1
|
Bian X, Wang L, Ma Y, Yu Y, Guo C, Gao W. A Flavonoid Concentrate from Moringa Oleifera Lam. Leaves Extends Exhaustive Swimming Time by Improving Energy Metabolism and Antioxidant Capacity in Mice. J Med Food 2024; 27:887-894. [PMID: 39052664 DOI: 10.1089/jmf.2023.k.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Moringa oleifera Lam. leaves contain various nutrients and bioactive compounds. The present study aimed to assess the anti-fatigue capacity of a flavonoids concentrate purified from M. oleifera Lam. leaves. The total flavonoids in the purified extract were analyzed by ultra-performance liquid chromatography electrospray ionization tandem mass spectrometry (UPLC-MS/MS). The mice were supplemented with purified M. oleifera Lam. leaf flavonoid-rich extract (MLFE) for 14 days. The weight-loaded forced swimming test was used for evaluating exercise endurance. The 90-min non-weight-bearing swimming test was carried out to assess biochemical biomarkers correlated to fatigue and energy metabolism. UPLC-MS/MS analysis identified 83 flavonoids from MLFE. MLFE significantly increased the swimming time by 60%. Serum lactate (9.9 ± 0.9 vs. 8.9 ± 0.7), blood urea nitrogen (BUN) (8.8 ± 0.8 vs. 7.2 ± 0.5), and nonesterified fatty acid (NEFA) (2.4 ± 0.2 vs. 1.7 ± 0.3) were significantly elevated; phosphoenolpyruvate carboxykinase (PEPCK), glucokinase (GCK), and nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA expression were significantly downregulated; and heme oxygenase 1 mRNA expression was significantly upregulated in muscle after swimming. MLFE supplement significantly decreased serum lactate (8.0 ± 1.0 vs. 9.9 ± 0.9), BUN (8.6 ± 0.4 vs. 8.9 ± 0.8), and NEFA (2.3 ± 0.4 vs. 2.4 ± 0.2) and increased the protein and mRNA expression of GCK, PEPCK, and Nrf2. The enhancement of glucose metabolism and antioxidant function by MLFE contributes partly to its anti-fatigue action.
Collapse
Affiliation(s)
- Xiangyu Bian
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Lingling Wang
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yuying Ma
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yijing Yu
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Changjiang Guo
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Weina Gao
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
2
|
Guan Y, Spaulding H, Yu Q, Zhang M, Willoughby O, Drake JC, Yan Z. Ulk1 phosphorylation at S555 is not required for endurance training-induced improvements in exercise and metabolic capacity in mice. J Appl Physiol (1985) 2024; 137:223-232. [PMID: 38900860 PMCID: PMC11340693 DOI: 10.1152/japplphysiol.00742.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
Endurance exercise training improves exercise capacity as well as skeletal muscle and whole body metabolism, which are hallmarks of high quality-of-life and healthy aging. However, its mechanisms are not yet fully understood. Exercise-induced mitophagy has emerged as an important step in mitochondrial remodeling. Unc-51-like autophagy-activating kinase 1, ULK1, specifically its activation by phosphorylation at serine 555, was discovered as an autophagy driver and to be important for energetic stress-induced mitophagy in skeletal muscle, making it a potential mediator of the beneficial effects of exercise on mitochondrial remodeling. Here, we used CRISPR/Cas9-mediated gene editing and generated knock-in mice with a serine-to-alanine mutation of Ulk1 on serine 555. We now report that these mice displayed normal endurance capacity and cardiac function at baseline with a mild impairment in energy metabolism as indicated by an accelerated increase of respiratory exchange ratio (RER) during acute exercise stress; however, this was completely corrected by 8 wk of voluntary running. Ulk1-S555A mice also retained the exercise-mediated improvements in exercise capacity and metabolic flux. We conclude that Ulk1 phosphorylation at S555 is not required for exercise-mediated improvements of exercise and metabolic capacity in healthy mice.NEW & NOTEWORTHY We have used CRISPR/Cas9-mediated gene editing to generate Ulk1-S555A knock-in mice to show that loss of phosphorylation of Ulk1 at S555 blunted exercise-induced mitophagy and mildly impairs energy metabolism during exercise in healthy mice. However, the knock-in mice retained exercise training-mediated improvements of endurance capacity and energy metabolism during exercise. These findings suggest that exercise-induced mitophagy through Ulk1 activation is not required for the metabolic adaptation and improved exercise capacity in young, healthy mice.
Collapse
Affiliation(s)
- Yuntian Guan
- Fralin Biomedical Research Institute, Center for Exercise Medicine Research at Virginia Tech Carilion, Roanoke, Virginia, United States
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, Virginia, United States
- Department of Pharmacology, School of Medicine,University of Virginia, Charlottesville, Virginia, United States
| | - Hannah Spaulding
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Qing Yu
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Mei Zhang
- Fralin Biomedical Research Institute, Center for Exercise Medicine Research at Virginia Tech Carilion, Roanoke, Virginia, United States
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, Virginia, United States
- Department of Pharmacology, School of Medicine,University of Virginia, Charlottesville, Virginia, United States
| | - Orion Willoughby
- Department of Human Nutrition, Foods, and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, Virginia, United States
| | - Joshua C Drake
- Department of Human Nutrition, Foods, and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, Virginia, United States
| | - Zhen Yan
- Fralin Biomedical Research Institute, Center for Exercise Medicine Research at Virginia Tech Carilion, Roanoke, Virginia, United States
- Department of Human Nutrition, Foods, and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, Virginia, United States
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, Virginia, United States
- Department of Pharmacology, School of Medicine,University of Virginia, Charlottesville, Virginia, United States
- Molecular Physiology and Biological Physics, School of Medicine,University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
3
|
Takemura A, Matsunaga Y, Shinya T, Matta H. Differential Mitochondrial Adaptation of the Slow and Fast Skeletal Muscles by Endurance Running Exercise in Streptozotocin-Induced Diabetic Mice. Physiol Res 2024; 73:369-379. [PMID: 39027954 PMCID: PMC11299777 DOI: 10.33549/physiolres.935183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/01/2024] [Indexed: 07/27/2024] Open
Abstract
The skeletal muscle is the main organ responsible for insulin action, and glucose disposal and metabolism. Endurance and/or resistance training raises the number of mitochondria in diabetic muscles. The details of these adaptations, including mitochondrial adaptations of the slow and fast muscles in diabetes, are unclear. This study aimed to determine whether exercise training in streptozotocin (STZ)-induced mice leads to differential adaptations in the slow and fast muscles, and improving glucose clearance. Eight-week-old mice were randomly distributed into normal control (CON), diabetes (DM), and diabetes and exercise (DM+Ex) groups. In the DM and DM+Ex groups, mice received a freshly prepared STZ (100 mg/kg) intraperitoneal injection on two consecutive days. Two weeks after the injection, the mice in the groups ran on a treadmill for 60 min at 20 m/min for a week and subsequently at 25 m/min for 5 weeks (5 days/week). The analyses indicated that running training at low speed (25 m/min) enhanced mitochondrial enzyme activity and expression of lactate and glucose transporters in the plantaris (low-oxidative) muscle that improved whole-body glucose metabolism in STZ-induced diabetic mice. There were no differences in glucose transporter expression levels in the soleus (high-oxidative) muscle. The endurance running exercise at 20-25 m/min was sufficient to induce mitochondrial adaptation in the low-oxidative muscles, but not in the high-oxidative muscles, of diabetic mice. In conclusion, the present study indicated that running training at 25 m/min improved glucose metabolism by increasing the mitochondrial enzyme activity and glucose transporter 4 and monocarboxylate transporter 4 protein contents in the low-oxidative muscles in STZ-induced diabetic mice.
Collapse
Affiliation(s)
- A Takemura
- Department of Sports Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan.
| | | | | | | |
Collapse
|
4
|
Jakobsen E, Andersen JV, Christensen SK, Siamka O, Larsen MR, Waagepetersen HS, Aldana BI, Bak LK. Pharmacological inhibition of mitochondrial soluble adenylyl cyclase in astrocytes causes activation of AMP-activated protein kinase and induces breakdown of glycogen. Glia 2021; 69:2828-2844. [PMID: 34378239 DOI: 10.1002/glia.24072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/28/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022]
Abstract
Mobilization of astrocyte glycogen is key for processes such as synaptic plasticity and memory formation but the link between neuronal activity and glycogen breakdown is not fully known. Activation of cytosolic soluble adenylyl cyclase (sAC) in astrocytes has been suggested to link neuronal depolarization and glycogen breakdown partly based on experiments employing pharmacological inhibition of sAC. However, several studies have revealed that sAC located within mitochondria is a central regulator of respiration and oxidative phosphorylation. Thus, pharmacological sAC inhibition is likely to affect both cytosolic and mitochondrial sAC and if bioenergetic readouts are studied, the observed effects are likely to stem from inhibition of mitochondrial rather than cytosolic sAC. Here, we report that a pharmacologically induced inhibition of sAC activity lowers mitochondrial respiration, induces phosphorylation of the metabolic master switch AMP-activated protein kinase (AMPK), and decreases glycogen stores in cultured primary murine astrocytes. From these data and our discussion of the literature, mitochondrial sAC emerges as a key regulator of astrocyte bioenergetics. Lastly, we discuss the challenges of investigating the functional and metabolic roles of cytosolic versus mitochondrial sAC in astrocytes employing the currently available pharmacological tool compounds.
Collapse
Affiliation(s)
- Emil Jakobsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofie K Christensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Olga Siamka
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lasse K Bak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Insulin Resistance in Osteoarthritis: Similar Mechanisms to Type 2 Diabetes Mellitus. J Nutr Metab 2020; 2020:4143802. [PMID: 32566279 PMCID: PMC7261331 DOI: 10.1155/2020/4143802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) and type 2 diabetes mellitus (T2D) are two of the most widespread chronic diseases. OA and T2D have common epidemiologic traits, are considered heterogenic multifactorial pathologies that develop through the interaction of genetic and environmental factors, and have common risk factors. In addition, both of these diseases often manifest in a single patient. Despite differences in clinical manifestations, both diseases are characterized by disturbances in cellular metabolism and by an insulin-resistant state primarily associated with the production and utilization of energy. However, currently, the primary cause of OA development and progression is not clear. In addition, although OA is manifested as a joint disease, evidence has accumulated that it affects the whole body. As pathological insulin resistance is viewed as a driving force of T2D development, now, we present evidence that the molecular and cellular metabolic disturbances associated with OA are linked to an insulin-resistant state similar to T2D. Moreover, the alterations in cellular energy requirements associated with insulin resistance could affect many metabolic changes in the body that eventually result in pathology and could serve as a unified mechanism that also functions in many metabolic diseases. However, these issues have not been comprehensively described. Therefore, here, we discuss the basic molecular mechanisms underlying the pathological processes associated with the development of insulin resistance; the major inducers, regulators, and metabolic consequences of insulin resistance; and instruments for controlling insulin resistance as a new approach to therapy.
