1
|
Alqudah AM, Elwali A, Kupiak B, Hajipour F, Jacobson N, Moussavi Z. Obstructive sleep apnea detection during wakefulness: a comprehensive methodological review. Med Biol Eng Comput 2024; 62:1277-1311. [PMID: 38279078 PMCID: PMC11021303 DOI: 10.1007/s11517-024-03020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Obstructive sleep apnea (OSA) is a chronic condition affecting up to 1 billion people, globally. Despite this spread, OSA is still thought to be underdiagnosed. Lack of diagnosis is largely attributed to the high cost, resource-intensive, and time-consuming nature of existing diagnostic technologies during sleep. As individuals with OSA do not show many symptoms other than daytime sleepiness, predicting OSA while the individual is awake (wakefulness) is quite challenging. However, research especially in the last decade has shown promising results for quick and accurate methodologies to predict OSA during wakefulness. Furthermore, advances in machine learning algorithms offer new ways to analyze the measured data with more precision. With a widening research outlook, the present review compares methodologies for OSA screening during wakefulness, and recommendations are made for avenues of future research and study designs.
Collapse
Affiliation(s)
- Ali Mohammad Alqudah
- Biomedical Engineering Program, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB, R3T 2N2, Canada
| | - Ahmed Elwali
- Biomedical Engineering Program, Marian University, 3200 Cold Sprint Road, Indianapolis, IN, 46222-1997, USA
| | - Brendan Kupiak
- Electrical and Computer Engineering Department, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB, R3T 2N2, Canada
| | | | - Natasha Jacobson
- Biosystems Engineering Department, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB, R3T 2N2, Canada
| | - Zahra Moussavi
- Biomedical Engineering Program, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB, R3T 2N2, Canada.
- Electrical and Computer Engineering Department, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
2
|
Sands SA, Collet J, Gell LK, Calianese N, Hess LB, Vena D, Azarbarzin A, Bertisch SM, Landry S, Thomson L, Joosten SA, Hamilton GS, Edwards BA. Combination pharmacological therapy targeting multiple mechanisms of sleep apnoea: a randomised controlled cross-over trial. Thorax 2024; 79:259-268. [PMID: 38286618 DOI: 10.1136/thorax-2023-220184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/23/2023] [Indexed: 01/31/2024]
Abstract
RATIONALE Acetazolamide and atomoxetine-plus-oxybutynin ('AtoOxy') can improve obstructive sleep apnoea (OSA) by stabilising ventilatory control and improving dilator muscle responsiveness respectively. Given the different pathophysiological mechanisms targeted by each intervention, we tested whether AtoOxy-plus-acetazolamide would be more efficacious than AtoOxy alone. METHODS In a multicentre randomised crossover trial, 19 patients with moderate-to-severe OSA received AtoOxy (80/5 mg), acetazolamide (500 mg), combined AtoOxy-plus-acetazolamide or placebo at bedtime for three nights (half doses on first night) with a 4-day washout between conditions. Outcomes were assessed at baseline and night 3 of each treatment period. Mixed model analysis compared the reduction in Apnoea-Hypopnoea Index (AHI) from baseline between AtoOxy-plus-acetazolamide and AtoOxy (primary outcome). Secondary outcomes included hypoxic burden and arousal index. RESULTS Although AtoOxy lowered AHI by 49 (33, 62)%baseline (estimate (95% CI)) vs placebo, and acetazolamide lowered AHI by+34 (14, 50)%baseline vs placebo, AtoOxy-plus-acetazolamide was not superior to AtoOxy alone (difference: -2 (-18, 11)%baseline, primary outcome p=0.8). Likewise, the hypoxic burden was lowered with AtoOxy (+58 (37, 71)%baseline) and acetazolamide (+37 (5, 58)%baseline), but no added benefit versus AtoOxy occurred when combined (difference: -13 (-5, 39)%baseline). Arousal index was also modestly reduced with each intervention (11%baseline-16%baseline). Mechanistic analyses revealed that similar traits (ie, higher baseline compensation, lower loop gain) were associated with both AtoOxy and acetazolamide efficacy. CONCLUSIONS While AtoOxy halved AHI, and acetazolamide lowered AHI by a third, the combination of these leading experimental interventions provided no greater efficacy than AtoOxy alone. Failure of acetazolamide to further increase efficacy suggests overlapping physiological mechanisms. TRIAL REGISTRATION NUMBER NCT03892772.
Collapse
Affiliation(s)
- Scott A Sands
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Jinny Collet
- Department of Physiology, Biomedical Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Laura K Gell
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Nicole Calianese
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Lauren B Hess
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Daniel Vena
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Ali Azarbarzin
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Suzanne M Bertisch
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Shane Landry
- Department of Physiology, Biomedical Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Luke Thomson
- Department of Physiology, Biomedical Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Simon A Joosten
- School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
- Monash Lung, Sleep, Allergy, and Immunity, Monash Health, Clayton, Victoria, Australia
- Monash Partners - Epworth, Melbourne, Victoria, Australia
| | - Garun S Hamilton
- School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
- Monash Lung, Sleep, Allergy, and Immunity, Monash Health, Clayton, Victoria, Australia
- Monash Partners - Epworth, Melbourne, Victoria, Australia
| | - Bradley A Edwards
- Department of Physiology, Biomedical Discovery Institute, Monash University, Clayton, Victoria, Australia
- School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
3
|
Read N, Jennings C, Hare A. Obstructive sleep apnoea-hypopnoea syndrome. Emerg Top Life Sci 2023; 7:467-476. [PMID: 38130167 DOI: 10.1042/etls20180939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/25/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023]
Abstract
Obstructive sleep apnoea-hypopnoea syndrome (OSAHS) is a common disorder characterised by repetitive episodes of the complete or partial collapse of the pharyngeal airway during sleep. This results in cessation (apnoea) or reduction (hypopnoea) of airflow, leading to oxygen desaturation and sleep fragmentation. An individual's disposition to develop OSAHS depends on the collapsibility of a segment of the upper airway. The degree of collapsibility can be quantified by the balance between occluding or extraluminal pressures of the surrounding tissues. Patients can experience snoring, unrefreshing sleep, witnessed apnoeas, waking with a choking sensation and excessive daytime sleepiness. OSAHS has a broad range of consequences, including cardiovascular, metabolic, and neurocognitive sequelae. Treatment options include lifestyle measures, in particular weight loss, and strategies to maintain upper airway patency overnight, including continuous positive airway pressure, mandibular advancement devices and positional modifiers.
Collapse
Affiliation(s)
- Nicola Read
- Royal Brompton Hospital, Kings Health Partnership, London, U.K
| | - Callum Jennings
- Royal Brompton Hospital, Kings Health Partnership, London, U.K
| | - Alanna Hare
- Royal Brompton Hospital, Kings Health Partnership, London, U.K
| |
Collapse
|
4
|
Jugé L, Liao A, Yeung J, Knapman FL, Bull C, Burke PG, Brown EC, Gandevia SC, Eckert DJ, Butler JE, Bilston LE. Regional associations between inspiratory tongue dilatory movement and genioglossus activity during wakefulness in people with obstructive sleep apnoea. J Physiol 2023; 601:5795-5811. [PMID: 37983193 PMCID: PMC10953361 DOI: 10.1113/jp285187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023] Open
Abstract
Inspiratory tongue dilatory movement is believed to be mediated via changes in neural drive to genioglossus. However, this has not been studied during quiet breathing in humans. Therefore, this study investigated this relationship and its potential role in obstructive sleep apnoea (OSA). During awake supine quiet nasal breathing, inspiratory tongue dilatory movement, quantified with tagged magnetic resonance imaging, and inspiratory phasic genioglossus EMG normalised to maximum EMG were measured in nine controls [apnoea-hypopnea index (AHI) ≤5 events/h] and 37 people with untreated OSA (AHI >5 events/h). Measurements were obtained for 156 neuromuscular compartments (85%). Analysis was adjusted for nadir epiglottic pressure during inspiration. Only for 106 compartments (68%) was a larger anterior (dilatory) movement associated with a higher phasic EMG [mixed linear regression, beta = 0.089, 95% CI [0.000, 0.178], t(99) = 1.995, P = 0.049, hereafter EMG↗/mvt↗]. For the remaining 50 (32%) compartments, a larger dilatory movement was associated with a lower phasic EMG [mixed linear regression, beta = -0.123, 95% CI [-0.224, -0.022], t(43) = -2.458, P = 0.018, hereafter EMG↘/mvt↗]. OSA participants had a higher odds of having at least one decoupled EMG↘/mvt↗ compartment (binary logistic regression, odds ratio [95% CI]: 7.53 [1.19, 47.47] (P = 0.032). Dilatory tongue movement was minimal (>1 mm) in nearly all participants with only EMG↗/mvt↗ compartments (86%, 18/21). These results demonstrate that upper airway dilatory mechanics cannot be predicted from genioglossus EMG, particularly in people with OSA. Tongue movement associated with minimal genioglossus activity suggests co-activation of other airway dilator muscles. KEY POINTS: Inspiratory tongue movement is thought to be mediated through changes in genioglossus activity. However, it is unknown if this relationship is altered by obstructive sleep apnoea (OSA). During awake supine quiet nasal breathing, inspiratory tongue movement, quantified with tagged magnetic resonance imaging (MRI), and inspiratory phasic genioglossus EMG normalised to maximum EMG were measured in four tongue compartments of people with and without OSA. Larger tongue anterior (dilatory) movement was associated with higher phasic genioglossus EMG for 68% of compartments. OSA participants had an ∼7-times higher odds of having at least one compartment for which a larger anterior tongue movement was not associated with a higher phasic EMG than controls. Therefore, higher genioglossus phasic EMG does not consistently translate into tongue dilatory movement, particularly in people with OSA. Large dilatory tongue movements can occur despite minimal genioglossus inspiratory activity, suggesting co-activation of other pharyngeal muscles.
