research has revealed a more complex and beneficial role of ROS in regulating metabolism, development, and lifespan. In this review, we summarize the recent advances in ROS research, focusing on both the beneficial and harmful roles of ROS, many of which are conserved across species from bacteria to humans, in various aspects of cellular physiology. These studies provide a new context for our understanding of the parts ROS play in health and disease. Moreover, we highlight the utility of bacterial models to elucidate the molecular pathways by which ROS mediate aging and aging-related diseases.
Collapse
Affiliation(s)
- Ana L. Santos
- Institut National de la Santé et de la Recherche Médicale, U1001 & Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sanchari Sinha
- Defence Institute of Physiology and Allied Sciences, DRDO, New Delhi, India
| | - Ariel B. Lindner
- Institut National de la Santé et de la Recherche Médicale, U1001 & Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
15
|
Ji LL, Kang C, Zhang Y. Exercise-induced hormesis and skeletal muscle health. Free Radic Biol Med 2016; 98:113-122. [PMID: 26916558 DOI: 10.1016/j.freeradbiomed.2016.02.025] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/15/2016] [Accepted: 02/22/2016] [Indexed: 12/23/2022]
Abstract
Hormesis refers to the phenomenon that an exposure or repeated exposures of a toxin can elicit adaptive changes within the organism to resist to higher doses of toxin with reduced harm. Skeletal muscle shows considerable plasticity and adaptions in response to a single bout of acute exercise or chronic training, especially in antioxidant defense capacity and metabolic functions mainly due to remodeling of mitochondria. It has thus been hypothesized that contraction-induced production of reactive oxygen species (ROS) may stimulate the hormesis-like adaptations. Furthermore, there has been considerable evidence that select ROS such as hydrogen peroxide and nitric oxide, or even oxidatively degraded macromolecules, may serve as signaling molecules to stimulate such hermetic adaptations due to the activation of redox-sensitive signaling pathways. Recent research has highlighted the important role of nuclear factor (NF) κB, mitogen-activated protein kinase (MAPK), and peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), along with other newly discovered signaling pathways, in some of the most vital biological functions such as mitochondrial biogenesis, antioxidant defense, inflammation, protein turnover, apoptosis, and autophagy. The inability of the cell to maintain proper redox signaling underlies mechanisms of biological aging, during which inflammatory and catabolic pathways prevail. Research evidence and mechanisms connecting exercise-induced hormesis and redox signaling are reviewed.
Collapse
Affiliation(s)
- Li Li Ji
- Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota, 1900 University Avenue, Minneapolis, MN 55455, USA.
| | - Chounghun Kang
- Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota, 1900 University Avenue, Minneapolis, MN 55455, USA
| | - Yong Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sport Science, Tianjin University of Sport, China
| |
Collapse
|
16
|
Schroder E, Hodge B, Riley L, Zhang X, Esser K. Reply from Elizabeth Schroder, Brian Hodge, Lance Riley, Xiping Zhang and Karyn Esser. J Physiol 2016; 594:3163-4. [DOI: 10.1113/jp272165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 01/29/2016] [Indexed: 11/08/2022] Open
Affiliation(s)
- Elizabeth Schroder
- Center for Muscle Biology and Department of Physiology; College of Medicine, University of Kentucky; Lexington KY USA
| | - Brian Hodge
- Center for Muscle Biology and Department of Physiology; College of Medicine, University of Kentucky; Lexington KY USA
| | - Lance Riley
- Center for Muscle Biology and Department of Physiology; College of Medicine, University of Kentucky; Lexington KY USA
| | - Xiping Zhang
- Center for Muscle Biology and Department of Physiology; College of Medicine, University of Kentucky; Lexington KY USA
| | - Karyn Esser
- Center for Muscle Biology and Department of Physiology; College of Medicine, University of Kentucky; Lexington KY USA
| |
Collapse
|
17
|
Ji LL. Redox signaling in skeletal muscle: role of aging and exercise. ADVANCES IN PHYSIOLOGY EDUCATION 2015; 39:352-359. [PMID: 26628659 DOI: 10.1152/advan.00106.2014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Skeletal muscle contraction is associated with the production of ROS due to altered O2 distribution and flux in the cell. Despite a highly efficient antioxidant defense, a small surplus of ROS, such as hydrogen peroxide and nitric oxide, may serve as signaling molecules to stimulate cellular adaptation to reach new homeostasis largely due to the activation of redox-sensitive signaling pathways. Recent research has highlighted the important role of NF-κB, MAPK, and peroxisome proliferator-activated receptor-γ coactivator-1α, along with other newly discovered signaling pathways, in some of the most vital biological functions, such as mitochondrial biogenesis, antioxidant defense, inflammation, protein turnover, apoptosis, and autophagy. There is evidence that the inability of the cell to maintain proper redox signaling underlies some basic mechanisms of biological aging, during which inflammatory and catabolic pathways eventually predominate. Physical exercise has been shown to activate various redox signaling pathways that control the adaptation and remodeling process. Although this stimulatory effect of exercise declines with aging, it is not completed abolished. Thus, aged people can still benefit from regular physical activity in the appropriate forms and at proper intensity to preserve muscle function.
