1
|
Kim DJK, Gao Z, Luck JC, Brandt K, Miller AJ, Kim-Shapiro D, Basu S, Leuenberger U, Gardner AW, Muller MD, Proctor DN. Effects of short-term dietary nitrate supplementation on exercise and coronary blood flow responses in patients with peripheral artery disease. Front Nutr 2024; 11:1398108. [PMID: 39027664 PMCID: PMC11257697 DOI: 10.3389/fnut.2024.1398108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Background Peripheral arterial disease (PAD) is a prevalent vascular disorder characterized by atherosclerotic occlusion of peripheral arteries, resulting in reduced blood flow to the lower extremities and poor walking ability. Older patients with PAD are also at a markedly increased risk of cardiovascular events, including myocardial infarction. Recent evidence indicates that inorganic nitrate supplementation, which is abundant in certain vegetables, augments nitric oxide (NO) bioavailability and may have beneficial effects on walking, blood pressure, and vascular function in patients with PAD. Objective We sought to determine if short-term nitrate supplementation (via beetroot juice) improves peak treadmill time and coronary hyperemic responses to plantar flexion exercise relative to placebo (nitrate-depleted juice) in older patients with PAD. The primary endpoints were peak treadmill time and the peak coronary hyperemic response to plantar flexion exercise. Methods Eleven PAD patients (52-80 yr.; 9 men/2 women; Fontaine stage II) were randomized (double-blind) to either nitrate-rich (Beet-IT, 0.3 g inorganic nitrate twice/day; BRnitrate) or nitrate-depleted (Beet-IT, 0.04 g inorganic nitrate twice/day, BRplacebo) beetroot juice for 4 to 6 days, followed by a washout of 7 to 14 days before crossing over to the other treatment. Patients completed graded plantar flexion exercise with their most symptomatic leg to fatigue, followed by isometric handgrip until volitional fatigue at 40% of maximum on day 4 of supplementation, and a treadmill test to peak exertion 1-2 days later while continuing supplementation. Hemodynamics and exercise tolerance, and coronary blood flow velocity (CBV) responses were measured. Results Although peak walking time and claudication onset time during treadmill exercise did not differ significantly between BRplacebo and BRnitrate, the diastolic blood pressure response at the peak treadmill walking stage was significantly lower in the BRnitrate condition. Increases in CBV from baseline to peak plantar flexion exercise after BRplacebo and BRnitrate showed a trend for a greater increase in CBV at the peak workload of plantar flexion with BRnitrate (p = 0.06; Cohen's d = 0.56). Conclusion Overall, these preliminary findings suggest that inorganic nitrate supplementation in PAD patients is safe, well-tolerated, and may improve the coronary hyperemic and blood pressure responses when their calf muscles are most predisposed to ischemia.Clinical trial registration:https://clinicaltrials.gov/, identifier NCT02553733.