Collapse
Affiliation(s)
- Lauriane Jugé
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- Faculty of Medicine and HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Angela Liao
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- Faculty of Medicine and HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Jade Yeung
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
| | - Fiona L. Knapman
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- Faculty of Medicine and HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Christopher Bull
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- Faculty of Medicine and HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Peter G.R. Burke
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- Macquarie Medical SchoolFaculty of Medicine and Health SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Elizabeth C. Brown
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- Prince of Wales HospitalSydneyNew South WalesAustralia
| | - Simon C. Gandevia
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- Faculty of Medicine and HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Danny J. Eckert
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- Faculty of Medicine and HealthUniversity of New South WalesSydneyNew South WalesAustralia
- Adelaide Institute for Sleep Health and Flinders Health and Medical Research InstituteFlinders UniversityAdelaideAustralia
| | - Jane E. Butler
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- Faculty of Medicine and HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Lynne E. Bilston
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- Faculty of Medicine and HealthUniversity of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
5
|
Gell LK, Vena D, Grace K, Azarbarzin A, Messineo L, Hess LB, Calianese N, Labarca G, Taranto-Montemurro L, White DP, Wellman A, Sands SA. Drive versus Pressure Contributions to Genioglossus Activity in Obstructive Sleep Apnea. Ann Am Thorac Soc 2023; 20:1326-1336. [PMID: 37411045 PMCID: PMC10502881 DOI: 10.1513/annalsats.202301-083oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023] Open
Abstract
Rationale: Loss of pharyngeal dilator muscle activity is a key determinant of respiratory events in obstructive sleep apnea (OSA). After the withdrawal of wakefulness stimuli to the genioglossus at sleep onset, mechanoreceptor negative pressure and chemoreceptor ventilatory drive feedback govern genioglossus activation during sleep, but the relative contributions of drive and pressure stimuli to genioglossus activity across progressive obstructive events remain unclear. We recently showed that drive typically falls during events, whereas negative pressures increase, providing a means to assess their individual contributions to the time course of genioglossus activity. Objectives: For the first time, we critically test whether the loss of drive could explain the loss of genioglossus activity observed within events in OSA. Methods: We examined the time course of genioglossus activity (EMGgg; intramuscular electromyography), ventilatory drive (intraesophageal diaphragm electromyography), and esophageal pressure during spontaneous respiratory events (using the ensemble-average method) in 42 patients with OSA (apnea-hypopnea index 5-91 events/h). Results: Multivariable regression demonstrated that the falling-then-rising time course of EMGgg may be well explained by falling-then-rising drive and rising negative pressure stimuli (model R = 0.91 [0.88-0.98] [95% confidence interval]). Overall, EMGgg was 2.9-fold (0.47-∞) more closely associated with drive than pressure stimuli (ratio of standardized coefficients, βdrive:βpressure; ∞ denotes absent pressure contribution). However, individual patient results were heterogeneous: approximately one-half (n = 22 of 42) exhibited drive-dominant responses (i.e., βdrive:βpressure > 2:1), and one-quarter (n = 11 of 42) exhibited pressure-dominant EMGgg responses (i.e., βdrive:βpressure < 1:2). Patients exhibiting more drive-dominant EMGgg responses experienced greater event-related EMGgg declines (12.9 [4.8-21.0] %baseline/standard deviation of βdrive:βpressure; P = 0.004, adjusted analysis). Conclusions: Loss of genioglossus activity precipitating events in patients with OSA is strongly associated with a contemporaneous loss of drive and is greatest in those whose activity tracks drive rather than pressure stimuli. These findings were upheld for events without prior arousal. Responding to falling drive rather than rising negative pressure during events may be deleterious; future therapeutic strategies whose aim is to sustain genioglossus activity by preferentially enhancing responses to rising pressure rather than falling drive are of interest.
Collapse
Affiliation(s)
- Laura K. Gell
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Daniel Vena
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Kevin Grace
- Department of Neurological Surgery, University of California, Davis, Sacramento, California
| | - Ali Azarbarzin
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Ludovico Messineo
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Lauren B. Hess
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Nicole Calianese
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Gonzalo Labarca
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Luigi Taranto-Montemurro
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - David P. White
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Andrew Wellman
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Scott A. Sands
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
6
|
Aggarwal J, Ladha R, Liu WY, Liu H, Horner RL. Optical and pharmacological manipulation of hypoglossal motor nucleus identifies differential effects of taltirelin on sleeping tonic motor activity and responsiveness. Sci Rep 2023; 13:12299. [PMID: 37516800 PMCID: PMC10387086 DOI: 10.1038/s41598-023-39562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/27/2023] [Indexed: 07/31/2023] Open
Abstract
Pharyngeal muscle activity and responsiveness are key pathophysiological traits in human obstructive sleep apnea (OSA) and strong contributors to improvements with pharmacotherapy. The thyrotropin-releasing hormone (TRH) analog taltirelin is of high pre-clinical interest given its neuronal-stimulant properties, minimal endocrine activity, tongue muscle activation following microperfusion into the hypoglossal motor nucleus (HMN) or systemic delivery, and high TRH receptor expression at the HMN compared to rest of the brain. Here we test the hypothesis that taltirelin increases HMN activity and/or responsivity to excitatory stimuli applied across sleep-wake states in-vivo. To target hypoglossal motoneurons with simultaneous pharmacological and optical stimuli we used customized "opto-dialysis" probes and chronically implanted them in mice expressing a light sensitive cation channel exclusively on cholinergic neurons (ChAT-ChR2, n = 12) and wild-type mice lacking the opsin (n = 10). Both optical stimuli applied across a range of powers (P < 0.001) and microperfusion of taltirelin into the HMN (P < 0.020) increased tongue motor activity in sleeping ChAT-ChR2 mice. Notably, taltirelin increased tonic background tongue motor activity (P < 0.001) but not responsivity to excitatory optical stimuli across sleep-wake states (P > 0.098). This differential effect on tonic motor activity versus responsivity informs human studies of the potential beneficial effects of taltirelin on pharyngeal motor control and OSA pharmacotherapy.
Collapse
Affiliation(s)
- Jasmin Aggarwal
- Department of Physiology, University of Toronto, 3206 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Raina Ladha
- Department of Physiology, University of Toronto, 3206 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Wen-Ying Liu
- Department of Physiology, University of Toronto, 3206 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Hattie Liu
- Department of Physiology, University of Toronto, 3206 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Richard L Horner
- Department of Physiology, University of Toronto, 3206 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Department of Medicine, University of Toronto, 3206 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
7
|
Younes M, Gerardy B, Giannouli E, Raneri J, Ayas NT, Skomro R, John Kimoff R, Series F, Hanly PJ, Beaudin A. Contribution of obstructive sleep apnea to disrupted sleep in a large clinical cohort of patients with suspected obstructive sleep apnea. Sleep 2023; 46:zsac321. [PMID: 36591638 PMCID: PMC10334732 DOI: 10.1093/sleep/zsac321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
STUDY OBJECTIVES The response of sleep depth to CPAP in patients with OSA is unpredictable. The odds-ratio-product (ORP) is a continuous index of sleep depth and wake propensity that distinguishes different sleep depths within sleep stages, and different levels of vigilance during stage wake. When expressed as fractions of time spent in different ORP deciles, nine distinctive patterns are found. Only three of these are associated with OSA. We sought to determine whether sleep depth improves on CPAP exclusively in patients with these three ORP patterns. METHODS ORP was measured during the diagnostic and therapeutic components of 576 split-night polysomnographic (PSG) studies. ORP architecture in the diagnostic section was classified into one of the nine possible ORP patterns and the changes in sleep architecture were determined on CPAP for each of these patterns. ORP architecture was similarly determined in the first half of 760 full-night diagnostic PSG studies and the changes in the second half were measured to control for differences in sleep architecture between the early and late portions of sleep time in the absence of CPAP. RESULTS Frequency of the three ORP patterns increased progressively with the apnea-hypopnea index. Sleep depth improved significantly on CPAP only in the three ORP patterns associated with OSA. Changes in CPAP in the other six patterns, or in full diagnostic PSG studies, were insignificant or paradoxical. CONCLUSIONS ORP architecture types can identify patients in whom OSA adversely affects sleep and whose sleep is expected to improve on CPAP therapy.