Collapse
Affiliation(s)
- Li Li Ji
- Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
18
|
White JR, Confides AL, Moore-Reed S, Hoch JM, Dupont-Versteegden EE. Regrowth after skeletal muscle atrophy is impaired in aged rats, despite similar responses in signaling pathways. Exp Gerontol 2015; 64:17-32. [PMID: 25681639 DOI: 10.1016/j.exger.2015.02.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/14/2015] [Accepted: 02/10/2015] [Indexed: 01/07/2023]
Abstract
Skeletal muscle regrowth after atrophy is impaired in the aged and in this study we hypothesized that this can be explained by a blunted response of signaling pathways and cellular processes during reloading after hind limb suspension in muscles from old rats. Male Brown Norway Fisher 344 rats at 6 (young) and 32 (old) months of age were subjected to normal ambulatory conditions (amb), hind limb suspension for 14 days (HS), and HS followed by reloading through normal ambulation for 14 days (RE); soleus muscles were used for analysis of intracellular signaling pathways and cellular processes. Soleus muscle regrowth was blunted in old compared to young rats which coincided with a recovery of serum IGF-1 and IGFBP-3 levels in young but not old. However, the response to reloading for p-Akt, p-p70s6k and p-GSK3β protein abundance was similar between muscles from young and old rats, even though main effects for age indicate an increase in activation of this protein synthesis pathway in the aged. Similarly, MAFbx mRNA levels in soleus muscle from old rats recovered to the same extent as in the young, while Murf-1 was unchanged. mRNA abundance of autophagy markers Atg5 and Atg7 showed an identical response in muscle from old compared to young rats, but beclin did not. Autophagic flux was not changed at either age at the measured time point. Apoptosis was elevated in soleus muscle from old rats particularly with HS, but recovered in HSRE and these changes were not associated with differences in caspase-3, -8 or -9 activity in any group. Protein abundance of apoptosis repressor with caspase-recruitment domain (ARC), cytosolic EndoG, as well as cytosolic and nuclear apoptosis inducing factor (AIF) were lower in muscle from old rats, and there was no age-related difference in the response to atrophy or regrowth. Soleus muscles from old rats had a higher number of ED2 positive macrophages in all groups and these decreased with HS, but recovered in HSRE in the old, while no changes were observed in the young. Pro-inflammatory cytokines in serum did not show a differential response with age to different loading conditions. Results indicate that at the measured time point the impaired skeletal muscle regrowth after atrophy in aged animals is not associated with a general lack of responsiveness to changes in loading conditions.
Collapse
Affiliation(s)
- Jena R White
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, 900 S Limestone, Lexington, KY 40536-0200, USA
| | - Amy L Confides
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, 900 S Limestone, Lexington, KY 40536-0200, USA
| | - Stephanie Moore-Reed
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, 900 S Limestone, Lexington, KY 40536-0200, USA
| | - Johanna M Hoch
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, 900 S Limestone, Lexington, KY 40536-0200, USA
| | - Esther E Dupont-Versteegden
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, 900 S Limestone, Lexington, KY 40536-0200, USA.
| |
Collapse
|
19
|
Ji LL, Kang C. Role of PGC-1a in Sarcopenia: Etiology and Potential Intervention - A Mini-Review. Gerontology 2014; 61:139-48. [DOI: 10.1159/000365947] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 07/16/2014] [Indexed: 11/19/2022] Open
|
20
|
Moorwood C, Philippou A, Spinazzola J, Keyser B, Macarak EJ, Barton ER. Absence of γ-sarcoglycan alters the response of p70S6 kinase to mechanical perturbation in murine skeletal muscle. Skelet Muscle 2014; 4:13. [PMID: 25024843 PMCID: PMC4095884 DOI: 10.1186/2044-5040-4-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/29/2014] [Indexed: 12/18/2022] Open
Abstract
Background The dystrophin glycoprotein complex (DGC) is located at the sarcolemma of muscle fibers, providing structural integrity. Mutations in and loss of DGC proteins cause a spectrum of muscular dystrophies. When only the sarcoglycan subcomplex is absent, muscles display severe myofiber degeneration, but little susceptibility to contractile damage, suggesting that disease occurs not by structural deficits but through aberrant signaling, namely, loss of normal mechanotransduction signaling through the sarcoglycan complex. We extended our previous studies on mechanosensitive, γ-sarcoglycan-dependent ERK1/2 phosphorylation, to determine whether additional pathways are altered with the loss of γ-sarcoglycan. Methods We examined mechanotransduction in the presence and absence of γ-sarcoglycan, using C2C12 myotubes, and primary cultures and isolated muscles from C57Bl/6 (C57) and γ-sarcoglycan-null (γ-SG-/-) mice. All were subjected to cyclic passive stretch. Signaling protein phosphorylation was determined by immunoblotting of lysates from stretched and non-stretched samples. Calcium dependence was assessed by maintaining muscles in calcium-free or tetracaine-supplemented Ringer’s solution. Dependence on mTOR was determined by stretching isolated muscles in the presence or absence of rapamycin. Results C2C12 myotube stretch caused a robust increase in P-p70S6K, but decreased P-FAK and P-ERK2. Neither Akt nor ERK1 were responsive to passive stretch. Similar but non-significant trends were observed in C57 primary cultures in response to stretch, and γ-SG-/- cultures displayed no p70S6K response. In contrast, in isolated muscles, p70S6K was mechanically responsive. Basal p70S6K activation was elevated in muscles of γ-SG-/- mice, in a calcium-independent manner. p70S6K activation increased with stretch in both C57 and γ-SG-/- isolated muscles, and was sustained in γ-SG-/- muscles, unlike the transient response in C57 muscles. Rapamycin treatment blocked all of p70S6K activation in stretched C57 muscles, and reduced downstream S6RP phosphorylation. However, even though rapamycin treatment decreased p70S6K activation in stretched γ-SG-/- muscles, S6RP phosphorylation remained elevated. Conclusions p70S6K is an important component of γ-sarcoglycan-dependent mechanotransduction in skeletal muscle. Our results suggest that loss of γ-sarcoglycan uncouples the response of p70S6K to stretch and implies that γ-sarcoglycan is important for inactivation of this pathway. Overall, we assert that altered load-sensing mechanisms exist in muscular dystrophies where the sarcoglycans are absent.
