1
|
Lee JB, Katerberg C, Bommarito JC, Power GA, Millar PJ. Blood Pressure Responses to Postexercise Circulatory Occlusion Are Attenuated After Exercise-Induced Muscle Weakness. Med Sci Sports Exerc 2023; 55:1660-1671. [PMID: 37017549 DOI: 10.1249/mss.0000000000003182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
PURPOSE Exercise blood pressure (BP) responses are thought to be determined by relative exercise intensity (percent maximal voluntary contraction (MVC) strength). However, cross-sectional studies report that during a static contraction, higher absolute force is associated with greater BP responses to relative intensity exercise and subsequent muscle metaboreflex activation with postexercise circulatory occlusion (PECO). We hypothesized that a bout of unaccustomed eccentric exercise would reduce knee extensor MVC and subsequently attenuate BP responses to PECO. METHODS Continuous BP, heart rate, muscle oxygenation, and knee extensor electromyography were recorded in 21 young healthy individuals (female, n = 10) during 2 min of 20% MVC static knee extension exercise and 2 min of PECO, performed before and 24 h after 300 maximal knee extensor eccentric contractions to cause exercise-induced muscle weakness. As a control, 14 participants repeated the eccentric exercise 4 wks later to test whether BP responses were altered when exercise-induced muscle weakness was attenuated via the protective effects of the repeated bout effect. RESULTS Eccentric exercise reduced MVC in all participants (144 ± 43 vs 110 ± 34 N·m, P < 0.0001). BP responses to matched relative intensity static exercise (lower absolute force) were unchanged after eccentric exercise ( P > 0.99) but were attenuated during PECO (systolic BP: 18 ± 10 vs 12 ± 9 mm Hg, P = 0.02). Exercise-induced muscle weakness modulated the deoxygenated hemoglobin response to static exercise (64% ± 22% vs 46% ± 22%, P = 0.04). When repeated after 4 wks, exercise-induced weakness after eccentric exercise was attenuated (-21.6% ± 14.3% vs -9.3 ± 9.7, P = 0.0002) and BP responses to PECO were not different from control values (all, P > 0.96). CONCLUSIONS BP responses to muscle metaboreflex activation, but not exercise, are attenuated by exercise-induced muscle weakness, indicating a contribution of absolute exercise intensity on muscle metaboreflex activation.
Collapse
Affiliation(s)
- Jordan B Lee
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, CANADA
| | - Carlin Katerberg
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, CANADA
| | - Julian C Bommarito
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, CANADA
| | - Geoffrey A Power
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, CANADA
| | - Philip J Millar
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, CANADA
| |
Collapse
|
2
|
Contento VS, Power GA. Eccentric exercise-induced muscle weakness amplifies the history dependence of force. Eur J Appl Physiol 2023; 123:749-767. [PMID: 36447012 DOI: 10.1007/s00421-022-05105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022]
Abstract
INTRODUCTION Following active lengthening or shortening contractions, isometric steady-state torque is increased (residual force enhancement; rFE) or decreased (residual force depression; rFD), respectively, compared to fixed-end isometric contractions at the same muscle length and level of activation. Though the mechanisms underlying this history dependence of force have been investigated extensively, little is known about the influence of exercise-induced muscle weakness on rFE and rFD. PURPOSE Assess rFE and rFD in the dorsiflexors at 20%, 60%, and 100% maximal voluntary torque (MVC) and activation matching, and electrically stimulated at 20% MVC, prior to, 1 h following, and 24 h following 150 maximal eccentric dorsiflexion contractions. METHODS Twenty-six participants (13 male, 24.7 ± 2.0y; 13 female, 22.5 ± 3.6y) were seated in a dynamometer with their right hip and knee angle set to 110° and 140°, respectively, with an ankle excursion set between 0° and 40° plantar flexion (PF). MVC torque, peak twitch torque, and prolonged low frequency force depression were used to assess eccentric exercise-induced neuromuscular impairments. History-dependent contractions consisted of a 1 s isometric (40°PF or 0°PF) phase, a 1 s shortening or lengthening phase (40°/s), and an 8 s isometric (0°PF or 40°PF) phase. RESULTS Following eccentric exercise; MVC torque was decreased, prolonged low frequency force depression was present, and both rFE and rFD increased for all maximal and submaximal conditions. CONCLUSIONS The history dependence of force during voluntary torque and activation matching, and electrically stimulated contractions is amplified following eccentric exercise. It appears that a weakened neuromuscular system amplifies the magnitude of the history-dependence of force.
Collapse
Affiliation(s)
- Vincenzo S Contento
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
3
|
Jodoin HL, Hinks A, Roussel OP, Contento VS, Dalton BH, Power GA. Eccentric exercise-induced muscle weakness abolishes sex differences in fatigability during sustained submaximal isometric contractions. JOURNAL OF SPORT AND HEALTH SCIENCE 2023:S2095-2546(23)00014-5. [PMID: 36801454 PMCID: PMC10362487 DOI: 10.1016/j.jshs.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/24/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Females are typically less fatigable than males during sustained isometric contractions at lower isometric contraction intensities. This sex difference in fatigability becomes more variable during higher intensity isometric and dynamic contractions. While less fatiguing than isometric or concentric contractions, eccentric contractions induce greater and longer lasting impairments in force production. However, it is not clear how muscle weakness influences fatigability in males and females during sustained isometric contractions. METHODS We investigated the effects of eccentric exercise-induced muscle weakness on time to task failure (TTF) during a sustained submaximal isometric contraction in young (18-30 years) healthy males (n = 9) and females (n = 10). Participants performed a sustained isometric contraction of the dorsiflexors at 35° plantar flexion by matching a 30% maximal voluntary contraction (MVC) torque target until task failure (i.e., falling below 5% of their target torque for ≥2 s). The same sustained isometric contraction was repeated 30 min after 150 maximal eccentric contractions. Agonist and antagonist activation were assessed using surface electromyography over the tibialis anterior and soleus muscles, respectively. RESULTS Males were ∼41% stronger than females. Following eccentric exercise both males and females experienced an ∼20% decline in maximal voluntary contraction torque. TTF was ∼34% longer in females than males prior to eccentric exercise-induced muscle weakness. However, following eccentric exercise-induced muscle weakness, this sex-related difference was abolished, with both groups having an ∼45% shorter TTF. Notably, there was ∼100% greater antagonist activation in the female group during the sustained isometric contraction following exercise-induced weakness as compared to the males. CONCLUSION This increase in antagonist activation disadvantaged females by decreasing their TTF, resulting in a blunting of their typical fatigability advantage over males.
Collapse
Affiliation(s)
- Hanna L Jodoin
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Olivia P Roussel
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Vincenzo S Contento
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Brian H Dalton
- School of Health and Exercise Science, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
4
|
Harper SA, Thompson BJ. Interaction between age and fatigue on antagonist muscle coactivation during an acute post-fatigue recovery phase. FRONTIERS IN AGING 2022; 3:1005080. [PMID: 36263146 PMCID: PMC9574075 DOI: 10.3389/fragi.2022.1005080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Abstract
This study investigated the age-related changes in antagonist muscle coactivation of the biceps femoris (BF) during an acute recovery period following a leg extensor fatiguing protocol. Twenty-three young (mean ± SD: age = 25.1 ± 3.0 years) and twenty-three old men (age = 71.5 ± 3.9 years) participated. Surface electromyography (sEMG) was recorded from the BF muscles for antagonist muscle coactivation. Testing involved participants performing leg extension isometric maximal voluntary contractions (MVCs) and isokinetic MVCs at 240°·s-1 at baseline (Pre) and again after the fatigue protocol at 0 (Post0), 7 (Post7), 15 (Post15), and 30 (Post30) minutes post fatigue. Root mean square (RMS) values were computed from the BF sEMG and were calculated as the first 200 ms from onset for the isometric (IsomCoact200ms) and dynamic isokinetic 240°·s-1 (DynCoact200ms) MVCs, and for the final 10° of the leg extension (DynCoact10°) on the isokinetic 240°·s-1 MVCs. Two-way ANOVAs [age group (young vs. old) × time (Pre vs. Post0 vs. Post7 vs. Post15 vs. Post30)] showed that DynCoact200ms had an effect for time (p = 0.018), with greater antagonist coactivation in Pre than Post0 (p = 0.009) and recovering by Post7 (p = 0.011) with no group differences. DynCoact10° had no age × time interaction (p = 0.070), but had a main effect for time (p = 0.020) with the Post0 being lower than the Pre. However, for this variable the young group showed a more severe Pre to Post0 fatigue decline (-45.9%) than the old group (-6.7%) indicating this may be a more sensitive variable for capturing age-related antagonist coactivation post-fatigue responses. Leg extensor fatigue affects some BF coactivation sEMG variables more than others, and any altered post-fatigue coactivation response recovers rapidly (<7 min) from baseline levels.