Collapse
Affiliation(s)
- Danielle Jin-Kwang Kim
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, United States
| | - Zhaohui Gao
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, United States
| | - Jonathan C. Luck
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, United States
| | - Kristen Brandt
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, United States
| | - Amanda J. Miller
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, United States
| | - Daniel Kim-Shapiro
- Department of Physics, Wake Forest University, Winston-Salem, NC, United States
| | - Swati Basu
- Department of Physics, Wake Forest University, Winston-Salem, NC, United States
| | - Urs Leuenberger
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, United States
| | - Andrew W. Gardner
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Matthew D. Muller
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - David N. Proctor
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, United States
- Noll Laboratory, Department of Kinesiology, Penn State University, University Park, PA, United States
| |
Collapse
|
2
|
Wilburn D, Miserlis D, Fletcher E, Papoutsi E, Ismaeel A, Bradley C, Ring A, Wilkinson T, Smith RS, Ferrer L, Haynatzki G, Monteleone P, Banerjee S, Brisbois E, Bohannon WT, Koutakis P. Skeletal muscle desmin alterations following revascularization in peripheral artery disease claudicants. Sci Rep 2024; 14:12609. [PMID: 38824194 PMCID: PMC11144188 DOI: 10.1038/s41598-024-63626-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024] Open
Abstract
Peripheral artery disease (PAD) is characterized by varying severity of arterial stenosis, exercise induced claudication, malperfused tissue precluding normal healing and skeletal muscle dysfunction. Revascularization interventions improve circulation, but post-reperfusion changes within the skeletal muscle are not well characterized. This study investigates if revascularization enhanced hemodynamics increases walking performance with concurrent improvement of mitochondrial function and reverses abnormal skeletal muscle morphological features that develop with PAD. Fifty-eight patients completed walking performance testing and muscle biopsy before and 6 months after revascularization procedures. Muscle fiber morphology, desmin structure, and mitochondria respiration assessments before and after the revascularization were evaluated. Revascularization improved limb hemodynamics, walking function, and muscle morphology. Qualitatively not all participants recovered normal structural architecture of desmin in the myopathic myofibers after revascularization. Heterogenous responses in the recovery of desmin structure following revascularization may be caused by other underlying factors not reversed with hemodynamic improvements. Revascularization interventions clinically improve patient walking ability and can reverse the multiple subcellular functional and structural abnormalities in muscle cells. Further study is needed to characterize desmin structural remodeling with improvements in skeletal muscle morphology and function.
Collapse
Affiliation(s)
- Dylan Wilburn
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX, 76798-7388, USA
| | - Dimitrios Miserlis
- Department of Surgery and Perioperative Care, University of Texas, Austin, TX, USA
- Department of Surgery, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Emma Fletcher
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX, 76798-7388, USA
| | - Evlampia Papoutsi
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX, 76798-7388, USA
| | - Ahmed Ismaeel
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Cassandra Bradley
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX, 76798-7388, USA
| | - Andrew Ring
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX, 76798-7388, USA
| | - Trevor Wilkinson
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX, 76798-7388, USA
| | - Robert S Smith
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX, USA
| | - Lucas Ferrer
- Department of Surgery and Perioperative Care, University of Texas, Austin, TX, USA
| | - Gleb Haynatzki
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Peter Monteleone
- Department of Internal Medicine, University of Texas, Austin, TX, USA
| | - Subhash Banerjee
- Department of Cardiology, Baylor Scott & White Medical Center, Dallas, TX, USA
| | - Elizabeth Brisbois
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - William T Bohannon
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX, USA
| | - Panagiotis Koutakis
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX, 76798-7388, USA.
| |
Collapse
|
3
|
Kim DJK, Gao Z, Cui J, Leuenberger UA, Brandt K, Blaha C, Cauffman A, Aziz F, Sinoway LI. Aortic blood pressure and pulse wave indices responses to exercise in peripheral artery disease. Am J Physiol Regul Integr Comp Physiol 2023; 325:R327-R336. [PMID: 37486070 PMCID: PMC10639020 DOI: 10.1152/ajpregu.00303.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/29/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
Peripheral artery disease (PAD) refers to obstructed blood flow in peripheral arteries typically due to atherosclerotic plaques. How PAD alters aortic blood pressure and pressure wave propagation during exercise is unclear. Thus, this study examined central blood pressure responses to plantar flexion exercise by investigating aortic pulse wave properties in PAD. Thirteen subjects with PAD and 13 healthy [age-, sex-, body mass index (BMI) matched] subjects performed rhythmic plantar flexion for 14 min or until fatigue (20 contractions/min; started at 2 kg with 1 kg/min increment up to 12 kg). Brachial (oscillometric cuff) and radial (SphygmoCor) blood pressure and derived-aortic waveforms were analyzed during supine rest and plantar flexion exercise. At rest, baseline augmentation index (P = 0.0263) and cardiac wasted energy (P = 0.0321) were greater in PAD due to earlier arrival of the reflected wave (P = 0.0289). During exercise, aortic blood pressure (aMAP) and aortic pulse pressure showed significant interaction effects (P = 0.0041 and P = 0.0109, respectively). In particular, PAD had a greater aMAP increase at peak exercise (P = 0.0147). Moreover, the tension time index was greater during exercise in PAD (P = 0.0173), especially at peak exercise (P = 0.0173), whereas the diastolic time index (P = 0.0685) was not different between the two groups. Hence, during exercise, the subendocardial viability ratio was lower in PAD (P = 0.0164), especially at peak exercise (P = 0.0164). The results suggest that in PAD, the aortic blood pressure responses and myocardial oxygen demand during exercise are increased compared with healthy controls.