Collapse
Affiliation(s)
- Catherine Moorwood
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA ; Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Anastassios Philippou
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA ; Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA, USA ; Current address: Department of Physiology, Medical School, National and Kapodistrian University of Athens, Goudi, Athens, Greece
| | - Janelle Spinazzola
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA ; Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin Keyser
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward J Macarak
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA ; Current address: Department of Dermatology and Cutaneous Biology, Jefferson University College of Medicine, Philadelphia, PA, USA
| | - Elisabeth R Barton
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA ; Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
21
|
The role of mTORC1 in regulating protein synthesis and skeletal muscle mass in response to various mechanical stimuli. Rev Physiol Biochem Pharmacol 2013; 166:43-95. [PMID: 24442322 DOI: 10.1007/112_2013_17] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skeletal muscle plays a fundamental role in mobility, disease prevention, and quality of life. Skeletal muscle mass is, in part, determined by the rates of protein synthesis, and mechanical loading is a major regulator of protein synthesis and skeletal muscle mass. The mammalian/mechanistic target of rapamycin (mTOR), found in the multi-protein complex, mTORC1, is proposed to play an essential role in the regulation of protein synthesis and skeletal muscle mass. The purpose of this review is to examine the function of mTORC1 in relation to protein synthesis and cell growth, the current evidence from rodent and human studies for the activation of mTORC1 signaling by different types of mechanical stimuli, whether mTORC1 signaling is necessary for changes in protein synthesis and skeletal muscle mass that occur in response to different types of mechanical stimuli, and the proposed molecular signaling mechanisms that may be responsible for the mechanical activation of mTORC1 signaling.
Collapse
|
22
|
Swindell WR, Johnston A, Sun L, Xing X, Fisher GJ, Bulyk ML, Elder JT, Gudjonsson JE. Meta-profiles of gene expression during aging: limited similarities between mouse and human and an unexpectedly decreased inflammatory signature. PLoS One 2012; 7:e33204. [PMID: 22413003 PMCID: PMC3296693 DOI: 10.1371/journal.pone.0033204] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 02/13/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Skin aging is associated with intrinsic processes that compromise the structure of the extracellular matrix while promoting loss of functional and regenerative capacity. These processes are accompanied by a large-scale shift in gene expression, but underlying mechanisms are not understood and conservation of these mechanisms between humans and mice is uncertain. RESULTS We used genome-wide expression profiling to investigate the aging skin transcriptome. In humans, age-related shifts in gene expression were sex-specific. In females, aging increased expression of transcripts associated with T-cells, B-cells and dendritic cells, and decreased expression of genes in regions with elevated Zeb1, AP-2 and YY1 motif density. In males, however, these effects were contrasting or absent. When age-associated gene expression patterns in human skin were compared to those in tail skin from CB6F1 mice, overall human-mouse correspondence was weak. Moreover, inflammatory gene expression patterns were not induced with aging of mouse tail skin, and well-known aging biomarkers were in fact decreased (e.g., Clec7a, Lyz1 and Lyz2). These unexpected patterns and weak human-mouse correspondence may be due to decreased abundance of antigen presenting cells in mouse tail skin with age. CONCLUSIONS Aging is generally associated with a pro-inflammatory state, but we have identified an exception to this pattern with aging of CB6F1 mouse tail skin. Aging therefore does not uniformly heighten inflammatory status across all mouse tissues. Furthermore, we identified both intercellular and intracellular mechanisms of transcriptome aging, including those that are sex- and species-specific.
Collapse
Affiliation(s)
- William R Swindell
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Teng D, Hornberger TA. Optimal Temperature for Hypothermia Intervention in Mouse Model of Skeletal Muscle Ischemia Reperfusion Injury. Cell Mol Bioeng 2011. [DOI: 10.1007/s12195-011-0206-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
24
|
Fry CS, Drummond MJ, Glynn EL, Dickinson JM, Gundermann DM, Timmerman KL, Walker DK, Dhanani S, Volpi E, Rasmussen BB. Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. Skelet Muscle 2011; 1:11. [PMID: 21798089 PMCID: PMC3156634 DOI: 10.1186/2044-5040-1-11] [Citation(s) in RCA: 251] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 03/02/2011] [Indexed: 12/19/2022] Open
Abstract
Background Sarcopenia, the loss of skeletal muscle mass during aging, increases the risk for falls and dependency. Resistance exercise (RE) training is an effective treatment to improve muscle mass and strength in older adults, but aging is associated with a smaller amount of training-induced hypertrophy. This may be due in part to an inability to stimulate muscle-protein synthesis (MPS) after an acute bout of RE. We hypothesized that older adults would have impaired mammalian target of rapamycin complex (mTORC)1 signaling and MPS response compared with young adults after acute RE. Methods We measured intracellular signaling and MPS in 16 older (mean 70 ± 2 years) and 16 younger (27 ± 2 years) subjects. Muscle biopsies were sampled at baseline and at 3, 6 and 24 hr after exercise. Phosphorylation of regulatory signaling proteins and MPS were determined on successive muscle biopsies by immunoblotting and stable isotopic tracer techniques, respectively. Results Increased phosphorylation was seen only in the younger group (P< 0.05) for several key signaling proteins after exercise, including mammalian target of rapamycin (mTOR), ribosomal S6 kinase (S6K)1, eukaryotic initiation factor 4E-binding protein (4E-BP)1 and extracellular signal-regulated kinase (ERK)1/2, with no changes seen in the older group (P >0.05). After exercise, MPS increased from baseline only in the younger group (P< 0.05), with MPS being significantly greater than that in the older group (P <0.05). Conclusions We conclude that aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. These age-related differences may contribute to the blunted hypertrophic response seen after resistance-exercise training in older adults, and highlight the mTORC1 pathway as a key therapeutic target to prevent sarcopenia.