Collapse
Affiliation(s)
- Sara A. Harper
- Department of Kinesiology and Health Science, Utah State University, Logan, UT, United States,Sorenson Legacy Foundation Center for Clinical Excellence, Dennis Dolny Movement Research Clinic, Utah State University, Logan, UT, United States
| | - Brennan J. Thompson
- Department of Kinesiology and Health Science, Utah State University, Logan, UT, United States,Sorenson Legacy Foundation Center for Clinical Excellence, Dennis Dolny Movement Research Clinic, Utah State University, Logan, UT, United States,*Correspondence: Brennan J. Thompson,
| |
Collapse
|
5
|
Marathamuthu S, Selvanayagam VS, Yusof A. Contralateral Effects of Eccentric Exercise and DOMS of the Plantar Flexors: Evidence of Central Involvement. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2022; 93:240-249. [PMID: 32976088 DOI: 10.1080/02701367.2020.1819526] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Purpose: Peripheral and central factors play important roles in the reduction of motor performance following damaging eccentric exercise and delayed onset muscle soreness (DOMS). Following this regime, contralateral limbs could also be affected; however, the factors involved remain inconclusive. The purpose of this study was to distinguish the peripheral and central factors following eccentric contraction and DOMS of the plantar flexors in treated and contralateral homologous limbs. Methods: Ten males (BMI = 25.08 ± 1.69kgm-2; age = 28.70 ± 4.24 years) were randomly assigned to experimental (DOM) or control (CON) groups. The DOM group performed a damaging eccentric exercise, while the CON group rested. Plasma creatine kinase (CK), pain rating scale (PRS), muscle stiffness, maximal voluntary contraction (MVC), and neural voluntary activation (VA) were measured before, after 10 min, and after 24, 48, and 72 hr on treated and contralateral limbs. Results: Following exercise, CK increased until after 48 hr, while PRS increased until after 72 hr compared to the CON group. Importantly, MVC was reduced at all time points, with the greatest reduction observed after 24 hr (-16%), while VA was affected until after 48 hr, with the greatest reduction at after 10 min (-7%). Interestingly, a "cross-over effect" was observed in contralateral limbs when PRS, MVC, and VA were negatively affected following the same pattern (time line) as treated limbs (-13% peak MVC reduction; -3.5% peak VA reduction). Conclusion: These findings suggest a substantial central contribution to the reduction in force immediately following eccentric exercise and to a lesser extent during the latter part of DOMS in both treated and contralateral limbs.
Collapse
|
6
|
Penedo T, Vuillerme N, Balistieri Santinelli F, Felipe Moretto G, de Carvalho Costa E, Pilon J, Augusto Kalva-Filho C, Barbieri FA. Ankle muscle fatigability impairs body sway for more than 24 h. J Biomech 2021; 133:110890. [PMID: 35121381 DOI: 10.1016/j.jbiomech.2021.110890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/12/2023]
Abstract
This study aimed to investigate if the impairing in postural control, induced by ankle fatiguing exercise, remains after 24/48 h in young adults. Center of Pressure (CoP) was assessed in 16 participants (23 ± 3 years old) before, immediately after an ankle fatigability induction protocol (FI) and after 24 or 48 h of recovery using two 60-s trials with eyes open (EO) and closed (EC). The FI consisted of performing the ankle plantar flexion and dorsiflexion movement repeatedly (0.5 Hz). Ankle muscle fatigability increased CoP anterior-posterior (AP - p < 0.02) and medial-lateral (ML - p < 0.009) root mean square (RMS), and AP (p < 0.01) mean velocity immediately after compared to before FI. These effects remained after 24/48 h of recovery: higher CoP AP (p < 0.03) and ML (p < 0.009) RMS. No significant effects for detrend fluctuation analysis and entropy analysis among periods of postural evaluations was found. Fatigue*visual condition interaction revealed an increased AP median frequency (p < 0.001) during EC compared to EO only immediately after FI. Young adults' body sway remains impaired until 48 h, but not the postural control adaptability and complexity. Visual information may not attenuate the late deleterious ankle muscle fatigability effects. Individuals should be cautious during balance tasks and exercise after fatiguing exercise in the next 24/48 h, therefore avoiding unbalances and falls.
Collapse
Affiliation(s)
- Tiago Penedo
- São Paulo State University (UNESP), School of Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, São Paulo, Brazil; University Grenoble Alpes, AGEIS, Grenoble, France.
| | - Nicolas Vuillerme
- University Grenoble Alpes, AGEIS, Grenoble, France; Institut Universitaire de France, France.
| | - Felipe Balistieri Santinelli
- São Paulo State University (UNESP), School of Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, São Paulo, Brazil; REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium.
| | - Gabriel Felipe Moretto
- São Paulo State University (UNESP), School of Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, São Paulo, Brazil.
| | - Elisa de Carvalho Costa
- São Paulo State University (UNESP), School of Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, São Paulo, Brazil.
| | - Julia Pilon
- São Paulo State University (UNESP), School of Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, São Paulo, Brazil.
| | - Carlos Augusto Kalva-Filho
- São Paulo State University (UNESP), School of Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, São Paulo, Brazil.
| | - Fabio A Barbieri
- São Paulo State University (UNESP), School of Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, São Paulo, Brazil.
| |
Collapse
|
7
|
Bruce CD, Ruggiero L, Dix GU, Cotton PD, McNeil CJ. Females and males do not differ for fatigability, muscle damage and magnitude of the repeated bout effect following maximal eccentric contractions. Appl Physiol Nutr Metab 2021; 46:238-246. [DOI: 10.1139/apnm-2020-0516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Unaccustomed eccentric (ECC) exercise induces muscle fatigue as well as damage and initiates a protective response to minimize impairments from a subsequent bout (i.e., repeated bout effect; RBE). It is uncertain if the sexes differ for neuromuscular responses to ECC exercise and the ensuing RBE. Twenty-six young adults (13 females) performed 2 bouts (4 weeks apart) of 200 ECC maximal voluntary contractions (MVCs) of the dorsiflexors. Isometric (ISO) MVC torque and the ratio of ISO torque in response to low- versus high-frequency stimulation (10:100 Hz) were compared before and after (2–10 min and 2, 4, and 7 days) exercise. The decline in ECC and ISO MVC torque and the 10:100 Hz ratio following bout 1 did not differ between sexes (P > 0.05), with reductions from baseline of 31.5% ± 12.3%, 24.1% ± 15.4%, and 51.3% ± 12.2%, respectively. After bout 2, the 10:100 Hz ratio declined less (45.0% ± 12.4% from baseline) and ISO MVC torque recovered sooner compared with bout 1 but no differences between sexes were evident for the magnitude of the RBE (P > 0.05). These data suggest that fatigability with ECC exercise does not differ for the sexes and adaptations that mitigate impairments to calcium handling are independent of sex. Novelty: One bout of 200 maximal eccentric dorsiflexor contractions caused equivalent muscle fatigue and damage for females and males. The repeated bout effect observed after a second bout 4 weeks later also had no sex-related differences. Prolonged low-frequency force depression is promoted as an indirect measure of muscle damage in humans.