Collapse
Affiliation(s)
- Magdy Younes
- Sleep Disorders Center, Misericordia Health Center, University of Manitoba, Winnipeg, Canada
- YRT Limited, Winnipeg, Manitoba, Canada
| | | | - Eleni Giannouli
- Sleep Disorders Center, Misericordia Health Center, University of Manitoba, Winnipeg, Canada
| | - Jill Raneri
- Sleep Centre, Foothills Medical Centre, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Najib T Ayas
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Robert Skomro
- Division of Respirology, Critical Care and Sleep Medicine, University of Saskatchewan, Saskatoon, Canada
| | - R John Kimoff
- Respiratory Division, McGill University Health Centre, Respiratory Epidemiology Clinical Research Unit and Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - Frederic Series
- Unité de Recherche en Pneumologie, Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Patrick J Hanly
- Sleep Centre, Foothills Medical Centre, Department of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Andrew Beaudin
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Horner RL. Targets for obstructive sleep apnea pharmacotherapy: principles, approaches, and emerging strategies. Expert Opin Ther Targets 2023; 27:609-626. [PMID: 37494064 DOI: 10.1080/14728222.2023.2240018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION Obstructive sleep apnea (OSA) is a common and serious breathing disorder. Several pathophysiological factors predispose individuals to OSA. These factors are quantifiable, and modifiable pharmacologically. AREAS COVERED Four key pharmacotherapeutic targets are identified and mapped to the major determinants of OSA pathophysiology. PubMed and Clinicaltrials.gov were searched through April 2023. EXPERT OPINION Target #1: Pharyngeal Motor Effectors. Increasing pharyngeal muscle activity and responsivity with noradrenergic-antimuscarinic combination is central to recent breakthrough OSA pharmacotherapy. Assumptions, knowledge gaps, future directions, and other targets are identified. #2: Upper Airway Sensory Afferents. There is translational potential of sensitizing and amplifying reflex pharyngeal dilator muscle responses to negative airway pressure via intranasal delivery of new potassium channel blockers. Rationales, advantages, findings, and potential strategies to enhance effectiveness are identified. #3: Chemosensory Afferents and Ventilatory Control. Strategies to manipulate ventilatory control system sensitivity by carbonic anhydrase inhibitors are supported in theory and initial studies. Intranasal delivery of agents to stimulate central respiratory activity are also introduced. #4: Sleep-Wake Mechanisms. Arousability is the fourth therapeutic target rationalized. Evolving automated tools to measure key pathophysiological factors predisposing to OSA will accelerate pharmacotherapy. Although not currently ready for general clinical settings, the identified targets are of future promise.
Collapse
Affiliation(s)
- Richard L Horner
- Departments of Physiology and Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Perger E, Bertoli S, Lombardi C. Pharmacotherapy for obstructive sleep apnea: targeting specific pathophysiological traits. Expert Rev Respir Med 2023; 17:663-673. [PMID: 37646222 DOI: 10.1080/17476348.2023.2241353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023]
Abstract
INTRODUCTION The pathophysiology of obstructive sleep apnea (OSA) is multi-factorial and complex. Varying OSA's pathophysiological traits have been identified, including pharyngeal collapsibility, upper airway muscle reactivity, arousal threshold, and regulation of the ventilatory drive. Being CPAP of difficult tolerance and other interventions reserved to specific subpopulations new pharmacological treatments for OSA might be resolutive. AREAS COVERED Several existing and newly developed pharmacological drugs can impact one or more endotypes and could therefore be proposed as treatment options for sleep disordered breathing. With this review we will explore different pathophysiological traits as new targets for OSA therapy. This review will summarize the most promising pharmacological treatment for OSA accordingly with their mechanisms of action on upper airway collapsibility, muscle responsiveness, arousal threshold, and loop gain. EXPERT OPINION Only understanding the pathophysiological traits causing OSA in each patient and placing the disease in the framework of patient comorbidities, we will be able to evolve interventions toward OSA. The development of new drug's combinations will permit different approaches and different choices beside conventional treatments. In the next future, we hope that sleep specialists will select the treatment for a specific patient on the base of its pathophysiology, defining a precision medicine for OSA.
Collapse
Affiliation(s)
- Elisa Perger
- Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Simona Bertoli
- Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
- Lab of Nutrition and Obesity Research, Istituto Auxologico Italiano, IRCCS, Milan, Carolina
| | - Carolina Lombardi
- Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
10
|
Sands SA, Edwards BA. Pro: can physiological risk factors for obstructive sleep apnea be determined by analysis of data obtained from routine polysomnography? Sleep 2023; 46:zsac310. [PMID: 36715219 PMCID: PMC10171624 DOI: 10.1093/sleep/zsac310] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 01/31/2023] Open
Affiliation(s)
- Scott A Sands
- Division of Sleep Medicine, Brigham and Women’s Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Bradley A Edwards
- Department of Physiology, School of Biomedical Sciences and Biomedical Discovery Institute, Monash University, Melbourne, VIC, Australia
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Kim LJ, Shin MK, Pho H, Tang WY, Hosamane N, Anokye-Danso F, Ahima RS, Sham JSK, Pham LV, Polotsky VY. TRPM7 channels regulate breathing during sleep in obesity by acting peripherally in the carotid bodies. J Physiol 2022; 600:5145-5162. [PMID: 36214387 DOI: 10.1113/jp283678] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/30/2022] [Indexed: 01/05/2023] Open
Abstract
Sleep-disordered breathing (SDB) affects over 50% of obese individuals. Exaggerated hypoxic chemoreflex is a cardinal trait of SDB in obesity. We have shown that leptin acts in the carotid bodies (CB) to augment chemoreflex and that leptin activates the transient receptor potential melastatin 7 (TRPM7) channel. However, the effect of leptin-TRPM7 signalling in CB on breathing and SDB has not been characterized in diet-induced obesity (DIO). We hypothesized that leptin acts via TRPM7 in the CB to increase chemoreflex leading to SDB in obesity. DIO mice were implanted with EEG/EMG electrodes and transfected with Leprb short hairpin RNA (shRNA) or Trpm7 shRNA vs. control shRNA in the CB area bilaterally. Mice underwent a full-polysomnography and metabolic studies at baseline and after transfection. Ventilatory responses to hypoxia and hypercapnia were assessed during wakefulness. Leprb and Trpm7 were upregulated and their promoters were demethylated in the CB of DIO mice. Leprb knockdown in the CB did not significantly affect ventilation. Trpm7 knockdown in the CB stimulated breathing during sleep in normoxia. These effects were not driven by changes in CB chemosensitivity or metabolism. Under sustained hypoxia, Trpm7 shRNA in the CB augmented ventilation during sleep, but decreased oxyhaemoglobin saturation. We conclude that the suppression of TRPM7 in the CB improved sleep-related hypoventilation and that the respiratory effects of CB TRPM7 channels in obesity are independent of leptin. TRPM7 signalling in the CB could be a therapeutic target for the treatment of obesity-related SDB. KEY POINTS: The leptin-TRPM7 axis in the carotid bodies may play an important role in the pathogenesis of sleep-disordered breathing. TRPM7 channels regulate breathing during sleep by acting peripherally in the carotid bodies. Suppression of TRPM7 signalling in the carotid bodies improves the obesity-induced hypoventilation in mice. Pharmacological blockade of TRPM7 channels in the carotid bodies could be a therapy for sleep-disordered breathing in obesity.
Collapse
Affiliation(s)
- Lenise J Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mi-Kyung Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wan-Yee Tang
- Department of Occupational and Environmental Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nishitha Hosamane
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frederick Anokye-Danso
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rexford S Ahima
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James S K Sham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luu V Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Huang W, Wang X, Xu C, Xu H, Zhu H, Liu S, Zou J, Guan J, Yi H, Yin S. Prevalence, characteristics, and respiratory arousal threshold of positional obstructive sleep apnea in China: a large scale study from Shanghai Sleep Health Study cohort. Respir Res 2022; 23:240. [PMID: 36096792 PMCID: PMC9465879 DOI: 10.1186/s12931-022-02141-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
Purpose To evaluate the prevalence, characteristics, and respiratory arousal threshold (ArTH) of Chinese patients with positional obstructive sleep apnea (POSA) according to the Cartwright Classification (CC) and Amsterdam Positional Obstructive Sleep Apnea Classification (APOC). Methods A large-scale cross-sectional study was conducted in our sleep center from 2007 to 2018 to analyze the clinical and polysomnography (PSG) data of Chinese POSA patients. Low ArTH was defined based on PSG indices. Results Of 5,748 OSA patients, 36.80% met the CC criteria, and 42.88% the APOC criteria, for POSA. The prevalence of POSA was significantly higher in women than men (40.21% and 46.52% vs. 36.13% and 42.18% for CC and APOC, respectively). Chinese POSA patients had a lower apnea hypopnea index (AHI) and lower oxygen desaturation index, shorter duration of oxygen saturation (SaO2) < 90%, and a higher mean SaO2 and higher lowest SaO2 value compared to subjects with non-positional OSA (NPOSA). More than 40% of the POSA patients had a low ArTH; the proportion was extremely high in the supine-isolated-POSA (si-POSA) group and APOC I group. In multivariate logistic regression analyses, higher mean SaO2 and lower AHI during sleep were positive predictors of POSA. Conclusions According to the CC and APOC criteria, more than 1/3 of our Chinese subjects with OSA had POSA. Chinese POSA patients had less severe OSA and nocturnal hypoxia. Compared to NPOSA patients, significantly more patients with POSA had a low ArTH. A low ArTH may be an important endotype in the pathogenesis of POSA, especially in patients with si-POSA and APOC I. Further studies are necessary to develop personalized management strategies for POSA patients. Trial registration: Chinese Clinical Trial Registry; URL: http://www.chictr.org.cn; No. ChiCTR1900025714 (retrospectively registered). Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02141-3.