Collapse
Affiliation(s)
- Christopher S Fry
- Division of Rehabilitation Sciences, University of Texas Medical Branch, Galveston, Texas, 77550 USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wu M, Fannin J, Rice KM, Wang B, Blough ER. Effect of aging on cellular mechanotransduction. Ageing Res Rev 2011; 10:1-15. [PMID: 19932197 DOI: 10.1016/j.arr.2009.11.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 11/11/2009] [Accepted: 11/16/2009] [Indexed: 12/27/2022]
Abstract
Aging is becoming a critical heath care issue and a burgeoning economic burden on society. Mechanotransduction is the ability of the cell to sense, process, and respond to mechanical stimuli and is an important regulator of physiologic function that has been found to play a role in regulating gene expression, protein synthesis, cell differentiation, tissue growth, and most recently, the pathophysiology of disease. Here we will review some of the recent findings of this field and attempt, where possible, to present changes in mechanotransduction that are associated with the aging process in several selected physiological systems, including musculoskeletal, cardiovascular, neuronal, respiratory systems and skin.
Collapse
|
26
|
Andrews JL, Zhang X, McCarthy JJ, McDearmon EL, Hornberger TA, Russell B, Campbell KS, Arbogast S, Reid MB, Walker JR, Hogenesch JB, Takahashi JS, Esser KA. CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function. Proc Natl Acad Sci U S A 2010; 107:19090-5. [PMID: 20956306 PMCID: PMC2973897 DOI: 10.1073/pnas.1014523107] [Citation(s) in RCA: 270] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
MyoD, a master regulator of myogenesis, exhibits a circadian rhythm in its mRNA and protein levels, suggesting a possible role in the daily maintenance of muscle phenotype and function. We report that MyoD is a direct target of the circadian transcriptional activators CLOCK and BMAL1, which bind in a rhythmic manner to the core enhancer of the MyoD promoter. Skeletal muscle of Clock(Δ19) and Bmal1(-/-) mutant mice exhibited ∼30% reductions in normalized maximal force. A similar reduction in force was observed at the single-fiber level. Electron microscopy (EM) showed that the myofilament architecture was disrupted in skeletal muscle of Clock(Δ19), Bmal1(-/-), and MyoD(-/-) mice. The alteration in myofilament organization was associated with decreased expression of actin, myosins, titin, and several MyoD target genes. EM analysis also demonstrated that muscle from both Clock(Δ19) and Bmal1(-/-) mice had a 40% reduction in mitochondrial volume. The remaining mitochondria in these mutant mice displayed aberrant morphology and increased uncoupling of respiration. This mitochondrial pathology was not seen in muscle of MyoD(-/-) mice. We suggest that altered expression of both Pgc-1α and Pgc-1β in Clock(Δ19) and Bmal1(-/-) mice may underlie this pathology. Taken together, our results demonstrate that disruption of CLOCK or BMAL1 leads to structural and functional alterations at the cellular level in skeletal muscle. The identification of MyoD as a clock-controlled gene provides a mechanism by which the circadian clock may generate a muscle-specific circadian transcriptome in an adaptive role for the daily maintenance of adult skeletal muscle.
Collapse
Affiliation(s)
| | - Xiping Zhang
- Department of Physiology, University of Kentucky, Lexington, KY 40536
| | - John J. McCarthy
- Department of Physiology, University of Kentucky, Lexington, KY 40536
| | - Erin L. McDearmon
- The Howard Hughes Medical Institute, Northwestern University, Evanston, IL 60208
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208
| | | | - Brenda Russell
- Department of Physiology and Biophysics, University of Illinois, Chicago, IL 60612
| | | | - Sandrine Arbogast
- Department of Physiology, University of Kentucky, Lexington, KY 40536
| | - Michael B. Reid
- Department of Physiology, University of Kentucky, Lexington, KY 40536
| | - John R. Walker
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121; and
| | - John B. Hogenesch
- Department of Pharmacology, Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Joseph S. Takahashi
- The Howard Hughes Medical Institute, Northwestern University, Evanston, IL 60208
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208
- The Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas TX 75390
| | - Karyn A. Esser
- School of Kinesiology, University of Illinois, Chicago, IL 60609
- Department of Physiology, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
27
|
Fry CS, Glynn EL, Drummond MJ, Timmerman KL, Fujita S, Abe T, Dhanani S, Volpi E, Rasmussen BB. Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. J Appl Physiol (1985) 2010; 108:1199-209. [PMID: 20150565 PMCID: PMC2867530 DOI: 10.1152/japplphysiol.01266.2009] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 02/09/2010] [Indexed: 01/07/2023] Open
Abstract
The loss of skeletal muscle mass during aging, sarcopenia, increases the risk for falls and dependence. Resistance exercise (RE) is an effective rehabilitation technique that can improve muscle mass and strength; however, older individuals are resistant to the stimulation of muscle protein synthesis (MPS) with traditional high-intensity RE. Recently, a novel rehabilitation exercise method, low-intensity RE, combined with blood flow restriction (BFR), has been shown to stimulate mammalian target of rapamycin complex 1 (mTORC1) signaling and MPS in young men. We hypothesized that low-intensity RE with BFR would be able to activate mTORC1 signaling and stimulate MPS in older men. We measured MPS and mTORC1-associated signaling proteins in seven older men (age 70+/-2 yr) before and after exercise. Subjects were studied identically on two occasions: during BFR exercise [bilateral leg extension exercise at 20% of 1-repetition maximum (1-RM) with pressure cuff placed proximally on both thighs and inflated at 200 mmHg] and during exercise without the pressure cuff (Ctrl). MPS and phosphorylation of signaling proteins were determined on successive muscle biopsies by stable isotopic techniques and immunoblotting, respectively. MPS increased 56% from baseline after BFR exercise (P<0.05), while no change was observed in the Ctrl group (P>0.05). Downstream of mTORC1, ribosomal S6 kinase 1 (S6K1) phosphorylation and ribosomal protein S6 (rpS6) phosphorylation increased only in the BFR group after exercise (P<0.05). We conclude that low-intensity RE in combination with BFR enhances mTORC1 signaling and MPS in older men. BFR exercise is a novel intervention that may enhance muscle rehabilitation to counteract sarcopenia.
