1
|
Gough LA, Deb SK, Brown D, Sparks SA, McNaughton LR. The effects of sodium bicarbonate ingestion on cycling performance and acid base balance recovery in acute normobaric hypoxia. J Sports Sci 2019; 37:1464-1471. [PMID: 30668281 DOI: 10.1080/02640414.2019.1568173] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This study investigated the effects of two separate doses of sodium bicarbonate (NaHCO3) on 4 km time trial (TT) cycling performance and post-exercise acid base balance recovery in hypoxia. Fourteen club-level cyclists completed four cycling TT's, followed by a 40 min passive recovery in normobaric hypoxic conditions (FiO2 = 14.5%) following one of either: two doses of NaHCO3 (0.2 g.kg-1 BM; SBC2, or 0.3 g.kg-1 BM; SBC3), a taste-matched placebo (0.07 g.kg-1 BM sodium chloride; PLA), or a control trial in a double-blind, randomized, repeated-measures and crossover design study. Compared to PLA, TT performance was improved following SBC2 (p = 0.04, g = 0.16, very likely beneficial), but was improved to a greater extent following SBC3 (p = 0.01, g = 0.24, very likely beneficial). Furthermore, a likely benefit of ingesting SBC3 over SBC2 was observed (p = 0.13, g = 0.10), although there was a large inter-individual variation. Both SBC treatments achieved full recovery within 40 min, which was not observed in either PLA or CON following the TT. In conclusion, NaHCO3 improves 4 km TT performance and acid base balance recovery in acute moderate hypoxic conditions, however the optimal dose warrants an individual approach.
Collapse
Affiliation(s)
- Lewis A Gough
- a Sport and Physical Activity Department, Faculty of Health and Life Sciences , Birmingham City University , Birmingham , UK.,b Sports Nutrition and Performance Group, Department of Sport and Physical Activity , Edge Hill University , Ormskirk , UK
| | - Sanjoy K Deb
- b Sports Nutrition and Performance Group, Department of Sport and Physical Activity , Edge Hill University , Ormskirk , UK.,c Life Sciences Department , University of Westminster , London , UK
| | - Danny Brown
- b Sports Nutrition and Performance Group, Department of Sport and Physical Activity , Edge Hill University , Ormskirk , UK
| | - S Andy Sparks
- b Sports Nutrition and Performance Group, Department of Sport and Physical Activity , Edge Hill University , Ormskirk , UK
| | - Lars R McNaughton
- b Sports Nutrition and Performance Group, Department of Sport and Physical Activity , Edge Hill University , Ormskirk , UK.,d Department of Sport and Movement Studies, Faculty of Health Science , University of Johannesburg , Johannesburg , South Africa
| |
Collapse
|
2
|
Sihvo HK, Airas N, Lindén J, Puolanne E. Pectoral Vessel Density and Early Ultrastructural Changes in Broiler Chicken Wooden Breast Myopathy. J Comp Pathol 2018; 161:1-10. [DOI: 10.1016/j.jcpa.2018.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 12/04/2017] [Accepted: 04/10/2018] [Indexed: 10/14/2022]
|
3
|
Dominelli PB, Molgat-Seon Y, Griesdale DEG, Peters CM, Blouin JS, Sekhon M, Dominelli GS, Henderson WR, Foster GE, Romer LM, Koehle MS, Sheel AW. Exercise-induced quadriceps muscle fatigue in men and women: effects of arterial oxygen content and respiratory muscle work. J Physiol 2017; 595:5227-5244. [PMID: 28524229 DOI: 10.1113/jp274068] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/16/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS High work of breathing and exercise-induced arterial hypoxaemia (EIAH) can decrease O2 delivery and exacerbate exercise-induced quadriceps fatigue in healthy men. Women have a higher work of breathing during exercise, dedicate a greater fraction of whole-body V̇O2 towards their respiratory muscles and develop EIAH. Despite a greater reduction in men's work of breathing, the attenuation of quadriceps fatigue was similar between the sexes. The degree of EIAH was similar between sexes, and regardless of sex, those who developed the greatest hypoxaemia during exercise demonstrated the most attenuation of quadriceps fatigue. Based on our previous finding that women have a greater relative oxygen cost of breathing, women appear to be especially susceptible to work of breathing-related changes in quadriceps muscle fatigue. ABSTRACT Reducing the work of breathing or eliminating exercise-induced arterial hypoxaemia (EIAH) during exercise decreases the severity of quadriceps fatigue in men. Women have a greater work of breathing during exercise, dedicate a greater fraction of whole-body V̇O2 towards their respiratory muscles, and demonstrate EIAH, suggesting women may be especially susceptible to quadriceps fatigue. Healthy subjects (8 male, 8 female) completed three constant load exercise tests over 4 days. During the first (control) test, subjects exercised at ∼85% of maximum while arterial blood gases and work of breathing were assessed. Subsequent constant load exercise tests were iso-time and iso-work rate, but with EIAH prevented by inspiring hyperoxic gas or work of breathing reduced via a proportional assist ventilator (PAV). Quadriceps fatigue was assessed by measuring force in response to femoral nerve stimulation. For both sexes, quadriceps force was equally reduced after the control trial (-27 ± 2% baseline) and was attenuated with hyperoxia and PAV (-18 ± 1 and -17 ± 2% baseline, P < 0.01, respectively), with no sex difference. EIAH was similar between the sexes, and regardless of sex, subjects with the lowest oxyhaemoglobin saturation during the control test had the greatest quadriceps fatigue attenuation with hyperoxia (r2 = 0.79, P < 0.0001). For the PAV trial, despite reducing the work of breathing to a greater degree in men (men: 60 ± 5, women: 75 ± 6% control, P < 0.05), the attenuation of quadriceps fatigue was similar between the sexes (36 ± 4 vs. 37 ± 7%). Owing to a greater relative V̇O2 of the respiratory muscles in women, less of a change in work of breathing is needed to reduce quadriceps fatigue.