Collapse
|
13
|
Niakani S, Liu H, Liu WY, Horner RL. Differential pharmacological and sex-specific effects of antimuscarinic agents at the hypoglossal motor nucleus in vivo in rats. Sci Rep 2022; 12:14896. [PMID: 36050440 PMCID: PMC9437041 DOI: 10.1038/s41598-022-19233-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/25/2022] [Indexed: 12/01/2022] Open
Abstract
Successful cholinergic-noradrenergic pharmacotherapy for obstructive sleep apnea (OSA) is thought to be due to effects at the hypoglossal motor nucleus (HMN). Clinical efficacy varies with muscarinic-receptor (MR) subtype affinities. We hypothesized that oxybutynin (cholinergic agent in successful OSA pharmacotherapy) is an effective MR antagonist at the HMN and characterized its efficacy with other antagonists. We recorded tongue muscle activity of isoflurane anesthetized rats (121 males and 60 females, 7-13 per group across 13 protocols) in response to HMN microperfusion with MR antagonists with and without: (i) eserine-induced increased endogenous acetylcholine at the HMN and (ii) muscarine. Eserine-induced increased acetylcholine decreased tongue motor activity (p < 0.001) with lesser cholinergic suppression in females versus males (p = 0.017). Motor suppression was significantly attenuated by the MR antagonists atropine, oxybutynin, and omadacycline (MR2 antagonist), each p < 0.001, with similar residual activity between agents (p ≥ 0.089) suggesting similar efficacy at the HMN. Sex differences remained with atropine and oxybutynin (p < 0.001 to 0.05) but not omadacycline (p = 0.722). Muscarine at the HMN also decreased motor activity (p < 0.001) but this was not sex-specific (p = 0.849). These findings have translational relevance to antimuscarinic agents in OSA pharmacotherapy and understanding potential sex differences in HMN suppression with increased endogenous acetylcholine related to sparing nicotinic excitation.
Collapse
Affiliation(s)
- Sepehr Niakani
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Hattie Liu
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Wen-Ying Liu
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Richard L Horner
- Department of Physiology, University of Toronto, Toronto, Canada.
- Department of Medicine, University of Toronto, 3206 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
14
|
Nokes B, Cooper J, Cao M. Obstructive sleep apnea: personalizing CPAP alternative therapies to individual physiology. Expert Rev Respir Med 2022; 16:917-929. [PMID: 35949101 DOI: 10.1080/17476348.2022.2112669] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Introduction The recent continuous positive airway pressure (CPAP) crisis has highlighted the need for alternative obstructive sleep apnea (OSA) therapies. This article serves to review OSA pathophysiology and how sleep apnea mechanisms may be utilized to individualize alternative treatment options.Areas covered: The research highlighted below focuses on 1) mechanisms of OSA pathogenesis and 2) CPAP alternative therapies based on mechanism of disease. We reviewed PubMed from inception to July 2022 for relevant articles pertaining to OSA pathogenesis, sleep apnea surgery, as well as sleep apnea alternative therapies.Expert opinion: Although the field of individualized OSA treatment is still in its infancy, much has been learned about OSA traits and how they may be targeted based on a patient's physiology and preferences. While CPAP remains the gold-standard for OSA management, several novel alternatives are emerging. CPAP is a universal treatment approach for all severities of OSA. We believe that a personalized approach to OSA treatment beyond CPAP lies ahead. Additional research is needed with respect to implementation and combination of therapies longitudinally, but we are enthusiastic about the future of OSA treatment based on the data presented here.
Collapse
Affiliation(s)
- Brandon Nokes
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA.,Section of Sleep Medicine, Veterans Affairs (VA) San Diego Healthcare System, La Jolla, CA, USA
| | - Jessica Cooper
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Michelle Cao
- Division of Pulmonary, Allergy, Critical Care Medicine & Division of Sleep Medicine, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
15
|
Gell LK, Vena D, Alex RM, Azarbarzin A, Calianese N, Hess LB, Taranto-Montemurro L, White DP, Wellman A, Sands SA. Neural ventilatory drive decline as a predominant mechanism of obstructive sleep apnoea events. Thorax 2022; 77:707-716. [PMID: 35064045 PMCID: PMC10039972 DOI: 10.1136/thoraxjnl-2021-217756] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/18/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND In the classic model of obstructive sleep apnoea (OSA), respiratory events occur with sleep-related dilator muscle hypotonia, precipitating increased neural ventilatory 'drive'. By contrast, a drive-dependent model has been proposed, whereby falling drive promotes dilator muscle hypotonia to precipitate respiratory events. Here we determine the extent to which the classic versus drive-dependent models of OSA are best supported by direct physiological measurements. METHODS In 50 OSA patients (5-91 events/hour), we recorded ventilation ('flow', oronasal mask and pneumotach) and ventilatory drive (calibrated intraoesophageal diaphragm electromyography, EMG) overnight. Flow and drive during events were ensemble averaged; patients were classified as drive dependent if flow fell/rose simultaneously with drive. Overnight effects of lower drive on flow, genioglossus muscle activity (EMGgg) and event risk were quantified (mixed models). RESULTS On average, ventilatory drive fell (rather than rose) during events (-20 (-42 to 3)%baseline, median (IQR)) and was strongly correlated with flow (R=0.78 (0.24 to 0.94)). Most patients (30/50, 60%) were classified as exhibiting drive-dependent event pathophysiology. Lower drive during sleep was associated with lower flow (-17 (-20 to -14)%/drive) and EMGgg (-3.5 (-3.8 to -3.3)%max/drive) and greater event risk (OR: 2.2 (1.8 to 2.5) per drive reduction of 100%eupnoea); associations were concentrated in patients with drive-dependent OSA (ie, flow: -37 (-40 to -34)%/drive, OR: 6.8 (5.3 to 8.7)). Oesophageal pressure-without tidal volume correction-falsely suggested rising drive during events (classic model). CONCLUSIONS In contrast to the prevailing view, patients with OSA predominantly exhibit drive-dependent event pathophysiology, whereby flow is lowest at nadir drive, and lower drive raises event risk. Preventing ventilatory drive decline is therefore considered a target for OSA intervention.
Collapse
Affiliation(s)
- Laura K Gell
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Vena
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Raichel M Alex
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ali Azarbarzin
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Nicole Calianese
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lauren B Hess
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Luigi Taranto-Montemurro
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - David P White
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew Wellman
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Scott A Sands
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
S ME, K B, H D, Ludwig K, N K, T H, H G, M M. A Novel Quantitative Arousal-Associated EEG-Metric to Predict Severity of Respiratory Distress in Obstructive Sleep Apnea Patients. Front Physiol 2022; 13:885270. [PMID: 35812317 PMCID: PMC9257225 DOI: 10.3389/fphys.2022.885270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
Abstract
Respiratory arousals (RA) on polysomnography (PSG) are an important predictor of obstructive sleep apnea (OSA) disease severity. Additionally, recent reports suggest that more global indices of desaturation such as the hypoxic burden, namely the area under the curve (AUC) of the oxygen saturation (SaO2) PSG trace may better depict the desaturation burden in OSA. Here we investigated possible associations between a new metric, namely the AUC of the respiratory arousal electroencephalographic (EEG) recording, and already established parameters as the apnea/hypopnea index (AHI), arousal index and hypoxic burden in patients with OSA. In this data-driven study, polysomnographic data from 102 patients with OSAS were assessed (32 female; 70 male; mean value of age: 52 years; mean value of Body-Mass-Index-BMI: 31 kg/m2). The marked arousals from the pooled EEG signal (C3 and C4) were smoothed and the AUC was estimated. We used a support vector regressor (SVR) analysis to predict AHI, arousal index and hypoxic burden as captured by the PSG. The SVR with the arousal-AUC metric could quite reliably predict the AHI with a high correlation coefficient (0,58 in the training set, 0,65 in the testing set and 0,64 overall), as well as the hypoxic burden (0,62 in the training set, 0,58 in the testing set and 0,59 overall) and the arousal index (0,58 in the training set, 0,67 in the testing set and 0,66 overall). This novel arousal-AUC metric may predict AHI, hypoxic burden and arousal index with a quite high correlation coefficient and therefore could be used as an additional quantitative surrogate marker in the description of obstructive sleep apnea disease severity.
