1
|
Mooren OL, McConnell P, DeBrecht JD, Jaysingh A, Cooper JA. Reconstitution of Arp2/3-nucleated actin assembly with proteins CP, V-1, and CARMIL. Curr Biol 2024; 34:5173-5186.e4. [PMID: 39437783 PMCID: PMC11576230 DOI: 10.1016/j.cub.2024.09.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Actin polymerization is often associated with membrane proteins containing capping-protein-interacting (CPI) motifs, such as capping protein, Arp2/3, myosin I linker (CARMIL), CD2AP, and WASHCAP/Fam21. CPI motifs bind directly to actin-capping protein (CP), and this interaction weakens the binding of CP to barbed ends of actin filaments, lessening the ability of CP to functionally cap those ends. The protein V-1/myotrophin binds to the F-actin-binding site on CP and sterically blocks CP from binding barbed ends. CPI-motif proteins also weaken the binding between V-1 and CP, which decreases the inhibitory effects of V-1, thereby freeing CP to cap barbed ends. Here, we address the question of whether CPI-motif proteins on a surface analogous to a membrane lead to net activation or inhibition of actin assembly nucleated by Arp2/3 complex. Using reconstitution with purified components, we discovered that CARMIL at the surface promotes and enhances actin assembly, countering the inhibitory effects of V-1 and thus activating CP. The reconstitution involves the presence of an Arp2/3 activator on the surface, along with Arp2/3 complex, V-1, CP, profilin, and actin monomers in solution, recreating key features of cell physiology.
Collapse
Affiliation(s)
- Olivia L Mooren
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Patrick McConnell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - James D DeBrecht
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Anshuman Jaysingh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - John A Cooper
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Mooren OL, McConnell P, DeBrecht JD, Jaysingh A, Cooper JA. Reconstitution of Arp2/3-Nucleated Actin Assembly with CP, V-1 and CARMIL. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593916. [PMID: 38798690 PMCID: PMC11118340 DOI: 10.1101/2024.05.13.593916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Actin polymerization is often associated with membrane proteins containing capping-protein-interacting (CPI) motifs, such as CARMIL, CD2AP, and WASHCAP/Fam21. CPI motifs bind directly to actin capping protein (CP), and this interaction weakens the binding of CP to barbed ends of actin filaments, lessening the ability of CP to functionally cap those ends. The protein V-1 / myotrophin binds to the F-actin binding site on CP and sterically blocks CP from binding barbed ends. CPI-motif proteins also weaken the binding between V-1 and CP, which decreases the inhibitory effects of V-1, thereby freeing CP to cap barbed ends. Here, we address the question of whether CPI-motif proteins on a surface analogous to a membrane lead to net activation or inhibition of actin assembly nucleated by Arp2/3 complex. Using reconstitution with purified components, we discovered that CARMIL at the surface promotes and enhances actin assembly, countering the inhibitory effects of V-1 and thus activating CP. The reconstitution involves the presence of an Arp2/3 activator on the surface, along with Arp2/3 complex, V-1, CP, profilin and actin monomers in solution, recreating key features of cell physiology.
Collapse
Affiliation(s)
- Olivia L Mooren
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Patrick McConnell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - James D DeBrecht
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Anshuman Jaysingh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - John A Cooper
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
3
|
Actin-Binding Proteins in Cardiac Hypertrophy. Cells 2022; 11:cells11223566. [PMID: 36428995 PMCID: PMC9688942 DOI: 10.3390/cells11223566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The heart reacts to a large number of pathological stimuli through cardiac hypertrophy, which finally can lead to heart failure. However, the molecular mechanisms of cardiac hypertrophy remain elusive. Actin participates in the formation of highly differentiated myofibrils under the regulation of actin-binding proteins (ABPs), which provides a structural basis for the contractile function and morphological change in cardiomyocytes. Previous studies have shown that the functional abnormality of ABPs can contribute to cardiac hypertrophy. Here, we review the function of various actin-binding proteins associated with the development of cardiac hypertrophy, which provides more references for the prevention and treatment of cardiomyopathy.
Collapse
|
4
|
Lin H, Koren SA, Cvetojevic G, Girardi P, Johnson GV. The role of BAG3 in health and disease: A "Magic BAG of Tricks". J Cell Biochem 2022; 123:4-21. [PMID: 33987872 PMCID: PMC8590707 DOI: 10.1002/jcb.29952] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/25/2021] [Indexed: 01/03/2023]
Abstract
The multi-domain structure of Bcl-2-associated athanogene 3 (BAG3) facilitates its interaction with many different proteins that participate in regulating a variety of biological pathways. After revisiting the BAG3 literature published over the past ten years with Citespace software, we classified the BAG3 research into several clusters, including cancer, cardiomyopathy, neurodegeneration, and viral propagation. We then highlighted recent key findings in each cluster. To gain greater insight into the roles of BAG3, we analyzed five different published mass spectrometry data sets of proteins that co-immunoprecipitate with BAG3. These data gave us insight into universal, as well as cell-type-specific BAG3 interactors in cancer cells, cardiomyocytes, and neurons. Finally, we mapped variable BAG3 SNPs and also mutation data from previous publications to further explore the link between the domains and function of BAG3. We believe this review will provide a better understanding of BAG3 and direct future studies towards understanding BAG3 function in physiological and pathological conditions.