Collapse
Affiliation(s)
- Paolo B Dominelli
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Yannick Molgat-Seon
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Donald E G Griesdale
- Division of Critical Care Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Carli M Peters
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | | | - Mypinder Sekhon
- Division of Critical Care Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Giulio S Dominelli
- Division of Respiratory Medicine, University of British Columbia, Kelowna, BC, Canada
| | - William R Henderson
- Division of Critical Care Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Lee M Romer
- Centre for Human Performance, Exercise and Rehabilitation, Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, UK
| | - Michael S Koehle
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - A William Sheel
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
HUREAU THOMASJ, DUCROCQ GUILLAUMEP, BLAIN GREGORYM. Peripheral and Central Fatigue Development during All-Out Repeated Cycling Sprints. Med Sci Sports Exerc 2016; 48:391-401. [DOI: 10.1249/mss.0000000000000800] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Ensemble Input of Group III/IV Muscle Afferents to CNS: A Limiting Factor of Central Motor Drive During Endurance Exercise from Normoxia to Moderate Hypoxia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 903:325-42. [PMID: 27343106 DOI: 10.1007/978-1-4899-7678-9_22] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We recently hypothesized that across the range of normoxia to severe hypoxia the major determinant of central motor drive (CMD) during endurance exercise switches from a predominantly peripheral origin to a hypoxic-sensitive central component of fatigue. We found that peripheral locomotor muscle fatigue (pLMF) is the prevailing factor limiting central motor drive and therefore exercise performance from normoxia to moderate hypoxia (SaO2 > 75 %). In these levels of arterial hypoxemia, the development of pLMF is confined to a certain limit which varies between humans-pLMF does not develop to this limit in more severe hypoxia (SaO2 < 70 %) and exercise is prematurely terminated presumably to protect the brain from insufficient O2 supply. Based on the observations from normoxia to moderate hypoxia, we outlined a model suggesting that group III/IV muscle afferents impose inhibitory influences on the determination of CMD of working humans during high-intensity endurance exercise with the purpose to regulate and restrict the level of exercise-induced pLMF to an "individual critical threshold." To experimentally test this model, we pharmacologically blocked somatosensory pathways originating in the working limbs during cycling exercise in normoxia. After initial difficulties with a local anesthetic (epidural lidocaine, L3-L4) and associated loss of locomotor muscle strength we switched to an intrathecally applied opioid analgesic (fentanyl, L3-L4). These experiments were the first ever to selectively block locomotor muscle afferents during high-intensity cycling exercise without affecting maximal locomotor muscle strength. In the absence of opioid-mediated neural feedback from the working limbs, CMD was increased and end-exercise pLMF substantially exceeded, for the first time, the individual critical threshold of peripheral fatigue. The outcome of these studies confirm our hypothesis claiming that afferent feedback inhibits CMD and restricts the development of pLMF to an individual critical threshold as observed from normoxia up to moderate hypoxia.
Collapse
|
6
|
Morales-Artacho AJ, Padial P, Rodríguez-Matoso D, Rodríguez-Ruiz D, García-Ramos A, García-Manso JM, Calderón C, Feriche B. Assessment of Muscle Contractile Properties at Acute Moderate Altitude Through Tensiomyography. High Alt Med Biol 2015; 16:343-9. [PMID: 26562625 DOI: 10.1089/ham.2015.0078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Under hypoxia, alterations in muscle contractile properties and faster fatigue development have been reported. This study investigated the efficacy of tensiomyography (TMG) in assessing muscle contractile function at acute moderate altitude. Biceps femoris (BF) and vastus lateralis (VL) muscles of 18 athletes (age 20.1 ± 6.1 years; body mass 65.4 ± 13.9 kg; height 174.6 ± 9.5 cm) were assessed at sea level and moderate altitude using electrically evoked contractions on two consecutive days. Maximum radial displacement (Dm), time of contraction (Tc), reaction time (Td), sustained contraction time (Ts), and relaxation time (Tr) were recorded at 40, 60, 80, and 100 mA. At altitude, VL showed lower Dm values at 40 mA (p = 0.008; ES = -0.237). Biceps femoris showed Dm decrements in all electrical stimulations (p < 0.001, ES > 0.61). In VL, Tc was longer at altitude at 40 (p = 0.031, ES = 0.56), and 100 mA (p = 0.03, ES = 0.51). Regarding Td, VL showed significant increases in all electrical intensities under hypoxia (p ≤ 0.03, ES ≥ 0.33). TMG appears effective at detecting slight changes in the muscle contractile properties at moderate altitude. Further research involving TMG along with other muscle function assessment methods is needed to provide additional insight into peripheral neuromuscular alterations at moderate altitude.
Collapse
Affiliation(s)
- Antonio J Morales-Artacho
- 1 Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada , Granada, Spain
| | - Paulino Padial
- 1 Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada , Granada, Spain
| | | | | | - Amador García-Ramos
- 1 Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada , Granada, Spain
| | | | - Carmen Calderón
- 3 Sport Performance Centre of Sierra Nevada , Granada, Spain
| | - Belén Feriche
- 1 Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada , Granada, Spain
| |
Collapse
|
7
|
Green HJ, Ranney D, Burnett M, Galvin P, Kyle N, Lounsbury D, Ouyang J, Smith IC, Stewart R, Tick H, Tupling AR. Excitation–contraction coupling properties in women with work-related myalgia: a preliminary study. Can J Physiol Pharmacol 2014; 92:498-506. [DOI: 10.1139/cjpp-2014-0029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the potential role of selected excitation–contraction coupling processes in females with work-related myalgia (WRM) by comparing WRM with healthy controls (CON) using tissue from extensor carpi radialis brevis (ECRB) and trapezius (TRAP) muscles. For the ECRB, age (mean ± SE) was 29.6 ± 3.5 years for CON (n = 9) and 39.2 ± 2.8 years for WRM (n = 13), while for the TRAP, the values were 26.0 ± 2.1 years for CON (n = 7) and 44.6 ± 2.9 years for WRM (n = 11). For the sarcoplasmic reticulum (SR) of the ECRB, WRM displayed concentrations (nmol·(mg protein)−1·min−1) that were lower (P < 0.05) for Total (202 ± 4.4 vs 178 ± 7.1), Basal (34 ± 1.6 vs 30.1 ± 1.3), and maximal Ca2+-ATPase activity (Vmax, 168 ± 4.9 vs 149 ± 6.3), and Ca2+-uptake (5.06 ± 0.31 vs 4.13 ± 0.29), but not SERCA1a and SERCA2a isoforms, by comparison with CON. When age was incorporated as a co-variant, Total, Basal, and Ca2+-uptake remained different from CON (P < 0.05), but not Vmax (P = 0.13). For TRAP, none of the ATPase properties differed between groups (P > 0.05) either before or following adjustment for age. No differences (P > 0.05) were observed between the groups for Ca2+-release in the SR for either TRAP or ECRB. Similarly, no deficiencies, regardless of muscle, were noted for either the Na+–K+-ATPase content or the α and β subunit isoform distribution in WRM. This preliminary study provides a basis for further research, with expanded numbers, investigating the hypothesis that abnormalities in SR Ca2+-regulation are involved in the cellular etiology of WRM.