Collapse
|
6
|
Chetina EV, Markova GA, Sharapova EP. [there any association of metabolic disturbances with joint destruction and pain?]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 65:441-456. [PMID: 31876515 DOI: 10.18097/pbmc20196506441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Osteoarthritis and type 2 diabetes mellitus represent two the most common chronic diseases. They possess many shared epidemiologic traits, have common risk factors, and embody heterogeneous multifactorial pathologies, which develop due to interaction of genetic an environmental factors. In addition, these diseases are often occurring in the same patient. In spite of the differences in clinical manifestation both diseases have similar disturbances of cellular metabolism, primarily associated with ATP production and utilization. The review discusses molecular mechanisms determining pathophysiological processes associated with glucose and lipid metabolism as well as the means aiming to alleviate the disturbances of energy metabolism as a new a therapeutic approach.
Collapse
Affiliation(s)
- E V Chetina
- Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - G A Markova
- Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - E P Sharapova
- Nasonova Research Institute of Rheumatology, Moscow, Russia
| |
Collapse
|
7
|
Takahashi Y, Matsunaga Y, Banjo M, Takahashi K, Sato Y, Seike K, Nakano S, Hatta H. Effects of Nutrient Intake Timing on Post-Exercise Glycogen Accumulation and its Related Signaling Pathways in Mouse Skeletal Muscle. Nutrients 2019; 11:nu11112555. [PMID: 31652791 PMCID: PMC6893707 DOI: 10.3390/nu11112555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 01/19/2023] Open
Abstract
We investigated the effects of nutrient intake timing on glycogen accumulation and its related signals in skeletal muscle after an exercise that did not induce large glycogen depletion. Male ICR mice ran on a treadmill at 25 m/min for 60 min under a fed condition. Mice were orally administered a solution containing 1.2 mg/g carbohydrate and 0.4 mg/g protein or water either immediately (early nutrient, EN) or 180 min (late nutrient, LN) after the exercise. Tissues were harvested at 30 min after the oral administration. No significant difference in blood glucose or plasma insulin concentrations was found between the EN and LN groups. The plantaris muscle glycogen concentration was significantly (p < 0.05) higher in the EN group—but not in the LN group—compared to the respective time-matched control group. Akt Ser473 phosphorylation was significantly higher in the EN group than in the time-matched control group (p < 0.01), while LN had no effect. Positive main effects of time were found for the phosphorylations in Akt substrate of 160 kDa (AS160) Thr642 (p < 0.05), 5′-AMP-activated protein kinase (AMPK) Thr172 (p < 0.01), and acetyl-CoA carboxylase Ser79 (p < 0.01); however, no effect of nutrient intake was found for these. We showed that delayed nutrient intake could not increase muscle glycogen after endurance exercise which did not induce large glycogen depletion. The results also suggest that post-exercise muscle glycogen accumulation after nutrient intake might be partly influenced by Akt activation. Meanwhile, increased AS160 and AMPK activation by post-exercise fasting might not lead to glycogen accumulation.
Collapse
Affiliation(s)
- Yumiko Takahashi
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Yutaka Matsunaga
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Mai Banjo
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Kenya Takahashi
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Yosuke Sato
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Kohei Seike
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Suguru Nakano
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Hideo Hatta
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
8
|
Takahashi Y, Terada S, Banjo M, Seike K, Nakano S, Hatta H. Effects of β-hydroxybutyrate treatment on glycogen repletion and its related signaling cascades in epitrochlearis muscle during 120 min of postexercise recovery. Appl Physiol Nutr Metab 2019; 44:1311-1319. [PMID: 31051088 DOI: 10.1139/apnm-2018-0860] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effects of β-hydroxybutyrate (β-HB), the most abundant type of ketone body in mammals, on postexercise glycogen recovery in skeletal muscle by using an in vitro experimental model. Male ICR mice swam for 60 min and then their epitrochlearis muscles were removed and incubated with either physiological levels of glucose (8 mmol/L) and insulin (60 μU/mL) or glucose and insulin plus 1, 2, or 4 mmol/L of sodium β-HB. Four millimoles per liter β-HB had a significant positive effect on glycogen repletion in epitrochlearis muscle at 120 min after exercise (p < 0.01), while 2 mmol/L of β-HB showed a tendency to increase the glycogen level (p < 0.09), and 1 mmol/L of β-HB had no significant effect. We further investigated the effect of 4 mmol/L β-HB treatment on the signaling cascade related to glycogen repletion in the epitrochlearis muscles throughout a 120-min recovery period. After incubating the muscles in 4 mmol/L of β-HB for 15 min postexercise, the Akt substrate of 160 kDa Thr642 (p < 0.05) and Akt Thr308 (p < 0.05) phosphorylations were significantly increased compared with the control treatment. At the same time point, 5'-AMP-activated protein kinase and acetyl-coenzyme A carboxylase phosphorylations were significantly lower (p < 0.05) in the epitrochlearis muscle incubated with 4 mmol/L of β-HB than in the control muscle. Our results demonstrate that postexercise 4 mmol/L β-HB administration enhanced glycogen repletion in epitrochlearis muscle. Four millimoles per liter β-HB treatment was associated with alternation of the phosphorylated status of several proteins involved in glucose uptake and metabolic/energy homeostasis at the early stage of postexercise.
Collapse
Affiliation(s)
- Yumiko Takahashi
- Department of Sports Sciences, The University of Tokyo, Tokyo 153-8902, Japan.,Department of Sports Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Shin Terada
- Department of Sports Sciences, The University of Tokyo, Tokyo 153-8902, Japan.,Department of Sports Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Mai Banjo
- Department of Sports Sciences, The University of Tokyo, Tokyo 153-8902, Japan.,Department of Sports Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Kohei Seike
- Department of Sports Sciences, The University of Tokyo, Tokyo 153-8902, Japan.,Department of Sports Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Suguru Nakano
- Department of Sports Sciences, The University of Tokyo, Tokyo 153-8902, Japan.,Department of Sports Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Hideo Hatta
- Department of Sports Sciences, The University of Tokyo, Tokyo 153-8902, Japan.,Department of Sports Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
9
|
Miyamoto L. Molecular Pathogenesis of Familial Wolff-Parkinson-White Syndrome. THE JOURNAL OF MEDICAL INVESTIGATION 2018; 65:1-8. [PMID: 29593177 DOI: 10.2152/jmi.65.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Familial Wolff-Parkinson-White (WPW) syndrome is an autosomal dominant inherited disease and consists of a small percentage of WPW syndrome which exhibits ventricular pre-excitation by development of accessory atrioventricular pathway. A series of mutations in PRKAG2 gene encoding gamma2 subunit of 5'AMP-activated protein kinase (AMPK) has been identified as the cause of familial WPW syndrome. AMPK is one of the most important metabolic regulators of carbohydrates and lipids in many types of tissues including cardiac and skeletal muscles. Patients and animals with the mutation in PRKAG2 gene exhibit aberrant atrioventricular conduction associated with cardiac glycogen overload. Recent studies have revealed "novel" significance of canonical pathways leading to glycogen synthesis and provided us profound insights into molecular mechanism of the regulation of glycogen metabolism by AMPK. This review focuses on the molecular basis of the pathogenesis of cardiac abnormality due to PRKAG2 mutation and will provide current overviews of the mechanism of glycogen regulation by AMPK. J. Med. Invest. 65:1-8, February, 2018.
Collapse
|
10
|
Miyamoto L, Tsuchiya K. Sodium-Glucose Transporters as a Therapeutic Target for Diabetes from the Viewpoint of Drug Discovery and Pharmacotherapy. YAKUGAKU ZASSHI 2018; 138:933-938. [DOI: 10.1248/yakushi.17-00223-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Licht Miyamoto
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School
| |
Collapse
|
11
|
Matsunaga Y, Sakata Y, Yago T, Nakamura H, Shimizu T, Takeda Y. Effects of Glucose with Casein Peptide Supplementation on Post-Exercise Muscle Glycogen Resynthesis in C57BL/6J Mice. Nutrients 2018; 10:nu10060753. [PMID: 29891805 PMCID: PMC6024860 DOI: 10.3390/nu10060753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 11/16/2022] Open
Abstract
Numerous studies have reported that post-exercise ingestion of carbohydrates with protein supplementation can enhance glycogen recovery. However, few reports have focused on the degrees of degradation of the ingested proteins due to post-exercise glycogen resynthesis. Accordingly, the aim of this study was to clarify the effects of differences in protein degradation on muscle glycogen recovery. Male seven-week-old C57BL/6J mice performed a single bout of 60-min treadmill running exercise and were then orally administered glucose (Glu; 1.5 mg/g body weight (BW)), glucose with casein peptide (Glu + Pep; 1.5 + 0.5 mg/g BW) or its constituent amino acid mixture (Glu + AA; 1.5 + 0.5 mg/g BW). At 120 min after supplementation, the soleus muscle glycogen content in the Glu and Glu + AA groups was significantly higher than that immediately after exercise; however, no such difference was observed in the Glu + Pep group. Blood substrate concentration and insulin signaling did not differ among the three groups. Furthermore, energy expenditure during the recovery period in the Glu + Pep group was significantly higher than that in the Glu and Glu + AA groups. These findings suggest that post-exercise co-ingestion of glucose and casein peptide might delay glycogen resynthesis, at least in part through increased energy expenditure caused by casein peptide ingestion.
Collapse
Affiliation(s)
- Yutaka Matsunaga
- Wellness & Nutrition Science Institute, Morinaga Milk Industry Co., Ltd., 1-83-5 Higashihara, Zama-City 252-8583, Kanagawa Prefecture, Japan.
| | - Yasuyuki Sakata
- Wellness & Nutrition Science Institute, Morinaga Milk Industry Co., Ltd., 1-83-5 Higashihara, Zama-City 252-8583, Kanagawa Prefecture, Japan.
| | - Takumi Yago
- Wellness & Nutrition Science Institute, Morinaga Milk Industry Co., Ltd., 1-83-5 Higashihara, Zama-City 252-8583, Kanagawa Prefecture, Japan.
| | - Hirohiko Nakamura
- Wellness & Nutrition Science Institute, Morinaga Milk Industry Co., Ltd., 1-83-5 Higashihara, Zama-City 252-8583, Kanagawa Prefecture, Japan.
| | - Takashi Shimizu
- Wellness & Nutrition Science Institute, Morinaga Milk Industry Co., Ltd., 1-83-5 Higashihara, Zama-City 252-8583, Kanagawa Prefecture, Japan.
| | - Yasuhiro Takeda
- Wellness & Nutrition Science Institute, Morinaga Milk Industry Co., Ltd., 1-83-5 Higashihara, Zama-City 252-8583, Kanagawa Prefecture, Japan.
| |
Collapse
|
12
|
Wang J, Ran Q, Zeng HR, Wang L, Hu CJ, Huang QW. Cellular stress response mechanisms of Rhizoma coptidis: a systematic review. Chin Med 2018; 13:27. [PMID: 29930696 PMCID: PMC5992750 DOI: 10.1186/s13020-018-0184-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/27/2018] [Indexed: 12/29/2022] Open
Abstract
Rhizoma coptidis has been used in China for thousands of years with the functions of heating dampness and purging fire detoxification. But the underlying molecular mechanisms of Rhizoma coptidis are still far from being fully elucidated. Alkaloids, especially berberine, coptisine and palmatine, are responsible for multiple pharmacological effects of Rhizoma coptidis. In this review, we studied on the effects and molecular mechanisms of Rhizoma coptidis on NF-κB/MAPK/PI3K–Akt/AMPK/ERS and oxidative stress pathways. Then we summarized the mechanisms of these alkaloid components of Rhizoma coptidis on cardiovascular and cerebrovascular diseases, diabetes and diabetic complications. Evidence presented in this review implicated that Rhizoma coptidis exerted beneficial effects on various diseases by regulation of NF-κB/MAPK/PI3K–Akt/AMPK/ERS and oxidative stress pathways, which support the clinical application of Rhizoma coptidis and offer references for future researches.