Collapse
Affiliation(s)
- Malatantis-Ewert S
- Department of Otorhinolaryngology, Sleep Medicine Center, Medical Center of the University of Mainz, Mainz, Germany
- Movement Disorders and Neurostimulation, Department of Neurology, Biomedical Statistics and Multimodal Signal Processing Unit, Medical Center of the University of Mainz, Mainz, Germany
| | - Bahr K
- Department of Otorhinolaryngology, Sleep Medicine Center, Medical Center of the University of Mainz, Mainz, Germany
| | - Ding H
- Movement Disorders and Neurostimulation, Department of Neurology, Biomedical Statistics and Multimodal Signal Processing Unit, Medical Center of the University of Mainz, Mainz, Germany
| | - Katharina Ludwig
- Department of Otorhinolaryngology, Sleep Medicine Center, Medical Center of the University of Mainz, Mainz, Germany
| | - Koirala N
- Haskins Laboratories, Yale University, New Haven, CT, United States
| | - Huppertz T
- Department of Otorhinolaryngology, Sleep Medicine Center, Medical Center of the University of Mainz, Mainz, Germany
| | - Gouveris H
- Department of Otorhinolaryngology, Sleep Medicine Center, Medical Center of the University of Mainz, Mainz, Germany
| | - Muthuraman M
- Movement Disorders and Neurostimulation, Department of Neurology, Biomedical Statistics and Multimodal Signal Processing Unit, Medical Center of the University of Mainz, Mainz, Germany
| |
Collapse
|
17
|
Li N, Gao Z, Shen J, Liu Y, Wu K, Yang J, Wang S, Zhang X, Zhu Y, Zhu J, Guan J, Liu F, Yin S. Comprehensive Analysis of N6-Methyladenosine Regulators in the Subcluster Classification and Drug Candidates Prediction of Severe Obstructive Sleep Apnea. Front Genet 2022; 13:862972. [PMID: 35559050 PMCID: PMC9086428 DOI: 10.3389/fgene.2022.862972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/11/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Obstructive sleep apnea (OSA) is the most common type of sleep apnea that impacts the development or progression of many other disorders. Abnormal expression of N6-methyladenosine (m6A) RNA modification regulators have been found relating to a variety of human diseases. However, it is not yet known if m6A regulators are involved in the occurrence and development of OSA. Herein, we aim to explore the impact of m6A modification in severe OSA. Methods: We detected the differentially expressed m6A regulators in severe OSA microarray dataset GSE135917. The least absolute shrinkage and selection operator (LASSO) and support vector machines (SVM) were used to identify the severe OSA-related m6A regulators. Receiver operating characteristic (ROC) curves were performed to screen and verify the diagnostic markers. Consensus clustering algorithm was used to identify m6A patterns. And then, we explored the character of immune microenvironment, molecular functionals, protein-protein interaction networks and miRNA-TF coregulatory networks for each subcluster. Finally, the Connectivity Map (CMap) tools were used to tailor customized treatment strategies for different severe OSA subclusters. An independent dataset GSE38792 was used for validation. Results: We found that HNRNPA2B1, KIAA1429, ALKBH5, YTHDF2, FMR1, IGF2BP1 and IGF2BP3 were dysregulated in severe OSA patients. Among them, IGF2BP3 has a high diagnostic value in both independent datasets. Furthermore, severe OSA patients can be accurately classified into three m6A patterns (subcluster1, subcluster2, subcluster3). The immune response in subcluster3 was more active because it has high M0 Macrophages and M2 Macrophages infiltration and up-regulated human leukocyte antigens (HLAs) expression. Functional analysis showed that representative genes for each subcluster in severe OSA were assigned to histone methyltransferase, ATP synthesis coupled electron transport, virus replication, RNA catabolic, multiple neurodegeneration diseases pathway, et al. Moreover, our finding demonstrated cyclooxygenase inhibitors, several of adrenergic receptor antagonists and histamine receptor antagonists might have a therapeutic effect on severe OSA. Conclusion: Our study presents an overview of the expression pattern and crucial role of m6A regulators in severe OSA, which may provide critical insights for future research and help guide appropriate prevention and treatment options.
Collapse
Affiliation(s)
- Niannian Li
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Zhenfei Gao
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Jinhong Shen
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Yuenan Liu
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Kejia Wu
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Jundong Yang
- Department of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengming Wang
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoman Zhang
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Yaxin Zhu
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Jingyu Zhu
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Jian Guan
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Feng Liu
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Shankai Yin
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Younes MK, Beaudin AE, Raneri JK, Gerardy BJ, Hanly PJ. Adherence Index: sleep depth and nocturnal hypoventilation predict long-term adherence with positive airway pressure therapy in severe obstructive sleep apnea. J Clin Sleep Med 2022; 18:1933-1944. [PMID: 35499136 PMCID: PMC9340588 DOI: 10.5664/jcsm.10028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES Treatment of obstructive sleep apnea with positive airway pressure (PAP) devices is limited by poor long-term adherence. Early identification of individual patients' probability of long-term PAP adherence would help in their management. We determined whether conventional polysomnogram (PSG) scoring and measures of sleep depth based on the odds ratio product would predict adherence with PAP therapy 12 months after it was started. METHODS Patients with obstructive sleep apnea referred to an academic sleep center had split-night PSG, arterial blood gases, and a sleep questionnaire. Multiple linear regression analysis of conventional PSG scoring and the odds ratio product both during diagnostic PSG and PAP titration provided an "Adherence Index," which was correlated with PAP use 12 months later. RESULTS Patients with obstructive sleep apnea (n = 236, apnea-hypopnea index 72.2 ± 34.1 events/h) were prescribed PAP therapy (82% received continuous PAP, 18% received bilevel PAP). Each patient's adherence with PAP therapy 12 months later was categorized as "never used," "quit using," "poor adherence," and "good adherence." PSG measures that were most strongly correlated with PAP adherence were apnea-hypopnea index and odds ratio product during nonrapid eye movement sleep; the additional contribution of nocturnal hypoxemia to this correlation was confined to those with chronic hypoventilation treated with bilevel PAP. The Adherence Index derived from these measures, during both diagnostic PSG and PAP titration, was strongly correlated with PAP adherence 12 months later. CONCLUSIONS Long-term adherence with PAP therapy can be predicted from diagnostic PSG in patients with severe obstructive sleep apnea, which may facilitate a precision-based approach to PAP management. CITATION Younes MK, Beaudin AE, Raneri JK, Gerardy BJ, Hanly PJ. Adherence Index: sleep depth and nocturnal hypoventilation predict long-term adherence with positive airway pressure therapy in severe obstructive sleep apnea. J Clin Sleep Med. 2022:18(8):1933-1944.
Collapse
Affiliation(s)
- Magdy K. Younes
- Sleep Disorders Center, Misericordia Health Center, University of Manitoba, Winnipeg, Canada
- YRT Limited, Winnipeg, Manitoba, Canada
| | - Andrew E. Beaudin
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jill K. Raneri
- Sleep Centre, Foothills Medical Centre, Calgary, Alberta, Canada
| | | | - Patrick J. Hanly
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Sleep Centre, Foothills Medical Centre, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
19
|
Wu X, Pan Z, Liu W, Zha S, Song Y, Zhang Q, Hu K. The Discovery, Validation, and Function of Hypoxia-Related Gene Biomarkers for Obstructive Sleep Apnea. Front Med (Lausanne) 2022; 9:813459. [PMID: 35372438 PMCID: PMC8970318 DOI: 10.3389/fmed.2022.813459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
While there is emerging evidence that hypoxia critically contributes to the pathobiology of obstructive sleep apnea (OSA), the diagnostic value of measuring hypoxia or its surrogates in OSA remains unclear. Here we investigated the diagnostic value of hypoxia-related genes and explored their potential molecular mechanisms of action in OSA. Expression data from OSA and control subjects were downloaded from the Gene Expression Omnibus database. Differentially-expressed genes (DEGs) between OSA and control subjects were identified using the limma R package and their biological functions investigated with the clusterProfiler R package. Hypoxia-related DEGs in OSA were obtained by overlapping DEGs with hypoxia-related genes. The diagnostic value of hypoxia-related DEGs in OSA was evaluated by receiver operating curve (ROC) analysis. Random forest (RF) and lasso machine learning algorithms were used to construct diagnostic models to distinguish OSA from control. Geneset enrichment analysis (GSEA) was performed to explore pathways related to key hypoxia-related genes in OSA. Sixty-three genes associated with hypoxia, transcriptional regulation, and inflammation were identified as differentially expressed between OSA and control samples. By intersecting these with known hypoxia-related genes, 17 hypoxia-related DEGs related to OSA were identified. Protein-protein interaction network analysis showed that 16 hypoxia-related genes interacted, and their diagnostic value was further explored. The 16 hypoxia-related genes accurately predicted OSA with AUCs >0.7. A lasso model constructed using AREG, ATF3, ZFP36, and DUSP1 had a better performance and accuracy in classifying OSA and control samples compared with an RF model as assessed by multiple metrics. Moreover, GSEA revealed that AREG, ATF3, ZFP36, and DUSP1 may regulate OSA via inflammation and contribute to OSA-related cancer risk. Here we constructed a reliable diagnostic model for OSA based on hypoxia-related genes. Furthermore, these transcriptional changes may contribute to the etiology, pathogenesis, and sequelae of OSA.