Collapse
Affiliation(s)
- Danielle Jin-Kwang Kim
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Zhaohui Gao
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Jian Cui
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Urs A Leuenberger
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Kristen Brandt
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Cheryl Blaha
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Aimee Cauffman
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Faisal Aziz
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Lawrence I Sinoway
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania, United States
| |
Collapse
|
4
|
Qin L, Li J. Exaggerated blood pressure response to static exercise in hindlimb ischemia-reperfusion. Front Physiol 2022; 13:1048559. [PMID: 36589449 PMCID: PMC9794987 DOI: 10.3389/fphys.2022.1048559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Peripheral artery disease (PAD) reduces the blood flow supply in the affected limbs as one of the significant cardiovascular concerns. Revascularization surgery in the femoral artery plays a central role in treating PAD. Exercise is also a rehabilitation strategy suggested for PAD patients to improve vascular functions. However, the effects of limb ischemia-reperfusion (IR), one of the most predominant complications in revascularization surgery, on exercise-induced arterial blood pressure (BP) response are poorly understood. In the present study, we determined 1) the blood flow status in the hindlimb muscles of rats (plantar muscle, red and white portions of gastrocnemius) with different time points of the hindlimb IR; and 2) the BP response to static muscle contraction in rats at different time points after the blood flow reperfusion procedure. Results of this study indicated that, compared with the Sham group, the blood flow in the hindlimb muscles evaluated by Evans blue concentration was significantly reduced at 6 h of femoral artery occlusion (FAO 6 h) (vs. sham control, p < 0.05). The decreased blood flow was gradually recovered after the blood flow reperfusion for 18 (IR 18 h), 66 (IR 66 h), and 114 (IR 114 h) hours (p < 0.05 vs. FAO 6 h for all IR groups). The response of mean arterial pressure was 20 ± 4 mmHg in Sham rats (n = 7); 32 ± 10 mmHg in IR 18 h rats (n = 10); 27 ± 7 mmHg in IR 66 h rats (n = 13); 26 ± 4 mmHg in IR 114 h rats (n = 9) (p < 0.05 vs. Sham for all groups). No significant difference was observed in the peak-developed tension during muscle contraction among all the groups (p > 0.05). In conclusion, static exercise-induced BP response is exaggerated following IR. Whereas the BP response is not statistically significant but tends to decrease with a prolonged IR time, the exaggerated BP response remains through time points from post-IR 18 h-114 h.
Collapse
Affiliation(s)
- Lu Qin
- *Correspondence: Lu Qin, ; Jianhua Li,
| | | |
Collapse
|
5
|
Teixeira AL, Vianna LC. The exercise pressor reflex: An update. Clin Auton Res 2022; 32:271-290. [PMID: 35727398 DOI: 10.1007/s10286-022-00872-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023]
Abstract
The exercise pressor reflex is a feedback mechanism engaged upon stimulation of mechano- and metabosensitive skeletal muscle afferents. Activation of these afferents elicits a reflex increase in heart rate, blood pressure, and ventilation in an intensity-dependent manner. Consequently, the exercise pressor reflex has been postulated to be one of the principal mediators of the cardiorespiratory responses to exercise. In this updated review, we will discuss classical and recent advancements in our understating of the exercise pressor reflex function in both human and animal models. Particular attention will be paid to the afferent mechanisms and pathways involved during its activation, its effects on different target organs, its potential role in the abnormal cardiovascular response to exercise in diseased states, and the impact of age and biological sex on these responses. Finally, we will highlight some unanswered questions in the literature that may inspire future investigations in the field.