Collapse
Affiliation(s)
- Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Road, Wenjiang District, Chengdu, 611137 China
| | - Qian Ran
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Road, Wenjiang District, Chengdu, 611137 China
| | - Hai-Rong Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Road, Wenjiang District, Chengdu, 611137 China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Road, Wenjiang District, Chengdu, 611137 China
| | - Chang-Jiang Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Road, Wenjiang District, Chengdu, 611137 China
| | - Qin-Wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Road, Wenjiang District, Chengdu, 611137 China
| |
Collapse
|
13
|
Ato S, Makanae Y, Kido K, Sase K, Yoshii N, Fujita S. The effect of different acute muscle contraction regimens on the expression of muscle proteolytic signaling proteins and genes. Physiol Rep 2018; 5:5/15/e13364. [PMID: 28778992 PMCID: PMC5555890 DOI: 10.14814/phy2.13364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 01/07/2023] Open
Abstract
Previous studies have reported that different modes of muscle contraction (i.e., eccentric or concentric contraction) with similar contraction times can affect muscle proteolytic responses. However, the effect of different contraction modes on muscle proteolytic response under the same force-time integral (FTI: contraction force × time) has not been investigated. The purpose of this study was to investigate the effect of different contraction modes, with the same FTI, on acute proteolytic signaling responses. Eleven-week-old male Sprague-Dawley rats were randomly assigned to eccentric (EC), concentric (CC), or isometric contraction (IC) groups. Different modes of muscle contraction were performed on the right gastrocnemius muscle using electrical stimulation, with the left muscle acting as a control. In order to apply an equivalent FTI, the number of stimulation sets was modified between the groups. Muscle samples were taken immediately and three hours after exercise. Phosphorylation of FoxO3a at Ser253 was significantly increased immediately after exercise compared to controls irrespective of contraction mode. The mRNA levels of the ubiquitin ligases, MuRF1, and MAFbx mRNA were unchanged by contraction mode or time. Phosphorylation of ULK1 at Ser317 (positive regulatory site) and Ser757 (negative regulatory site) was significantly increased compared to controls, immediately or 3 h after exercise, in all contraction modes. The autophagy markers (LC3B-II/I ratio and p62 expression) were unchanged, regardless of contraction mode. These data suggest that differences in contraction mode during resistance exercise with a constant FTI, are not factors in regulating proteolytic signaling in the early phase of skeletal muscle contraction.
Collapse
Affiliation(s)
- Satoru Ato
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Yuhei Makanae
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Kohei Kido
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Kohei Sase
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Naomi Yoshii
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Satoshi Fujita
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
14
|
Possik E, Pause A. Biochemical Measurement of Glycogen: Method to Investigate the AMPK-Glycogen Relationship. Methods Mol Biol 2018; 1732:57-67. [PMID: 29480468 DOI: 10.1007/978-1-4939-7598-3_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Glycogen is a main carbohydrate energy storage primarily found in fungi and animals. It is a glucose polymer that comprises α(1-4) glycosidic linkages attaching UDP-glucose molecules linearly and α(1-6) linkages branching glucose chains every 8-10 molecules to the main backbone chain. Glycogen synthase, branching enzyme, and glycogen phosphorylase are key enzymes involved in glycogen synthesis and degradation. These enzymes are tightly regulated by upstream kinases and phosphatases that respond to hormonal cues in order to coordinate storage and degradation and meet the cellular and organismal metabolic needs. The 5'AMP-activated protein kinase (AMPK) is one of the main regulators of glycogen metabolism. Despite extensive research, the role of AMPK in glycogen synthesis and degradation remains controversial. Specifically, the level and duration of AMPK activity highly influence the outcome on glycogen reserves. Here, we describe a rapid and robust protocol to efficiently measure the levels of glycogen in vitro. We use the commercially available glycogen determination kit to hydrolyze glycogen into glucose, which is oxidized to form D-gluconic acid and hydrogen peroxide that react with the OxiRed/Amplex Red probe generating a product that could be detected either in a colorimetric or fluorimetric plate format. This method is quantitative and could be used to address the role of AMPK in glycogen metabolism in cells and tissues. Summary This chapter provides a quick and reliable biochemical quantitative method to measure glycogen in cells and tissues. Briefly, this method is based on the degradation of glycogen to glucose, which is then specifically oxidized to generate a product that reacts with the OxiRed probe with maximum absorbance at 570 nm. This method is very accurate and highly sensitive. In the notes of this chapter, we shed the light on important actions that should be followed to get reliable results. We also state advantages and disadvantages of this method in comparison to other glycogen measurement techniques.
Collapse
Affiliation(s)
- Elite Possik
- Goodman Cancer Research Centre, Biochemistry Department, McGill University, Montreal, Canada
| | - Arnim Pause
- Goodman Cancer Research Centre, Biochemistry Department, McGill University, Montreal, Canada.
| |
Collapse
|
15
|
Kjøbsted R, Wojtaszewski JFP, Treebak JT. Role of AMP-Activated Protein Kinase for Regulating Post-exercise Insulin Sensitivity. ACTA ACUST UNITED AC 2017; 107:81-126. [PMID: 27812978 DOI: 10.1007/978-3-319-43589-3_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Skeletal muscle insulin resistance precedes development of type 2 diabetes (T2D). As skeletal muscle is a major sink for glucose disposal, understanding the molecular mechanisms involved in maintaining insulin sensitivity of this tissue could potentially benefit millions of people that are diagnosed with insulin resistance. Regular physical activity in both healthy and insulin-resistant individuals is recognized as the single most effective intervention to increase whole-body insulin sensitivity and thereby positively affect glucose homeostasis. A single bout of exercise has long been known to increase glucose disposal in skeletal muscle in response to physiological insulin concentrations. While this effect is identified to be restricted to the previously exercised muscle, the molecular basis for an apparent convergence between exercise- and insulin-induced signaling pathways is incompletely known. In recent years, we and others have identified the Rab GTPase-activating protein, TBC1 domain family member 4 (TBC1D4) as a target of key protein kinases in the insulin- and exercise-activated signaling pathways. Our working hypothesis is that the AMP-activated protein kinase (AMPK) is important for the ability of exercise to insulin sensitize skeletal muscle through TBC1D4. Here, we aim to provide an overview of the current available evidence linking AMPK to post-exercise insulin sensitivity.
Collapse
Affiliation(s)
- Rasmus Kjøbsted
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200, Copenhagen, Denmark
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200, Copenhagen, Denmark.
| |
Collapse
|
16
|
Miyamoto L, Yamane M, Tomida Y, Kono M, Yamaoka T, Kawasaki A, Hatano A, Tsuda K, Xu W, Ikeda Y, Tamaki T, Tsuchiya K. Nitrite Activates 5′AMP-Activated Protein Kinase-Endothelial Nitric Oxide Synthase Pathway in Human Glomerular Endothelial Cells. Biol Pharm Bull 2017; 40:1866-1872. [DOI: 10.1248/bpb.b17-00316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Licht Miyamoto
- Laboratory of Pharmacology and Physiological Sciences, Frontier Laboratory for Pharmaceutical Sciences, Institute of Biomedical Sciences, University of Tokushima Graduate School
- Department of Medical Pharmacology, Institute of Biomedical Sciences, University of Tokushima Graduate School
| | - Megumi Yamane
- Department of Medical Pharmacology, Institute of Biomedical Sciences, University of Tokushima Graduate School
| | - Yosuke Tomida
- Department of Medical Pharmacology, Institute of Biomedical Sciences, University of Tokushima Graduate School
| | - Mai Kono
- Department of Medical Pharmacology, Institute of Biomedical Sciences, University of Tokushima Graduate School
| | - Tomomi Yamaoka
- Department of Medical Pharmacology, Institute of Biomedical Sciences, University of Tokushima Graduate School
| | - Aya Kawasaki
- Department of Medical Pharmacology, Institute of Biomedical Sciences, University of Tokushima Graduate School
| | - Aya Hatano
- Department of Medical Pharmacology, Institute of Biomedical Sciences, University of Tokushima Graduate School
| | - Katsunori Tsuda
- Department of Medical Pharmacology, Institute of Biomedical Sciences, University of Tokushima Graduate School
| | - Wenting Xu
- Department of Medical Pharmacology, Institute of Biomedical Sciences, University of Tokushima Graduate School
| | - Yasumasa Ikeda
- Department of Pharmacology, Institute of Biomedical Sciences, University of Tokushima Graduate School
| | - Toshiaki Tamaki
- Department of Pharmacology, Institute of Biomedical Sciences, University of Tokushima Graduate School
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Institute of Biomedical Sciences, University of Tokushima Graduate School
| |
Collapse
|
17
|
Scott K, Benkhalti M, Calvert ND, Paquette M, Zhen L, Harper ME, Al-Dirbashi OY, Renaud JM. KATP channel deficiency in mouse FDB causes an impairment of energy metabolism during fatigue. Am J Physiol Cell Physiol 2016; 311:C559-C571. [PMID: 27488667 DOI: 10.1152/ajpcell.00137.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/27/2016] [Indexed: 12/25/2022]
Abstract
The skeletal muscle ATP-sensitive K+ (KATP) channel is crucial in preventing fiber damage and contractile dysfunction, possibly by preventing damaging ATP depletion. The objective of this study was to investigate changes in energy metabolism during fatigue in wild-type and inwardly rectifying K+ channel (Kir6.2)-deficient (Kir6.2-/-) flexor digitorum brevis (FDB), a muscle that lacks functional KATP channels. Fatigue was elicited with one tetanic contraction every second. Decreases in ATP and total adenylate levels were significantly greater in wild-type than Kir6.2-/- FDB during the last 2 min of the fatigue period. Glycogen depletion was greater in Kir6.2-/- FDB for the first 60 s, but not by the end of the fatigue period, while there was no difference in glucose uptake. The total amount of glucosyl units entering glycolysis was the same in wild-type and Kir6.2-/- FDB. During the first 60 s, Kir6.2-/- FDB generated less lactate and more CO2; in the last 120 s, Kir6.2-/- FDB stopped generating CO2 and produced more lactate. The ATP generated during fatigue from phosphocreatine, glycolysis (lactate), and oxidative phosphorylation (CO2) was 3.3-fold greater in Kir6.2-/- than wild-type FDB. Because ATP and total adenylate were significantly less in Kir6.2-/- FDB, it is suggested that Kir6.2-/- FDB has a greater energy deficit, despite a greater ATP production, which is further supported by greater glucose uptake and lactate and CO2 production in Kir6.2-/- FDB during the recovery period. It is thus concluded that a lack of functional KATP channels results in an impairment of energy metabolism.