Collapse
|
20
|
Janes TA, Ambrozio-Marques D, Fournier S, Joseph V, Soliz J, Kinkead R. Testosterone Supplementation Induces Age-Dependent Augmentation of the Hypoxic Ventilatory Response in Male Rats With Contributions From the Carotid Bodies. Front Physiol 2022; 12:781662. [PMID: 35002764 PMCID: PMC8741195 DOI: 10.3389/fphys.2021.781662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/03/2021] [Indexed: 12/30/2022] Open
Abstract
Excessive carotid body responsiveness to O2 and/or CO2/H+ stimuli contributes to respiratory instability and apneas during sleep. In hypogonadal men, testosterone supplementation may increase the risk of sleep-disordered breathing; however, the site of action is unknown. The present study tested the hypothesis that testosterone supplementation potentiates carotid body responsiveness to hypoxia in adult male rats. Because testosterone levels decline with age, we also determined whether these effects were age-dependent. In situ hybridization determined that androgen receptor mRNA was present in the carotid bodies and caudal nucleus of the solitary tract of adult (69 days old) and aging (193–206 days old) male rats. In urethane-anesthetized rats injected with testosterone propionate (2 mg/kg; i.p.), peak breathing frequency measured during hypoxia (FiO2 = 0.12) was 11% greater vs. the vehicle treatment group. Interestingly, response intensity following testosterone treatment was positively correlated with animal age. Exposing ex vivo carotid body preparations from young and aging rats to testosterone (5 nM, free testosterone) 90–120 min prior to testing showed that the carotid sinus nerve firing rate during hypoxia (5% CO2 + 95% N2; 15 min) was augmented in both age groups as compared to vehicle (<0.001% DMSO). Ventilatory measurements performed using whole body plethysmography revealed that testosterone supplementation (2 mg/kg; i.p.) 2 h prior reduced apnea frequency during sleep. We conclude that in healthy rats, age-dependent potentiation of the carotid body’s response to hypoxia by acute testosterone supplementation does not favor the occurrence of apneas but rather appears to stabilize breathing during sleep.
Collapse
Affiliation(s)
- Tara A Janes
- Department of Physiology, Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada.,Department of Pediatrics, Québec Heart and Lung Institute, Université Laval, Québec, QC, Canada
| | | | - Sébastien Fournier
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Vincent Joseph
- Department of Pediatrics, Québec Heart and Lung Institute, Université Laval, Québec, QC, Canada
| | - Jorge Soliz
- Department of Pediatrics, Québec Heart and Lung Institute, Université Laval, Québec, QC, Canada
| | - Richard Kinkead
- Department of Pediatrics, Québec Heart and Lung Institute, Université Laval, Québec, QC, Canada
| |
Collapse
|
21
|
Ribot C, Morell-Garcia D, Piérola J, Peña-Zarza JA, Sanchís P, Muñiz J, de la Peña M, Alonso-Fernández A, Barceló A. Surfactant protein D concentration in a pediatric population with suspected sleep disorder. Pediatr Pulmonol 2022; 57:285-292. [PMID: 34559461 DOI: 10.1002/ppul.25697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 11/06/2022]
Abstract
Obstructive sleep apnea (OSA) affects between 2% and 4% in children and there is a search for new biomarkers that can be useful both in the diagnosis and in the evolution of the disease. The surfactant protein D (SP-D) is a collection that is part of the innate immune system exerting an anti-inflammatory and antimicrobial effect. Thus, the objective of this study was to evaluate the concentration of SP-D in the suspect OSA pediatric population. A total of 178 children were recruited in this prospective study. Blood samples, sleep parameters, feeding habits, anthropometric, sociodemographic, and family data were collected. Specific biochemical determinations were made, and the plasmatic concentrations of SP-D were measured by enzyme-linked immunosorbent assay. We found no statistical correlation between the SP-D concentration and the apnea-hypopnea index (AHI) from the data. Nevertheless, the changes in SP-D levels could be correlated to a large extent by the arousals that often go along with hypopneas (r = -0.258, p = 0.011 unadjusted; r = -0.258, p = 0.014 adjusted by age and body mass inded [BMI] Z-score). Intermittent hypoxia was correlated with C-reactive protein levels (r = 0.547, p < 0.001 unadjusted; r = 0.542, p < 0.001 adjusted by age and BMI Z-score). Although AHI and SP-D did not appear to correlate, a secondary analysis suggests that sleep fragmentation, which is produced by arousals, may do, and further research is needed to determine the mechanisms by which changes in SP-D occur in OSA.
Collapse
Affiliation(s)
- Caterina Ribot
- Institut d'Investigació Sanitària de les Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Daniel Morell-Garcia
- Institut d'Investigació Sanitària de les Illes Balears (IdISBa), Palma de Mallorca, Spain.,Department of Laboratory Medicine, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Javier Piérola
- Institut d'Investigació Sanitària de les Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - José A Peña-Zarza
- Institut d'Investigació Sanitària de les Illes Balears (IdISBa), Palma de Mallorca, Spain.,Department of Pediatrics, Sleep Unit, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Pilar Sanchís
- Institut d'Investigació Sanitària de les Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Jesús Muñiz
- Department of Laboratory Medicine, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Mónica de la Peña
- Institut d'Investigació Sanitària de les Illes Balears (IdISBa), Palma de Mallorca, Spain.,CIBER Enfermedades Respiratorias (CibeRes) (CB06/06), Madrid, Spain.,Department of Respiratory Medicine, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Alberto Alonso-Fernández
- Institut d'Investigació Sanitària de les Illes Balears (IdISBa), Palma de Mallorca, Spain.,CIBER Enfermedades Respiratorias (CibeRes) (CB06/06), Madrid, Spain.,Department of Respiratory Medicine, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Antonia Barceló
- Institut d'Investigació Sanitària de les Illes Balears (IdISBa), Palma de Mallorca, Spain.,Department of Laboratory Medicine, Hospital Universitari Son Espases, Palma de Mallorca, Spain.,CIBER Enfermedades Respiratorias (CibeRes) (CB06/06), Madrid, Spain
| |
Collapse
|
22
|
Upper airway muscles: influence on obstructive sleep apnoea pathophysiology and pharmacological and technical treatment options. Curr Opin Pulm Med 2021; 27:505-513. [PMID: 34431788 DOI: 10.1097/mcp.0000000000000818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Obstructive sleep apnoea (OSA) is highly prevalent with numerous deleterious effects on neurocognitive and cardiovascular health. It is characterized by collapse of the upper airway during sleep, due to the decrease in both basal and compensatory UA muscle activities. However, the leading treatment, continuous positive airway pressure, is often poorly tolerated. This review presents latest works focusing on novel interventions targeting upper airway muscles to alleviate OSA severity. RECENT FINDINGS In the last years, researchers have focused on the development of alternative treatment strategies targeting UA muscle activation, including pharmacological and nonpharmacological interventions. SUMMARY Among the nonpharmacological treatments, hypoglossal nerve stimulation aims to increase upper airway muscle phasic activity during sleep through electrical stimulation, while myofunctional therapy improves the activity and coordination of upper airway dilator muscles.Regarding OSA pharmacotherapy, recent findings strongly suggest that selective norepinephrine reuptake inhibitors such as atomoxetine and reboxetine, when administered with antimuscarinics such as oxybutynin, can alleviate OSA in most patients increasing pharyngeal dilator muscles activity during sleep. New combinations of norepinephrine reuptake inhibitors and antimuscarinics have further been explored with variable success and animal models showed that leptin, thyrothropin releasing hormone analogues and gene therapy hold potential for the future of OSA pharmacotherapy.
Collapse
|
23
|
Mammel D, Kemp J. Prematurity, the diagnosis of bronchopulmonary dysplasia, and maturation of ventilatory control. Pediatr Pulmonol 2021; 56:3533-3545. [PMID: 34042316 DOI: 10.1002/ppul.25519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 11/10/2022]
Abstract
Infants born before 32 weeks gestational age and receiving respiratory support at 36 weeks postmenstrual age (PMA) are diagnosed with bronchopulmonary dysplasia (BPD). This label suggests that their need for supplemental oxygen (O2 ) is primarily due to acquired dysplasia of airways and airspaces, and that the supplemental O2 is treating residual parenchymal lung disease. However, emerging evidence suggests that immature ventilatory control may also contribute to the need for supplemental O2 at 36 weeks PMA. In all newborns, maturation of ventilatory control continues ex utero and is a plastic process. Among premature infants, supplemental O2 mitigates the hypoxemic effects of delayed maturation of ventilatory control, as well as reduces the duration and frequency of periodic breathing events. Nevertheless, prematurity is associated with altered and occasionally aberrant maturation of ventilatory control. Infants born prematurely, with or without a diagnosis of BPD, are more prone to long-lasting effects of dysfunctional ventilatory control. This review addresses normal and abnormal maturation of ventilatory control and suggests how aberrant maturation complicates assigning the diagnosis of BPD. Greater awareness of the interaction between parenchymal lung disease and delayed maturation of ventilatory control is essential to understanding why a given premature infant requires and is benefitting from supplemental O2 at 36 weeks PMA.