Collapse
Affiliation(s)
- Heng Lin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Shon A. Koren
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Gregor Cvetojevic
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Peter Girardi
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Gail V.W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| |
Collapse
|
5
|
Solís C, Russell B. Striated muscle proteins are regulated both by mechanical deformation and by chemical post-translational modification. Biophys Rev 2021; 13:679-695. [PMID: 34777614 PMCID: PMC8555064 DOI: 10.1007/s12551-021-00835-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 01/09/2023] Open
Abstract
All cells sense force and build their cytoskeleton to optimize function. How is this achieved? Two major systems are involved. The first is that load deforms specific protein structures in a proportional and orientation-dependent manner. The second is post-translational modification of proteins as a consequence of signaling pathway activation. These two processes work together in a complex way so that local subcellular assembly as well as overall cell function are controlled. This review discusses many cell types but focuses on striated muscle. Detailed information is provided on how load deforms the structure of proteins in the focal adhesions and filaments, using α-actinin, vinculin, talin, focal adhesion kinase, LIM domain-containing proteins, filamin, myosin, titin, and telethonin as examples. Second messenger signals arising from external triggers are distributed throughout the cell causing post-translational or chemical modifications of protein structures, with the actin capping protein CapZ and troponin as examples. There are numerous unanswered questions of how mechanical and chemical signals are integrated by muscle proteins to regulate sarcomere structure and function yet to be studied. Therefore, more research is needed to see how external triggers are integrated with local tension generated within the cell. Nonetheless, maintenance of tension in the sarcomere is the essential and dominant mechanism, leading to the well-known phrase in exercise physiology: "use it or lose it."
Collapse
Affiliation(s)
- Christopher Solís
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Brenda Russell
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612 USA
| |
Collapse
|
6
|
Solís C, Solaro RJ. Novel insights into sarcomere regulatory systems control of cardiac thin filament activation. J Gen Physiol 2021; 153:211903. [PMID: 33740037 PMCID: PMC7988513 DOI: 10.1085/jgp.202012777] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Our review focuses on sarcomere regulatory mechanisms with a discussion of cardiac-specific modifications to the three-state model of thin filament activation from a blocked to closed to open state. We discuss modulation of these thin filament transitions by Ca2+, by crossbridge interactions, and by thick filament–associated proteins, cardiac myosin–binding protein C (cMyBP-C), cardiac regulatory light chain (cRLC), and titin. Emerging evidence supports the idea that the cooperative activation of the thin filaments despite a single Ca2+ triggering regulatory site on troponin C (cTnC) cannot be considered in isolation of other functional domains of the sarcomere. We discuss long- and short-range interactions among these domains with the regulatory units of thin filaments, including proteins at the barbed end at the Z-disc and the pointed end near the M-band. Important to these discussions is the ever-increasing understanding of the role of cMyBP-C, cRLC, and titin filaments. Detailed knowledge of these control processes is critical to the understanding of mechanisms sustaining physiological cardiac state with varying hemodynamic load, to better defining genetic and acquired cardiac disorders, and to developing targets for therapies at the level of the sarcomeres.
Collapse
Affiliation(s)
- Christopher Solís
- University of Illinois at Chicago, College of Medicine, Department of Physiology and Biophysics and Center for Cardiovascular Research, Chicago, IL
| | - R John Solaro
- University of Illinois at Chicago, College of Medicine, Department of Physiology and Biophysics and Center for Cardiovascular Research, Chicago, IL
| |
Collapse
|
7
|
Russell B, Solís C. Mechanosignaling pathways alter muscle structure and function by post-translational modification of existing sarcomeric proteins to optimize energy usage. J Muscle Res Cell Motil 2021; 42:367-380. [PMID: 33595762 DOI: 10.1007/s10974-021-09596-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/04/2021] [Indexed: 12/29/2022]
Abstract
A transduced mechanical signal arriving at its destination in muscle alters sarcomeric structure and function. A major question addressed is how muscle mass and tension generation are optimized to match actual performance demands so that little energy is wasted. Three cases for improved energy efficiency are examined: the troponin complex for tuning force production, control of the myosin heads in a resting state, and the Z-disc proteins for sarcomere assembly. On arrival, the regulation of protein complexes is often controlled by post-translational modification (PTM), of which the most common are phosphorylation by kinases, deacetylation by histone deacetylases and ubiquitination by E3 ligases. Another branch of signals acts not through peptide covalent bonding but via ligand interactions (e.g. Ca2+ and phosphoinositide binding). The myosin head and the regulation of its binding to actin by the troponin complex is the best and earliest example of signal destinations that modify myofibrillar contractility. PTMs in the troponin complex regulate both the efficiency of the contractile function to match physiologic demand for work, and muscle mass via protein degradation. The regulation of sarcomere assembly by integration of incoming signaling pathways causing the same PTMs or ligand binding are discussed in response to mechanical loading and unloading by the Z-disc proteins CapZ, α-actinin, telethonin, titin N-termini, and others. Many human mutations that lead to cardiomyopathy and heart disease occur in the proteins discussed above, which often occur at their PTM or ligand binding sites.
Collapse
Affiliation(s)
- Brenda Russell
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Christopher Solís
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
8
|
Le LV, Mkrtschjan MA, Russell B, Desai TA. Hang on tight: reprogramming the cell with microstructural cues. Biomed Microdevices 2019; 21:43. [PMID: 30955102 PMCID: PMC6791714 DOI: 10.1007/s10544-019-0394-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cells interact intimately with complex microdomains in their extracellular matrix (ECM) and maintain a delicate balance of mechanical forces through mechanosensitive cellular components. Tissue injury results in acute degradation of the ECM and disruption of cell-ECM contacts, manifesting in loss of cytoskeletal tension, leading to pathological cell transformation and the onset of disease. Recently, microscale hydrogel constructs have been developed to provide cells with microdomains to form focal adhesion binding sites, which enable restoration of cytoskeletal tension. These synthetic anchors can recapitulate the complex 3D architecture of the native ECM to provide microtopographical cues. The mechanical deformation of proteins at the cell surface can activate signaling cascades to modulate downstream gene-level transcription, making this a unique materials-based approach for reprogramming cell behavior. An overview of the mechanisms underlying these mechanosensitive interactions in fibroblasts, stem and other cell types is provided to review their effects on cellular reprogramming. Recent investigations on the fabrication, functionalization and implementation of these materials and microtopographical features for drug testing and therapeutic applications are discussed.