Collapse
Affiliation(s)
- Kyle Scott
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Maria Benkhalti
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Nicholas D Calvert
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mathieu Paquette
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Li Zhen
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Osama Y Al-Dirbashi
- Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; and Faculty of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada;
| |
Collapse
|
18
|
Affourtit C. Mitochondrial involvement in skeletal muscle insulin resistance: A case of imbalanced bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1678-93. [PMID: 27473535 DOI: 10.1016/j.bbabio.2016.07.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/19/2016] [Accepted: 07/23/2016] [Indexed: 12/16/2022]
Abstract
Skeletal muscle insulin resistance in obesity associates with mitochondrial dysfunction, but the causality of this association is controversial. This review evaluates mitochondrial models of nutrient-induced muscle insulin resistance. It transpires that all models predict that insulin resistance arises as a result of imbalanced cellular bioenergetics. The nature and precise origin of the proposed insulin-numbing molecules differ between models but all species only accumulate when metabolic fuel supply outweighs energy demand. This observation suggests that mitochondrial deficiency in muscle insulin resistance is not merely owing to intrinsic functional defects, but could instead be an adaptation to nutrient-induced changes in energy expenditure. Such adaptive effects are likely because muscle ATP supply is fully driven by energy demand. This market-economic control of myocellular bioenergetics offers a mechanism by which insulin-signalling deficiency can cause apparent mitochondrial dysfunction, as insulin resistance lowers skeletal muscle anabolism and thus dampens ATP demand and, consequently, oxidative ATP synthesis.
Collapse
Affiliation(s)
- Charles Affourtit
- School of Biomedical and Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth University, Drake Circus, PL4 8AA Plymouth, UK.
| |
Collapse
|
19
|
Miyamoto L. Novel Strategies for Treating Lifestyle-related Diseases Using Various Approaches. YAKUGAKU ZASSHI 2016; 136:751-9. [DOI: 10.1248/yakushi.15-00251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Licht Miyamoto
- Laboratory of Pharmacology and Physiological Sciences, Frontier Laboratories for Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tokushima University
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School
| |
Collapse
|
20
|
Possik E, Pause A. Glycogen: A must have storage to survive stressful emergencies. WORM 2016; 5:e1156831. [PMID: 27383221 PMCID: PMC4911973 DOI: 10.1080/21624054.2016.1156831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/16/2016] [Indexed: 12/12/2022]
Abstract
Mechanisms of adaptation to acute changes in osmolarity are fundamental for life. When exposed to hyperosmotic stress, cells and organisms utilize conserved strategies to prevent water loss and maintain cellular integrity and viability. The production of glycerol is a common strategy utilized by the nematode Caenorhabditis elegans (C. elegans) and many other organisms to survive hyperosmotic stress. Specifically, the transcriptional upregulation of glycerol-3-phosphate dehydrogenase, a rate-limiting enzyme in the production of glycerol, has been previously implicated in many model organisms. However, what fuels this massive and rapid production of glycerol upon hyperosmotic stress has not been clearly elucidated. We have recently discovered an AMPK-dependent pathway that mediates hyperosmotic stress resistance in C. elegans. Specifically, we demonstrated that the chronic activation of AMPK leads to glycogen accumulation, which under hyperosmotic stress exposure, is rapidly degraded to mediate glycerol production. Importantly, we demonstrate that this strategy is utilized by flcn-1 mutant C. elegans nematodes in an AMPK-dependent manner. FLCN-1 is the worm homolog of the human renal tumor suppressor Folliculin (FLCN) responsible for the Birt-Hogg-Dubé neoplastic syndrome. Here, we comment on the dual role for glycogen in stress resistance: it serves as an energy store and a fuel for osmolyte production. We further discuss the potential utilization of this mechanism by organisms in general and by human cancer cells in order to survive harsh environmental conditions and notably hyperosmotic stress.
Collapse
Affiliation(s)
- Elite Possik
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Arnim Pause
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
21
|
Miyamoto L. Can food factors provide Us with the similar beneficial effects of physical exercise? Food Sci Biotechnol 2016; 25:9-13. [PMID: 30263480 PMCID: PMC6049404 DOI: 10.1007/s10068-016-0092-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/28/2016] [Accepted: 03/14/2016] [Indexed: 10/21/2022] Open
Abstract
Metabolic diseases have got global health issues. Physical exercise as well as diet therapy is a potent strategy for fighting against the diseases. However, it is often difficult to continue to keep exercise regularly enough to take sufficient effect. Thus, good substitutes for the therapeutic exercise would be greatly beneficial. Recent studies have suggested that 5'AMP-activated protein kinase (AMPK) play important roles in the metabolic alterations by muscle contraction. The notion that AMPK mediates broad effects of physical exercise has been widely accepted, though it has been challenged by observations in some genetically AMPK-disrupted animals. We have demonstrated metabolome-wide significance of AMPK activation in contracting muscles. Thus, pharmacological activation of AMPK can be a promising way to obtain similar effects of the exercise. The relevance of AMPK will be introduced, and possible strategies for obtaining similar effects to the exercise from food factors will be discussed in the current review.
Collapse
Affiliation(s)
- Licht Miyamoto
- Laboratory of Pharmacology and Physiological Sciences, Frontier Laboratories for Pharmaceutical Sciences, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
22
|
Tsuda S, Egawa T, Kitani K, Oshima R, Ma X, Hayashi T. Caffeine and contraction synergistically stimulate 5'-AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle. Physiol Rep 2015; 3:3/10/e12592. [PMID: 26471759 PMCID: PMC4632959 DOI: 10.14814/phy2.12592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
5′-Adenosine monophosphate-activated protein kinase (AMPK) has been identified as a key mediator of contraction-stimulated insulin-independent glucose transport in skeletal muscle. Caffeine acutely stimulates AMPK in resting skeletal muscle, but it is unknown whether caffeine affects AMPK in contracting muscle. Isolated rat epitrochlearis muscle was preincubated and then incubated in the absence or presence of 3 mmol/L caffeine for 30 or 120 min. Electrical stimulation (ES) was used to evoke tetanic contractions during the last 10 min of the incubation period. The combination of caffeine plus contraction had additive effects on AMPKα Thr172 phosphorylation, α-isoform-specific AMPK activity, and 3-O-methylglucose (3MG) transport. In contrast, caffeine inhibited basal and contraction-stimulated Akt Ser473 phosphorylation. Caffeine significantly delayed muscle fatigue during contraction, and the combination of caffeine and contraction additively decreased ATP and phosphocreatine contents. Caffeine did not affect resting tension. Next, rats were given an intraperitoneal injection of caffeine (60 mg/kg body weight) or saline, and the extensor digitorum longus muscle was dissected 15 min later. ES of the sciatic nerve was performed to evoke tetanic contractions for 5 min before dissection. Similar to the findings from isolated muscles incubated in vitro, the combination of caffeine plus contraction in vivo had additive effects on AMPK phosphorylation, AMPK activity, and 3MG transport. Caffeine also inhibited basal and contraction-stimulated Akt phosphorylation in vivo. These findings suggest that caffeine and contraction synergistically stimulate AMPK activity and insulin-independent glucose transport, at least in part by decreasing muscle fatigue and thereby promoting energy consumption during contraction.
Collapse
Affiliation(s)
- Satoshi Tsuda
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Tatsuro Egawa
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, 440-0016, Japan
| | - Kazuto Kitani
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Rieko Oshima
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Xiao Ma
- Key Laboratory of Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, China
| | - Tatsuya Hayashi
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
23
|
Possik E, Ajisebutu A, Manteghi S, Gingras MC, Vijayaraghavan T, Flamand M, Coull B, Schmeisser K, Duchaine T, van Steensel M, Hall DH, Pause A. FLCN and AMPK Confer Resistance to Hyperosmotic Stress via Remodeling of Glycogen Stores. PLoS Genet 2015; 11:e1005520. [PMID: 26439621 PMCID: PMC4595296 DOI: 10.1371/journal.pgen.1005520] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/21/2015] [Indexed: 01/06/2023] Open
Abstract
Mechanisms of adaptation to environmental changes in osmolarity are fundamental for cellular and organismal survival. Here we identify a novel osmotic stress resistance pathway in Caenorhabditis elegans (C. elegans), which is dependent on the metabolic master regulator 5'-AMP-activated protein kinase (AMPK) and its negative regulator Folliculin (FLCN). FLCN-1 is the nematode ortholog of the tumor suppressor FLCN, responsible for the Birt-Hogg-Dubé (BHD) tumor syndrome. We show that flcn-1 mutants exhibit increased resistance to hyperosmotic stress via constitutive AMPK-dependent accumulation of glycogen reserves. Upon hyperosmotic stress exposure, glycogen stores are rapidly degraded, leading to a significant accumulation of the organic osmolyte glycerol through transcriptional upregulation of glycerol-3-phosphate dehydrogenase enzymes (gpdh-1 and gpdh-2). Importantly, the hyperosmotic stress resistance in flcn-1 mutant and wild-type animals is strongly suppressed by loss of AMPK, glycogen synthase, glycogen phosphorylase, or simultaneous loss of gpdh-1 and gpdh-2 enzymes. Our studies show for the first time that animals normally exhibit AMPK-dependent glycogen stores, which can be utilized for rapid adaptation to either energy stress or hyperosmotic stress. Importantly, we show that glycogen accumulates in kidneys from mice lacking FLCN and in renal tumors from a BHD patient. Our findings suggest a dual role for glycogen, acting as a reservoir for energy supply and osmolyte production, and both processes might be supporting tumorigenesis.
Collapse
Affiliation(s)
- Elite Possik
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Andrew Ajisebutu
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Sanaz Manteghi
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Marie-Claude Gingras
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Tarika Vijayaraghavan
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Mathieu Flamand
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
| | - Barry Coull
- College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Kathrin Schmeisser
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Thomas Duchaine
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Maurice van Steensel
- College of Life Sciences, University of Dundee, Dundee, United Kingdom
- Institute of Medical Biology, Singapore, Singapore
| | - David H. Hall
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Arnim Pause
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
24
|
ALVIM RAFAELO, CHEUHEN MARCELR, MACHADO SILMARAR, SOUSA ANDRÉGUSTAVOP, SANTOS PAULOC. General aspects of muscle glucose uptake. ACTA ACUST UNITED AC 2015; 87:351-68. [DOI: 10.1590/0001-3765201520140225] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/06/2014] [Indexed: 12/25/2022]
Abstract
Glucose uptake in peripheral tissues is dependent on the translocation of GLUT4 glucose transporters to the plasma membrane. Studies have shown the existence of two major signaling pathways that lead to the translocation of GLUT4. The first, and widely investigated, is the insulin activated signaling pathway through insulin receptor substrate-1 and phosphatidylinositol 3-kinase. The second is the insulin-independent signaling pathway, which is activated by contractions. Individuals with type 2 diabetes mellitus have reduced insulin-stimulated glucose uptake in skeletal muscle due to the phenomenon of insulin resistance. However, those individuals have normal glucose uptake during exercise. In this context, physical exercise is one of the most important interventions that stimulates glucose uptake by insulin-independent pathways, and the main molecules involved are adenosine monophosphate-activated protein kinase, nitric oxide, bradykinin, AKT, reactive oxygen species and calcium. In this review, our main aims were to highlight the different glucose uptake pathways and to report the effects of physical exercise, diet and drugs on their functioning. Lastly, with the better understanding of these pathways, it would be possible to assess, exactly and molecularly, the importance of physical exercise and diet on glucose homeostasis. Furthermore, it would be possible to assess the action of drugs that might optimize glucose uptake and consequently be an important step in controlling the blood glucose levels in diabetic patients, in addition to being important to clarify some pathways that justify the development of drugs capable of mimicking the contraction pathway.