Collapse
Affiliation(s)
- André L Teixeira
- NeuroV̇ASQ̇, Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, DF, Brasília, Brazil
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Lauro C Vianna
- NeuroV̇ASQ̇, Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, DF, Brasília, Brazil.
| |
Collapse
|
6
|
Li Q, Qin L, Li J. Effects of bradykinin on voltage-gated K V 4 channels in muscle dorsal root ganglion neurons of rats with experimental peripheral artery disease. J Physiol 2021; 599:3567-3580. [PMID: 34036586 PMCID: PMC8284427 DOI: 10.1113/jp281704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/19/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS During exercise, bradykinin (BK), a muscle metabolite in ischaemic muscles, exaggerates autonomic responses to activation of muscle afferent nerves in peripheral artery disease (PAD). We examined whether BK inhibits activity of KV 4 channels in muscle afferent neurons of PAD rats induced by femoral artery occlusion. We demonstrated that: 1) femoral occlusion attenuates KV 4 currents in dorsal root ganglion (DRG) neurons innervating the hindlimb muscles and decreases the threshold of action potential firing; 2) BK has a greater inhibitory effect on KV 4 currents in muscle DRG neurons of PAD rats; and 3) expression of KV 4.3 is downregulated in DRGs of PAD rats and inhibition of KV 4.3 significantly decreases activity of KV 4 currents in muscle DRG neurons. Femoral artery occlusion-induced limb ischaemia and/or ischaemia-induced metabolites (i.e. BK) inhibit activity of KV 4 channels in muscle afferent neurons and this is likely involved in the exaggerated exercise pressor reflex in PAD. ABSTRACT Muscle afferent nerve-activated reflex sympathetic nervous and blood pressure responses are exaggerated during exercise in patients with peripheral artery diseases (PAD) and in PAD rats induced by femoral artery occlusion. However, the precise signalling pathways and molecular mediators responsible for these abnormal autonomic responses in PAD are poorly understood. A-type voltage-gated K+ (KV ) channels are quintessential regulators of cellular excitability in the various tissues. Among KV channels, KV 4 (i.e. KV 4.1 and KV 4.3) in primary sensory neurons mainly participate in physiological functions in regulation of mechanical and chemical sensation. However, little is known about the role of KV 4 in regulating neuronal activity in muscle afferent neurons of PAD. In addition, bradykinin (BK) is considered as a muscle metabolite contributing to the exaggerated exercise pressor reflex in PAD rats with femoral artery occlusion. Our data demonstrated that: 1) KV 4 currents are attenuated in dorsal root ganglion (DRG) neurons innervating the hindlimb muscles of PAD rats, along with a decreasing threshold of action potential firing; 2) KV 4 currents are inhibited by application of BK onto muscle DRG neurons of PAD rats to a greater degree; and 3) expression of KV 4.3 is downregulated in the DRGs of PAD rats and KV 4.3 channel is a major contributor to the activity of KV 4 currents in muscle DRG neurons. In conclusion, data suggest that femoral artery occlusion-induced limb ischaemia and/or ischaemia-induced metabolites (i.e. BK) inhibit the activity of KV 4 channels in muscle afferent neurons likely leading to the exaggerated exercise pressor reflex observed in PAD.
Collapse
Affiliation(s)
- Qin Li
- Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Lu Qin
- Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Jianhua Li
- Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| |
Collapse
|
7
|
Qin L, Li J. Sympathetic Nerve Control of Blood Pressure Response during Exercise in Peripheral Artery Disease and Current Application of Experimental Disease Models. AMERICAN JOURNAL OF BIOMEDICAL SCIENCE & RESEARCH 2021; 9:204-209. [PMID: 33392512 DOI: 10.34297/ajbsr.2020.09.001387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In patients with peripheral artery disease (PAD), the blood supply directed to the lower limbs is reduced. This results in severe limb ischemia and thereby intermittent claudicating which is characterized by pain in lower limbs that occurs with walking and is relieved by rest. Of note, PAD can extremely affect the quality of living of patients and increase high risk of coronary and cerebral vascular accidents. However, effective treatments of PAD are still challenging in clinics. A number of reports have demonstrated the beneficial effects of supervised exercise on symptoms of PAD patients. This review will summarize results obtained from recent human and animal studies, which include the abnormalities in sympathetic control of blood pressure response during exercise in PAD, and rationality of animal models used for study human PAD. Nonetheless, additional in-depth studies are necessary to better explore the underlying mechanisms of the exaggerated responses of sympathetic nerve and blood pressure in PAD at molecular and cellular levels.