Collapse
Affiliation(s)
- Long V Le
- Department of Bioengineering and Therapeutic Sciences, University of California, 1700 4th St Rm 204, San Francisco, CA, 94158, USA
| | - Michael A Mkrtschjan
- Department of Bioengineering, University of Illinois, Chicago, 835 S. Wolcott, Chicago, IL, 60612, USA
| | - Brenda Russell
- Department of Physiology and Biophysics, University of Illinois, Chicago, 835 S. Wolcott, Chicago, IL, 60612, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, 1700 4th St Rm 204, San Francisco, CA, 94158, USA.
| |
Collapse
|
9
|
Solís C, Russell B. CapZ integrates several signaling pathways in response to mechanical stiffness. J Gen Physiol 2019; 151:660-669. [PMID: 30808692 PMCID: PMC6504289 DOI: 10.1085/jgp.201812199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/13/2018] [Accepted: 02/06/2019] [Indexed: 12/22/2022] Open
Abstract
Changes in mechanical load, hormones, or metabolic stress provoke remodeling of the actin-based thin filaments within muscle fibers. Solís and Russell show that several signaling pathways converge at the actin-capping protein CapZ to regulate muscle fiber growth in response to mechanical stiffness and neurohumoral signaling. Muscle adaptation is a response to physiological demand elicited by changes in mechanical load, hormones, or metabolic stress. Cytoskeletal remodeling processes in many cell types are thought to be primarily regulated by thin filament formation due to actin-binding accessory proteins, such as the actin-capping protein. Here, we hypothesize that in muscle, the actin-capping protein (named CapZ) integrates signaling by a variety of pathways, including phosphorylation and phosphatidylinositol 4,5-bisphosphate (PIP2) binding, to regulate muscle fiber growth in response to mechanical load. To test this hypothesis, we assess mechanotransduction signaling that regulates muscle growth using neonatal rat ventricular myocytes cultured on substrates with the stiffness of the healthy myocardium (10 kPa), fibrotic myocardium (100 kPa), or glass. We investigate how PIP2 signaling affects CapZ using the PIP2 sequestering agent neomycin and the effect of PKC-mediated CapZ phosphorylation using the PKC-activating drug phorbol 12-myristate 13-acetate (PMA). Molecular simulations suggest that close interactions between PIP2 and the β-tentacle of CapZ are modified by phosphorylation at T267. Fluorescence recovery after photobleaching (FRAP) demonstrates that the kinetic binding constant of CapZ to sarcomeric thin filaments in living muscle cells increases with stiffness or PMA treatment but is diminished by PIP2 reduction. Furthermore, CapZ with a deletion of the β-tentacle that lacks the phosphorylation site T267 shows increased FRAP kinetics with lack of sensitivity to PMA treatment or PIP2 reduction. Förster resonance energy transfer (FRET) probes the molecular interactions between PIP2 and CapZ, which are decreased by PIP2 availability or by the β-tentacle truncation. These data suggest that CapZ is bound to actin tightly in the idle, locked state, with little phosphorylation or PIP2 binding. However, this tight binding is loosened in growth states triggered by mechanical stimuli such as substrate stiffness, which may have relevance to fibrotic heart disease.
Collapse
Affiliation(s)
- Christopher Solís
- Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Brenda Russell
- Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
10
|
Mkrtschjan MA, Solís C, Wondmagegn AY, Majithia J, Russell B. PKC epsilon signaling effect on actin assembly is diminished in cardiomyocytes when challenged to additional work in a stiff microenvironment. Cytoskeleton (Hoboken) 2018; 75:363-371. [PMID: 30019430 DOI: 10.1002/cm.21472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 01/14/2023]
Abstract
The stiffness of the microenvironment surrounding a cell can result in cytoskeletal remodeling, leading to altered cell function and tissue macrostructure. In this study, we tuned the stiffness of the underlying substratum on which neonatal rat cardiomyocytes were grown in culture to mimic normal (10 kPa), pathological stiffness of fibrotic myocardium (100 kPa), and a nonphysiological extreme (glass). Cardiomyocytes were then challenged by beta adrenergic stimulation through isoproterenol treatment to investigate the response to acute work demand for cells grown on surfaces of varying stiffness. In particular, the PKCɛ signaling pathway and its role in actin assembly dynamics were examined. Significant changes in contractile metrics were seen on cardiomyocytes grown on different surfaces, but all cells responded to isoproterenol treatment, eventually reaching similar time to peak tension. In contrast, the assembly rate of actin was significantly higher on stiff surfaces, so that only cells grown on soft surfaces were able to respond to acute isoproterenol treatment. Förster Resonance Energy Transfer of immunofluorescence on the cytoskeletal fraction of cardiomyocytes confirmed that the molecular interaction of PKCɛ with the actin capping protein, CapZ, was very low on soft substrata but significantly increased with isoproterenol treatment, or on stiff substrata. Therefore, the stiffness of the culture surface chosen for in vitro experiments might mask the normal signaling and affect the ability to translate basic science more effectively into human therapy.
Collapse
Affiliation(s)
- Michael A Mkrtschjan
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Christopher Solís
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Admasu Y Wondmagegn
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Janki Majithia
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Brenda Russell
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
11
|
Ehler E. Actin-associated proteins and cardiomyopathy-the 'unknown' beyond troponin and tropomyosin. Biophys Rev 2018; 10:1121-1128. [PMID: 29869751 PMCID: PMC6082317 DOI: 10.1007/s12551-018-0428-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023] Open
Abstract
It has been known for several decades that mutations in genes that encode for proteins involved in the control of actomyosin interactions such as the troponin complex, tropomyosin and MYBP-C and thus regulate contraction can lead to hereditary hypertrophic cardiomyopathy. In recent years, it has become apparent that actin-binding proteins not directly involved in the regulation of contraction also can exhibit changed expression levels, show altered subcellular localisation or bear mutations that might lead to hereditary cardiomyopathies. The aim of this review is to look beyond the troponin/tropomyosin mechanism and to give an overview of the different types of actin-associated proteins and their potential roles in cardiomyocytes. It will then discuss recent findings relevant to their involvement in heart disease.