Collapse
Affiliation(s)
- Howard J. Green
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Centre of Research Expertise for the Prevention of Musculoskeletal Disorders (CRE-MSD), Faculty of Applied Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Don Ranney
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Centre of Research Expertise for the Prevention of Musculoskeletal Disorders (CRE-MSD), Faculty of Applied Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
- Disability Assessment Services, Inc., RR#1 Arthur, Waterloo, ON N0G 1A0, Canada
| | - Margaret Burnett
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Patti Galvin
- Wellington Orthopaedic and Rehabilitation Centre, 86 Dawson Road, Unit 3, Guelph, ON N1H 1A8, Canada
| | - Natasha Kyle
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - David Lounsbury
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Jing Ouyang
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Ian C. Smith
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Riley Stewart
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Heather Tick
- Mind-Body Medicine, The RSI Clinic, 79 St. Clair Avenue East, Toronto, ON M4T 1M6, Canada
- Departments of Family Medicine and Anaesthesiology & Pain Medicine, University of Washington, 1959 NE Pacific Street, BB-1469, Seattle, WA 98195-6540, USA
| | - A. Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Centre of Research Expertise for the Prevention of Musculoskeletal Disorders (CRE-MSD), Faculty of Applied Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
8
|
Hureau TJ, Olivier N, Millet GY, Meste O, Blain GM. Exercise performance is regulated during repeated sprints to limit the development of peripheral fatigue beyond a critical threshold. Exp Physiol 2014; 99:951-63. [PMID: 24728680 DOI: 10.1113/expphysiol.2014.077974] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We hypothesized that exercise performance is adjusted during repeated sprints in order not to surpass a critical threshold of peripheral fatigue. Twelve men randomly performed three experimental sessions on different days, i.e. one single 10 s all-out sprint and two trials of 10 × 10 s all-out sprints with 30 s of passive recovery in between. One trial was performed in the unfatigued state (CTRL) and one following electrically induced quadriceps muscle fatigue (FTNMES). Peripheral fatigue was quantified by comparing pre- with postexercise changes in potentiated quadriceps twitch force (ΔQtw-pot) evoked by supramaximal magnetic stimulation of the femoral nerve. Central fatigue was estimated by comparing pre- with postexercise voluntary activation of quadriceps motor units. The root mean square (RMS) of the vastus lateralis and vastus medialis EMG normalized to maximal M-wave amplitude (RMS.Mmax (-1)) was also calculated during sprints. Compared with CTRL condition, pre-existing quadriceps muscle fatigue in FTNMES (ΔQtw-pot = -29 ± 4%) resulted in a significant (P < 0.05) reduction in power output (-4.0 ± 0.9%) associated with a reduction in RMS.Mmax (-1). However, ΔQtw-pot postsprints decreased by 51% in both conditions, indicating that the level of peripheral fatigue was identical and independent of the degree of pre-existing fatigue. Our findings show that power output and cycling EMG are adjusted during exercise in order to limit the development of peripheral fatigue beyond a constant threshold. We hypothesize that the contribution of peripheral fatigue to exercise limitation involves a reduction in central motor drive in addition to the impairment in muscular function.
Collapse
Affiliation(s)
- Thomas J Hureau
- University of Nice Sophia Antipolis, Toulon, LAMHESS, EA 6309, F-06205, Nice, France University of Lille Nord de France, F-59000, Lille, France; UDSL, EA 4488, F-59790, Ronchin, France
| | - Nicolas Olivier
- University of Lille Nord de France, F-59000, Lille, France; UDSL, EA 4488, F-59790, Ronchin, France
| | - Guillaume Y Millet
- University of Lyon, F-42023, Saint Etienne, France University of Calgary, Faculty of Kinesiology, Human Performance Laboratory, Calgary, Alberta, Canada
| | - Olivier Meste
- CNRS - University of Nice Sophia Antipolis, I3S, F-06900, Sophia Antipolis, France
| | - Gregory M Blain
- University of Nice Sophia Antipolis, Toulon, LAMHESS, EA 6309, F-06205, Nice, France University of Lille Nord de France, F-59000, Lille, France; UDSL, EA 4488, F-59790, Ronchin, France
| |
Collapse
|
9
|
Abstract
Existing evidence suggests that exercise-induced alterations of the metabolic milieu of locomotor muscle and associated peripheral muscle fatigue affect the central projection of thin-fiber muscle afferents. These neurons provide inhibitory feedback to the CNS and thereby influence the magnitude of central motor drive during high-intensity whole-body endurance exercise. The purpose of this proposed feedback loop would be to regulate and restrict the development of exercise-induced peripheral muscle fatigue and/or associated sensory feedback to an "individual critical threshold." This centrally mediated restriction in the development of peripheral locomotor muscle fatigue might thereby help to prevent excessive disturbance of muscle homeostasis and potential harm to the organism. It seems that the regulatory mechanism is dominant during exercise under "normal" conditions but might become secondary in the face of extreme environmental influences such as severe hypoxia or heat. Most recent data are used to emphasize how the proposed feedback loop might be a key factor limiting performance during high-intensity whole-body endurance exercise.