Collapse
Affiliation(s)
- Lu Qin
- Heart & Vascular Institute, The Penn State University College of Medicine, US
| | - Jianhua Li
- Heart & Vascular Institute, The Penn State University College of Medicine, US
| |
Collapse
|
8
|
Kim DJK, Kuroki M, Cui J, Gao Z, Luck JC, Pai S, Miller A, Sinoway L. Systemic and regional hemodynamic response to activation of the exercise pressor reflex in patients with peripheral artery disease. Am J Physiol Heart Circ Physiol 2020; 318:H916-H924. [PMID: 32108523 DOI: 10.1152/ajpheart.00493.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Patients with peripheral artery disease (PAD) have an accentuated exercise pressor reflex (EPR) during exercise of the affected limb. The underlying hemodynamic changes responsible for this, and its effect on blood flow to the exercising extremity, are unclear. We tested the hypothesis that the exaggerated EPR in PAD is mediated by an increase in total peripheral resistance (TPR), which augments redistribution of blood flow to the exercising limb. Twelve patients with PAD and 12 age- and sex-matched subjects without PAD performed dynamic plantar flexion (PF) using the most symptomatic leg at progressive workloads of 2-12 kg (increased by 1 kg/min until onset of fatigue). We measured heart rate, beat-by-beat blood pressure, femoral blood flow velocity (FBV), and muscle oxygen saturation (SmO2) continuously during the exercise. Femoral blood flow (FBF) was calculated from FBV and baseline femoral artery diameter. Stroke volume (SV), cardiac output (CO), and TPR were derived from the blood pressure tracings. Mean arterial blood pressure and TPR were significantly augmented in PAD compared with control during PF. FBF increased during exercise to an equal extent in both groups. However, SmO2 of the exercising limb remained significantly lower in PAD compared with control. We conclude that the exaggerated pressor response in PAD is mediated by an abnormal TPR response, which augments redistribution of blood flow to the exercising extremity, leading to an equal rise in FBF compared with controls. However, this increase in FBF is not sufficient to normalize the SmO2 response during exercise in patients with PAD.NEW & NOTEWORTHY In this study, peripheral artery disease (PAD) patients and healthy control subjects performed graded, dynamic plantar flexion exercise. Data from this study suggest that previously reported exaggerated exercise pressor reflex in patients with PAD is driven by greater vasoconstriction in nonexercising vascular territories which also results in a redistribution of blood flow to the exercising extremity. However, this rise in femoral blood flow does not fully correct the oxygen deficit due to changes in other mechanisms that require further investigation.