Collapse
Affiliation(s)
- Christina D. Bruce
- School of Health and Exercise Sciences, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
- Centre for Heart, Lung and Vascular Health, Faculty of Health and Social Development, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Luca Ruggiero
- School of Health and Exercise Sciences, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
- Centre for Heart, Lung and Vascular Health, Faculty of Health and Social Development, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Gabriel U. Dix
- School of Health and Exercise Sciences, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Paul D. Cotton
- School of Health and Exercise Sciences, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
- Centre for Heart, Lung and Vascular Health, Faculty of Health and Social Development, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Chris J. McNeil
- School of Health and Exercise Sciences, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
- Centre for Heart, Lung and Vascular Health, Faculty of Health and Social Development, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
8
|
Hill MW, Hosseini EA, McLellan A, Price MJ, Lord SR, Kay AD. Delayed Impairment of Postural, Physical, and Muscular Functions Following Downhill Compared to Level Walking in Older People. Front Physiol 2020; 11:544559. [PMID: 33192547 PMCID: PMC7609421 DOI: 10.3389/fphys.2020.544559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 09/18/2020] [Indexed: 11/15/2022] Open
Abstract
Transient symptoms of muscle damage emanating from unaccustomed eccentric exercise can adversely affect muscle function and potentially increase the risk of falling for several days. Therefore, the aims of the present study were to investigate the shorter- and longer-lasting temporal characteristics of muscle fatigue and damage induced by level (i.e., concentrically biased contractions) or downhill (i.e., eccentrically biased contractions) walking on postural, physical, and muscular functions in older people. Nineteen participants were matched in pairs for sex, age and self-selected walking speed and allocated to a level (n = 10, age = 72.3 ± 2.9 years) or downhill (n = 9, age = 72.1 ± 2.2 years) walking group. Postural sway, muscle torque and power, physical function (5× and 60 s sit-to-stand; STS), and mobility (Timed-Up-and-Go; TUG) were evaluated at baseline (pre-exercise), 1 min, 15 min, 30 min, 24 h, and 48 h after 30 min of level (0% gradient) or downhill (−10% gradient) walking on a treadmill. Following downhill walking, postural sway (+66 to 256%), TUG (+29%), 60 s STS (+29%), five times STS (−25%) and concentric power (−33%) did not change at 1–30 min post exercise, but were significantly different (p < 0.05) at 24 and48 h post-exercise when compared to baseline (p < 0.05). Muscle torque decreased immediately after downhill walking and remained impaired at 48 h post-exercise (−27 to −38%). Immediately following level walking there was an increase in postural sway (+52 to +98%), slower TUG performance (+29%), fewer STS cycles in 60 s (−23%), slower time to reach five STS cycles (+20%) and impaired muscle torque (−23%) and power (−19%) which returned to baseline 30-min after exercise cessation (p > 0.05). These findings have established for the first time distinct impairment profiles between concentric and eccentric exercise. Muscle damage emanating from eccentrically biased exercise can lead to muscle weakness, postural instability and impaired physical function persisting for several days, possibly endangering older adult’s safety during activities of daily living by increasing the risk of falls.
Collapse
Affiliation(s)
- Mathew William Hill
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Edyah-Ariella Hosseini
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Abbie McLellan
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Michael James Price
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Stephen Ronald Lord
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, University of New South Wales, Sydney, NSW, Australia
| | - Anthony David Kay
- Centre for Physical Activity and Life Sciences, University of Northampton, Northampton, United Kingdom
| |
Collapse
|
9
|
Hinks A, Hess A, Debenham MIB, Chen J, Mazara N, Inkol KA, Cervone DT, Spriet LL, Dalton BH, Power GA. Power loss is attenuated following a second bout of high-intensity eccentric contractions due to the repeated bout effect's protection of rate of torque and velocity development. Appl Physiol Nutr Metab 2020; 46:461-472. [PMID: 33125854 DOI: 10.1139/apnm-2020-0641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High-intensity unaccustomed eccentric contractions result in weakness and power loss because of fatigue and muscle damage. Through the repeated bout effect (RBE), adaptations occur, then damage and weakness are attenuated following a subsequent bout. However, it is unclear whether the RBE protects peak power output. We investigated the influence of the RBE on power production and estimated fatigue- and damage-induced neuromuscular impairments following repeated high-intensity eccentric contractions. Twelve healthy adult males performed 5 sets of 30 maximal eccentric elbow flexions and repeated an identical bout 4 weeks later. Recovery was tracked over 7 days following both bouts. Reduced maximum voluntary isometric contraction torque, and increased serum creatine kinase and self-reported soreness indirectly inferred muscle damage. Peak isotonic power, time-dependent measures - rate of velocity development (RVD) and rate of torque development (RTD) - and several electrophysiological indices of neuromuscular function were assessed. The RBE protected peak power, with a protective index of 66% 24 h after the second eccentric exercise bout. The protection of power also related to preserved RVD (R2 = 0.61, P < 0.01) and RTD (R2 = 0.39, P < 0.01). Furthermore, the RBE's protection against muscle damage permitted the estimation of fatigue-associated neuromuscular performance decrements following eccentric exercise. Novelty: The repeated bout effect protects peak isotonic power. Protection of peak power relates to preserved rates of torque and velocity development, but more so rate of velocity development. The repeated bout effect has little influence on indices of neuromuscular fatigue.
Collapse
Affiliation(s)
- Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Adam Hess
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Mathew I B Debenham
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jackey Chen
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Nicole Mazara
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Keaton A Inkol
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.,Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Daniel T Cervone
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lawrence L Spriet
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Brian H Dalton
- School of Health and Exercise Sciences, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
10
|
Di Giminiani R, Rucci N, Capuano L, Ponzetti M, Aielli F, Tihanyi J. Individualized Whole-Body Vibration: Neuromuscular, Biochemical, Muscle Damage and Inflammatory Acute Responses. Dose Response 2020; 18:1559325820931262. [PMID: 32647498 PMCID: PMC7328225 DOI: 10.1177/1559325820931262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/01/2020] [Accepted: 05/08/2020] [Indexed: 11/16/2022] Open
Abstract
Objective. We aimed to investigate the acute residual hormonal,
biochemical, and neuromuscular responses to a single session of individualized
whole-body vibration (WBV) while maintaining a half-squat position.
Methods. Twenty male sport science students voluntarily
participated in the present study and were randomly assigned to an
individualized WBV group (with the acceleration load determined for each
participant) or an isometric group (ISOM). A double-blind, controlled parallel
study design with repeated measures was employed. Results.
Testosterone and growth hormone increased significantly over time in the WBV
group (P < .05 and P < .01,
respectively; effect size [ES] ranged from 1.00 to 1.23), whereas cortisol
increased over time in both groups (P < .01; ES ranged from
1.04 and 1.36). Interleukin-6 and creatine kinase increased significantly over
time only in the WBV group (P < .05; ES = 1.07). The maximal
voluntary contraction decreased significantly over time in the ISOM group
(P = .019; ES = 0.42), whereas in the WBV group, the
decrease did not reach a significant level (P = .05). The ratio
of electromyographic activity and power decreased significantly over time in the
WBV group (P < .01; ES ranged from 0.57 to 0.72).
Conclusion. Individualized WBV increased serum hormonal
concentrations, muscle damage, and inflammation to levels similar to those
induced by resistance training and hypertrophy exercises.