Collapse
Affiliation(s)
- Christopher S Fry
- University of Texas Medical Branch, Sealy Center on Aging, Department of Physical Therapy, Division of Rehabilitation Sciences, 301 Univ. Blvd., Galveston, TX 77555-1144, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
p38 mitogen-activated protein kinase up-regulates NF-κB transcriptional activation through RelA phosphorylation during stretch-induced myogenesis. Biochem Biophys Res Commun 2010; 391:547-51. [DOI: 10.1016/j.bbrc.2009.11.095] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 11/16/2009] [Indexed: 01/12/2023]
|
29
|
Mayhew DL, Kim JS, Cross JM, Ferrando AA, Bamman MM. Translational signaling responses preceding resistance training-mediated myofiber hypertrophy in young and old humans. J Appl Physiol (1985) 2009; 107:1655-62. [PMID: 19589955 DOI: 10.1152/japplphysiol.91234.2008] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
While skeletal muscle protein accretion during resistance training (RT)-mediated myofiber hypertrophy is thought to result from upregulated translation initiation signaling, this concept is based on responses to a single bout of unaccustomed resistance exercise (RE) with no measure of hypertrophy across RT. Further, aging appears to affect acute responses to RE, but whether age differences in responsiveness persist during RT leading to impaired RT adaptation is unclear. We therefore tested whether muscle protein fractional synthesis rate (FSR) and Akt/mammalian target of rapamycin (mTOR) signaling in response to unaccustomed RE differed in old vs. young adults, and whether age differences in acute responsiveness were associated with differences in muscle hypertrophy after 16 wk of RT. Fifteen old and 21 young adult subjects completed the 16-wk study. The phosphorylation states of Akt, S6K1, ribosomal protein S6 (RPS6), eukaryotic initiation factor 4E (eIF4E) binding protein (4EBP1), eIF4E, and eIF4G were all elevated (23-199%) 24 h after a bout of unaccustomed RE. A concomitant 62% increase in FSR was found in a subset (6 old, 8 young). Age x time interaction was found only for RPS6 phosphorylation (+335% in old subjects only), while there was an interaction trend (P = 0.084) for FSR (+96% in young subjects only). After 16 wk of RT, gains in muscle mass, type II myofiber size, and voluntary strength were similar in young and old subjects. In conclusion, at the level of translational signaling, we found no evidence of impaired responsiveness among older adults, and for the first time, we show that changes in translational signaling after unaccustomed RE were associated with substantial muscle protein accretion (hypertrophy) during continued RT.
Collapse
Affiliation(s)
- David L Mayhew
- UAB Dept. of Physiology, 966 McCallum Basic Health Sciences Bldg., 1530 3rd Ave. South, Birmingham, AL 35294-0005, USA
| | | | | | | | | |
Collapse
|
30
|
Baewer DV, van Dyke JM, Bain JLW, Riley DA. Stretch reduces central core lesions and calcium build-up in tenotomized soleus. Muscle Nerve 2008; 38:1563-71. [DOI: 10.1002/mus.21130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Rader EP, Cederna PS, McClellan WT, Caterson SA, Panter KE, Yu D, Buchman SR, Larkin LM, Faulkner JA, Weinzweig J. Effect of cleft palate repair on the susceptibility to contraction-induced injury of single permeabilized muscle fibers from congenitally-clefted goat palates. Cleft Palate Craniofac J 2008; 45:113-20. [PMID: 18333646 DOI: 10.1597/06-171.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Despite cleft palate repair, velopharyngeal competence is not achieved in approximately 15% of patients, often necessitating secondary surgical correction. Velopharyngeal competence postrepair may require the conversion of levator veli palatini muscle fibers from injury-susceptible type 2 fibers to injury-resistant type 1 fibers. As an initial step to determining the validity of this theory, we tested the hypothesis that, in most cases, repair induces the transformation to type 1 fibers, thus diminishing susceptibility to injury. INTERVENTIONS Single permeabilized levator veli palatini muscle fibers were obtained from normal palates and nonrepaired congenitally-clefted palates of young (2 months old) and adult (14 to 15 months old) goats and from repaired palates of adult goats (8 months old). Repair was done at 2 months of age using a modified von Langenbeck technique. MAIN OUTCOME MEASURES Fiber type was determined by contractile properties and susceptibility to injury was assessed by force deficit, the decrease in maximum force following a lengthening contraction protocol expressed as a percentage of initial force. RESULTS For normal palates and cleft palates of young goats, the majority of the fibers were type 2 with force deficits of approximately 40%. Following repair, 80% of the fibers were type 1 with force deficits of 20% +/- 2%; these deficits were 45% of those for nonrepaired cleft palates of adult goats (p < .0001). CONCLUSION The decrease in the percentage of type 2 fibers and susceptibility to injury may be important for the development of a functional levator veli palatini muscle postrepair.