Collapse
Affiliation(s)
- Danielle Jin-Kwang Kim
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| | - Marcos Kuroki
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania.,Department of Surgery, Penn State College of Medicine, Hershey, Pennsylvania
| | - Jian Cui
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| | - Zhaohui Gao
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| | - J Carter Luck
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| | - Sam Pai
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| | - Amanda Miller
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| | - Lawrence Sinoway
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
9
|
Li Q, Qin L, Li J. Enhancement by TNF-α of TTX-resistant Na V current in muscle sensory neurons after femoral artery occlusion. Am J Physiol Regul Integr Comp Physiol 2020; 318:R772-R780. [PMID: 32101460 DOI: 10.1152/ajpregu.00338.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Femoral artery occlusion in rats has been used to study human peripheral artery disease (PAD). Using this animal model, a recent study suggests that increases in levels of tumor necrosis factor-α (TNF-α) and its receptor lead to exaggerated responses of sympathetic nervous activity and arterial blood pressure as metabolically sensitive muscle afferents are activated. Note that voltage-dependent Na+ subtype NaV1.8 channels (NaV1.8) are predominately present in chemically sensitive thin fiber sensory nerves. The purpose of this study was to examine the role played by TNF-α in regulating activity of NaV1.8 currents in muscle dorsal root ganglion (DRG) neurons of rats with PAD induced by femoral artery occlusion. DRG neurons from control and occluded limbs of rats were labeled by injecting the fluorescent tracer DiI into the hindlimb muscles 5 days before the experiments. A voltage patch-clamp mode was used to examine TTX-resistant (TTX-R) NaV currents. Results were as follows: 72 h of femoral artery occlusion increased peak amplitude of TTX-R [1,922 ± 139 pA in occlusion (n = 11 DRG neurons) vs. 1,178 ± 39 pA in control (n = 10), means ± SE; P < 0.001 between the 2 groups] and NaV1.8 currents [1,461 ± 116 pA in occlusion (n = 11) and 766 ± 48 pA in control (n = 10); P < 0.001 between groups] in muscle DRG neurons. TNF-α exposure amplified TTX-R and NaV1.8 currents in DRG neurons of occluded muscles in a dose-dependent manner. Notably, the amplification of TTX-R and NaV1.8 currents induced by TNF-α was attenuated in DRG neurons with preincubation with respective inhibitors of the intracellular signaling pathways p38-MAPK, JNK, and ERK. In conclusion, our data suggest that NaV1.8 is engaged in the role of TNF-α in amplifying muscle afferent inputs as the hindlimb muscles are ischemic; p38-MAPK, JNK, and ERK pathways are likely necessary to mediate the effects of TNF-α.
Collapse
Affiliation(s)
- Qin Li
- Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Lu Qin
- Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jianhua Li
- Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
10
|
Cristina-Oliveira M, Meireles K, Spranger MD, O'Leary DS, Roschel H, Peçanha T. Clinical safety of blood flow-restricted training? A comprehensive review of altered muscle metaboreflex in cardiovascular disease during ischemic exercise. Am J Physiol Heart Circ Physiol 2019; 318:H90-H109. [PMID: 31702969 DOI: 10.1152/ajpheart.00468.2019] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Blood flow restriction training (BFRT) is an increasingly widespread method of exercise that involves imposed restriction of blood flow to the exercising muscle. Blood flow restriction is achieved by inflating a pneumatic pressure cuff (or a tourniquet) positioned proximal to the exercising muscle before, and during, the bout of exercise (i.e., ischemic exercise). Low-intensity BFRT with resistance training promotes comparable increases in muscle mass and strength observed during high-intensity exercise without blood flow restriction. BFRT has expanded into the clinical research setting as a potential therapeutic approach to treat functionally impaired individuals, such as the elderly, and patients with orthopedic and cardiovascular disease/conditions. However, questions regarding the safety of BFRT must be fully examined and addressed before the implementation of this exercise methodology in the clinical setting. In this respect, there is a general concern that BFRT may generate abnormal reflex-mediated cardiovascular responses. Indeed, the muscle metaboreflex is an ischemia-induced, sympathoexcitatory pressor reflex originating in skeletal muscle, and the present review synthesizes evidence that BFRT may elicit abnormal cardiovascular responses resulting from increased metaboreflex activation. Importantly, abnormal cardiovascular responses are more clearly evidenced in populations with increased cardiovascular risk (e.g., elderly and individuals with cardiovascular disease). The evidence provided in the present review draws into question the cardiovascular safety of BFRT, which clearly needs to be further investigated in future studies. This information will be paramount for the consideration of BFRT exercise implementation in clinical populations.
Collapse
Affiliation(s)
- Michelle Cristina-Oliveira
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Kamila Meireles
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Marty D Spranger
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Donal S O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Hamilton Roschel
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Tiago Peçanha
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Vianna LC, Fisher JP. Reflex control of the cardiovascular system during exercise in disease. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|