Collapse
|
25
|
Spontaneously hyperactive MEK-Erk pathway mediates paradoxical facilitation of cell proliferation in mild hypoxia. Biochim Biophys Acta Gen Subj 2014; 1850:640-6. [PMID: 25497211 DOI: 10.1016/j.bbagen.2014.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/12/2014] [Accepted: 12/04/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Oxygen is important for common eukaryotic cells to generate ATP. Pathophysiological conditions such as ischemic diseases cause tissue hypoxia. In addition, oxygen availability in deep tissues is supposed to be far lower than surrounding atmosphere even in healthy animals, and the oxygen partial pressures in most normal tissues are estimated to be around 40-50mmHg, so-called mild hypoxia. Recent studies have demonstrated that mild hypoxia has distinct effects on living cells from severe hypoxia. For instance, mild hypoxia was reported to promote cell reprogramming. Although severe hypoxia is known to inhibit cell proliferation, mild hypoxia has been paradoxically demonstrated to increase cell proliferation. However, it has not been clarified by which molecular mechanisms mild hypoxia evokes the discontinuous increment of cell proliferation. METHODS We established experimental conditions showing the opposite influences of mild and severe hypoxia on cell proliferation using undifferentiated Caco2 human colon carcinoma cells in order to clarify the underlying molecular mechanism. RESULTS The basal activity of Erk, which is a typical mediator of mitogenic signals, is spontaneously increased specifically in cells exposed to mild hypoxia, and inhibition of MEK, an upstream kinase of the Erk, completely inhibited the mild hypoxia-induced enhancement of cell proliferation. CONCLUSIONS Spontaneous hyperactivation of the MEK-Erk pathway by mild hypoxia should be the plausible molecular mechanism of the paradoxical promotion of cell proliferation. GENERAL SIGNIFICANCE Our findings will provide clues to the molecular basis of mild hypoxia-evoked phenomena such as cell reprogramming.
Collapse
|
26
|
Washington TA, Healey JM, Thompson RW, Lowe LL, Carson JA. Lactate dehydrogenase regulation in aged skeletal muscle: Regulation by anabolic steroids and functional overload. Exp Gerontol 2014; 57:66-74. [PMID: 24835193 DOI: 10.1016/j.exger.2014.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/23/2014] [Accepted: 05/05/2014] [Indexed: 12/17/2022]
Abstract
Aging alters the skeletal muscle response to overload-induced growth. The onset of functional overload is characterized by increased myoblast proliferation and an altered muscle metabolic profile. The onset of functional overload is associated with increased energy demands that are met through the interconversion of lactate and pyruvate via the activity of lactate dehydrogenase (LDH). Testosterone targets many of the processes activated at the onset of functional overload. However, the effect of aging on this metabolic plasticity at the onset of functional overload and how anabolic steroid administration modulates this response is not well understood. The purpose of this study was to determine if aging would alter overload-induced LDH activity and expression at the onset of functional overload and whether anabolic steroid administration would modulate this response. Five-month and 25-month male Fischer 344xF1 BRN were given nandrolone decanoate (ND) or sham injections for 14days and then the plantaris was functionally overloaded (OV) for 3days by synergist ablation. Aging reduced muscle LDH-A & LDH-B activity 70% (p<0.05). Aging also reduced LDH-A mRNA abundance, however there was no age effect on LDH-B mRNA abundance. In 5-month muscle, both ND and OV decreased LDH-A and LDH-B activity. However, there was no synergistic or additive effect. In 5-month muscle, ND and OV decreased LDH-A mRNA expression with no change in LDH-B expression. In 25-month muscle, ND and OV increased LDH-A and LDH-B activity. LDH-A mRNA expression was not altered by ND or OV in aged muscle. However, there was a main effect of OV to decrease LDH-B mRNA expression. There was also an age-induced LDH isoform shift. ND and OV treatment increased the "fast" LDH isoforms in aged muscle, whereas ND and OV increased the "slow" isoforms in young muscle. Our study provides evidence that aging alters aspects of skeletal muscle metabolic plasticity normally induced by overload and anabolic steroid administration.
Collapse
Affiliation(s)
- Tyrone A Washington
- Exercise Muscle Biology Laboratory, Human Performance Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville AR 72701, United States; Integrative Muscle Biology Laboratory, Exercise Science Department, Norman J. Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States.
| | - Julie M Healey
- Integrative Muscle Biology Laboratory, Exercise Science Department, Norman J. Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States
| | - Raymond W Thompson
- Integrative Muscle Biology Laboratory, Exercise Science Department, Norman J. Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States
| | - Larry L Lowe
- Department of Biological and Physical Sciences, Benedict College, Columbia, SC 29208, United States
| | - James A Carson
- Integrative Muscle Biology Laboratory, Exercise Science Department, Norman J. Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States
| |
Collapse
|
27
|
Katz A, Westerblad H. Regulation of glycogen breakdown and its consequences for skeletal muscle function after training. Mamm Genome 2014; 25:464-72. [PMID: 24777203 DOI: 10.1007/s00335-014-9519-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/02/2014] [Indexed: 02/06/2023]
Abstract
Repeated bouts of physical exercise, i.e., training, induce mitochondrial biogenesis and result in improved physical performance and attenuation of glycogen breakdown during submaximal exercise. It has been suggested that as a consequence of the increased mitochondrial volume, a smaller degree of metabolic stress (e.g., smaller increases in ADP and Pi) is required to maintain mitochondrial respiration in the trained state during exercise at the same absolute intensity. The lower degree of Pi accumulation is believed to account for the diminished glycogen breakdown, since Pi is a substrate for glycogen phosphorylase, the rate-limiting enzyme for glycogenolysis. However, in this review, we present an alternative explanation for the diminished glycogen breakdown. Thus, the lower degree of metabolic stress after training is also associated with smaller increases in AMP (free concentration during contraction at specific intracellular sites) and this results in less activation of phosphorylase b (the non-phosphorylated form of phosphorylase), resulting in diminished glycogen breakdown. Concomitantly, the smaller accumulation of Pi, which interferes with cross-bridge function and intracellular Ca(2+) handling, contributes to the increased fatigue resistance. The delay in glycogen depletion also contributes to enhanced performance during prolonged exercise by functioning as an energy reserve.
Collapse
Affiliation(s)
- Abram Katz
- School of Health Sciences, Ariel University, 40700, Ariel, Israel,
| | | |
Collapse
|
28
|
Egawa T, Tsuda S, Oshima R, Goto K, Hayashi T. Activation of 5′AMP-activated protein kinase in skeletal muscle by exercise and phytochemicals. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2014. [DOI: 10.7600/jpfsm.3.55] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Miyamoto L, Egawa T, Oshima R, Kurogi E, Tomida Y, Tsuchiya K, Hayashi T. AICAR stimulation metabolome widely mimics electrical contraction in isolated rat epitrochlearis muscle. Am J Physiol Cell Physiol 2013; 305:C1214-22. [PMID: 24088893 DOI: 10.1152/ajpcell.00162.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Physical exercise has potent therapeutic and preventive effects against metabolic disorders. A number of studies have suggested that 5'-AMP-activated protein kinase (AMPK) plays a pivotal role in regulating carbohydrate and lipid metabolism in contracting skeletal muscles, while several genetically manipulated animal models revealed the significance of AMPK-independent pathways. To elucidate significance of AMPK and AMPK-independent signals in contracting skeletal muscles, we conducted a metabolomic analysis that compared the metabolic effects of 5-aminoimidazole-4-carboxamide-1-β-D-ribonucleoside (AICAR) stimulation with the electrical contraction ex vivo in isolated rat epitrochlearis muscles, in which both α1- and α2-isoforms of AMPK and glucose uptake were equally activated. The metabolomic analysis using capillary electrophoresis time-of-flight mass spectrometry detected 184 peaks and successfully annotated 132 small molecules. AICAR stimulation exhibited high similarity to the electrical contraction in overall metabolites. Principal component analysis (PCA) demonstrated that the major principal component characterized common effects whereas the minor principal component distinguished the difference. PCA and a factor analysis suggested a substantial change in redox status as a result of AMPK activation. We also found a decrease in reduced glutathione levels in both AICAR-stimulated and contracting muscles. The muscle contraction-evoked influences related to the metabolism of amino acids, in particular, aspartate, alanine, or lysine, are supposed to be independent of AMPK activation. Our results substantiate the significance of AMPK activation in contracting skeletal muscles and provide novel evidence that AICAR stimulation closely mimics the metabolomic changes in the contracting skeletal muscles.
Collapse
Affiliation(s)
- Licht Miyamoto
- Laboratory of Pharmacology and Physiological Sciences, Frontier Laboratory for Pharmaceutical Sciences, Institute of Health Biosciences, University of Tokushima Graduate School, Sho-machi, Tokushima, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Chronic treatment with the AMP-kinase activator AICAR increases glycogen storage and fatty acid oxidation in skeletal muscles but does not reduce hyperglucagonemia and hyperglycemia in insulin deficient rats. PLoS One 2013; 8:e62190. [PMID: 23620811 PMCID: PMC3631222 DOI: 10.1371/journal.pone.0062190] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/19/2013] [Indexed: 12/19/2022] Open
Abstract
This study tested whether the glycogen-accumulating effect of chronic in vivo pharmacological 5′AMP-activated protein kinase (AMPK) activation could improve glycemic control under conditions of insulin deficiency. Male Wistar rats were rendered diabetic through the administration of streptozotocin (STZ) and then treated for 7 consecutive days with the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR). Subsequently, glycogen content and synthesis, glucose oxidation, and fatty acid oxidation (FAO) were determined in oxidative and glycolytic skeletal muscles. Glycemia, insulinemia, glucagonemia, and circulating triglycerides (TG) and non-esterified fatty acids (NEFAs) were measured after AICAR treatment. Insulin was almost undetectable in STZ rats and these animals were severely hyperglycemic. Glycogen content was markedly low mainly in glycolytic muscles of STZ rats and AICAR treatment restored it to control values. No differences were found among all muscles studied with regards to the content and phosphorylation of Akt/protein kinase B and glycogen synthase kinase 3. Even though glycogen synthase content was reduced in all muscles from STZ rats, insulin-induced dephosphorylation/activation of this enzyme was preserved and unaffected by AICAR treatment. Glucagon and NEFAS were 2- and 7.4-fold fold higher in STZ rats than controls, respectively. AICAR did not affect hyperglycemia and hyperglucagonemia in STZ rats; however, it normalized circulating NEFAs and significantly increased FAO in glycolytic muscles. In conclusion, even though AICAR-induced AMPK activation enhanced glycogen accumulation in glycolytic muscles and normalized circulating NEFAs and TG levels, the hyperglycemic effects of glucagon likely offset the potentially glucose-lowering effects of AICAR, resulting in no improvement of glycemic control in insulin-deficient rats.
Collapse
|
31
|
Abstract
AMPK is an evolutionary conserved sensor of cellular energy status that is activated during exercise. Pharmacological activation of AMPK promotes glucose uptake, fatty acid oxidation, mitochondrial biogenesis, and insulin sensitivity; processes that are reduced in obesity and contribute to the development of insulin resistance. AMPK deficient mouse models have been used to provide direct genetic evidence either supporting or refuting a role for AMPK in regulating these processes. Exercise promotes glucose uptake by an insulin dependent mechanism involving AMPK. Exercise is important for improving insulin sensitivity; however, it is not known if AMPK is required for these improvements. Understanding how these metabolic processes are regulated is important for the development of new strategies that target obesity-induced insulin resistance. This review will discuss the involvement of AMPK in regulating skeletal muscle metabolism (glucose uptake, glycogen synthesis, and insulin sensitivity).