Collapse
Affiliation(s)
- Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics (School of Basic and Medical Biosciences), London, UK. .,School of Cardiovascular Medicine and Sciences, British Heart Foundation Research Excellence Centre, King's College London, Room 3.26A, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
12
|
Le LV, Mohindra P, Fang Q, Sievers RE, Mkrtschjan MA, Solis C, Safranek CW, Russell B, Lee RJ, Desai TA. Injectable hyaluronic acid based microrods provide local micromechanical and biochemical cues to attenuate cardiac fibrosis after myocardial infarction. Biomaterials 2018; 169:11-21. [PMID: 29631164 DOI: 10.1016/j.biomaterials.2018.03.042] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/21/2022]
Abstract
Repairing cardiac tissue after myocardial infarction (MI) is one of the most challenging goals in tissue engineering. Following ischemic injury, significant matrix remodeling and the formation of avascular scar tissue significantly impairs cell engraftment and survival in the damaged myocardium. This limits the efficacy of cell replacement therapies, demanding strategies that reduce pathological scarring to create a suitable microenvironment for healthy tissue regeneration. Here, we demonstrate the successful fabrication of discrete hyaluronic acid (HA)-based microrods to provide local biochemical and biomechanical signals to reprogram cells and attenuate cardiac fibrosis. HA microrods were produced in a range of physiological stiffness and shown to degrade in the presence of hyaluronidase. Additionally, we show that fibroblasts interact with these microrods in vitro, leading to significant changes in proliferation, collagen expression and other markers of a myofibroblast phenotype. When injected into the myocardium of an adult rat MI model, HA microrods prevented left ventricular wall thinning and improved cardiac function at 6 weeks post infarct.
Collapse
Affiliation(s)
- Long V Le
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qizhi Fang
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Richard E Sievers
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael A Mkrtschjan
- Department of Bioengineering, University of Illinois, Chicago, Chicago, IL 60607, USA
| | - Christopher Solis
- Department of Physiology and Biophysics, University of Illinois, Chicago, Chicago, IL 60612, USA
| | - Conrad W Safranek
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brenda Russell
- Department of Physiology and Biophysics, University of Illinois, Chicago, Chicago, IL 60612, USA
| | - Randall J Lee
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tejal A Desai
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
13
|
Mkrtschjan MA, Gaikwad SB, Kappenman KJ, Solís C, Dommaraju S, Le LV, Desai TA, Russell B. Lipid signaling affects primary fibroblast collective migration and anchorage in response to stiffness and microtopography. J Cell Physiol 2017; 233:3672-3683. [PMID: 29034471 DOI: 10.1002/jcp.26236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/05/2017] [Indexed: 12/13/2022]
Abstract
Cell migration is regulated by several mechanotransduction pathways, which consist of sensing and converting mechanical microenvironmental cues to internal biochemical cellular signals, such as protein phosphorylation and lipid signaling. While there has been significant progress in understanding protein changes in the context of mechanotransduction, lipid signaling is more difficult to investigate. In this study, physical cues of stiffness (10, 100, 400 kPa, and glass), and microrod or micropost topography were manipulated in order to reprogram primary fibroblasts and assess the effects of lipid signaling on the actin cytoskeleton. In an in vitro wound closure assay, primary cardiac fibroblast migration velocity was significantly higher on soft polymeric substrata. Modulation of PIP2 availability through neomycin treatment nearly doubled migration velocity on 10 kPa substrata, with significant increases on all stiffnesses. The distance between focal adhesions and the lamellar membrane (using wortmannin treatment to increase PIP2 via PI3K inhibition) was significantly shortest compared to untreated fibroblasts grown on the same surface. PIP2 localized to the leading edge of migrating fibroblasts more prominently in neomycin-treated cells. The membrane-bound protein, lamellipodin, did not vary under any condition. Additionally, fifteen micron-high micropost topography, which blocks migration, concentrates PIP2 near to the post. Actin dynamics within stress fibers, measured by fluorescence recovery after photobleaching, was not significantly different with stiffness, microtopography, nor with drug treatment. PIP2-modulating drugs delivered from microrod structures also affected migration velocity. Thus, manipulation of the microenvironment and lipid signaling regulatory drugs might be beneficial in improving therapeutics geared toward wound healing.
Collapse
Affiliation(s)
- Michael A Mkrtschjan
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Snehal B Gaikwad
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Kevin J Kappenman
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Christopher Solís
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Sagar Dommaraju
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Long V Le
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, California
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, California
| | - Brenda Russell
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois.,Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
14
|
Abstract
Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. © 2017 American Physiological Society. Compr Physiol 7:891-944, 2017.