Collapse
Affiliation(s)
- Markus Amann
- Department of Medicine, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
10
|
Amann M, Secher NH. Point: Afferent feedback from fatigued locomotor muscles is an important determinant of endurance exercise performance. J Appl Physiol (1985) 2010; 108:452-4; discussion 457; author reply 470. [PMID: 19729588 DOI: 10.1152/japplphysiol.00976.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Markus Amann
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| | | |
Collapse
|
11
|
Perrey S, Rupp T. Altitude-induced changes in muscle contractile properties. High Alt Med Biol 2009; 10:175-82. [PMID: 19519224 DOI: 10.1089/ham.2008.1093] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Because of its high energetic demand, skeletal muscle is sensitive to changes in the partial pressure of oxygen. Most human studies on in vivo skeletal muscle function during hypoxia were performed with voluntary contractions. However, skeletal muscle function is not only characterized by voluntary maximal or repeated force- generating capacity, but also by force generated by evoked muscle contractions (i.e., force-frequency properties). This mini-review reports on the effects of acute or prolonged exposure to hypoxia on human skeletal muscle performance and contractile properties. The latter depend on both the amount and type of contractile proteins and the efficiency of the cellular mechanism of excitation-contraction coupling. Observations on humans indicate that hypoxia (during simulated ascent or brief exposure) exerts modest influences on the membrane propagation of the muscle action potentials during voluntary contractions. Overall in humans, in physiological conditions, including that of climbing Mt. Everest, there is extraordinarily little that changes with regard to maximal force-generating capacity. Interestingly, it appears that the adaptations to chronic hypoxia minimize the effects on skeletal muscle dysfunction (i.e., impairment during fatigue resistance exercise and in muscle contractile properties) that may occur during acute hypoxia for some isolated muscle exercises. Only sustained isometric exercise exceeding a certain intensity (30% MVC) and causing substantial and sustained ischemia is not affected by acute hypoxia.
Collapse
Affiliation(s)
- Stéphane Perrey
- EA 2991 Motor Efficiency and Deficiency Laboratory, Faculty of Sport Sciences, University of Montpellier, 700 Avenue du Pic Saint Loup, 34090 Montpellier, France.
| | | |
Collapse
|
12
|
Amann M, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA. Opioid-mediated muscle afferents inhibit central motor drive and limit peripheral muscle fatigue development in humans. J Physiol 2008; 587:271-83. [PMID: 19015193 DOI: 10.1113/jphysiol.2008.163303] [Citation(s) in RCA: 291] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We investigated the role of somatosensory feedback from locomotor muscles on central motor drive (CMD) and the development of peripheral fatigue during high-intensity endurance exercise. In a double-blind, placebo-controlled design, eight cyclists randomly performed three 5 km time trials: control, interspinous ligament injection of saline (5K(Plac), L3-L4) or intrathecal fentanyl (5K(Fent), L3-L4) to impair cortical projection of opioid-mediated muscle afferents. Peripheral quadriceps fatigue was assessed via changes in force output pre- versus postexercise in response to supramaximal magnetic femoral nerve stimulation (DeltaQ(tw)). The CMD during the time trials was estimated via quadriceps electromyogram (iEMG). Fentanyl had no effect on quadriceps strength. Impairment of neural feedback from the locomotor muscles increased iEMG during the first 2.5 km of 5K(Fent) versus 5K(Plac) by 12 +/- 3% (P < 0.05); during the second 2.5 km, iEMG was similar between trials. Power output was also 6 +/- 2% higher during the first and 11 +/- 2% lower during the second 2.5 km of 5K(Fent) versus 5K(Plac) (both P < 0.05). Capillary blood lactate was higher (16.3 +/- 0.5 versus 12.6 +/- 1.0%) and arterial haemoglobin O(2) saturation was lower (89 +/- 1 versus 94 +/- 1%) during 5K(Fent) versus 5K(Plac). Exercise-induced DeltaQ(tw) was greater following 5K(Fent) versus 5K(Plac) (-46 +/- 2 versus -33 +/- 2%, P < 0.001). Our results emphasize the critical role of somatosensory feedback from working muscles on the centrally mediated determination of CMD. Attenuated afferent feedback from exercising locomotor muscles results in an overshoot in CMD and power output normally chosen by the athlete, thereby causing a greater rate of accumulation of muscle metabolites and excessive development of peripheral muscle fatigue.
Collapse
Affiliation(s)
- Markus Amann
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
13
|
Amann M, Proctor LT, Sebranek JJ, Eldridge MW, Pegelow DF, Dempsey JA. Somatosensory feedback from the limbs exerts inhibitory influences on central neural drive during whole body endurance exercise. J Appl Physiol (1985) 2008; 105:1714-24. [PMID: 18787091 DOI: 10.1152/japplphysiol.90456.2008] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We investigated whether somatosensory feedback from contracting limb muscles exerts an inhibitory influence on the determination of central command during closed-loop cycling exercise in which the subject voluntarily determines his second-by-second central motor drive. Eight trained cyclists performed two 5-km time trials either without (5K(Ctrl)) or with lumbar epidural anesthesia (5K(Epi); 24 ml of 0.5% lidocaine, vertebral interspace L(3)-L(4)). Percent voluntary quadriceps muscle activation was determined at rest using a superimposed twitch technique. Epidural lidocaine reduced pretime trial maximal voluntary quadriceps strength (553 +/- 45 N) by 22 +/- 3%. Percent voluntary quadriceps activation was also reduced from 97 +/- 1% to 81 +/- 3% via epidural lidocaine, and this was unchanged following the 5K(Epi), indicating the presence of a sustained level of neural impairment throughout the trial. Power output was reduced by 9 +/- 2% throughout the race (P < 0.05). We found three types of significant effects of epidural lidocaine that supported a substantial role for somatosensory feedback from the exercising limbs as a determinant of central command throughout high-intensity closed-loop cycling exercise: 1) significantly increased relative integrated EMG of the vastus lateralis; 2) similar pedal forces despite the reduced number of fast-twitch muscle fibers available for activation; 3) and increased ventilation out of proportion to a reduced carbon dioxide production and heart rate and increased blood pressure out of proportion to power output and oxygen consumption. These findings demonstrate the inhibitory influence of somatosensory feedback from contracting locomotor muscles on the conscious and/or subconscious determination of the magnitude of central motor drive during high intensity closed-loop endurance exercise.