Collapse
Affiliation(s)
- Hayley M. O'Neill
- Protein Chemistry and Metabolism Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia
| |
Collapse
|
32
|
Winnick JJ, An Z, Kraft G, Ramnanan CJ, Irimia JM, Smith M, Lautz M, Roach PJ, Cherrington AD. Liver glycogen loading dampens glycogen synthesis seen in response to either hyperinsulinemia or intraportal glucose infusion. Diabetes 2013; 62:96-101. [PMID: 22923473 PMCID: PMC3526057 DOI: 10.2337/db11-1773] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to determine the effect of liver glycogen loading on net hepatic glycogen synthesis during hyperinsulinemia or hepatic portal vein glucose infusion in vivo. Liver glycogen levels were supercompensated (SCGly) in two groups (using intraportal fructose infusion) but not in two others (Gly) during hyperglycemic-normoinsulinemia. Following a 2-h control period during which fructose infusion was stopped, there was a 2-h experimental period in which the response to hyperglycemia plus either 4× basal insulin (INS) or portal vein glucose infusion (PoG) was measured. Increased hepatic glycogen reduced the percent of glucose taken up by the liver that was deposited in glycogen (74 ± 3 vs. 53 ± 5% in Gly+INS and SCGly+INS, respectively, and 72 ± 3 vs. 50 ± 6% in Gly+PoG and SCGly+PoG, respectively). The reduction in liver glycogen synthesis in SCGly+INS was accompanied by a decrease in both insulin signaling and an increase in AMPK activation, whereas only the latter was observed in SCGly+PoG. These data indicate that liver glycogen loading impairs glycogen synthesis regardless of the signal used to stimulate it.
Collapse
Affiliation(s)
- Jason J Winnick
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kozuka C, Yabiku K, Sunagawa S, Ueda R, Taira SI, Ohshiro H, Ikema T, Yamakawa K, Higa M, Tanaka H, Takayama C, Matsushita M, Oyadomari S, Shimabukuro M, Masuzaki H. Brown rice and its component, γ-oryzanol, attenuate the preference for high-fat diet by decreasing hypothalamic endoplasmic reticulum stress in mice. Diabetes 2012; 61:3084-93. [PMID: 22826028 PMCID: PMC3501875 DOI: 10.2337/db11-1767] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Brown rice is known to improve glucose intolerance and prevent the onset of diabetes. However, the underlying mechanisms remain obscure. In the current study, we investigated the effect of brown rice and its major component, γ-oryzanol (Orz), on feeding behavior and fuel homeostasis in mice. When mice were allowed free access to a brown rice-containing chow diet (CD) and a high-fat diet (HFD), they significantly preferred CD to HFD. To reduce hypothalamic endoplasmic reticulum (ER) stress on an HFD, mice were administered with 4-phenylbutyric acid, a chemical chaperone, which caused them to prefer the CD. Notably, oral administration of Orz, a mixture of major bioactive components in brown rice, also improved glucose intolerance and attenuated hypothalamic ER stress in mice fed the HFD. In murine primary neuronal cells, Orz attenuated the tunicamycin-induced ER stress. In luciferase reporter assays in human embryonic kidney 293 cells, Orz suppressed the activation of ER stress-responsive cis-acting elements and unfolded protein response element, suggesting that Orz acts as a chemical chaperone in viable cells. Collectively, the current study is the first demonstration that brown rice and Orz improve glucose metabolism, reduce hypothalamic ER stress, and, consequently, attenuate the preference for dietary fat in mice fed an HFD.
Collapse
Affiliation(s)
- Chisayo Kozuka
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kouichi Yabiku
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Sumito Sunagawa
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Rei Ueda
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Shin-ichiro Taira
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | - Tomomi Ikema
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Ken Yamakawa
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Moritake Higa
- Diabetes and Life-style Related Disease Center, Tomishiro Central Hospital, Okinawa, Japan
| | | | - Chitoshi Takayama
- Departments of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Seiichi Oyadomari
- Institute for Genome Research, University of Tokushima, Tokushima, Japan
| | - Michio Shimabukuro
- Department of Cardio-Diabetes Medicine, University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan
| | - Hiroaki Masuzaki
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
- Corresponding author: Hiroaki Masuzaki,
| |
Collapse
|
34
|
Coffee polyphenol caffeic acid but not chlorogenic acid increases 5′AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle. J Nutr Biochem 2012; 23:1403-9. [DOI: 10.1016/j.jnutbio.2011.09.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 08/16/2011] [Accepted: 09/07/2011] [Indexed: 11/19/2022]
|
35
|
Miyamoto L, Ebihara K, Kusakabe T, Aotani D, Yamamoto-Kataoka S, Sakai T, Aizawa-Abe M, Yamamoto Y, Fujikura J, Hayashi T, Hosoda K, Nakao K. Leptin activates hepatic 5'-AMP-activated protein kinase through sympathetic nervous system and α1-adrenergic receptor: a potential mechanism for improvement of fatty liver in lipodystrophy by leptin. J Biol Chem 2012; 287:40441-7. [PMID: 23024365 DOI: 10.1074/jbc.m112.384545] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AMPK activation promotes glucose and lipid metabolism. RESULTS Hepatic AMPK activities were decreased in fatty liver from lipodystrophic mice, and leptin activated the hepatic AMPK via the α-adrenergic effect. CONCLUSION Leptin improved the fatty liver possibly by activating hepatic AMPK through the central and sympathetic nervous systems. SIGNIFICANCE Hepatic AMPK plays significant roles in the pathophysiology of lipodystrophy and metabolic action of leptin. Leptin is an adipocyte-derived hormone that regulates energy homeostasis. Leptin treatment strikingly ameliorates metabolic disorders of lipodystrophy, which exhibits ectopic fat accumulation and severe insulin-resistant diabetes due to a paucity of adipose tissue. Although leptin is shown to activate 5'-AMP-activated protein kinase (AMPK) in the skeletal muscle, the effect of leptin in the liver is still unclear. We investigated the effect of leptin on hepatic AMPK and its pathophysiological relevance in A-ZIP/F-1 mice, a model of generalized lipodystrophy. Here, we demonstrated that leptin activates hepatic AMPK through the central nervous system and α-adrenergic sympathetic nerves. AMPK activities were decreased in the fatty liver of A-ZIP/F-1 mice, and leptin administration increased AMPK activities in the liver as well as in skeletal muscle with significant reduction in triglyceride content. Activation of hepatic AMPK with A769662 also led to a decrease in hepatic triglyceride content and blood glucose levels in A-ZIP/F-1 mice. These results indicate that the down-regulation of hepatic AMPK activities plays a pathophysiological role in the metabolic disturbances of lipodystrophy, and the hepatic AMPK activation is involved in the therapeutic effects of leptin.
Collapse
Affiliation(s)
- Licht Miyamoto
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gong H, Zhang Y. GLUT4 is not essential for exercise-induced exaggerated muscle glycogen degradation in AMPKα2 knockout mice. J Exerc Sci Fit 2012. [DOI: 10.1016/j.jesf.2012.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
37
|
Magnoni LJ, Vraskou Y, Palstra AP, Planas JV. AMP-activated protein kinase plays an important evolutionary conserved role in the regulation of glucose metabolism in fish skeletal muscle cells. PLoS One 2012; 7:e31219. [PMID: 22359576 PMCID: PMC3281052 DOI: 10.1371/journal.pone.0031219] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 01/04/2012] [Indexed: 12/16/2022] Open
Abstract
AMPK, a master metabolic switch, mediates the observed increase of glucose uptake in locomotory muscle of mammals during exercise. AMPK is activated by changes in the intracellular AMP:ATP ratio when ATP consumption is stimulated by contractile activity but also by AICAR and metformin, compounds that increase glucose transport in mammalian muscle cells. However, the possible role of AMPK in the regulation of glucose metabolism in skeletal muscle has not been investigated in other vertebrates, including fish. In this study, we investigated the effects of AMPK activators on glucose uptake, AMPK activity, cell surface levels of trout GLUT4 and expression of GLUT1 and GLUT4 as well as the expression of enzymes regulating glucose disposal and PGC1α in trout myotubes derived from a primary muscle cell culture. We show that AICAR and metformin significantly stimulated glucose uptake (1.6 and 1.3 fold, respectively) and that Compound C completely abrogated the stimulatory effects of the AMPK activators on glucose uptake. The combination of insulin and AMPK activators did not result in additive nor synergistic effects on glucose uptake. Moreover, exposure of trout myotubes to AICAR and metformin resulted in an increase in AMPK activity (3.8 and 3 fold, respectively). We also provide evidence suggesting that stimulation of glucose uptake by AMPK activators in trout myotubes may take place, at least in part, by increasing the cell surface and mRNA levels of trout GLUT4. Finally, AICAR increased the mRNA levels of genes involved in glucose disposal (hexokinase, 6-phosphofructokinase, pyruvate kinase and citrate synthase) and mitochondrial biogenesis (PGC-1α) and did not affect glycogen content or glycogen synthase mRNA levels in trout myotubes. Therefore, we provide evidence, for the first time in non-mammalian vertebrates, suggesting a potentially important role of AMPK in stimulating glucose uptake and utilization in the skeletal muscle of fish.
Collapse
Affiliation(s)
- Leonardo J. Magnoni
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona I Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Yoryia Vraskou
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona I Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Arjan P. Palstra
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona I Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Josep V. Planas
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona I Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
- * E-mail:
| |
Collapse
|
38
|
Jlali M, Gigaud V, Métayer-Coustard S, Sellier N, Tesseraud S, Le Bihan-Duval E, Berri C. Modulation of glycogen and breast meat processing ability by nutrition in chickens: effect of crude protein level in 2 chicken genotypes. J Anim Sci 2011; 90:447-55. [PMID: 21984711 DOI: 10.2527/jas.2011-4405] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The aim of the study was to evaluate the impact of 2 isoenergetic growing diets with different CP (17 vs. 23%) on the performance and breast meat quality of 2 lines of chicken divergently selected for abdominal fatness [i.e., fat and lean (LL) lines]. Growth performance, breast and abdominal fat yields, breast meat quality parameters (pH, color, drip loss), and muscle glycogen storage at death were measured. Increased dietary CP resulted in increased BW, increased breast meat yield, and reduced abdominal fatness at slaughter regardless of genotype (P < 0.001). By contrast, dietary CP affected glycogen storage and the related meat quality parameters only in the LL chickens. Giving LL chickens the low-CP diet led to reduced concentration of muscle glycogen (P < 0.01), and as a result, breast meat with a higher (P < 0.001) ultimate pH, decreased (P < 0.001) lightness, and reduced (P < 0.001) drip loss during storage. The decreased muscle glycogen content observed in LL receiving the low-CP diet compared with the high-CP diet occurred concomitantly with greater phosphorylation amount for the α-catalytic subunit of adenosine monophosphate-activated protein kinase and glycogen synthase. This was consistent with the reduced muscle glycogen content observed in LL fed the low-CP diet because adenosine monophosphate-activated protein kinase inhibits glycogen synthesis through its action on glycogen synthase. Our results demonstrated that nutrition is an effective means of modulating breast meat properties in the chicken. The results also highlighted the need to take into account interaction with the genetic background of the animal to select nutritional strategies to improve meat quality traits in poultry.