Collapse
Affiliation(s)
- Christine A Henderson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Christopher G Gomez
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Stefanie M Novak
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Lei Mi-Mi
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
15
|
Huang D, Cao L, Zheng S. CAPZA1 modulates EMT by regulating actin cytoskeleton remodelling in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:13. [PMID: 28093067 PMCID: PMC5240199 DOI: 10.1186/s13046-016-0474-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/12/2016] [Indexed: 12/20/2022]
Abstract
Background Epithelial-mesenchymal transition (EMT) elicits dramatic changes, including cytoskeleton remodelling as well as changes in gene expression and cellular phenotypes. During this process, actin filament assembly plays an important role in maintaining the morphology and movement of tumour cells. Capping protein, a protein complex referred to as CapZ, is an actin-binding complex that can regulate actin cytoskeleton remodelling. CAPZA1 is the α1 subunit of this complex, and we hypothesized that CAPZA1 regulates EMT through the regulation of actin filaments assembly, thus reducing the metastatic ability of hepatocellular carcinoma (HCC) cells. Methods Immunohistochemistry was used to detect CAPZA1 expression in 129 HCC tissues. Western blotting and qPCR were used to detect CAPZA1, EMT markers and EMT transcription factors in HCC cells. Transwell migration and invasion assays were performed to observe the migration and invasion of HCC cells. Cell Counting Kit-8 (CCK-8) was used to detect the proliferation of HCC cells. Immunoprecipitation was used to detect the interaction between CAPZA1 and actin filaments. Finally, a small animal magnetic resonance imager (MRI) was used to observe metastases in HCC cell xenografts in the liver. Results CAPZA1 expression levels were negatively correlated with the biological characteristics of primary HCC and patient prognosis. CAPZA1 expression was negatively correlated with the migration and invasion of HCC cells. CAPZA1 down regulation promoted the migration and invasion of HCC cells. Conversely, CAPZA1 overexpression significantly inhibited the migration and invasion of HCC cells. Moreover, CAPZA1 expression levels were correlated with the expression of the EMT markers E-cadherin, N-cadherin and Vimentin. Furthermore, the expression of Snail1 and ZEB1 were negatively correlated with CAPZA1 expression levels. Similarly, CAPZA1 significantly inhibited intrahepatic metastases of HCC cells in an orthotopic transplantation tumour model. Conclusions CAPZA1 inhibits EMT in HCC cells by regulating actin cytoskeleton remodelling, thereby reducing the metastatic ability of the cells. Together, our data suggest that CAPZA1 could be a useful biomarker for clinical determination of the prognosis of HCC patients.
Collapse
Affiliation(s)
- Deng Huang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, No.29 Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Li Cao
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, No.29 Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Shuguo Zheng
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, No.29 Gaotanyan Road, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
16
|
Smart N, Riegler J, Turtle CW, Lygate CA, McAndrew DJ, Gehmlich K, Dubé KN, Price AN, Muthurangu V, Taylor AM, Lythgoe MF, Redwood C, Riley PR. Aberrant developmental titin splicing and dysregulated sarcomere length in Thymosin β4 knockout mice. J Mol Cell Cardiol 2017; 102:94-107. [PMID: 27914791 PMCID: PMC5319848 DOI: 10.1016/j.yjmcc.2016.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 02/07/2023]
Abstract
Sarcomere assembly is a highly orchestrated and dynamic process which adapts, during perinatal development, to accommodate growth of the heart. Sarcomeric components, including titin, undergo an isoform transition to adjust ventricular filling. Many sarcomeric genes have been implicated in congenital cardiomyopathies, such that understanding developmental sarcomere transitions will inform the aetiology and treatment. We sought to determine whether Thymosin β4 (Tβ4), a peptide that regulates the availability of actin monomers for polymerization in non-muscle cells, plays a role in sarcomere assembly during cardiac morphogenesis and influences adult cardiac function. In Tβ4 null mice, immunofluorescence-based sarcomere analyses revealed shortened thin filament, sarcomere and titin spring length in cardiomyocytes, associated with precocious up-regulation of the short titin isoforms during the postnatal splicing transition. By magnetic resonance imaging, this manifested as diminished stroke volume and limited contractile reserve in adult mice. Extrapolating to an in vitro cardiomyocyte model, the altered postnatal splicing was corrected with addition of synthetic Tβ4, whereby normal sarcomere length was restored. Our data suggest that Tβ4 is required for setting correct sarcomere length and for appropriate splicing of titin, not only in the heart but also in skeletal muscle. Distinguishing between thin filament extension and titin splicing as the primary defect is challenging, as these events are intimately linked. The regulation of titin splicing is a previously unrecognised role of Tβ4 and gives preliminary insight into a mechanism by which titin isoforms may be manipulated to correct cardiac dysfunction.
Collapse
Affiliation(s)
- Nicola Smart
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | - Johannes Riegler
- Centre for Advanced Biomedical Imaging, Department of Medicine, University College London (UCL), London, UK
| | - Cameron W Turtle
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Debra J McAndrew
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Anthony N Price
- Centre for Advanced Biomedical Imaging, Department of Medicine, University College London (UCL), London, UK
| | - Vivek Muthurangu
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science, London, UK
| | - Andrew M Taylor
- Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science, London, UK
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, Department of Medicine, University College London (UCL), London, UK
| | - Charles Redwood
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Gautel M, Djinović-Carugo K. The sarcomeric cytoskeleton: from molecules to motion. ACTA ACUST UNITED AC 2016; 219:135-45. [PMID: 26792323 DOI: 10.1242/jeb.124941] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Highly ordered organisation of striated muscle is the prerequisite for the fast and unidirectional development of force and motion during heart and skeletal muscle contraction. A group of proteins, summarised as the sarcomeric cytoskeleton, is essential for the ordered assembly of actin and myosin filaments into sarcomeres, by combining architectural, mechanical and signalling functions. This review discusses recent cell biological, biophysical and structural insight into the regulated assembly of sarcomeric cytoskeleton proteins and their roles in dissipating mechanical forces in order to maintain sarcomere integrity during passive extension and active contraction. α-Actinin crosslinks in the Z-disk show a pivot-and-rod structure that anchors both titin and actin filaments. In contrast, the myosin crosslinks formed by myomesin in the M-band are of a ball-and-spring type and may be crucial in providing stable yet elastic connections during active contractions, especially eccentric exercise.