Collapse
Affiliation(s)
- Erik P Rader
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Drummond MJ, Dreyer HC, Pennings B, Fry CS, Dhanani S, Dillon EL, Sheffield-Moore M, Volpi E, Rasmussen BB. Skeletal muscle protein anabolic response to resistance exercise and essential amino acids is delayed with aging. J Appl Physiol (1985) 2008; 104:1452-61. [PMID: 18323467 DOI: 10.1152/japplphysiol.00021.2008] [Citation(s) in RCA: 267] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle loss during aging leads to an increased risk of falls, fractures, and eventually loss of independence. Resistance exercise is a useful intervention to prevent sarcopenia; however, the muscle protein synthesis (MPS) response to resistance exercise is less in elderly compared with young subjects. On the other hand, essential amino acids (EAA) increase MPS equally in both young and old subjects when sufficient EAA is ingested. We hypothesized that EAA ingestion following a bout of resistance exercise would stimulate anabolic signaling and MPS similarly between young and old men. Each subject ingested 20 g of EAA 1 h following leg resistance exercise. Muscle biopsies were obtained before and 1, 3, and 6 h after exercise to measure the rate of MPS and signaling pathways that regulate translation initiation. MPS increased early in young (1-3 h postexercise) and later in old (3-6 h postexercise). At 1 h postexercise, ERK1/2 MNK1 phosphorylation increased and eIF2alpha phosphorylation decreased only in the young. mTOR signaling (mTOR, S6K1, 4E-BP1, eEF2) was similar between groups at all time points, but MNK1 phosphorylation was lower at 3 h and AMP-activated protein kinase-alpha (AMPKalpha) phosphorylation was higher in old 1-3 h postexercise. We conclude that the acute MPS response after resistance exercise and EAA ingestion is similar between young and old men; however, the response is delayed with aging. Unresponsive ERK1/2 signaling and AMPK activation in old muscle may be playing a role in the delayed activation of MPS. Notwithstanding, the combination of resistance exercise and EAA ingestion should be a useful strategy to combat sarcopenia.
Collapse
Affiliation(s)
- Micah J Drummond
- Department of Physical Therapy, Division of Rehabilitation Sciences, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1144, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ji LL. Modulation of skeletal muscle antioxidant defense by exercise: Role of redox signaling. Free Radic Biol Med 2008; 44:142-52. [PMID: 18191750 DOI: 10.1016/j.freeradbiomed.2007.02.031] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 02/16/2007] [Accepted: 02/17/2007] [Indexed: 01/19/2023]
Abstract
Contraction-induced production of reactive oxygen species has been shown to cause oxidative stress to skeletal muscle. As an adaptive response, muscle antioxidant defense systems are upregulated in response to exercise. Nuclear factor kappaB and mitogen-activated protein kinase are two major oxidative-stress-sensitive signal transduction pathways that have been shown to activate the gene expression of a number of enzymes and proteins that play important roles in maintenance of intracellular oxidant-antioxidant homeostasis. This mini-review will discuss the main mechanisms and gene targets for these signaling pathways during exercise and the biological significance of the adaptation.
Collapse
Affiliation(s)
- Li Li Ji
- The Biodynamics Laboratory, University of Wisconsin-Madison, 2000 Observatory Drive, Madison, WI 53706, USA.
| |
Collapse
|
34
|
Abstract
Skeletal muscle is a malleable tissue capable of altering the type and amount of protein in response to disruptions to cellular homeostasis. The process of exercise-induced adaptation in skeletal muscle involves a multitude of signalling mechanisms initiating replication of specific DNA genetic sequences, enabling subsequent translation of the genetic message and ultimately generating a series of amino acids that form new proteins. The functional consequences of these adaptations are determined by training volume, intensity and frequency, and the half-life of the protein. Moreover, many features of the training adaptation are specific to the type of stimulus, such as the mode of exercise. Prolonged endurance training elicits a variety of metabolic and morphological changes, including mitochondrial biogenesis, fast-to-slow fibre-type transformation and substrate metabolism. In contrast, heavy resistance exercise stimulates synthesis of contractile proteins responsible for muscle hypertrophy and increases in maximal contractile force output. Concomitant with the vastly different functional outcomes induced by these diverse exercise modes, the genetic and molecular mechanisms of adaptation are distinct. With recent advances in technology, it is now possible to study the effects of various training interventions on a variety of signalling proteins and early-response genes in skeletal muscle. Although it cannot presently be claimed that such scientific endeavours have influenced the training practices of elite athletes, these new and exciting technologies have provided insight into how current training techniques result in specific muscular adaptations, and may ultimately provide clues for future and novel training methodologies. Greater knowledge of the mechanisms and interaction of exercise-induced adaptive pathways in skeletal muscle is important for our understanding of the aetiology of disease, maintenance of metabolic and functional capacity with aging, and training for athletic performance. This article highlights the effects of exercise on molecular and genetic mechanisms of training adaptation in skeletal muscle.
Collapse
Affiliation(s)
- Vernon G Coffey
- School of Medical Sciences, Exercise Metabolism Group, RMIT University, Melbourne, Victoria, Australia
| | | |
Collapse
|
35
|
Coffey VG, Hawley JA. The molecular bases of training adaptation. SPORTS MEDICINE (AUCKLAND, N.Z.) 2007. [PMID: 17722947 DOI: 10.2165/00007256-200737090-00001.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Skeletal muscle is a malleable tissue capable of altering the type and amount of protein in response to disruptions to cellular homeostasis. The process of exercise-induced adaptation in skeletal muscle involves a multitude of signalling mechanisms initiating replication of specific DNA genetic sequences, enabling subsequent translation of the genetic message and ultimately generating a series of amino acids that form new proteins. The functional consequences of these adaptations are determined by training volume, intensity and frequency, and the half-life of the protein. Moreover, many features of the training adaptation are specific to the type of stimulus, such as the mode of exercise. Prolonged endurance training elicits a variety of metabolic and morphological changes, including mitochondrial biogenesis, fast-to-slow fibre-type transformation and substrate metabolism. In contrast, heavy resistance exercise stimulates synthesis of contractile proteins responsible for muscle hypertrophy and increases in maximal contractile force output. Concomitant with the vastly different functional outcomes induced by these diverse exercise modes, the genetic and molecular mechanisms of adaptation are distinct. With recent advances in technology, it is now possible to study the effects of various training interventions on a variety of signalling proteins and early-response genes in skeletal muscle. Although it cannot presently be claimed that such scientific endeavours have influenced the training practices of elite athletes, these new and exciting technologies have provided insight into how current training techniques result in specific muscular adaptations, and may ultimately provide clues for future and novel training methodologies. Greater knowledge of the mechanisms and interaction of exercise-induced adaptive pathways in skeletal muscle is important for our understanding of the aetiology of disease, maintenance of metabolic and functional capacity with aging, and training for athletic performance. This article highlights the effects of exercise on molecular and genetic mechanisms of training adaptation in skeletal muscle.