Collapse
Affiliation(s)
- M Jlali
- INRA, UR83, Recherches Avicoles, F-37380 Nouzilly, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Kulkarni SS, Karlsson HKR, Szekeres F, Chibalin AV, Krook A, Zierath JR. Suppression of 5'-nucleotidase enzymes promotes AMP-activated protein kinase (AMPK) phosphorylation and metabolism in human and mouse skeletal muscle. J Biol Chem 2011; 286:34567-74. [PMID: 21873433 PMCID: PMC3186409 DOI: 10.1074/jbc.m111.268292] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 08/18/2011] [Indexed: 11/06/2022] Open
Abstract
The 5'-nucleotidase (NT5) family of enzyme dephosphorylates non-cyclic nucleoside monophosphates to produce nucleosides and inorganic phosphates. We hypothesized that gene silencing of NT5 enzymes to increase the intracellular availability of AMP would increase AMP-activated protein kinase (AMPK) activity and metabolism. We determined the role of cytosolic NT5 in metabolic responses linked to the development of insulin resistance in obesity and type 2 diabetes. Using siRNA to silence NT5C2 expression in cultured human myotubes, we observed a 2-fold increase in the AMP/ATP ratio, a 2.4-fold increase in AMPK phosphorylation (Thr(172)), and a 2.8-fold increase in acetyl-CoA carboxylase phosphorylation (Ser(79)) (p < 0.05). siRNA silencing of NT5C2 expression increased palmitate oxidation by 2-fold in the absence and by 8-fold in the presence of 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside. This was paralleled by an increase in glucose transport and a decrease in glucose oxidation, incorporation into glycogen, and lactate release from NT5C2-depleted myotubes. Gene silencing of NT5C1A by shRNA injection and electroporation in mouse tibialis anterior muscle reduced protein content (60%; p < 0.05) and increased phosphorylation of AMPK (60%; p < 0.05) and acetyl-CoA carboxylase (50%; p < 0.05) and glucose uptake (20%; p < 0.05). Endogenous expression of NT5C enzymes inhibited basal lipid oxidation and glucose transport in skeletal muscle. Reduction of 5'-nucleotidase expression or activity may promote metabolic flexibility in type 2 diabetes.
Collapse
Affiliation(s)
- Sameer S. Kulkarni
- From the Departments of Molecular Medicine and Surgery and Physiology and Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Håkan K. R. Karlsson
- From the Departments of Molecular Medicine and Surgery and Physiology and Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Ferenc Szekeres
- From the Departments of Molecular Medicine and Surgery and Physiology and Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Alexander V. Chibalin
- From the Departments of Molecular Medicine and Surgery and Physiology and Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Anna Krook
- From the Departments of Molecular Medicine and Surgery and Physiology and Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Juleen R. Zierath
- From the Departments of Molecular Medicine and Surgery and Physiology and Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| |
Collapse
|
40
|
Hutchinson DS, Catus SL, Merlin J, Summers RJ, Gibbs ME. α₂-Adrenoceptors activate noradrenaline-mediated glycogen turnover in chick astrocytes. J Neurochem 2011; 117:915-26. [PMID: 21447002 DOI: 10.1111/j.1471-4159.2011.07261.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the brain, glycogen is primarily stored in astrocytes where it is regulated by several hormones/neurotransmitters, including noradrenaline that controls glycogen breakdown (in the short term) and synthesis. Here, we have examined the adrenoceptor (AR) subtype that mediates the glycogenic effect of noradrenaline in chick primary astrocytes by the measurement of glycogen turnover (total (14) C incorporation of glucose into glycogen) following noradrenergic activation. Noradrenaline and insulin increased glycogen turnover in a concentration-dependent manner. The effect of noradrenaline was mimicked by stimulation of α(2) -ARs (and to a lesser degree by β(3) -ARs), but not by stimulation of α(1) -, β(1) -, or β(2) -ARs, and occurred only in astrocytes and not neurons. In chick astrocytes, studies using RT-PCR and radioligand binding showed that α(2A) - and α(2C) -AR mRNA and protein were present. α(2) -AR- or insulin-mediated glycogen turnover was inhibited by phosphatidylinositol-3 kinase inhibitors, and both insulin and clonidine caused phosphorylation of Akt and glycogen synthase kinase-3 in chick astrocytes. α(2) -AR but not insulin-mediated glycogen turnover was inhibited by pertussis toxin pre-treatment indicating involvement of Gi/o proteins. These results show that the increase in glycogen turnover caused by noradrenaline is because of activation of α(2) -ARs that increase glycogen turnover in astrocytes utilizing a Gi/o-PI3K pathway.
Collapse
Affiliation(s)
- Dana S Hutchinson
- Department of Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia.
| | | | | | | | | |
Collapse
|
41
|
Hunter RW, Treebak JT, Wojtaszewski JFP, Sakamoto K. Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle. Diabetes 2011; 60:766-74. [PMID: 21282366 PMCID: PMC3046837 DOI: 10.2337/db10-1148] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE During energy stress, AMP-activated protein kinase (AMPK) promotes glucose transport and glycolysis for ATP production, while it is thought to inhibit anabolic glycogen synthesis by suppressing the activity of glycogen synthase (GS) to maintain the energy balance in muscle. Paradoxically, chronic activation of AMPK causes an increase in glycogen accumulation in skeletal and cardiac muscles, which in some cases is associated with cardiac dysfunction. The aim of this study was to elucidate the molecular mechanism by which AMPK activation promotes muscle glycogen accumulation. RESEARCH DESIGN AND METHODS We recently generated knock-in mice in which wild-type muscle GS was replaced by a mutant (Arg582Ala) that could not be activated by glucose-6-phosphate (G6P), but possessed full catalytic activity and could still be activated normally by dephosphorylation. Muscles from GS knock-in or transgenic mice overexpressing a kinase dead (KD) AMPK were incubated with glucose tracers and the AMPK-activating compound 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) ex vivo. GS activity and glucose uptake and utilization (glycolysis and glycogen synthesis) were assessed. RESULTS Even though AICAR caused a modest inactivation of GS, it stimulated muscle glycogen synthesis that was accompanied by increases in glucose transport and intracellular [G6P]. These effects of AICAR required the catalytic activity of AMPK. Strikingly, AICAR-induced glycogen synthesis was completely abolished in G6P-insensitive GS knock-in mice, although AICAR-stimulated AMPK activation, glucose transport, and total glucose utilization were normal. CONCLUSIONS We provide genetic evidence that AMPK activation promotes muscle glycogen accumulation by allosteric activation of GS through an increase in glucose uptake and subsequent rise in cellular [G6P].
Collapse
Affiliation(s)
- Roger W Hunter
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, UK.
| | | | | | | |
Collapse
|
42
|
Winnick JJ, An Z, Ramnanan CJ, Smith M, Irimia JM, Neal DW, Moore MC, Roach PJ, Cherrington AD. Hepatic glycogen supercompensation activates AMP-activated protein kinase, impairs insulin signaling, and reduces glycogen deposition in the liver. Diabetes 2011; 60:398-407. [PMID: 21270252 PMCID: PMC3028338 DOI: 10.2337/db10-0592] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The objective of this study was to determine how increasing the hepatic glycogen content would affect the liver's ability to take up and metabolize glucose. RESEARCH DESIGN AND METHODS During the first 4 h of the study, liver glycogen deposition was stimulated by intraportal fructose infusion in the presence of hyperglycemic-normoinsulinemia. This was followed by a 2-h hyperglycemic-normoinsulinemic control period, during which the fructose infusion was stopped, and a 2-h experimental period in which net hepatic glucose uptake (NHGU) and disposition (glycogen, lactate, and CO(2)) were measured in the absence of fructose but in the presence of a hyperglycemic-hyperinsulinemic challenge including portal vein glucose infusion. RESULTS Fructose infusion increased net hepatic glycogen synthesis (0.7 ± 0.5 vs. 6.4 ± 0.4 mg/kg/min; P < 0.001), causing a large difference in hepatic glycogen content (62 ± 9 vs. 100 ± 3 mg/g; P < 0.001). Hepatic glycogen supercompensation (fructose infusion group) did not alter NHGU, but it reduced the percent of NHGU directed to glycogen (79 ± 4 vs. 55 ± 6; P < 0.01) and increased the percent directed to lactate (12 ± 3 vs. 29 ± 5; P = 0.01) and oxidation (9 ± 3 vs. 16 ± 3; P = NS). This change was associated with increased AMP-activated protein kinase phosphorylation, diminished insulin signaling, and a shift in glycogenic enzyme activity toward a state discouraging glycogen accumulation. CONCLUSIONS These data indicate that increases in hepatic glycogen can generate a state of hepatic insulin resistance, which is characterized by impaired glycogen synthesis despite preserved NHGU.
Collapse
Affiliation(s)
- Jason J Winnick
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Egawa T, Hamada T, Ma X, Karaike K, Kameda N, Masuda S, Iwanaka N, Hayashi T. Caffeine activates preferentially α1-isoform of 5'AMP-activated protein kinase in rat skeletal muscle. Acta Physiol (Oxf) 2011; 201:227-38. [PMID: 21241457 DOI: 10.1111/j.1748-1716.2010.02169.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Caffeine activates 5'AMP-activated protein kinase (AMPK), a signalling intermediary implicated in the regulation of glucose, lipid and energy metabolism in skeletal muscle. Skeletal muscle expresses two catalytic α subunits of AMPK, α1 and α2, but the isoform specificity of caffeine-induced AMPK activation is unclear. The aim of this study was to determine which α isoform is preferentially activated by caffeine in vitro and in vivo using rat skeletal muscle. METHODS Rat epitrochlearis muscle was isolated and incubated in vitro in the absence or presence of caffeine. In another experiment, the muscle was dissected after intravenous injection of caffeine. Isoform-specific AMPK activity, the phosphorylation status of AMPKα Thr(172) and acetyl-CoA carboxylase (ACC) Ser(79) , the concentrations of ATP, phosphocreatine (PCr) and glycogen, and 3-O-methyl-d-glucose (3MG) transport activity were estimated. RESULTS Incubation of isolated epitrochlearis muscle with 1 mm of caffeine for 15 min increased AMPKα1 activity, but not AMPKα2 activity; concentrations of ATP, PCr and glycogen were not affected. Incubation with 3 mm of caffeine activated AMPKα2 and reduced PCr and glycogen concentrations. Incubation with 1 mm of caffeine increased the phosphorylation of AMPK and ACC and enhanced 3MG transport. Intravenous injection of caffeine (5 mg kg(-1) ) predominantly activated AMPKα1 and increased 3MG transport without affecting energy status. CONCLUSION Our results suggest that of the two α isoforms of AMPK, AMPKα1 is predominantly activated by caffeine via an energy-independent mechanism and that the activation of AMPKα1 increases glucose transport and ACC phosphorylation in skeletal muscle.