Collapse
Affiliation(s)
- Mathias Gautel
- King's College London BHF Centre of Research Excellence, Randall Division for Cell and Molecular Biophysics, and Cardiovascular Division, New Hunt's House, London SE1 1UL, UK
| | - Kristina Djinović-Carugo
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, Vienna A-1030, Austria Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, Ljubljana 1000, Slovenia
| |
Collapse
|
18
|
Li J, Mkrtschjan MA, Lin YH, Russell B. Variation in stiffness regulates cardiac myocyte hypertrophy via signaling pathways. Can J Physiol Pharmacol 2016; 94:1178-1186. [PMID: 27486838 DOI: 10.1139/cjpp-2015-0578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Much diseased human myocardial tissue is fibrotic and stiff, which increases the work that the ventricular myocytes must perform to maintain cardiac output. The hypothesis tested is that the increased load due to greater stiffness of the substrata drives sarcomere assembly of cells, thus strengthening them. Neonatal rat ventricular myocytes (NRVM) were cultured on polyacrylamide or polydimethylsiloxane substrates with stiffness of 10 kPa, 100 kPa, or 400 kPa, or glass with stiffness of 61.9 GPa. Cell size increased with stiffness. Two signaling pathways were explored, phosphorylation of focal adhesion kinase (p-FAK) and lipids by phosphatidylinositol 4,5-bisphosphate (PIP2). Subcellular distributions of both were determined in the sarcomeric fraction by antibody localization, and total amounts were measured by Western or dot blotting, respectively. More p-FAK and PIP2 distributed to the sarcomeres of NRVM grown on stiffer substrates. Actin assembly involves the actin capping protein Z (CapZ). Both actin and CapZ dynamic exchange were significantly increased on stiffer substrates when assessed by fluorescence recovery after photobleaching (FRAP) of green fluorescent protein tags. Blunting of actin FRAP by FAK inhibition implicates linkage from mechano-signalling pathways to cell growth. Thus, increased stiffness of cardiac disease can be modeled with polymeric materials to understand how the microenvironment regulates cardiac hypertrophy.
Collapse
Affiliation(s)
- Jieli Li
- a Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, 835 S. Wolcott Ave, Chicago, IL 60612, USA
| | - Michael A Mkrtschjan
- b Department of Bioengineering, University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607, USA
| | - Ying-Hsi Lin
- a Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, 835 S. Wolcott Ave, Chicago, IL 60612, USA
| | - Brenda Russell
- a Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, 835 S. Wolcott Ave, Chicago, IL 60612, USA.,b Department of Bioengineering, University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607, USA
| |
Collapse
|
19
|
Lin YH, Warren CM, Li J, McKinsey TA, Russell B. Myofibril growth during cardiac hypertrophy is regulated through dual phosphorylation and acetylation of the actin capping protein CapZ. Cell Signal 2016; 28:1015-24. [PMID: 27185186 DOI: 10.1016/j.cellsig.2016.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 01/08/2023]
Abstract
The mechanotransduction signaling pathways initiated in heart muscle by increased mechanical loading are known to lead to long-term transcriptional changes and hypertrophy, but the rapid events for adaptation at the sarcomeric level are not fully understood. The goal of this study was to test the hypothesis that actin filament assembly during cardiomyocyte growth is regulated by post-translational modifications (PTMs) of CapZβ1. In rapidly hypertrophying neonatal rat ventricular myocytes (NRVMs) stimulated by phenylephrine (PE), two-dimensional gel electrophoresis (2DGE) of CapZβ1 revealed a shift toward more negative charge. Consistent with this, mass spectrometry identified CapZβ1 phosphorylation on serine-204 and acetylation on lysine-199, two residues which are near the actin binding surface of CapZβ1. Ectopic expression of dominant negative PKCɛ (dnPKCɛ) in NRVMs blunted the PE-induced increase in CapZ dynamics, as evidenced by the kinetic constant (Kfrap) of fluorescence recovery after photobleaching (FRAP), and concomitantly reduced phosphorylation and acetylation of CapZβ1. Furthermore, inhibition of class I histone deacetylases (HDACs) increased lysine-199 acetylation on CapZβ1, which increased Kfrap of CapZ and stimulated actin dynamics. Finally, we show that PE treatment of NRVMs results in decreased binding of HDAC3 to myofibrils, suggesting a signal-dependent mechanism for the regulation of sarcomere-associated CapZβ1 acetylation. Taken together, this dual regulation through phosphorylation and acetylation of CapZβ1 provides a novel model for the regulation of myofibril growth during cardiac hypertrophy.
Collapse
Affiliation(s)
- Ying-Hsi Lin
- Department of Physiology and Biophysics, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612-7342, United States; Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612-7342, United States
| | - Chad M Warren
- Department of Physiology and Biophysics, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612-7342, United States; Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612-7342, United States
| | - Jieli Li
- Department of Physiology and Biophysics, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612-7342, United States; Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612-7342, United States
| | - Timothy A McKinsey
- Department of Medicine, Division of Cardiology and Center for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045-0508, United States
| | - Brenda Russell
- Department of Physiology and Biophysics, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612-7342, United States; Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612-7342, United States.
| |
Collapse
|
20
|
Broughton KM, Li J, Sarmah E, Warren CM, Lin YH, Henze MP, Sanchez-Freire V, Solaro RJ, Russell B. A myosin activator improves actin assembly and sarcomere function of human-induced pluripotent stem cell-derived cardiomyocytes with a troponin T point mutation. Am J Physiol Heart Circ Physiol 2016; 311:H107-17. [PMID: 27199119 DOI: 10.1152/ajpheart.00162.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/02/2016] [Indexed: 11/22/2022]
Abstract
We have investigated cardiac myocytes derived from human-induced pluripotent stem cells (iPSC-CMs) from two normal control and two family members expressing a mutant cardiac troponin T (cTnT-R173W) linked to dilated cardiomyopathy (DCM). cTnT is a regulatory protein of the sarcomeric thin filament. The loss of this basic charge, which is strategically located to control tension, has consequences leading to progressive DCM. iPSC-CMs serve as a valuable platform for understanding clinically relevant mutations in sarcomeric proteins; however, there are important questions to be addressed with regard to myocyte adaptation that we model here by plating iPSC-CMs on softer substrates (100 kPa) to create a more physiologic environment during recovery and maturation of iPSC-CMs after thawing from cryopreservation. During the first week of culture of the iPSC-CMs, we have determined structural and functional characteristics as well as actin assembly dynamics. Shortening, actin content, and actin assembly dynamics were depressed in CMs from the severely affected mutant at 1 wk of culture, but by 2 wk differences were less apparent. Sarcomeric troponin and myosin isoform composition were fetal/neonatal. Furthermore, the troponin complex, reconstituted with wild-type cTnT or recombinant cTnT-R173W, depressed the entry of cross-bridges into the force-generating state, which can be reversed by the myosin activator omecamtiv mecarbil. Therapeutic doses of this drug increased both contractility and the content of F-actin in the mutant iPSC-CMs. Collectively, our data suggest the use of a myosin activation reagent to restore function within patient-specific iPSC-CMs may aid in understanding and treating this familial DCM.