Collapse
Affiliation(s)
- Daniel Mammel
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine in Saint Louis, St. Louis, Missouri, USA
| | - James Kemp
- Department of Pediatrics, Allergy and Pulmonary Medicine, Division of Allergy, Immunology, and Pulmonary Medicine, Washington University School of Medicine in Saint Louis, St. Louis, Missouri, USA
| |
Collapse
|
24
|
Schmickl CN, Landry S, Orr JE, Nokes B, Edwards BA, Malhotra A, Owens RL. Effects of acetazolamide on control of breathing in sleep apnea patients: Mechanistic insights using meta-analyses and physiological model simulations. Physiol Rep 2021; 9:e15071. [PMID: 34699135 PMCID: PMC8547551 DOI: 10.14814/phy2.15071] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 11/24/2022] Open
Abstract
Obstructive and central sleep apnea affects ~1 billion people globally and may lead to serious cardiovascular and neurocognitive consequences, but treatment options are limited. High loop gain (ventilatory instability) is a major pathophysiological mechanism underlying both types of sleep apnea and can be lowered pharmacologically with acetazolamide, thereby improving sleep apnea severity. However, individual responses vary and are strongly correlated with the loop gain reduction achieved by acetazolamide. To aid with patient selection for long-term trials and clinical care, our goal was to understand better the factors that determine the change in loop gain following acetazolamide in human subjects with sleep apnea. Thus, we (i) performed several meta-analyses to clarify how acetazolamide affects ventilatory control and loop gain (including its primary components controller/plant gain), and based on these results, we (ii) performed physiological model simulations to assess how different baseline conditions affect the change in loop gain. Our results suggest that (i) acetazolamide primarily causes a left shift of the chemosensitivity line thus lowering plant gain without substantially affecting controller gain; and (ii) higher controller gain, higher paCO2 at eupneic ventilation, and lower CO2 production at baseline result in a more pronounced loop gain reduction with acetazolamide. In summary, the combination of mechanistic meta-analyses with model simulations provides a unified framework of acetazolamide's effects on ventilatory control and revealed physiological predictors of response, which are consistent with empirical observations of acetazolamide's effects in different sleep apnea subgroups. Prospective studies are needed to validate these predictors and assess their value for patient selection.
Collapse
Affiliation(s)
- Christopher N. Schmickl
- Division of Pulmonary, Critical Care and Sleep MedicineUniversity of California, San Diego (UCSD)La JollaCaliforniaUSA
| | - Shane Landry
- Department of PhysiologySleep and Circadian Medicine LaboratorySchool of Biomedical Sciences and Biomedical Discovery InstituteMonash UniversityMelbourneVictoriaAustralia
- Turner Institute for Brain and Mental HealthMonash UniversityMelbourneVictoriaAustralia
| | - Jeremy E. Orr
- Division of Pulmonary, Critical Care and Sleep MedicineUniversity of California, San Diego (UCSD)La JollaCaliforniaUSA
| | - Brandon Nokes
- Division of Pulmonary, Critical Care and Sleep MedicineUniversity of California, San Diego (UCSD)La JollaCaliforniaUSA
| | - Bradley A. Edwards
- Department of PhysiologySleep and Circadian Medicine LaboratorySchool of Biomedical Sciences and Biomedical Discovery InstituteMonash UniversityMelbourneVictoriaAustralia
- Turner Institute for Brain and Mental HealthMonash UniversityMelbourneVictoriaAustralia
| | - Atul Malhotra
- Division of Pulmonary, Critical Care and Sleep MedicineUniversity of California, San Diego (UCSD)La JollaCaliforniaUSA
| | - Robert L. Owens
- Division of Pulmonary, Critical Care and Sleep MedicineUniversity of California, San Diego (UCSD)La JollaCaliforniaUSA
| |
Collapse
|
25
|
Bosi M, Incerti Parenti S, Sanna A, Plazzi G, De Vito A, Alessandri-Bonetti G. Non-continuous positive airway pressure treatment options in obstructive sleep apnoea: A pathophysiological perspective. Sleep Med Rev 2021; 60:101521. [PMID: 34280847 DOI: 10.1016/j.smrv.2021.101521] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/02/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022]
Abstract
The phenotyping of the pathophysiology of obstructive sleep apnoea (OSA) lies at the core of tailored treatments and it is one of the most debated topics in sleep medicine research. Recent sophisticated techniques have broadened the horizon for gaining insight into the variability of the endotypic traits in patients with OSA which account for the heterogeneity in the clinical presentation of the disease and consequently, in the outcome of treatment. However, the implementation of these concepts into clinical practice is still a major challenge for both researchers and clinicians in order to develop tailored therapies targeted to specific endotypic traits that contribute to OSA in each individual patient. This review summarizes available scientific evidence in order to point out the links between endotypic traits (pharyngeal airway collapsibility, upper airway neuromuscular compensation, loop gain and arousal threshold) and the most common non-continuous positive airway pressure (CPAP) treatment options for OSA (mandibular advancement device, upper airway surgery, medication therapy, positional therapy) and to clarify to what extent endotypic traits could help to better predict the success of these therapies. A narrative guide is provided; current design limitations and future avenues of research are discussed, with clinical and research perspectives.
Collapse
Affiliation(s)
- Marcello Bosi
- Centro Disturbi del Sonno, Ospedali Privati Forlì, Forlì, Italy
| | - Serena Incerti Parenti
- Unit of Orthodontics and Sleep Dentistry, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Antonio Sanna
- Azienda USL Toscana Centro, Pneumology and Bronchial Endoscopy Unit, San Giuseppe Hospital, Empoli, FI, Italy
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio-Emilia, Modena, Italy
| | - Andrea De Vito
- Head & Neck Department, ENT Unit, Ravenna Hospital, Romagna Health Service, Italy
| | - Giulio Alessandri-Bonetti
- Unit of Orthodontics and Sleep Dentistry, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.
| |
Collapse
|
26
|
Yu JL, Younes M. Relation between arousability and outcome of upper airway stimulation in the Stimulation for Apnea Reduction (STAR) Trial. J Clin Sleep Med 2021; 17:797-801. [PMID: 33295277 DOI: 10.5664/jcsm.9050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
STUDY OBJECTIVES Upper airway stimulation (UAS) is an innovative surgical treatment for obstructive sleep apnea; however, the treatment failure rate is approximately 22%. Easy arousability may limit the tolerability of stimulation and, by extension, its effectiveness. The odds ratio product (ORP) is a continuous electroencephalographic metric of arousal propensity (range: 0 [deep sleep] to 2.5 [full wakefulness]), and its rate of decline after arousal (ORP-9) is a risk factor for susceptibility to arousal in the presence of frequent arousal stimuli. We hypothesized that individuals with deeper sleep (low average ORP and low ORP-9) are more likely to respond to UAS. METHODS ORP and ORP-9 were calculated from 126 baseline polysomnograms of participants in the STAR Trial. These values were compared between responders and nonresponders. Adjusted linear modeling was performed to determine the association between ORP-derived variables and treatment response. RESULTS No differences were found between responders and nonresponders in unadjusted comparisons of ORP-derived variables. On linear regression modeling, significant correlation was found between non-rapid eye movement ORP and reduction in apnea-hypopnea index (P = .004). CONCLUSIONS No significant difference in ORP was noted between responders and nonresponders to UAS therapy; however, contrary to our initial hypothesis, linear regression modeling trended toward a positive relationship between ORP and UAS response, suggesting that those who have lighter sleep are more likely to respond to therapy; however, these results are only exploratory, and future larger prospective studies are needed to confirm this relationship. CLINICAL TRIAL REGISTRATION Registry: ClinicalTrials.gov; Name: STAR Trial; Identifier: NCT01161420.
Collapse
Affiliation(s)
- Jason L Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Medicine, Division of Sleep Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Magdy Younes
- Sleep Disorders Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
27
|
Bittencourt L, Javaheri S, Servantes DM, Pelissari Kravchychyn AC, Almeida DR, Tufik S. In patients with heart failure, enhanced ventilatory response to exercise is associated with severe obstructive sleep apnea. J Clin Sleep Med 2021; 17:1875-1880. [PMID: 33949944 DOI: 10.5664/jcsm.9396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES Patients with chronic heart failure (CHF) while undergoing exercise test, frequently exhibit elevated ratio of minute ventilation over CO₂ output (VE/VCO₂ slope). One of the factors contributing to this elevated slope is increased chemosensitivity to CO₂, as this slope significantly correlates with the slope of the ventilatory response to CO₂ rebreathing at rest. A previous study in patients with CHF and central sleep apnea (CSA) has shown the highest VE/VCO2 slope during exercise was associated with the most severe CSA. In the current study, we tested the hypothesis that in patients with CHF and obstructive sleep apnea (OSA), the highest VE/VCO₂ slope is also associated with most severe OSA. If correct, it implies that in CHF, augmented instability in the negative feedback system controlling breathing predisposes to both OSA and CSA. METHODS This preliminary study involved 70 patients with stable CHF and spectrum of OSA severity who underwent full night polysomnography, echocardiography, and cardiopulmonary exercise testing. Peak oxygen consumption (VO₂ max) and VE/VCO₂ slope were calculated. RESULTS There were significant positive correlations between apnea hypopnea index (AHI) and VE/VCO₂ slope (r= 0.359; p=0.002). In the regression model, involving relevant variable, age, body mass index, gender, VE/VCO₂ slope, VO₂, and left ventricular ejection fraction, AHI retained significance with VE/VCO₂. CONCLUSIONS In patients with CHF, the VE/VCO₂ slope obtained during exercise correlates significantly to the severity of OSA suggesting that an elevated CO₂ response should increase suspicion for presence of severe OSA, a treatable disorder that is potentially associated with excess mortality. CLINICAL TRIAL REGISTRATION: REGISTRY ClinicalTrials.gov; Title: Comparison Between Exercise Training and CPAP Treatment for Patients With Heart Failure and Sleep Apnea; Identifier: NCT01538069; URL: https://clinicaltrials.gov/ct2/show/record/NCT01538069.