Collapse
Affiliation(s)
- T Egawa
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Insulin receptor substrates Irs1 and Irs2 coordinate skeletal muscle growth and metabolism via the Akt and AMPK pathways. Mol Cell Biol 2010; 31:430-41. [PMID: 21135130 DOI: 10.1128/mcb.00983-10] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Coordination of skeletal muscle growth and metabolism with nutrient availability is critical for metabolic homeostasis. To establish the role of insulin-like signaling in this process, we used muscle creatine kinase (MCK)-Cre to disrupt expression of insulin receptor substrates Irs1 and Irs2 in mouse skeletal/cardiac muscle. In 2-week-old mice, skeletal muscle masses and insulin responses were slightly affected by Irs1, but not Irs2, deficiency. In contrast, the combined deficiency of Irs1 and Irs2 (MDKO mice) severely reduced skeletal muscle growth and Akt→mTOR signaling and caused death by 3 weeks of age. Autopsy of MDKO mice revealed dilated cardiomyopathy, reflecting the known requirement of insulin-like signaling for cardiac function (P. G. Laustsen et al., Mol. Cell. Biol. 27:1649-1664, 2007). Impaired growth and function of MDKO skeletal muscle were accompanied by increased Foxo-dependent atrogene expression and amino acid release. MDKO mice were resistant to injected insulin, and their isolated skeletal muscles showed decreased insulin-stimulated glucose uptake. Glucose utilization in MDKO mice and isolated skeletal muscles was shifted from oxidation to lactate production, accompanied by an elevated AMP/ATP ratio that increased AMP-activated protein kinase (AMPK)→acetyl coenzyme A carboxylase (ACC) phosphorylation and fatty acid oxidation. Thus, insulin-like signaling via Irs1/2 is essential to terminate skeletal muscle catabolic/fasting pathways in the presence of adequate nutrition.
Collapse
|
45
|
Furugen A, Kobayashi M, Narumi K, Watanabe M, Otake S, Itagaki S, Iseki K. AMP-activated protein kinase regulates the expression of monocarboxylate transporter 4 in skeletal muscle. Life Sci 2010; 88:163-8. [PMID: 21070787 DOI: 10.1016/j.lfs.2010.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 10/18/2010] [Accepted: 11/01/2010] [Indexed: 11/17/2022]
Abstract
AIMS The aim of this study was to determine the effect of 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), an AMP-activated protein kinase (AMPK) activator, on monocarboxylate transporter 4 (MCT4) expression in rat skeletal muscle and a prototypic embryonal rhabdomyosarcoma cell line (RD cells). MAIN METHODS We examined the alteration in Glucose transporter 4 (GLUT4) and MCT4 mRNA levels by quantitative real-time PCR. Alteration in GLUT4 and MCT4 protein levels was examined by Western blotting. KEY FINDINGS In an in vivo study, AICAR increased MCT4 mRNA and protein levels in a fiber-type specific manner. In an in vitro study, AICAR increased MCT4 mRNA and protein levels. Moreover, AICAR-induced MCT4 expression was blocked by Compound C, an AMPK inhibitor. SIGNIFICANCE In this study, we found that AMPK activation induced expression of MCT4 in RD cells and rat skeletal muscle in a fiber-type specific manner. These results indicate the possible involvement of an AMPK-mediated pathway associated with MCT4 expression in skeletal muscle.
Collapse
Affiliation(s)
- Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Ma X, Egawa T, Kimura H, Karaike K, Masuda S, Iwanaka N, Hayashi T. Berberine-induced activation of 5'-adenosine monophosphate-activated protein kinase and glucose transport in rat skeletal muscles. Metabolism 2010; 59:1619-27. [PMID: 20423742 DOI: 10.1016/j.metabol.2010.03.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 02/27/2010] [Accepted: 03/17/2010] [Indexed: 11/18/2022]
Abstract
Berberine (BBR) is the main alkaloid of Coptis chinensis, which has been used as a folk medicine to treat diabetes mellitus in Asian countries. We explored the possibility that 5'-adenosine monophosphate-activated protein kinase (AMPK) is involved in metabolic enhancement by BBR in skeletal muscle, the important tissue for glucose metabolism. Isolated rat epitrochlearis and soleus muscles were incubated in a buffer containing BBR, and activation of AMPK and related events were examined. In response to BBR treatment, the Thr(172) phosphorylation of the catalytic α-subunit of AMPK, an essential step for full kinase activation, increased in a dose- and time-dependent manner. Ser(79) phosphorylation of acetyl-coenzyme A carboxylase, an intracellular substrate of AMPK, increased correspondingly. Analysis of isoform-specific AMPK activity revealed that BBR activated both the α1 and α2 isoforms of the catalytic subunit. This increase in enzyme activity was associated with an increased rate of 3-O-methyl-d-glucose transport in the absence of insulin and with phosphorylation of AS160, a signaling intermediary leading to glucose transporter 4 translocation. The intracellular energy status estimated from the phosphocreatine concentration was decreased by BBR. These results suggest that BBR acutely stimulates both AMPKα1 and AMPKα2 and insulin-independent glucose transport in skeletal muscle with a reduction of the intracellular energy status.
Collapse
Affiliation(s)
- Xiao Ma
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Lefaucheur L. A second look into fibre typing – Relation to meat quality. Meat Sci 2010; 84:257-70. [DOI: 10.1016/j.meatsci.2009.05.004] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 04/16/2009] [Accepted: 05/03/2009] [Indexed: 12/25/2022]
|
48
|
Egawa T, Hamada T, Kameda N, Karaike K, Ma X, Masuda S, Iwanaka N, Hayashi T. Caffeine acutely activates 5'adenosine monophosphate-activated protein kinase and increases insulin-independent glucose transport in rat skeletal muscles. Metabolism 2009; 58:1609-17. [PMID: 19608206 DOI: 10.1016/j.metabol.2009.05.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 05/07/2009] [Accepted: 05/19/2009] [Indexed: 10/20/2022]
Abstract
Caffeine (1,3,7-trimethylxanthine) has been implicated in the regulation of glucose and lipid metabolism including actions such as insulin-independent glucose transport, glucose transporter 4 expression, and fatty acid utilization in skeletal muscle. These effects are similar to the exercise-induced and 5'adenosine monophosphate-activated protein kinase (AMPK)-mediated metabolic changes in skeletal muscle, suggesting that caffeine is involved in the regulation of muscle metabolism through AMPK activation. We explored whether caffeine acts on skeletal muscle to stimulate AMPK. Incubation of rat epitrochlearis and soleus muscles with Krebs buffer containing caffeine (> or =3 mmol/L, > or =15 minutes) increased the phosphorylation of AMPKalpha Thr(172), an essential step for full kinase activation, and acetyl-coenzyme A carboxylase Ser(79), a downstream target of AMPK, in dose- and time-dependent manners. Analysis of isoform-specific AMPK activity revealed that both AMPKalpha1 and alpha2 activities increased significantly. This enzyme activation was associated with a reduction in phosphocreatine content and an increased rate of 3-O-methyl-d-glucose transport activity in the absence of insulin. These results suggest that caffeine has similar actions to exercise by acutely stimulating skeletal muscle AMPK activity and insulin-independent glucose transport with a reduction of the intracellular energy status.
Collapse
Affiliation(s)
- Tatsuro Egawa
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Hegarty BD, Turner N, Cooney GJ, Kraegen EW. Insulin resistance and fuel homeostasis: the role of AMP-activated protein kinase. Acta Physiol (Oxf) 2009; 196:129-45. [PMID: 19245658 DOI: 10.1111/j.1748-1716.2009.01968.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The worldwide prevalence of type 2 diabetes (T2D) and related disorders of the metabolic syndrome (MS) has reached epidemic proportions. Insulin resistance (IR) is a major perturbation that characterizes these disorders. Extra-adipose accumulation of lipid, particularly within the liver and skeletal muscle, is closely linked with the development of IR. The AMP-activated protein kinase (AMPK) pathway plays an important role in the regulation of both lipid and glucose metabolism. Through its effects to increase fatty acid oxidation and inhibit lipogenesis, AMPK activity in the liver and skeletal muscle could be expected to ameliorate lipid accumulation and associated IR in these tissues. In addition, AMPK promotes glucose uptake into skeletal muscle and suppresses glucose output from the liver via insulin-independent mechanisms. These characteristics make AMPK a highly attractive target for the development of strategies to curb the prevalence and costs of T2D. Recent insights into the regulation of AMPK and mechanisms by which it modulates fuel metabolism in liver and skeletal muscle are discussed here. In addition, we consider the arguments for and against the hypothesis that dysfunctional AMPK contributes to IR. Finally we review studies which assess AMPK as an appropriate target for the prevention and treatment of T2D and MS.
Collapse
Affiliation(s)
- B D Hegarty
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia.
| | | | | | | |
Collapse
|
50
|
Brestoff JR, Clippinger B, Spinella T, von Duvillard SP, Nindl BC, Nindl B, Arciero PJ. An acute bout of endurance exercise but not sprint interval exercise enhances insulin sensitivity. Appl Physiol Nutr Metab 2009; 34:25-32. [PMID: 19234582 DOI: 10.1139/h08-126] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An acute bout of endurance exercise (EE) enhances insulin sensitivity, but the effects of sprint interval exercise (SIE) have not yet been described. We sought to compare insulin sensitivity at baseline and after an acute bout of EE and SIE in healthy men (n = 8) and women (n = 5) (age, 20.7 +/- 0.3 years; peak oxygen consumption (VO2 peak), 42.6 +/- 1.7 mL.kg(-1).min(-1); <1.5 days.week(-1) structured exercise; body fat, 21.1 +/- 1.9%). Subjects underwent 3 oral glucose tolerance tests (OGTT(s)) the day after each of the following 3 conditions: no exercise, baseline (OGTT(B)); SIE at approximately 125% VO(2 peak) (OGTT(SIE)); and EE at approximately 75% VO(2 peak )(OGTT(EE)). SIE and EE sessions were randomized for each subject. Subjects consumed identical meals the day preceding each OGTT. Two insulin sensitivity indices - composite whole-body insulin sensitivity index (ISI-COMP) and ISI-hepatic insulin sensitivity (HOMA) - were calculated, using previously validated formulas (ISI-COMP = 10 000/ radical(glucose(fasting)) x insulin(fasting) x glucose(mean OGTT) x insulin(mean OGTT)); ISI-HOMA = 22.5/(insulin(fasting) x glucose(fasting)), and the plasma concentrations of cytokines interleukin-6 and tumor necrosis factor-alpha were measured. There were no differences by sex for any condition (men vs. women, p > 0.05). Pearson's correlation coefficients between ISI-COMP and ISI-HOMA for each condition were highly correlated (p < 0.01), and followed similar patterns of response. ISI-COMP(EE) was 71.4% higher than ISI-COMP(B) (8.4 +/- 1.4 vs. 4.9 +/- 1.0; p < 0.01) and 40.0% higher than ISI-COMPSIE (8.4 +/- 1.4 vs. 6.0 +/- 1.5; p < 0.05), but there was no difference between ISI-COMP(B) and ISI-COMP(SIE) (p = 0.182). VO(2 peak) was highly correlated with both ISI-COMP and ISI-HOMA during baseline and SIE test conditions (p < 0.02). These findings demonstrate that an acute bout of EE, but not SIE, increases insulin sensitivity relative to a no-exercise control condition in healthy males and females. While these findings underscore the use of regular EE as an effective intervention strategy against insulin resistance, additional research examining repeated sessions of SIE on insulin sensitivity is warranted.
Collapse
Affiliation(s)
- Jonathan R Brestoff
- Department of Exercise Science, Skidmore College, Saratoga Springs, NY 12866, USA
| | | | | | | | | | | | | |
Collapse
|