Collapse
Affiliation(s)
- Riccardo Di Giminiani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
| | - Lorenzo Capuano
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
| | - Marco Ponzetti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
| | | | - Jozsef Tihanyi
- Department of Biomechanics, University of Physical Education, Budapest, Hungary
| |
Collapse
|
11
|
Ducrocq GP, Hureau TJ, Meste O, Blain GM. Similar Cardioventilatory but Greater Neuromuscular Stimuli With Interval Drop Jump Than With Interval Running. Int J Sports Physiol Perform 2020; 15:330-339. [PMID: 31188680 DOI: 10.1123/ijspp.2019-0031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/01/2019] [Accepted: 05/27/2019] [Indexed: 11/18/2022]
Abstract
CONTEXT Drop jumps and high-intensity interval running are relevant training methods to improve explosiveness and endurance performance, respectively. Combined training effects might, however, be achieved by performing interval drop jumping. PURPOSE To determine the acute effects of interval drop jumping on oxygen uptake (V˙O2)-index of cardioventilatory/oxidative stimulation level and peripheral fatigue-a limiting factor of explosiveness. METHODS Thirteen participants performed three 11-minute interval training sessions during which they ran 15 seconds at 120% of the velocity that elicited maximal V˙O2 (V˙O2max) (ITrun), or drop jumped at 7 (ITDJ7) or 9 (ITDJ9) jumps per 15 seconds, interspersed with 15 seconds of passive recovery. V˙O2 and the time spent above 90% of V˙O2max (V˙TO2max) were collected. Peripheral fatigue was quantified via preexercise to postexercise changes in evoked potentiated quadriceps twitch (ΔQT). Power output was estimated during ITDJs using optical sensors. RESULTS All participants reached 90% of V˙O2max or higher during ITrun and ITDJ9, but only 11 did during ITDJ7. V˙TO2max was not different between ITrun and ITDJ9 (145 [76] vs 141 [151] s; P = .92) but was reduced during ITDJ7 (28 [26] s; P = .002). Mean ΔQT in ITDJ9 and ITDJ7 was not different (-17% [9%] vs -14% [8%]; P = .73) and greater than in ITrun (-8% [7%]; P = .001). No alteration in power output was found during ITDJs (37 [10] W·kg-1). CONCLUSION Interval drop jumping at a high work rate stimulated the cardioventilatory and oxidative systems to the same extent as interval running, while the exercise-induced increase in fatigue did not compromise drop jump performance. Interval drop jumping might be a relevant strategy to get concomitant improvements in endurance and explosive performance.
Collapse
|
12
|
Cheng AJ, Jude B, Lanner JT. Intramuscular mechanisms of overtraining. Redox Biol 2020; 35:101480. [PMID: 32179050 PMCID: PMC7284919 DOI: 10.1016/j.redox.2020.101480] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/08/2020] [Accepted: 02/24/2020] [Indexed: 01/04/2023] Open
Abstract
Strenuous exercise is a potent stimulus to induce beneficial skeletal muscle adaptations, ranging from increased endurance due to mitochondrial biogenesis and angiogenesis, to increased strength from hypertrophy. While exercise is necessary to trigger and stimulate muscle adaptations, the post-exercise recovery period is equally critical in providing sufficient time for metabolic and structural adaptations to occur within skeletal muscle. These cyclical periods between exhausting exercise and recovery form the basis of any effective exercise training prescription to improve muscle endurance and strength. However, imbalance between the fatigue induced from intense training/competitions, and inadequate post-exercise/competition recovery periods can lead to a decline in physical performance. In fact, prolonged periods of this imbalance may eventually lead to extended periods of performance impairment, referred to as the state of overreaching that may progress into overtraining syndrome (OTS). OTS may have devastating implications on an athlete's career and the purpose of this review is to discuss potential underlying mechanisms that may contribute to exercise-induced OTS in skeletal muscle. First, we discuss the conditions that lead to OTS, and their potential contributions to impaired skeletal muscle function. Then we assess the evidence to support or refute the major proposed mechanisms underlying skeletal muscle weakness in OTS: 1) glycogen depletion hypothesis, 2) muscle damage hypothesis, 3) inflammation hypothesis, and 4) the oxidative stress hypothesis. Current data implicates reactive oxygen and nitrogen species (ROS) and inflammatory pathways as the most likely mechanisms contributing to OTS in skeletal muscle. Finally, we allude to potential interventions that can mitigate OTS in skeletal muscle.
Collapse
Affiliation(s)
- Arthur J Cheng
- York University, Faculty of Health/ School of Kinesiology and Health Sciences, Muscle Health Research Centre/ Muscle Calcium Dynamics Lab, 351 Farquharson Life Sciences Building, Toronto, M3J 1P3, Canada
| | - Baptiste Jude
- Karolinska Institutet, Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology laboratory, Biomedicum C5, 17177, Stockholm, Sweden
| | - Johanna T Lanner
- Karolinska Institutet, Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology laboratory, Biomedicum C5, 17177, Stockholm, Sweden.
| |
Collapse
|
13
|
Ruggiero L, Bruce CD, Cotton PD, Dix GU, McNeil CJ. Prolonged low-frequency force depression is underestimated when assessed with doublets compared with tetani in the dorsiflexors. J Appl Physiol (1985) 2019; 126:1352-1359. [PMID: 30870083 DOI: 10.1152/japplphysiol.00840.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prolonged low-frequency force depression (PLFFD) after damaging eccentric exercise may last for several days. Historically, PLFFD has been calculated from the tetanic force responses to trains of supramaximal stimuli. More recently, for methodological reasons, stimulation has been reduced to two pulses. However, it is unknown whether doublet responses provide a valid measure of PLFFD in the days after eccentric exercise. In 12 participants, doublets and tetani were elicited at 10 and 100 Hz before and after (2, 3, 5 min, 48 and 96 h) 200 eccentric maximal voluntary contractions of the dorsiflexors. Doublet and tetanic torque responses at 10 Hz were similarly depressed throughout recovery (P > 0.05; e.g., 2 min: 58.9 ± 12.8% vs. 57.1 ± 14.5% baseline; 96 h: 85.6 ± 11.04% vs. 85.1 ± 10.8% baseline). At 100 Hz, doublet torque was impaired more than tetanic torque at all time points (P < 0.05; e.g., 2 min: 70.5 ± 14.2% vs. 88.1 ± 11.7% baseline; 96 h: 83.0 ± 14.2% vs. 98.7 ± 9.5% baseline). As a result, the postfatigue reduction of the 10 Hz-to-100 Hz ratio (PLFFD) was markedly greater for tetani than for doublets (P < 0.05; e.g., 2 min: 64.3 ± 15.1% vs. 83.0 ± 5.8% baseline). In addition, the doublet ratio recovered by 48 h (99.2 ± 5.0% baseline), whereas the tetanic ratio was still impaired at 96 h (88.2 ± 9.7% baseline). Our results indicate that doublets are not a valid measure of PLFFD in the minutes and days after eccentric exercise. If study design favors the use of paired stimuli, it should be acknowledged that the true magnitude and duration of PLFFD are likely underestimated. NEW & NOTEWORTHY Prolonged low-frequency force depression (PLFFD) will result from damaging exercise and may last for several days. After 200 eccentric maximal dorsiflexor contractions, we compared the gold-standard measure of PLFFD (calculated using trains of supramaximal stimulation) to the value obtained from an alternative technique that is becoming increasingly common (paired supramaximal stimuli). Doublets underestimated the magnitude and duration of PLFFD compared with tetani, so caution must be used when reporting PLFFD derived from paired stimuli.