Collapse
Affiliation(s)
- Markus Amann
- John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin-Madison Medical School, Madison, Wisconsin, USA.
| | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Abstract
During exercise, fatigue is defined as a reversible reduction in force- or power-generating capacity and can be elicited by “central” and/or “peripheral” mechanisms. During skeletal muscle contractions, both aspects of fatigue may develop independent of alterations in convective O2delivery; however, reductions in O2supply exacerbate and increases attenuate the rate of accumulation. In this regard, peripheral fatigue development is mediated via the O2-dependent rate of accumulation of metabolic by-products (e.g., inorganic phosphate) and their interference with excitation-contraction coupling within the myocyte. In contrast, the development of O2-dependent central fatigue is elicited 1) by interference with the development of central command and/or 2) via inhibitory feedback on central motor drive secondary to the peripheral effects of low convective O2transport. Changes in convective O2delivery in the healthy human can result from modifications in arterial O2content, blood flow, or a combination of both, and they can be induced via heavy exercise even at sea level; these changes are exacerbated during acute and chronic exposure to altitude. This review focuses on the effects of changes in convective O2delivery on the development of central and peripheral fatigue.
Collapse
|
16
|
Matsunaga S, Mishima T, Yamada T, Inashima S, Wada M. Alterations in in vitro function and protein oxidation of rat sarcoplasmic reticulum Ca2+-ATPase during recovery from high-intensity exercise. Exp Physiol 2007; 93:426-33. [PMID: 18156168 DOI: 10.1113/expphysiol.2007.040477] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hypothesis tested in this study was that the extent to which sarcoplasmic reticulum (SR) Ca(2+)-ATPase is oxidized would correlate with a decline in its activity. For this purpose, changes in the SR Ca(2+)-sequestering ability and the contents of carbonyl and sulfhydryl groups during recovery after exercise were examined in the superficial portions of vastus lateralis muscles from rats subjected to 5 min running at an intensity corresponding to maximal oxygen uptake (50 m min(-1), 10% gradient). A single bout of exercise elicited a 22.4% reduction (P < 0.05) in SR Ca(2+)-ATPase activity. The decreased activity progressively reverted to normal levels during recovery after exercise, reaching normal levels after 60 min of recovery. This change was paralleled by a depressed SR Ca(2+)-uptake rate, and the proportional alteration in these two variables resulted in no change in the ratio of Ca(2+)-uptake rate to Ca(2+)-ATPase activity. The contents of SR Ca(2+)-ATPase protein and sulfhydryl groups in microsomes were unchanged after exercise and during recovery periods. In contrast, the content of carbonyl groups in SR Ca(2+)-ATPase behaved in an opposite manner to that of SR Ca(2+)-ATPase activity. An approximately 80% augmentation (P < 0.05) in the carbonyl group content occurred immediately after exercise. The elevated carbonyl content decreased towards normal levels during 60 min of recovery. These results are strongly suggestive that oxidation of SR Ca(2+)-ATPase is responsible, at least in part, for a decay in the SR Ca(2+)-pumping function produced by high-intensity exercise and imply that oxidized proteins may be repaired during recovery from exercise.
Collapse
Affiliation(s)
- Satoshi Matsunaga
- Research Center for Urban Health and Sports, Osaka City University, Sugimoto, Sumiyoshi, Osaka, Japan.
| | | | | | | | | |
Collapse
|
17
|
Duhamel TA, Green HJ, Stewart RD, Foley KP, Smith IC, Ouyang J. Muscle metabolic, SR Ca2+-cycling responses to prolonged cycling, with and without glucose supplementation. J Appl Physiol (1985) 2007; 103:1986-98. [DOI: 10.1152/japplphysiol.01440.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study investigated the effects of prolonged exercise, with and without glucose supplementation, on metabolism and sarcoplasmic reticulum (SR) Ca2+-handling properties in working vastus lateralis muscle. Fifteen untrained volunteers [peak O2consumption (V̇o2peak) = 3.45 ± 0.17 l/min; mean ± SE] cycled at ∼60% V̇o2peakon two occasions, during which they were provided with either an artificially sweetened placebo beverage (NG) or a 6% glucose (G) beverage (∼1.00 g carbohydrate/kg body mass). Beverage supplementation started at 30 min of exercise and continued every 15 min thereafter. SR Ca2+handling, metabolic, and substrate responses were assessed in tissue extracted from the vastus lateralis at rest, after 30 min and 90 min of exercise, and at fatigue in both conditions. Plasma glucose during G was 15–23% higher ( P < 0.05) than those observed during NG following 60 min of exercise until fatigue. Cycle time to fatigue was increased ( P < 0.05) by ∼19% during G (137 ± 7 min) compared with NG (115 ± 6 min). Prolonged exercise reduced ( P < 0.05) maximal Ca2+-ATPase activity (−18.4%), SR Ca2+uptake (−27%), and both Phase 1 (−22.2%) and Phase 2 (−34.2%) Ca2+-release rates during NG. The exercise-induced reductions in SR Ca2+-cycling properties were not altered during G. The metabolic responses to exercise were all unaltered by glucose supplementation, since no differences in respiratory exchange ratios, carbohydrate and lipid oxidation rates, and muscle metabolite and glycogen contents were observed between NG and G. These results indicate that the maintenance of blood glucose homeostasis by glucose supplementation is without effect in modifying the muscle metabolic, endogenous glycogen, or SR Ca2+-handling responses.
Collapse
|
18
|
Duhamel TA, Stewart RD, Tupling AR, Ouyang J, Green HJ. Muscle sarcoplasmic reticulum calcium regulation in humans during consecutive days of exercise and recovery. J Appl Physiol (1985) 2007; 103:1212-20. [PMID: 17656626 DOI: 10.1152/japplphysiol.00437.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The study investigated the hypothesis that three consecutive days of prolonged cycle exercise would result in a sustained reduction in the Ca(2+)-cycling properties of the vastus lateralis in the absence of changes in the sarcoplasmic (endoplasmic) reticulum Ca(2+)-ATPase (SERCA) protein. Tissue samples were obtained at preexercise (Pre) and postexercise (Post) on day 1 (E1) and day 3 (E3) and during recovery day 1 (R1), day 2 (R2), and day 3 (R3) in 12 active but untrained volunteers (age 19.2 +/- 0.27 yr; mean +/- SE) and analyzed for changes (nmol.mg protein(-1).min(-1)) in maximal Ca(2+)-ATPase activity (V(max)), Ca(2+) uptake and Ca(2+) release (phase 1 and phase 2), and SERCA isoform expression (SERCA1a and SERCA2a). At E1, reductions (P < 0.05) from Pre to Post in V(max) (150 +/- 7 vs. 121 +/- 7), Ca(2+) uptake (7.79 +/- 0.28 vs. 5.71 +/- 0.33), and both phases of Ca(2+) release (phase 1, 20.3 +/- 1.3 vs. 15.2 +/- 1.1; phase 2, 7.70 +/- 0.60 vs. 4.99 +/- 0.48) were found. In contrast to V(max), which recovered at Pre E3 and then remained stable at Post E3 and throughout recovery, Ca(2+) uptake remained depressed (P < 0.05) at E3 Pre and Post and at R1 as did phase 2 of Ca(2+) release. Exercise resulted in an increase (P < 0.05) in SERCA1a (14% at R2) but not SERCA2a. It is concluded that rapidly adapting mechanisms protect V(max) following the onset of regular exercise but not Ca(2+) uptake and Ca(2+) release.