Collapse
Affiliation(s)
- K M Broughton
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - J Li
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; and
| | - E Sarmah
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - C M Warren
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; and
| | - Y-H Lin
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; and
| | - M P Henze
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; and
| | - V Sanchez-Freire
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California
| | - R J Solaro
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; and
| | - B Russell
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
21
|
Lu A, Li Y, Schmidt FI, Yin Q, Chen S, Fu TM, Tong AB, Ploegh HL, Mao Y, Wu H. Molecular basis of caspase-1 polymerization and its inhibition by a new capping mechanism. Nat Struct Mol Biol 2016; 23:416-25. [PMID: 27043298 PMCID: PMC4856535 DOI: 10.1038/nsmb.3199] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 03/10/2016] [Indexed: 12/18/2022]
Abstract
Inflammasomes are cytosolic caspase-1-activation complexes that sense intrinsic and extrinsic danger signals, and trigger inflammatory responses and pyroptotic cell death. Homotypic interactions among Pyrin domains and caspase recruitment domains (CARDs) in inflammasome-complex components mediate oligomerization into filamentous assemblies. Several cytosolic proteins consisting of only interaction domains exert inhibitory effects on inflammasome assembly. In this study, we determined the structure of the human caspase-1 CARD domain (caspase-1(CARD)) filament by cryo-electron microscopy and investigated the biophysical properties of two caspase-1-like CARD-only proteins: human inhibitor of CARD (INCA or CARD17) and ICEBERG (CARD18). Our results reveal that INCA caps caspase-1 filaments, thereby exerting potent inhibition with low-nanomolar Ki on caspase-1(CARD) polymerization in vitro and inflammasome activation in cells. Whereas caspase-1(CARD) uses six complementary surfaces of three types for filament assembly, INCA is defective in two of the six interfaces and thus terminates the caspase-1 filament.
Collapse
Affiliation(s)
- Alvin Lu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Yang Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Florian I Schmidt
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Qian Yin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Shuobing Chen
- Center for Quantitative Biology, Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China.,Department of Cancer Immunology and Virology, Intel Parallel Computing Center for Structural Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Tian-Min Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Alexander B Tong
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Youdong Mao
- Center for Quantitative Biology, Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China.,Department of Cancer Immunology and Virology, Intel Parallel Computing Center for Structural Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Lin YH, Swanson ER, Li J, Mkrtschjan MA, Russell B. Cyclic mechanical strain of myocytes modifies CapZβ1 post translationally via PKCε. J Muscle Res Cell Motil 2015; 36:329-37. [PMID: 26429793 DOI: 10.1007/s10974-015-9420-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/07/2015] [Indexed: 11/27/2022]
Abstract
The heart is exquisitely sensitive to mechanical stimuli and adapts to increased demands for work by enlarging the cardiomyocytes. In order to determine links between mechano-transduction mechanisms and hypertrophy, neonatal rat ventricular myocytes (NRVM) were subjected to physiologic strain for analysis of the dynamics of the actin capping protein, CapZ, and its post-translational modifications (PTM). CapZ binding rates were assessed after strain by fluorescence recovery after photobleaching (FRAP) of green fluorescent protein (GFP) expressed by a GFP-CapZβ1 adenovirus. To assess the role of the protein kinase C epsilon isoform (PKCε), rest or cyclic strain were combined with specific PKCε activation by constitutively active PKCε, or by inhibition with dominant negative PKCε (dnPKCε) expression. Significant increases of CapZ FRAP kinetics with strain were blunted by dnPKCε, suggesting that PKCε is involved in mechano-transduction signaling. Similar combinations of strain and PKC regulation in NRVMs were studied by PTM profiles of CapZβ1 using quantitative two-dimensional gel electrophoresis. The significantly increased charge on CapZ seen with mechanical strain was reversed by the addition of dnPKCε. Potential clinical relevance was confirmed in vivo by PTMs of CapZ in the failing heart of one-year old transgenic mice over-expressing PKCε. Furthermore, with strain there was significant PKCε translocation to the Z-disc and co-localization with CapZβ1 or α-actinin, which was quantified on confocal images. A hypothetical model is presented proposing that one destination of the mechanotransduction signaling pathways might be for PTMs of CapZ thereby regulating actin capping and filament assembly.