Collapse
Affiliation(s)
- Luca Ruggiero
- Integrated Neuromuscular Physiology Laboratory, Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia , Kelowna, British Columbia , Canada
| | - Christina D Bruce
- Integrated Neuromuscular Physiology Laboratory, Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia , Kelowna, British Columbia , Canada
| | - Paul D Cotton
- Integrated Neuromuscular Physiology Laboratory, Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia , Kelowna, British Columbia , Canada
| | - Gabriel U Dix
- Integrated Neuromuscular Physiology Laboratory, Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia , Kelowna, British Columbia , Canada
| | - Chris J McNeil
- Integrated Neuromuscular Physiology Laboratory, Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia , Kelowna, British Columbia , Canada
| |
Collapse
|
14
|
McIntosh EI, Power GA, Dalton BH. The vestibulomyogenic balance response is elevated following high-intensity lengthening contractions of the lower limb. Neurosci Lett 2018; 675:120-126. [PMID: 29596981 DOI: 10.1016/j.neulet.2018.03.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 02/28/2018] [Accepted: 03/25/2018] [Indexed: 10/17/2022]
Abstract
The purpose was to investigate whether exercise-induced muscle weakness of the plantar and dorsiflexors through high-intensity lengthening contractions increases the vestibulomyogenic balance response. Nine males (∼25 years) participated in three experimental testing days to evaluate the vestibular control of standing balance and neuromuscular function of the plantar and dorsiflexors pre- and post (30 min, and 1 and 7 days) high-intensity lengthening plantar and dorsiflexions. To evaluate the vestibular-evoked balance response, participants stood quietly on a force plate while exposed to continuous, random electrical vestibular stimulation (EVS) for two 90-s trials. Relationships between EVS-antero-posterior (AP) forces and EVS-medial gastrocnemius electromyography (EMG) were estimated in the frequency domain (i.e., coherence). Weakness of the right plantar and dorsiflexors were assessed using maximal voluntary contraction (MVC) torque. The lengthening contractions induced a 13 and 24% reduction in plantar and dorsiflexor MVC torque, respectively (p < 0.05) of the exercised leg, which did not recover by 1 day post. The EVS-EMG coherence increased over a range of frequencies up to 7 days post compared to pre-lengthening contractions. Conversely, EVS-AP forces coherence exhibited limited changes. The greater EVS-EMG coherence post exercise-induced muscle weakness may be a compensatory mechanism to maintain the whole-body vestibular-evoked balance response when muscle strength is reduced.
Collapse
Affiliation(s)
- Emily I McIntosh
- Department of Human Physiology, University of Oregon, Eugene, United States; Department of Human Health and Nutritional Sciences, University of Guelph, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, University of Guelph, Canada
| | - Brian H Dalton
- Department of Human Physiology, University of Oregon, Eugene, United States; School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada.
| |
Collapse
|
15
|
Foulis SA, Jones SL, van Emmerik RE, Kent JA. Post-fatigue recovery of power, postural control and physical function in older women. PLoS One 2017; 12:e0183483. [PMID: 28880935 PMCID: PMC5589131 DOI: 10.1371/journal.pone.0183483] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/05/2017] [Indexed: 11/29/2022] Open
Abstract
Low muscle power, particularly at high velocities, has been linked to poor physical function in older adults. Any loss in muscle power following fatiguing exercise or daily activities could impact physical function and postural control until power has fully recovered. To test the overall hypothesis that a common task such as walking can result in prolonged power loss and decreased physical function and balance, 17 healthy older (66–81 years) women completed a 32-min walking test (32MWT) designed to induce neuromuscular fatigue, followed by 60min of recovery (60R). Fatigue and recovery of knee extensor muscle power (3 velocities) were quantified by dynamometry. Function was quantified by chair rise time and postural control by measures of center of pressure (COP) range (mm) and velocity (mm·s-1) during quiet stance. Power declined at all velocities by 8–13% 2min following the 32MWT (p≤0.02) and remained depressed by 8–26% at 60R (p≤0.04). Postural control decreased following the 32MWT, indicated by increased COP range in the anterior-posterior (AP, p<0.01) direction and a trend in the medial-lateral (ML) direction (p = 0.09), and returned to baseline by 60R (p≥0.10). COP velocity was unchanged immediately following the 32MWT, but at 60R was lower in ML (p = 0.03) and tended to be reduced in AP (p = 0.07). Changes in high-velocity power (270°·s-1) were associated with altered postural control (p = 0.02) and chair rise performance (p≤0.03). These results provide evidence of long-duration neuromuscular changes following fatigue in healthy older women that may place them at increased risk for functional deficits during everyday mobility tasks.
Collapse
Affiliation(s)
- Stephen A. Foulis
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Stephanie L. Jones
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Richard E. van Emmerik
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Jane A. Kent
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
16
|
Abstract
Performance fatigability differs between men and women for a range of fatiguing tasks. Women are usually less fatigable than men, and this is most widely described for isometric fatiguing contractions and some dynamic tasks. The sex difference in fatigability is specific to the task demands so that one mechanism is not universal, including any sex differences in skeletal muscle physiology, muscle perfusion, and voluntary activation. However, there are substantial knowledge gaps about the task dependency of the sex differences in fatigability, the involved mechanisms, and the relevance to clinical populations and with advanced age. The knowledge gaps are in part due to the significant deficits in the number of women included in performance fatigability studies despite a gradual increase in the inclusion of women for the last 20 yr. Therefore, this review 1) provides a rationale for the limited knowledge about sex differences in performance fatigability, 2) summarizes the current knowledge on sex differences in fatigability and the potential mechanisms across a range of tasks, 3) highlights emerging areas of opportunity in clinical populations, and 4) suggests strategies to close the knowledge gap and understanding the relevance of sex differences in performance fatigability. The limited understanding about sex differences in fatigability in healthy and clinical populations presents as a field ripe with opportunity for high-impact studies. Such studies will inform on the limitations of men and women during athletic endeavors, ergonomic tasks, and daily activities. Because fatigability is required for effective neuromuscular adaptation, sex differences in fatigability studies will also inform on optimal strategies for training and rehabilitation in both men and women.
Collapse
Affiliation(s)
- Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI
| |
Collapse
|
17
|
Lanning AC, Power GA, Christie AD, Dalton BH. Influence of sex on performance fatigability of the plantar flexors following repeated maximal dynamic shortening contractions. Appl Physiol Nutr Metab 2017. [PMID: 28636840 DOI: 10.1139/apnm-2017-0013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose was to determine sex differences in fatigability during maximal, unconstrained velocity, shortening plantar flexions. The role of time-dependent measures (i.e., rate of torque development, rate of velocity development, and rate of neuromuscular activation) in such sex-related differences was also examined. By task termination, females exhibited smaller reductions in power and similar changes in rate of neuromuscular activation than males, indicating females were less fatigable than males.
Collapse
Affiliation(s)
- Amelia C Lanning
- a Department of Human Physiology, University of Oregon, Eugene, OR 97403, USA
| | - Geoffrey A Power
- b Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Anita D Christie
- a Department of Human Physiology, University of Oregon, Eugene, OR 97403, USA
| | - Brian H Dalton
- c School of Health and Exercise Sciences, The University of British Columbia, ART 360, 1147 Research Road, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
18
|
Lee A, Baxter J, Eischer C, Gage M, Hunter S, Yoon T. Sex differences in neuromuscular function after repeated eccentric contractions of the knee extensor muscles. Eur J Appl Physiol 2017; 117:1119-1130. [DOI: 10.1007/s00421-017-3599-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/27/2017] [Indexed: 12/28/2022]
|
19
|
Neuromuscular fatigue during exercise: Methodological considerations, etiology and potential role in chronic fatigue. Neurophysiol Clin 2017; 47:95-110. [PMID: 28434551 DOI: 10.1016/j.neucli.2017.03.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The term fatigue is used to describe a distressing and persistent symptom of physical and/or mental tiredness in certain clinical populations, with distinct but ultimately complex, multifactorial and heterogenous pathophysiology. Chronic fatigue impacts on quality of life, reduces the capacity to perform activities of daily living, and is typically measured using subjective self-report tools. Fatigue also refers to an acute reduction in the ability to produce maximal force or power due to exercise. The classical measurement of exercise-induced fatigue involves neuromuscular assessments before and after a fatiguing task. The limitations and alternatives to this approach are reviewed in this paper in relation to the lower limb and whole-body exercise, given the functional relevance to locomotion, rehabilitation and activities of daily living. It is suggested that under some circumstances, alterations in the central and/or peripheral mechanisms of fatigue during exercise may be related to the sensations of chronic fatigue. As such, the neurophysiological correlates of exercise-induced fatigue are briefly examined in two clinical examples where chronic fatigue is common: cancer survivors and people with multiple sclerosis. This review highlights the relationship between objective measures of fatigability with whole-body exercise and perceptions of fatigue as a priority for future research, given the importance of exercise in relieving symptoms of chronic fatigue and/or overall disease management. As chronic fatigue is likely to be specific to the individual and unlikely to be due to a simple biological or psychosocial explanation, tailored exercise programmes are a potential target for therapeutic intervention.