Collapse
Affiliation(s)
- T A Duhamel
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | |
Collapse
|
19
|
Romer LM, Haverkamp HC, Amann M, Lovering AT, Pegelow DF, Dempsey JA. Effect of acute severe hypoxia on peripheral fatigue and endurance capacity in healthy humans. Am J Physiol Regul Integr Comp Physiol 2007; 292:R598-606. [PMID: 16959862 DOI: 10.1152/ajpregu.00269.2006] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that severe hypoxia limits exercise performance via decreased contractility of limb locomotor muscles. Nine male subjects [mean ± SE maximum O2 uptake (V̇o2 max) = 56.5 ± 2.7 ml·kg−1·min−1] cycled at ≥90% V̇o2 max to exhaustion in normoxia [NORM-EXH; inspired O2 fraction (FiO2) = 0.21, arterial O2 saturation (SpO2) = 93 ± 1%] and hypoxia (HYPOX-EXH; FiO2 = 0.13, SpO2 = 76 ± 1%). The subjects also exercised in normoxia for a time equal to that achieved in hypoxia (NORM-CTRL; SpO2 = 96 ± 1%). Quadriceps twitch force, in response to supramaximal single (nonpotentiated and potentiated 1 Hz) and paired magnetic stimuli of the femoral nerve (10–100 Hz), was assessed pre- and at 2.5, 35, and 70 min postexercise. Hypoxia exacerbated exercise-induced peripheral fatigue, as evidenced by a greater decrease in potentiated twitch force in HYPOX-EXH vs. NORM-CTRL (−39 ± 4 vs. −24 ± 3%, P < 0.01). Time to exhaustion was reduced by more than two-thirds in HYPOX-EXH vs. NORM-EXH (4.2 ± 0.5 vs. 13.4 ± 0.8 min, P < 0.01); however, peripheral fatigue was not different in HYPOX-EXH vs. NORM-EXH (−34 ± 4 vs. −39 ± 4%, P > 0.05). Blood lactate concentration and perceptions of limb discomfort were higher throughout HYPOX-EXH vs. NORM-CTRL but were not different at end-exercise in HYPOX-EXH vs. NORM-EXH. We conclude that severe hypoxia exacerbates peripheral fatigue of limb locomotor muscles and that this effect may contribute, in part, to the early termination of exercise.
Collapse
Affiliation(s)
- Lee M Romer
- Centre for Sports Medicine and Human Performance, Brunel University, Middlesex, UB8 3PH, UK.
| | | | | | | | | | | |
Collapse
|
20
|
Amann M, Romer LM, Pegelow DF, Jacques AJ, Hess CJ, Dempsey JA. Effects of arterial oxygen content on peripheral locomotor muscle fatigue. J Appl Physiol (1985) 2006; 101:119-27. [PMID: 16497836 DOI: 10.1152/japplphysiol.01596.2005] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effect of arterial O2 content (CaO2) on quadriceps fatigue was assessed in healthy, trained male athletes. On separate days, eight participants completed three constant-workload trials on a bicycle ergometer at fixed workloads (314 ± 13 W). The first trial was performed while the subjects breathed a hypoxic gas mixture [inspired O2 fraction (FiO2) = 0.15, Hb saturation = 81.6%, CaO2 = 18.2 ml O2/dl blood; Hypo] until exhaustion (4.5 ± 0.4 min). The remaining two trials were randomized and time matched with Hypo. The second and third trials were performed while the subjects breathed a normoxic (FiO2 = 0.21, Hb saturation = 95.0%, CaO2 = 21.3 ml O2/dl blood; Norm) and a hyperoxic (FiO2 = 1.0, Hb saturation = 100%, CaO2 = 23.8 ml O2/dl blood; Hyper) gas mixture, respectively. Quadriceps muscle fatigue was assessed via magnetic femoral nerve stimulation (1–100 Hz) before and 2.5 min after exercise. Myoelectrical activity of the vastus lateralis was obtained from surface electrodes throughout exercise. Immediately after exercise, the mean force response across 1–100 Hz decreased from preexercise values ( P < 0.01) by −26 ± 2, −17 ± 2, and −13 ± 2% for Hypo, Norm, and Hyper, respectively; each of the decrements differed significantly ( P < 0.05). Integrated electromyogram increased significantly throughout exercise ( P < 0.01) by 23 ± 3, 10 ± 1, and 6 ± 1% for Hypo, Norm, and Hyper, respectively; each of the increments differed significantly ( P < 0.05). Mean power frequency fell more ( P < 0.05) during Hypo (−15 ± 2%); the difference between Norm (−7 ± 1%) and Hyper (−6 ± 1%) was not significant ( P = 0.32). We conclude that ΔCaO2 during strenuous systemic exercise at equal workloads and durations affects the rate of locomotor muscle fatigue development.