Collapse
Affiliation(s)
- Ying-Hsi Lin
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, MC 901, 835 S. Wolcott, Chicago, IL, 60612, USA
| | - Erik R Swanson
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, MC 901, 835 S. Wolcott, Chicago, IL, 60612, USA
| | - Jieli Li
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, MC 901, 835 S. Wolcott, Chicago, IL, 60612, USA
| | - Michael A Mkrtschjan
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, MC 901, 835 S. Wolcott, Chicago, IL, 60612, USA.,Department of Bioengineering, College of Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Brenda Russell
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, MC 901, 835 S. Wolcott, Chicago, IL, 60612, USA. .,Department of Bioengineering, College of Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
23
|
Li J, Tanhehco EJ, Russell B. Actin dynamics is rapidly regulated by the PTEN and PIP2 signaling pathways leading to myocyte hypertrophy. Am J Physiol Heart Circ Physiol 2014; 307:H1618-25. [PMID: 25260617 DOI: 10.1152/ajpheart.00393.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mature cardiac myocytes are terminally differentiated, and the heart has limited capacity to replace lost myocytes. Thus adaptation of myocyte size plays an important role in the determination of cardiac function. The hypothesis tested is that regulation of the dynamic exchange of actin leads to cardiac hypertrophy. ANG II was used as a hypertrophic stimulant in mouse heart and neonatal rat ventricular myocytes (NRVMs) in culture for assessment of a mechanism for regulation of actin dynamics by phosphatidylinositol 4,5-bisphosphate (PIP2). Actin dynamics in NRVMs rapidly increased in a PIP2-dependent manner, measured by imaging and fluorescence recovery after photobleaching (FRAP). A significant increase in PIP2 levels was found by immunoblotting in both adult mouse heart tissue and cultured NRVMs. Inhibition of phosphatase and tensin homolog (PTEN) in NRVMs markedly blunted ANG II-induced increases in actin dynamics, the PIP2 level, and cell size. Furthermore, PTEN activity was dramatically upregulated in ANG II-treated NRVMs but downregulated when PTEN inhibitors were used. The time course of the rise in the PIP2 level was inversely related to the fall in the PIP3 level, which was significant by 30 min in ANG II-treated NRVMs. However, significant translocation of PTEN to the plasma membrane occurred by 10 min, suggesting a crucial initial step for PTEN for the cellular responses to ANG II. In conclusion, PTEN and PIP2 signaling may play an important role in myocyte hypertrophy by the regulation of actin filament dynamics, which is induced by ANG II stimulation.
Collapse
Affiliation(s)
- Jieli Li
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Elaine J Tanhehco
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Brenda Russell
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
24
|
Molt S, Bührdel JB, Yakovlev S, Schein P, Orfanos Z, Kirfel G, Winter L, Wiche G, van der Ven PFM, Rottbauer W, Just S, Belkin AM, Fürst DO. Aciculin interacts with filamin C and Xin and is essential for myofibril assembly, remodeling and maintenance. J Cell Sci 2014; 127:3578-92. [PMID: 24963132 DOI: 10.1242/jcs.152157] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Filamin C (FLNc) and Xin actin-binding repeat-containing proteins (XIRPs) are multi-adaptor proteins that are mainly expressed in cardiac and skeletal muscles and which play important roles in the assembly and repair of myofibrils and their attachment to the membrane. We identified the dystrophin-binding protein aciculin (also known as phosphoglucomutase-like protein 5, PGM5) as a new interaction partner of FLNc and Xin. All three proteins colocalized at intercalated discs of cardiac muscle and myotendinous junctions of skeletal muscle, whereas FLNc and aciculin also colocalized in mature Z-discs. Bimolecular fluorescence complementation experiments in developing cultured mammalian skeletal muscle cells demonstrated that Xin and aciculin also interact in FLNc-containing immature myofibrils and areas of myofibrillar remodeling and repair induced by electrical pulse stimulation (EPS). Fluorescence recovery after photobleaching (FRAP) experiments showed that aciculin is a highly dynamic and mobile protein. Aciculin knockdown in myotubes led to failure in myofibril assembly, alignment and membrane attachment, and a massive reduction in myofibril number. A highly similar phenotype was found upon depletion of aciculin in zebrafish embryos. Our results point to a thus far unappreciated, but essential, function of aciculin in myofibril formation, maintenance and remodeling.
Collapse
Affiliation(s)
- Sibylle Molt
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - John B Bührdel
- Department of Internal Medicine II, University of Ulm, 89081 Ulm, Germany
| | - Sergiy Yakovlev
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Peter Schein
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | | | - Gregor Kirfel
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Lilli Winter
- Department of Biochemistry and Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Gerhard Wiche
- Department of Biochemistry and Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | | | - Wolfgang Rottbauer
- Department of Internal Medicine II, University of Ulm, 89081 Ulm, Germany
| | - Steffen Just
- Department of Internal Medicine II, University of Ulm, 89081 Ulm, Germany
| | - Alexey M Belkin
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dieter O Fürst
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
25
|
Li J, Russell B. Phosphatidylinositol 4,5-bisphosphate regulates CapZβ1 and actin dynamics in response to mechanical strain. Am J Physiol Heart Circ Physiol 2013; 305:H1614-23. [PMID: 24043251 DOI: 10.1152/ajpheart.00477.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanical stress causes filament remodeling leading to myocyte hypertrophy and heart failure. The actin capping protein Z (CapZ) tightly binds to the barbed end of actin filaments, thus regulating actin assembly. The hypothesis is that the binding between CapZ and the actin filament is modulated through phosphatidylinositol 4,5-bisphosphate (PIP2) and how the COOH-terminus of CapZβ1 regulates this binding. Primary neonatal rat ventricular myocytes (NRVMs) were strained at 10% amplitude and 1-Hz frequency. Dot blotting measured the PIP2 amount, and affinity precipitation assay assessed the direct interaction between PIP2 and CapZβ1. Fluorescence recovery after photobleaching of green fluorescent protein-CapZβ1 and actin-green fluorescent protein after 1 h of strain shows the dynamics significantly increased above the unstrained group. The increases in CapZ and actin dynamics were blunted by neomycin, suggesting PIP2 signaling is involved. The amount of PIP2 dramatically increased in NRVMs strained for 1 h. With a ROCK or RhoA inhibitor, changes were markedly reduced. Subcellular fractionation and antibody localization showed PIP2 distributed to the sarcomeres. More PIP2-bound CapZβ1 was found in strained NRVMs. Less PIP2 bound to the CapZβ1 with its COOH-terminus intact than in the COOH-terminal mutant of CapZβ1, suggesting some inhibitory role for the COOH-terminus. Myocyte hypertrophy normally induced by 48 h of cyclic strain was blunted by dominant negative RhoA or neomycin. This suggests that after many hours of cyclic strain, a possible mechanism for cell hypertrophy is the accumulation of thin filament assembly triggered partially by the increased PIP2 level and its binding to CapZ.
Collapse
Affiliation(s)
- Jieli Li
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | | |
Collapse
|