Collapse
|
20
|
Balshaw TG, Pahar M, Chesham R, Macgregor LJ, Hunter AM. Reduced firing rates of high threshold motor units in response to eccentric overload. Physiol Rep 2017; 5:e13111. [PMID: 28108648 PMCID: PMC5269413 DOI: 10.14814/phy2.13111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 11/24/2022] Open
Abstract
Acute responses of motor units were investigated during submaximal voluntary isometric tasks following eccentric overload (EO) and constant load (CL) knee extension resistance exercise. Ten healthy resistance-trained participants performed four experimental test sessions separated by 5 days over a 20 day period. Two sessions involved constant load and the other two used eccentric overload. EO and CL used both sessions for different target knee eccentric extension phases; one at 2 sec and the other at 4 sec. Maximal voluntary contractions (MVC) and isometric trapezoid efforts for 10 sec at 70% MVC were completed before and after each intervention and decomposed electromyography was used to measure motor unit firing rate. The firing rate of later recruited, high-threshold motor units declined following the 2-sec EO but was maintained following 2sec CL (P < 0.05), whereas MUFR for all motor units were maintained for both loading types following 4-sec extension phases. MVC and rate of force development where maintained following both EO and CL and 2 and 4 sec phases. This study demonstrates a slower firing rate of high-threshold motor units following fast eccentric overload while MVC was maintained. This suggests that there was a neuromuscular stimulus without cost to the force-generating capacity of the knee extensors.
Collapse
Affiliation(s)
- Tom G Balshaw
- Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, Scotland, United Kingdom
| | - Madhu Pahar
- Computing Science and Mathematics, University of Stirling, Stirling, Scotland, United Kingdom
| | - Ross Chesham
- Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, Scotland, United Kingdom
| | - Lewis J Macgregor
- Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, Scotland, United Kingdom
| | - Angus M Hunter
- Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, Scotland, United Kingdom
| |
Collapse
|
21
|
Janecki D, Jaskólska A, Marusiak J, Jaskólski A. Low-Frequency Fatigue Assessed as Double to Single Twitch Ratio after Two Bouts of Eccentric Exercise of the Elbow Flexors. J Sports Sci Med 2016; 15:697-703. [PMID: 27928216 PMCID: PMC5131224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to assess low-frequency fatigue as a double to single twitch ratio after repeated eccentric exercise of the elbow flexors. Maximal isometric torque, single and double twitch responses and low-frequency fatigue were assessed on the elbow flexors in 16 untrained male volunteers before, immediately after, 24 and 48 hours following two bouts of eccentric exercise consisted of 30 repetitions of lowering a dumbbell adjusted to ~75% of each individual's maximal isometric torque. Maximal isometric torque and electrically evoked responses decreased significantly in all measurements after the first bout of eccentric exercise (p < 0.05). In measurements performed at 24 and 48 hours after the second bout both maximal voluntary isometric torque and electrically evoked contractions were significantly higher than in measurements performed after the first bout (p < 0.05). Although low-frequency fatigue significantly increased up to 48 hours after each bout of eccentric exercise, its values at 24 and 48 hours after the second bout were significantly lower than at respective time points after the first bout (p < 0.05). Double to single twitch ratio could be used as a sensitive tool in the evaluation of muscle recovery and adaptation to repeated eccentric exercise.
Collapse
Affiliation(s)
- Damian Janecki
- Department of Kinesiology, Faculty of Physiotherapy, University School of Physical Education , Wroclaw, Poland
| | - Anna Jaskólska
- Department of Kinesiology, Faculty of Physiotherapy, University School of Physical Education , Wroclaw, Poland
| | - Jarosław Marusiak
- Department of Kinesiology, Faculty of Physiotherapy, University School of Physical Education , Wroclaw, Poland
| | - Artur Jaskólski
- Department of Kinesiology, Faculty of Physiotherapy, University School of Physical Education , Wroclaw, Poland
| |
Collapse
|
22
|
Residual force enhancement in humans: Current evidence and unresolved issues. J Electromyogr Kinesiol 2015; 25:571-80. [DOI: 10.1016/j.jelekin.2015.04.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/09/2015] [Accepted: 04/16/2015] [Indexed: 11/23/2022] Open
|
23
|
Rankin P, Stevenson E, Cockburn E. The effect of milk on the attenuation of exercise-induced muscle damage in males and females. Eur J Appl Physiol 2015; 115:1245-61. [PMID: 25673557 DOI: 10.1007/s00421-015-3121-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/29/2015] [Indexed: 01/28/2023]
Abstract
PURPOSE The consumption of 500 ml milk following muscle damaging exercise can attenuate decreases in muscle functional capacity and increases in markers of muscle damage and soreness in males. There has been no similar research in female participants. Therefore, the aim of this study was to investigate the effects of milk consumption on exercise-induced muscle damage (EIMD) in males and females. METHODS Thirty-two team sport players (male n = 16; female n = 16) were randomly, but equally divided into four groups: male milk, male carbohydrate, female milk, and female carbohydrate. Immediately following muscle damaging exercise, participants consumed either 500 ml of milk or 500 ml of an energy-matched carbohydrate solution. Skeletal troponin I (sTnI), creatine kinase (CK), peak torque, counter movement jump height, 20 m sprint performance and passive and active soreness were recorded prior to and 24, 48 and 72 h post-EIMD. RESULTS For females, milk had a likely/very likely beneficial effect on attenuating losses in peak torque at 60°/s from baseline to 24, 48 and 72 h, and a likely beneficial effect in minimising decrements in sprint performance and soreness over 72 h. Milk was unlikely to have a negative effect on serum markers of damage from baseline to 48 and 72 h. For males, milk had an unclear effect on muscle function variables. Milk had a most likely/likely beneficial effect on limiting muscle soreness from baseline to 72 h, and a possible beneficial effect on attenuating increases in CK. The effect on sTnI was unlikely to be negative from baseline-72 h. Overall gender comparisons provided many unclear outcomes. However, female participants demonstrated smaller increases in sprint time, passive soreness, active soreness (non-dominant leg) and sTnI values. CONCLUSION Consumption of 500 ml of milk post-EIMD can limit decrements in muscle function in females, and limit increases in soreness and serum markers of muscle damage in females and males.