Collapse
Affiliation(s)
- Markus Amann
- John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin Medical School, 4245 Medical Science Center, 1300 Univ. Ave., Madison, Wisconsin 53706, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Amann M, Eldridge MW, Lovering AT, Stickland MK, Pegelow DF, Dempsey JA. Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue in humans. J Physiol 2006; 575:937-52. [PMID: 16793898 PMCID: PMC1995675 DOI: 10.1113/jphysiol.2006.113936] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Changing arterial oxygen content (C(aO(2))) has a highly sensitive influence on the rate of peripheral locomotor muscle fatigue development. We examined the effects of C(aO(2)) on exercise performance and its interaction with peripheral quadriceps fatigue. Eight trained males performed four 5 km cycling time trials (power output voluntarily adjustable) at four levels of C(aO(2)) (17.6-24.4 ml O(2) dl(-1)), induced by variations in inspired O(2) fraction (0.15-1.0). Peripheral quadriceps fatigue was assessed via changes in force output pre- versus post-exercise in response to supra-maximal magnetic femoral nerve stimulation (DeltaQ(tw); 1-100 Hz). Central neural drive during the time trials was estimated via quadriceps electromyogram. Increased C(aO(2)) from hypoxia to hyperoxia resulted in parallel increases in central neural output (43%) and power output (30%) during cycling and improved time trial performance (12%); however, the magnitude of DeltaQ(tw) (-33 to -35%) induced by the exercise was not different among the four time trials (P > 0.2). These effects of C(aO(2)) on time trial performance and DeltaQ(tw) were reproducible (coefficient of variation = 1-6%) over repeated trials at each F(IO(2)) on separate days. In the same subjects, changing C(aO(2)) also affected performance time to exhaustion at a fixed work rate, but similarly there was no effect of Delta C(aO(2)) on peripheral fatigue. Based on these results, we hypothesize that the effect of C(aO(2)) on locomotor muscle power output and exercise performance time is determined to a significant extent by the regulation of central motor output to the working muscle in order that peripheral muscle fatigue does not exceed a critical threshold.
Collapse
Affiliation(s)
- Markus Amann
- The John Rankin Laboratory of Pulmonary Medicine, 4245 Medical Science Center, 1300 University Avenue, Madison, WI 53706, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Romer LM, Dempsey JA. Effects of exercise-induced arterial hypoxaemia on limb muscle fatigue and performance. Clin Exp Pharmacol Physiol 2006; 33:391-4. [PMID: 16620307 DOI: 10.1111/j.1440-1681.2006.04361.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Reductions in arterial O(2) saturation (-5% to -10%S(a)o(2) below rest) occur over time during sustained heavy-intensity exercise in a normoxic environment, caused primarily by the effects of acid pH and increased temperature on the position of the HbO(2) dissociation curve. 2. We prevented the desaturation incurred during exercise at approximately 90% VO(2 MAX) via increased fraction of inspired O(2) (F(i)o(2)) (0.23 to 0.29) and showed that exercise time to exhaustion was increased. 3. We used supramaximal magnetic stimulation (1-100 Hz) of the femoral nerve to test for quadriceps fatigue. We used mildly hyperoxic inspirates (F(i)o(2) 0.23 to 0.29) to prevent O(2) desaturation. We then compared the amount of quadriceps fatigue incurred following cycling exercise at S(a)o(2) 91% vs 98% with each trial carried out at identical work rates and for equal durations. 4. Preventing the normal exercise-induced O(2) desaturation prevented about one-half the amount of exercise-induced quadriceps fatigue; plasma lactate and effort perception were also reduced. In a subset of less fit subjects who showed only minimal arterial hypoxaemia during sustained exercise (S(a)o(2) approximately 95%), breathing a mildly hypoxic inspirate (F(i)o(2) 0.17; S(a)o(2) approximately 88%) exacerbated the quadriceps fatigue. 5. We conclude that the normal exercise-induced O(2) desaturation during heavy-intensity endurance exercise contributes significantly to exercise performance limitation in part because of its effect on locomotor muscle fatigue.
Collapse
Affiliation(s)
- Lee M Romer
- John Rankin Laboratory of Pulmonary Medicine, Department of Population Health Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
23
|
Romer LM, Haverkamp HC, Lovering AT, Pegelow DF, Dempsey JA. Effect of exercise-induced arterial hypoxemia on quadriceps muscle fatigue in healthy humans. Am J Physiol Regul Integr Comp Physiol 2006; 290:R365-75. [PMID: 16166208 DOI: 10.1152/ajpregu.00332.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of exercise-induced arterial hypoxemia (EIAH) on quadriceps muscle fatigue was assessed in 11 male endurance-trained subjects [peak O2 uptake (V̇o2 peak) = 56.4 ± 2.8 ml·kg−1·min−1; mean ± SE]. Subjects exercised on a cycle ergometer at ≥90% V̇o2 peak to exhaustion (13.2 ± 0.8 min), during which time arterial O2 saturation (SaO2) fell from 97.7 ± 0.1% at rest to 91.9 ± 0.9% (range 84–94%) at end exercise, primarily because of changes in blood pH (7.183 ± 0.017) and body temperature (38.9 ± 0.2°C). On a separate occasion, subjects repeated the exercise, for the same duration and at the same power output as before, but breathed gas mixtures [inspired O2 fraction (FiO2) = 0.25–0.31] that prevented EIAH (SaO2 = 97–99%). Quadriceps muscle fatigue was assessed via supramaximal paired magnetic stimuli of the femoral nerve (1–100 Hz). Immediately after exercise at FiO2 0.21, the mean force response across 1–100 Hz decreased 33 ± 5% compared with only 15 ± 5% when EIAH was prevented ( P < 0.05). In a subgroup of four less fit subjects, who showed minimal EIAH at FiO2 0.21 (SaO2 = 95.3 ± 0.7%), the decrease in evoked force was exacerbated by 35% ( P < 0.05) in response to further desaturation induced via FiO2 0.17 (SaO2 = 87.8 ± 0.5%) for the same duration and intensity of exercise. We conclude that the arterial O2 desaturation that occurs in fit subjects during high-intensity exercise in normoxia (−6 ± 1% ΔSaO2 from rest) contributes significantly toward quadriceps muscle fatigue via a peripheral mechanism.