Collapse
Affiliation(s)
- Vernon G Coffey
- School of Medical Sciences, Exercise Metabolism Group, RMIT University, Melbourne, Victoria, Australia
| | | |
Collapse
|
36
|
Ji LL. Antioxidant signaling in skeletal muscle: A brief review. Exp Gerontol 2007; 42:582-93. [PMID: 17467943 DOI: 10.1016/j.exger.2007.03.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 03/02/2007] [Accepted: 03/06/2007] [Indexed: 01/22/2023]
Abstract
Generation of reactive oxygen species (ROS) is a ubiquitous biological phenomenon in eukaryotic cell life. During the past two decades, much attention has been paid to the detrimental effects of ROS such as oxidative stress, pathogenesis and aging. However, there is now increasing evidence and recognition that ROS are not merely damaging agents inflicting random destruction to the cell structure and function, but useful signaling molecules to regulate growth, differentiation, proliferation, and apoptosis, at least within the physiological concentration. In skeletal muscle contractile activity has been shown to upregulate antioxidant defense systems and ROS has been postulated to be essential in this adaptation. Available research data suggest that nuclear factor (NF)kappaB and mitogen-activated protein kinase (MAPK) play a critical role in the relay of oxidative stress signals to gene expression apparatus in the myocytes under a variety of physiological and pathological conditions. This mini-review will discuss the main mechanisms and gene targets for these antioxidant signaling pathways during exercise, inflammation and aging.
Collapse
Affiliation(s)
- Li Li Ji
- The Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
37
|
Peart JN, Gross ER, Headrick JP, Gross GJ. Impaired p38 MAPK/HSP27 signaling underlies aging-related failure in opioid-mediated cardioprotection. J Mol Cell Cardiol 2007; 42:972-80. [PMID: 17407780 PMCID: PMC2497430 DOI: 10.1016/j.yjmcc.2007.02.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 01/31/2007] [Accepted: 02/20/2007] [Indexed: 10/23/2022]
Abstract
Cardioprotection and preconditioning mediated via G-protein-coupled receptors may be lost or impaired with advancing age, limiting ischemic tolerance and the ability to pharmacologically protect older hearts from ischemic injury. Our preliminary findings indicated a loss of delta-opioid receptor-mediated protection in aged vs. young mouse hearts, which may involve alterations in protective kinase signaling. In the present study, we tested the hypothesis that aging-related loss of opioid-triggered cardioprotection involves failure to activate p38 MAPK and its distal signaling targets. Langendorff-perfused hearts from young (10-14 weeks) or aged (24-26 months) C57 mice underwent 25-min ischemia and 45-min reperfusion in the presence or absence of 1 micromol/l DPDPE (delta-opioid agonist) or 1 micromol/l anisomycin (activator of p38 MAPK), and functional recovery and protein activation/phosphorylation were assessed. Contractile recovery was similar in untreated young and aged hearts (50+/-2% and 53+/-5%, respectively), and was enhanced by DPDPE in young hearts only (67+/-3%). Immunoblot analysis revealed that DPDPE comparably activated or phosphorylated GRK2, Akt, ERK1/2 and p70S6 kinase in young and aged hearts, whereas aging abrogated the stimulatory effects of DPDPE on p38 MAPK and HSP27. Treatment with anisomycin elicited comparable activation of p38 MAPK and HSP27 in both young and aged hearts, coupled with a pronounced and equivalent cardioprotection in the two groups (73+/-3% and 77+/-2%, respectively), an effect abolished by the p38 MAPK inhibitor, SB203580. These data indicate that aging-related loss of delta-opioid-mediated cardioprotection involves failure to activate p38 MAPK and HSP27. Direct targeting of this pathway elicits comparable protection in both age groups.
Collapse
Affiliation(s)
- Jason N Peart
- Heart Foundation Research Center, Griffith University, Queensland, 9726, Australia.
| | | | | | | |
Collapse
|
38
|
Zhan M, Jin B, Chen SE, Reecy JM, Li YP. TACE release of TNF-alpha mediates mechanotransduction-induced activation of p38 MAPK and myogenesis. J Cell Sci 2007; 120:692-701. [PMID: 17264149 PMCID: PMC3099537 DOI: 10.1242/jcs.03372] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle responds to mechanical stimulation by activating p38 MAPK, a key signal for myogenesis. However, the mechanotransduction mechanism that activates p38 is unknown. Here we show that mechanical stimulation of myoblasts activates p38 and myogenesis through stimulating TNF-alpha release by TNF-alpha converting enzyme (TACE). In C2C12 or mouse primary myoblasts cultured in growth medium, static stretch activated p38 along with ERK1/2, JNK and AKT. Disrupting TNF-alpha signaling by TNF-alpha-neutralizing antibody or knocking out TNF-alpha receptors blocked stretch activation of p38, but not ERK1/2, JNK or AKT. Stretch also activated differentiation markers MEF2C, myogenin, p21 and myosin heavy chain in a TNF-alpha- and p38-dependent manner. Stretch stimulated the cleavage activity of TACE. Conversely, TACE inhibitor TAPI or TACE siRNA abolished stretch activation of p38. In addition, conditioned medium from stretched myoblast cultures activated p38 in unstretched myoblasts, which required TACE activity in the donor myoblasts, and TNF-alpha receptors in the recipient myoblasts. These results indicate that posttranscriptional activation of TACE mediates the mechanotransduction that activates p38-dependent myogenesis via the release of TNF-alpha.