Collapse
Affiliation(s)
- P Rankin
- Department of Science and Health, Institute of Technology Carlow, Carlow, Ireland,
| | | | | |
Collapse
|
24
|
Lee K, Kouzaki K, Ochi E, Kobayashi K, Tsutaki A, Hiranuma K, Kami K, Nakazato K. Eccentric contractions of gastrocnemius muscle-induced nerve damage in rats. Muscle Nerve 2014; 50:87-94. [DOI: 10.1002/mus.24120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 10/10/2013] [Accepted: 11/07/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Kihyuk Lee
- Graduate School of Health and Sport Science, Nippon Sport Science University; Tokyo, 7-1-1, Fukasawa, Setagaya-ku Tokyo 158-8508 Japan
| | - Karina Kouzaki
- Graduate School of Health and Sport Science, Nippon Sport Science University; Tokyo, 7-1-1, Fukasawa, Setagaya-ku Tokyo 158-8508 Japan
| | - Eisuke Ochi
- Laboratory of Health and Sports Sciences; Center for Liberal Arts, Meiji Gakuin University; Yokohama Japan
| | - Koji Kobayashi
- Graduate School of Health and Sport Science, Nippon Sport Science University; Tokyo, 7-1-1, Fukasawa, Setagaya-ku Tokyo 158-8508 Japan
| | - Arata Tsutaki
- Graduate School of Health and Sport Science, Nippon Sport Science University; Tokyo, 7-1-1, Fukasawa, Setagaya-ku Tokyo 158-8508 Japan
| | - Kenji Hiranuma
- Graduate School of Health and Sport Science, Nippon Sport Science University; Tokyo, 7-1-1, Fukasawa, Setagaya-ku Tokyo 158-8508 Japan
| | - Katsuya Kami
- Department of Anatomy and Neurobiology; Graduate School of Medicine, Wakayama Medical University; Wakayama Japan
| | - Koichi Nakazato
- Graduate School of Health and Sport Science, Nippon Sport Science University; Tokyo, 7-1-1, Fukasawa, Setagaya-ku Tokyo 158-8508 Japan
| |
Collapse
|
25
|
Hunter SK. Sex differences in human fatigability: mechanisms and insight to physiological responses. Acta Physiol (Oxf) 2014; 210:768-89. [PMID: 24433272 DOI: 10.1111/apha.12234] [Citation(s) in RCA: 330] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/29/2013] [Accepted: 01/08/2014] [Indexed: 12/17/2022]
Abstract
Sex-related differences in physiology and anatomy are responsible for profound differences in neuromuscular performance and fatigability between men and women. Women are usually less fatigable than men for similar intensity isometric fatiguing contractions. This sex difference in fatigability, however, is task specific because different neuromuscular sites will be stressed when the requirements of the task are altered, and the stress on these sites can differ for men and women. Task variables that can alter the sex difference in fatigability include the type, intensity and speed of contraction, the muscle group assessed and the environmental conditions. Physiological mechanisms that are responsible for sex-based differences in fatigability may include activation of the motor neurone pool from cortical and subcortical regions, synaptic inputs to the motor neurone pool via activation of metabolically sensitive small afferent fibres in the muscle, muscle perfusion and skeletal muscle metabolism and fibre type properties. Non-physiological factors such as the sex bias of studying more males than females in human and animal experiments can also mask a true understanding of the magnitude and mechanisms of sex-based differences in physiology and fatigability. Despite recent developments, there is a tremendous lack of understanding of sex differences in neuromuscular function and fatigability, the prevailing mechanisms and the functional consequences. This review emphasizes the need to understand sex-based differences in fatigability to shed light on the benefits and limitations that fatigability can exert for men and women during daily tasks, exercise performance, training and rehabilitation in both health and disease.
Collapse
Affiliation(s)
- S. K. Hunter
- Exercise Science Program; Department of Physical Therapy; Marquette University; Milwaukee WI USA
| |
Collapse
|
26
|
Power GA, Dalton BH, Rice CL, Vandervoort AA. Peak power is reduced following lengthening contractions despite a maintenance of shortening velocity. Appl Physiol Nutr Metab 2013; 38:1196-205. [DOI: 10.1139/apnm-2013-0092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Following repetitive lengthening contractions, power (the product of torque and velocity) is impaired during shortening contractions. However, the relative contribution of each component to power loss and the underlying factors are unclear. We investigated neuromuscular properties of the dorsiflexors in 8 males (27 ± 3 years) and 8 females (26 ± 4 years) for a potential sex-related difference before, during, and after 150 unaccustomed maximal lengthening actions. Velocity-dependent power was determined from shortening contractions at 8 levels (1 N·m to 70% of maximum voluntary isometric contraction (MVC)) before, after, and throughout recovery assessed at 0–30 min, 24 h, and 48 h. Immediately following task termination, both sexes displayed similar impairments of 30%, 4%, and 10% in MVC torque, shortening velocity, and overall peak power, respectively (P < 0.05). Peak rate of isometric torque development (RTD) was reduced by 10% in males, but females exhibited a 35% reduction (P < 0.05). Rate of torque development for the MVC remained depressed in both sexes throughout the 30 min recovery period; however, the RTD returned to normal by 24 h in males but did not recover by 48 h in females. Power was reduced preferentially at higher loads (i.e., 60% MVC), with a greater loss in females (65%) than males (45%). For lower loads (<20% MVC), power was impaired minimally (4%–8%; P < 0.05) and recovered within 30 min in both groups. The reduction in maximal angular velocity persisted until 30 min of recovery, and peak power did not recover until 24 h for both sexes. Unaccustomed lengthening contractions decreased power preferentially at higher loads, whereas peak power was reduced minimally owing to maintenance of maximal shortening velocity.
Collapse
Affiliation(s)
- Geoffrey A. Power
- Canadian Centre for Activity and Aging, School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON N6G 2M3, Canada
- Human Performance Laboratory, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Brian H. Dalton
- Canadian Centre for Activity and Aging, School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON N6G 2M3, Canada
- Sensorimotor Physiology Laboratory and Human Neurophysiology Laboratory, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Charles L. Rice
- Canadian Centre for Activity and Aging, School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON N6G 2M3, Canada
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Anthony A. Vandervoort
- Canadian Centre for Activity and Aging, School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON N6G 2M3, Canada
- School of Physical Therapy, Faculty of Health Sciences, The University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
27
|
The genu effect on plantar flexor power. Eur J Appl Physiol 2012; 113:1431-9. [DOI: 10.1007/s00421-012-2560-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 11/26/2012] [Indexed: 11/27/2022]
|
28
|
Froyd C, Millet GY, Noakes TD. The development of peripheral fatigue and short-term recovery during self-paced high-intensity exercise. J Physiol 2012; 591:1339-46. [PMID: 23230235 DOI: 10.1113/jphysiol.2012.245316] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The time course of muscular fatigue that develops during and after an intense bout of self-paced dynamic exercise was characterized by using different forms of electrical stimulation (ES) of the exercising muscles. Ten active subjects performed a time trial (TT) involving repetitive concentric extension/flexion of the right knee using a Biodex dynamometer. Neuromuscular function (NMF), including ES and a 5 s maximal isometric voluntary contraction (MVC), was assessed before the start of the TT and immediately (<5 s) after each 20% of the TT had been completed, as well as 1, 2, 4 and 8 min after TT termination. The TT time was 347 ± 98 s. MVCs were 52% of baseline values at TT termination. Torque responses from ES were reduced to 33-68% of baseline using different methods of stimulation, suggesting that the extent to which peripheral fatigue is documented during exercise depends upon NMF assessment methodology. The major changes in muscle function occurred within the first 40% of exercise. Significant recovery in skeletal muscle function occurs within the first 1-2 min after exercise, showing that previous studies may have underestimated the extent to which peripheral fatigue develops during exercise.
Collapse
Affiliation(s)
- Christian Froyd
- UCT/MRC Research Unit for Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Sports Science Instituteof South Africa, Boundary Road, Newlands, 7925, South Africa.
| | | | | |
Collapse
|
29
|
Barker T, Henriksen VT, Martins TB, Kjeldsberg CR, Hill HR. Fluctuations in the skeletal muscle power-velocity relationship and interferon-γ after a muscle-damaging event in humans. EXTREME PHYSIOLOGY & MEDICINE 2012; 1:6. [PMID: 23849351 PMCID: PMC3707101 DOI: 10.1186/2046-7648-1-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 05/25/2012] [Indexed: 11/10/2022]
Abstract
Background Skeletal muscle power is velocity-dependent under constant load conditions. Interferon (IFN)-γ is an inflammatory cytokine that regulates skeletal muscle recovery following insult in experimental animals. It is unknown if the power-velocity relationship and IFN-γ are modulated after a muscle-damaging event in humans. Therefore, the purpose of this study was to identify the power-velocity relationship and circulating IFN-γ concentration responses to a muscle-damaging event in humans. Methods Nine healthy males participated in this study. Each subject had one leg randomly assigned as the control leg. The other leg served as the treatment leg and performed an intense-stretch-shortening cycling (SSC) exercise protocol to induce muscle damage. To measure muscle damage and the power-velocity relationship, unilateral peak isometric force and power output (forces and velocities) measurements were performed prior to, immediately after, and during the days following the SSC protocol. The circulating IFN-γ concentrations were measured in serum samples obtained prior to, immediately after, and during the days following the SSC protocol. Statistical significance of single-leg isometric force and power output data were assessed using a two-way (time and leg treatment) analysis of variance (ANOVA) with repeated measures, followed by a Tukey’s honestly significant difference (HSD) to test multiple pairwise comparisons. The statistical significance of the IFN-γ data were assessed using a one-way (time) ANOVA with repeated measures, followed by a Tukey’s HSD to test multiple pairwise comparisons. Results In the treatment leg, significant (P < 0.05) peak isometric force deficits occurred immediately and persisted several days after the SSC protocol, thereby identifying muscle damage-induced weakness. During muscle weakness in the treatment leg, peak power was significantly (P < 0.05) depressed and the velocities at peak power were significantly (P < 0.05) slower. Interestingly, circulating IFN-γ concentrations decreased at 2 and 3 days after compared to those immediately following the SSC protocol. Conclusion We conclude that the velocity to achieve a compromised peak power is reduced, and speculatively, the circulating IFN-γ excursion could be influential on the recovery of skeletal muscle after a muscle-damaging event in humans.