Collapse
Affiliation(s)
- Lee M Romer
- Centre for Sports Medicine and Human Performance, Brunel University, Uxbridge, UK.
| | | | | | | | | |
Collapse
|
24
|
Romer LM, Dempsey JA, Lovering A, Eldridge M. Exercise-induced arterial hypoxemia: consequences for locomotor muscle fatigue. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 588:47-55. [PMID: 17089878 DOI: 10.1007/978-0-387-34817-9_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Reductions in arterial O2 saturation (-5 to -10% SaO2 < rest) occur over time during sustained heavy intensity exercise in a normoxic environment, due primarily to the effects of acid pH and increased temperature on the position of the HbO2 dissociation curve. We prevented the desaturation via increased F1O2 (.23 to .29) and showed that exercise time to exhaustion was increased. We used supramaximal magnetic stimulation (1 - 100 Hz) of the femoral nerve to test for quadriceps fatigue. We used mildly hyperoxic inspirates (F1O2 .23 to .29) to prevent O2 desaturation. We then compared the amount of quadriceps fatigue incurred following cycling exercise at SaO2 98% vs. 91% with each trial carried out at equal exercise intensities (90% Max) and for equal durations. Preventing the normal exercise-induced O2 desaturation prevented about one-half the amount of exercise-induced quadriceps fatigue; plasma lactate and effort perception were also reduced. We conclude that the normal exercise-induced O2 desaturation during heavy intensity endurance exercise contributes significantly to exercise performance limitation in part because of its effect on locomotor muscle fatigue. These effects of EIAH were confirmed in mild environmental hypoxia (FIO2 .17, SaO2 88%) which significantly augmented the magnitude of exercise-induced quadriceps fatigue observed in normoxia.
Collapse
Affiliation(s)
- Lee M Romer
- John Rankin Laboratory of Pulmonary Medicine, Department of Population Health Sciences, University of Wisconsin-Madison, USA
| | | | | | | |
Collapse
|
25
|
Sandiford SD, Green HJ, Duhamel TA, Schertzer JD, Perco JD, Ouyang J. Muscle Na-K-pump and fatigue responses to progressive exercise in normoxia and hypoxia. Am J Physiol Regul Integr Comp Physiol 2005; 289:R441-R449. [PMID: 15860645 DOI: 10.1152/ajpregu.00652.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the effects of hypoxia and incremental exercise on muscle contractility, membrane excitability, and maximal Na+-K+-ATPase activity, 10 untrained volunteers (age = 20 ± 0.37 yr and weight = 80.0 ± 3.54 kg; ± SE) performed progressive cycle exercise to fatigue on two occasions: while breathing normal room air (Norm; FiO2= 0.21) and while breathing a normobaric hypoxic gas mixture (Hypox; FiO2= 0.14). Muscle samples extracted from the vastus lateralis before exercise and at fatigue were analyzed for maximal Na+-K+-ATPase (K+-stimulated 3-O-methylfluorescein phosphatase) activity in homogenates. A 32% reduction ( P < 0.05) in Na+-K+-ATPase activity was observed (90.9 ± 7.6 vs. 62.1 ± 6.4 nmol·mg protein−1·h−1) in Norm. At fatigue, the reductions in Hypox were not different (81 ± 5.6 vs. 57.2 ± 7.5 nmol·mg protein−1·h−1) from Norm. Measurement of quadriceps neuromuscular function, assessed before and after exercise, indicated a generalized reduction ( P < 0.05) in maximal voluntary contractile force (MVC) and in force elicited at all frequencies of stimulation (10, 20, 30, 50, and 100 Hz). In general, no differences were observed between Norm and Hypox. The properties of the compound action potential, amplitude, duration, and area, which represent the electomyographic response to a single, supramaximal stimulus, were not altered by exercise or oxygen condition when assessed both during and after the progressive cycle task. Progressive exercise, conducted in Hypox, results in an inhibition of Na+-K+-ATPase activity and reductions in MVC and force at different frequencies of stimulation; these results are not different from those observed with Norm. These changes occur in the absence of reductions in neuromuscular excitability.
Collapse
Affiliation(s)
- S D Sandiford
- Dept. of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | | | |
Collapse
|
26
|
Holloway GP, Green HJ, Duhamel TA, Ferth S, Moule JW, Ouyang J, Tupling AR. Muscle sarcoplasmic reticulum Ca2+ cycling adaptations during 16 h of heavy intermittent cycle exercise. J Appl Physiol (1985) 2005; 99:836-43. [PMID: 15860679 DOI: 10.1152/japplphysiol.01407.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The repetition-dependent effects of a repetitive heavy exercise protocol previously shown to alter muscle mechanic behavior (Green HJ, Duhamel TA, Ferth S, Holloway GP, Thomas MM, Tupling AR, Rich SM, and Yau JE. J Appl Physiol 97: 2166-2175, 2004) on muscle sarcoplasmic reticulum (SR) Ca2+-transport properties, measured in vitro, were examined in 12 untrained volunteers [peak aerobic power (VO2(peak)) = 44.3 +/- 0.66 ml x kg(-1) x min(-1)]. The protocol involved 6 min of cycle exercise performed at approximately 91% VO2(peak) once per hour for 16 h. Tissue samples were obtained from the vastus lateralis before (B) and after (A) exercise at repetitions 1 (R1), 2 (R2), 9 (R9), and 16 (R16). Reductions (P < 0.05) in maximal Ca2+-ATPase activity (Vmax) of 26 and 12% with exercise were only observed at R1 and R16, respectively. Vmax remained depressed (P < 0.05) at R2 (B) but not at R9 (B) and R16 (B). No changes were observed in two other kinetic properties of the enzyme, namely the Hill coefficient (defined as the slope of the relationship between Ca2+-ATPase activity and free Ca2+ concentration) and the Ca50 (defined as the free Ca2+ concentration needed to elicit 50% Vmax). Changes in Ca2+ uptake (measured at 2,000 nM) with exercise and recovery generally paralleled Vmax. The apparent coupling ratio, defined as the ratio between Ca2+ uptake and Vmax, was unaffected by the intermittent protocol. Reductions (P < 0.05) in phase 1 Ca2+ release (32%) were only observed at R1. No differences were observed between B and A for R2, R9, and R16 or between B and B for R1, R2, R9, and R16. The changes in phase 2 Ca2+ release were as observed for phase 1 Ca2+ release. It is concluded that the SR Ca2+-handling properties, in general, display rapid adaptations to repetitive exercise.
Collapse
Affiliation(s)
- G P Holloway
- Dept. of Kinesiology, Univ. of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | | | | | |
Collapse
|