Collapse
Affiliation(s)
- Mei Zhan
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza-520B, Houston, TX 77030, USA
| | - Bingwen Jin
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza-520B, Houston, TX 77030, USA
| | - Shuen-Ei Chen
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza-520B, Houston, TX 77030, USA
| | - James M. Reecy
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Yi-Ping Li
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza-520B, Houston, TX 77030, USA
- Author for correspondence ()
| |
Collapse
|
39
|
Adamo ML, Farrar RP. Resistance training, and IGF involvement in the maintenance of muscle mass during the aging process. Ageing Res Rev 2006; 5:310-31. [PMID: 16949353 DOI: 10.1016/j.arr.2006.05.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 05/08/2006] [Accepted: 05/10/2006] [Indexed: 12/21/2022]
Abstract
Sarcopenia is the decline of muscle mass and strength with age. Sarcopenia leads to significant impairment in the ability to carry out normal daily function and thus there is a great need for interventions that will lead to muscle regeneration and repair in the aging population. Age-related sarcopenia in humans, characterized by loss of type I and type II muscle fibers and a decrease in fiber cross-sectional area primarily in type II fibers, can be attenuated by mechanical load on the muscle, which increases cross-sectional area of the remaining fibers, but does not restore fiber numbers characteristic of young muscle. Considerable evidence also implicates age-related declines in muscle insulin-like growth factor action in sarcopenia. IGF-I promotes myoblast proliferation, differentiation, and protein accretion in muscle through multiple signaling mechanisms, including the PI3-kinase, MAP kinase and calcineurin pathways. Exercise and injury induce increases in IGF-I, IGF-I receptors and IGF-I-activated signaling pathways. Although there is evidence that aging muscle retains the ability to synthesize IGF-I, there is also evidence that aging may be associated with attenuation of the ability of exercise to induce an isoform of IGF-I that promotes satellite cell proliferation. Moreover, aging muscle may be resistant to IGF-I, an effect that is reversed by exercise. However, it is clear that over-expression of IGF-I in muscle can protect against age-related sarcopenia.
Collapse
Affiliation(s)
- Martin L Adamo
- Department of Biochemistry and The Barshop Institute for Aging and Longevity Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | |
Collapse
|
40
|
Boppart MD, Burkin DJ, Kaufman SJ. α7β1-Integrin regulates mechanotransduction and prevents skeletal muscle injury. Am J Physiol Cell Physiol 2006; 290:C1660-5. [PMID: 16421207 DOI: 10.1152/ajpcell.00317.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
α7β1-Integrin links laminin in the extracellular matrix with the cell cytoskeleton and therein mediates transduction of mechanical forces into chemical signals. Muscle contraction and stretching ex vivo result in activation of intracellular signaling molecules that are integral to postexercise injury responses. Because α7β1-integrin stabilizes muscle and provides communication between the matrix and cytoskeleton, the role of this integrin in exercise-induced cell signaling and skeletal muscle damage was assessed in wild-type and transgenic mice overexpressing the α7BX2 chain. We report here that increasing α7β1-integrin inhibits phosphorylation of molecules associated with muscle damage, including the mitogen-activated protein kinases (JNK, p38, and ERK), following downhill running. Likewise, activation of molecules associated with hypertrophy (AKT, mTOR, and p70S6k) was diminished in mice overexpressing integrin. While exercise resulted in Evans blue dye-positive fibers, an index of muscle damage, increased integrin protected mice from injury. Moreover, exercise leads to an increase in α7β1protein. These experiments provide the first evidence that α7β1-integrin is a negative regulator of mechanotransduction in vivo and provides resistance to exercise-induced muscle damage.
Collapse
Affiliation(s)
- Marni D Boppart
- Dept. of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
41
|
Haddad F, Adams GR. Aging-sensitive cellular and molecular mechanisms associated with skeletal muscle hypertrophy. J Appl Physiol (1985) 2005; 100:1188-203. [PMID: 16373446 DOI: 10.1152/japplphysiol.01227.2005] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sarcopenia is an age-related loss of muscle mass and strength. The aged can increase various measures of muscle size and strength in response to resistance exercise (RE), but this may not normalize specific tension. In rats, aging reduces the hypertrophy response and impairs regeneration. In this study, we measured cellular and molecular markers, indicative of muscle hypertrophy, that also respond to acute increases in loading. Comparing 6- and 30-mo-old rats, the aims were to 1) determine whether these markers are altered with age and 2) identify age-sensitive responses to acute RE. The muscles of old rats exhibited sarcopenia involving a deficit in contractile proteins and decreased force generation. The RNA-to-protein ratio was higher in the old muscles, suggesting a decrease in translational efficiency. There was evidence of reduced signaling via components downstream from the insulin/insulin-like growth factor (IGF)-I receptors in old muscles. The mRNA levels of myostatin and suppressor of cytokine signaling 2, negative regulators of muscle mass, were lower in old muscles but did not decrease following RE. RE induced increases in the mRNAs for IGF-I, mechano-growth factor, cyclin D1, and suppressor of cytokine signaling 3 were similar in old and young muscles. RE induced phosphorylation of the IGF-I receptor, and Akt increased in young but not old muscles, whereas that of S6K1 was similar for both. The results of this study indicate that a number of components of intracellular signaling pathways are sensitive to age. As a result, key anticatabolic responses appear to be refractory to the stimuli provided by RE.
Collapse
Affiliation(s)
- Fadia Haddad
- Department of Physiology & Biophysics, University of California, Irvine, Medical Sciences 1, Rm. D335, 92697-4560, USA
| | | |
Collapse
|
42
|
Sieck GC. Commentary. J Appl Physiol (1985) 2005. [DOI: 10.1152/japplphysiol.00058.2005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|