Collapse
Affiliation(s)
- Tyler Barker
- The Orthopedic Specialty Hospital, 5848 S Fashion Blvd, Murray, UT 84107, USA.
| | | | | | | | | |
Collapse
|
30
|
Power GA, Dalton BH, Rice CL, Vandervoort AA. Power loss is greater following lengthening contractions in old versus young women. AGE (DORDRECHT, NETHERLANDS) 2012; 34:737-50. [PMID: 21559865 PMCID: PMC3337924 DOI: 10.1007/s11357-011-9263-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/26/2011] [Indexed: 05/13/2023]
Abstract
Compared with isometric and dynamic velocity-constrained (isokinetic) tasks, less is known regarding velocity-dependent (isotonic) muscle power and recovery in older adults following repeated fatiguing lengthening contractions. We investigated voluntary and evoked neuromuscular properties of the dorsiflexors in nine old (68.3 ± 6.1 years) and nine young women (25.1 ± 1.3 years) during and following 150 lengthening contractions for up to 30 min of recovery. At baseline, the old were ~21% weaker for maximum isometric voluntary contraction (MVC) torque (P < 0.05), ~21% slower for peak loaded shortening velocity (P < 0.05), and ~39% less powerful compared with the young (P < 0.05). Following the task, MVC torque was depressed equally (~28%) for both groups (P < 0.05), but power was reduced ~19% in the old and only ~8% in the young (P < 0.05). Both measures remained depressed during the 30-min recovery period. Peak twitch torque (P (t)) was ~50% lower in the old at task termination, whereas the young were unchanged. However, by 5 min of recovery, P (t) was reduced similarly (~50%) in both groups, and neither recovered by 30 min. The old were affected more by low-frequency torque depression than the young, as shown by the ~40% and ~20% decreases in the stimulated 10:50 Hz ratio at task termination respectively, whereas both groups were affected similarly (~50%) 5 min into recovery, and neither recovered by 30 min. Thus, the coexistence of fatigue and muscle damage induced by the repetitive lengthening contractions impaired excitation-contraction coupling and cross-bridge function to a greater extent in the old, leading to a more pronounced initial loss of power than the young for up to 10 min following the exercise However, power remained blunted in both groups during the 30-min recovery period. These results indicate that older women are more susceptible to power loss than young following lengthening contractions, likely owing to a greater impairment in calcium kinetics.
Collapse
Affiliation(s)
- Geoffrey A. Power
- Canadian Centre for Activity and Aging, School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON Canada
| | - Brian H. Dalton
- Canadian Centre for Activity and Aging, School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON Canada
| | - Charles L. Rice
- Canadian Centre for Activity and Aging, School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON Canada
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON Canada
| | - Anthony A. Vandervoort
- Canadian Centre for Activity and Aging, School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON Canada
- School of Physical Therapy, Faculty of Health Sciences, The University of Western Ontario, London, ON Canada
- School of Kinesiology and School of Physical Therapy, Faculty of Health Sciences, The University of Western Ontario, London, ON Canada N6G 1H1
| |
Collapse
|
31
|
Residual force enhancement following eccentric induced muscle damage. J Biomech 2012; 45:1835-41. [DOI: 10.1016/j.jbiomech.2012.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/05/2012] [Accepted: 04/05/2012] [Indexed: 11/22/2022]
|
32
|
Power GA, Dalton BH, Rice CL, Vandervoort AA. Reproducibility of velocity-dependent power: before and after lengthening contractions. Appl Physiol Nutr Metab 2011; 36:626-33. [DOI: 10.1139/h11-068] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The determination of power using isokinetic testing has been shown to be highly reliable. However, isotonic and isokinetic testing involve specific mechanical constraints that likely necessitate different neuromuscular strategies. Therefore, the purpose here was to establish test–retest intrarater reliability (separated by 7 days) of loaded maximal shortening velocity and velocity-dependent power of the ankle dorsiflexors using the isotonic mode of the Biodex dynamometer (i) at baseline and (ii) throughout recovery following 150 high-intensity lengthening contractions. Intraclass correlation coefficients (ICC)2,1 with 95% CIs were used to determine relative reliability, whereas absolute reliability included typical error (TEM) and typical error expressed as a coefficient of variation (TEMCV). Twenty-four young men and women volunteered for the study. Maximal shortening velocity and power were determined with a fixed resistance set at 20% of maximal voluntary isometric contraction across 2 testing sessions separated by 7 days. ICCs were 0.93 and 0.98 for maximal shortening velocity and peak power, respectively. Following the lengthening contractions, ICCs indicated high reliability for maximal shortening velocity and peak power, 0.86 and 0.94, respectively, suggesting that a similar amount of fatigue was incurred on both days. Measures of absolute reliability for maximal shortening velocity and peak power also yielded high reliability. The isotonic mode is highly reliable when testing velocity-dependent power of the ankle dorsiflexors at baseline and following fatiguing lengthening contractions. The high reliability of this measure is encouraging and suggests that the isotonic mode can be used in various settings to track group changes before and after training and following fatigue and lengthening contractions.
Collapse
Affiliation(s)
- Geoffrey A. Power
- Canadian Centre for Activity and Aging, School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Brian H. Dalton
- Canadian Centre for Activity and Aging, School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Charles L. Rice
- Canadian Centre for Activity and Aging, School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON N6A 5B9, Canada
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Anthony A. Vandervoort
- Canadian Centre for Activity and Aging, School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON N6A 5B9, Canada
- School of Physical Therapy, Faculty of Health Sciences, The University of Western Ontario, London, ON N6G 1H1, Canada
| |
Collapse
|
33
|
Boyas S, Guével A. Neuromuscular fatigue in healthy muscle: underlying factors and adaptation mechanisms. Ann Phys Rehabil Med 2011; 54:88-108. [PMID: 21376692 DOI: 10.1016/j.rehab.2011.01.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 01/15/2011] [Accepted: 01/18/2011] [Indexed: 01/04/2023]
Abstract
OBJECTIVES This review aims to define the concept of neuromuscular fatigue and to present the current knowledge of the central and peripheral factors at the origin of this phenomenon. This review also addresses the literature that focuses on the mechanisms responsible for the adaption to neuromuscular fatigue. METHOD One hundred and eighty-two articles indexed in PubMed (1954-2010) have been considered. RESULTS Neuromuscular fatigue has central and peripheral origins. Central fatigue, preponderant during long-duration, low-intensity exercises, may involve a drop in the central command (motor, cortex, motoneurons) elicited by the activity of cerebral neurotransmitters and muscular afferent fibers. Peripheral fatigue, associated with an impairment of the mechanisms from excitation to muscle contraction, may be induced by a perturbation of the calcium ion movements, an accumulation of phosphate, and/or a decrease of the adenosine triphosphate stores. To compensate for the consequent drop in force production, the organism develops several adaptation mechanisms notably implicating motor units. CONCLUSION Fatigue onset is associated with an alteration of the mechanisms involved in force production. Then, the interaction between central and peripheral mechanisms leads to a series of events that ultimately contribute to the observed decrease in force production.
Collapse
Affiliation(s)
- S Boyas
- EA 4334, UFR STAPS de Nantes, laboratoire « Motricité, Interactions, Performance », université de Nantes, 25 bis, boulevard Guy-Mollet, 44322 Nantes cedex 3, France.
| | | |
Collapse
|