Collapse
Affiliation(s)
- Lia Bittencourt
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | | - Sérgio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Carter SG, Eckert DJ. Effects of hypnotics on obstructive sleep apnea endotypes and severity: Novel insights into pathophysiology and treatment. Sleep Med Rev 2021; 58:101492. [PMID: 33965721 DOI: 10.1016/j.smrv.2021.101492] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023]
Abstract
Impaired upper airway anatomy is the main cause of obstructive sleep apnea (OSA). However, there are other important non-anatomical contributors or "endotypes" including ventilatory control instability, poor pharyngeal dilator muscle responsiveness and waking up too easily to minor respiratory events (low arousal threshold). Recent studies have focused on the potential to target specific OSA causes with novel treatments to reduce OSA severity and improve efficacy with existing non-CPAP therapies which are often suboptimal (e.g., mandibular advancement splints). One novel target is pharmacotherapy with hypnotics to increase the threshold for arousal and reduce OSA severity in the approximately 30% of patients who have a low arousal threshold endotype. This increasing body of work has produced varied and at times unexpected findings which have challenged previous knowledge on the effects of hypnotics on upper airway physiology and breathing during sleep in people with OSA. This review provides a concise overview of the latest research that has investigated the effects of common hypnotics/sedative agents on upper airway physiology and OSA severity and potential implications for OSA pathophysiology, treatment and safety. This includes a summary of the latest knowledge on the effects of hypnotics on OSA endotypes. Priorities for future research are also highlighted.
Collapse
Affiliation(s)
- Sophie G Carter
- Neuroscience Research Australia (NeuRA) Barker Street and the University of New South Wales, Sydney, NSW, Australia
| | - Danny J Eckert
- Flinders Health and Medical Research Institute, Adelaide Institute for Sleep Health, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
29
|
Abbott SBG, Souza GMPR. Chemoreceptor mechanisms regulating CO 2 -induced arousal from sleep. J Physiol 2021; 599:2559-2571. [PMID: 33759184 DOI: 10.1113/jp281305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
Arousal from sleep in response to CO2 is a life-preserving reflex that enhances ventilatory drive and facilitates behavioural adaptations to restore eupnoeic breathing. Recurrent activation of the CO2 -arousal reflex is associated with sleep disruption in obstructive sleep apnoea. In this review we examine the role of chemoreceptors in the carotid bodies, the retrotrapezoid nucleus and serotonergic neurons in the dorsal raphe in the CO2 -arousal reflex. We also provide an overview of the supra-medullary structures that mediate CO2 -induced arousal. We propose a framework for the CO2 -arousal reflex in which the activity of the chemoreceptors converges in the parabrachial nucleus to trigger cortical arousal.
Collapse
Affiliation(s)
- Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 29903, USA
| | - George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 29903, USA
| |
Collapse
|
30
|
Intensity of Respiratory Cortical Arousals Is a Distinct Pathophysiologic Feature and Is Associated with Disease Severity in Obstructive Sleep Apnea Patients. Brain Sci 2021; 11:brainsci11030282. [PMID: 33668974 PMCID: PMC7996607 DOI: 10.3390/brainsci11030282] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 11/23/2022] Open
Abstract
Background: We investigated whether the number, duration and intensity of respiratory arousals (RA) on C3-electroencephalographic (EEG) recordings correlate with polysomnography (PSG)-related disease severity in obstructive sleep apnea (OSA) patients. We also investigated if every patient might have an individual RA microstructure pattern, independent from OSA-severity. Methods: PSG recordings of 20 OSA patients (9 female; age 27–80 years) were analyzed retrospectively. Correlation coefficients were calculated between RA microstructure (duration, EEG-intensity) and RA number and respiratory disturbance index (RDI), oxygen desaturation index (ODI) and arousal index (AI). Intraclass correlations (ICC) for both RA duration and intensity were calculated. Sleep stage-specific and apnea- and hypopnea-specific analyses were also done. The probability distributions of duration and intensity were plotted, interpolated with a kernel which fits the distribution. A Bayesian posterior distribution analysis and pair-wise comparisons of each patient with all other 19 patients were performed. Results: Of the analyzed 2600 RA, strong positive correlations were found between average RA intensity and both RDI and AI. The number of PSG-recorded RA was strongly positively correlated with RDI. Significant correlations between average RA intensity in REM, NREM2 and NREM3 sleep stages and total ODI were identified. No sleep stage-specific correlations of arousal microstructure with age, sex, RDI or AI were identified. Although between-subjects ICC values were <0.25, within-subject ICC values were all >0.7 (all p < 0.05). While apnea-related RA duration did not differ from hypopnea-related RA duration, RA intensity was significantly higher (p = 0.00135) in hypopneas than in apneas. A clear individual pattern of arousal duration for each patient was made distinct. For arousal intensity, a Gaussian distribution was identified in most patients. The Bayesian statistics regarding the arousal microstructure showed significant differences between each pair of patients. Conclusions: Each individual patient with OSA might have an individual pattern of RA intensity and duration indicating a distinct individual pathophysiological feature. Arousal intensity was significantly higher in hypopneic than in apneic events and may be related causally to the diminished (compared to apneas) respiratory distress associated with hypopneas. RA intensity in REM, NREM2 and NREM3 strongly correlated with ODI.
Collapse
|
31
|
Sleep in children and young adults with interstitial and diffuse lung disease. Sleep Med 2021; 80:23-29. [PMID: 33548566 DOI: 10.1016/j.sleep.2021.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Obstructive sleep apnea (OSA) is common in adult patients with interstitial lung disease (ILD). The aim of the study was to evaluate the prevalence of OSA and sleep quality in children and young adults with children's interstitial and diffuse lung disease (chILD). METHODS A polysomnography (PSG) was performed in room air in all consecutive patients followed at a national reference centre between June 2018 and September 2019. Clinical and PSG data were collected. RESULTS The PSG data of 20 patients (12 girls, median age 9 (range 0.5-20) years), were analyzed. Seven (35%) patients had pulmonary alveolar proteinosis (PAP), 5 (25%) a disorder of surfactant metabolism, 3 (15%) diffuse pulmonary hemorrhage, 4 (20%) chILD of unknown etiology and one patient had laryngeal and pulmonary sarcoidosis. The median obstructive apnea-hypnea index (OAHI) was normal at 0 events/hour, with a value > 4 events/hour being observed in 2 young adults: an 18-year-old male with PAP and a vital capacity of 27% predicted who had an OAHI of 10.7 events/hour, and a 20-year-old male with laryngeal and pulmonary sarcoidosis who had positional OSA with an OAHI of 19.5 events/hour. The median total sleep time, sleep efficiency, % of wake after sleep onset, and sleep stages were moderately disturbed. CONCLUSIONS Moderate or severe OSA was not observed in children <18 years with chILD. Mild or moderate OSA was observed in 2 young adults with PAP and sarcoidosis. As opposed to adults, OSA seems uncommon in children with chILD.
Collapse
|
32
|
Seyedsadjadi N, Grant R. The Potential Benefit of Monitoring Oxidative Stress and Inflammation in the Prevention of Non-Communicable Diseases (NCDs). Antioxidants (Basel) 2020; 10:E15. [PMID: 33375428 PMCID: PMC7824370 DOI: 10.3390/antiox10010015] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The significant increase in worldwide morbidity and mortality from non-communicable diseases (NCDs) indicates that the efficacy of existing strategies addressing this crisis may need improvement. Early identification of the metabolic irregularities associated with the disease process may be a key to developing early intervention strategies. Unhealthy lifestyle behaviours are well established drivers of the development of several NCDs, but the impact of such behaviours on health can vary considerably between individuals. How can it be determined if an individual's unique set of lifestyle behaviours is producing disease? Accumulating evidence suggests that lifestyle-associated activation of oxidative and inflammatory processes is primary driver of the cell and tissue damage which underpins the development of NCDs. However, the benefit of monitoring subclinical inflammation and oxidative activity has not yet been established. After reviewing relevant studies in this context, we suggest that quantification of oxidative stress and inflammatory biomarkers during the disease-free prodromal stage of NCD development may have clinical relevance as a timely indicator of the presence of subclinical metabolic changes, in the individual, portending the development of disease. Monitoring markers of oxidative and inflammatory activity may therefore enable earlier and more efficient strategies to both prevent NCD development and/or monitor the effectiveness of treatment.
Collapse
Affiliation(s)
- Neda Seyedsadjadi
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, NSW 2076, Australia;
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ross Grant
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, NSW 2076, Australia;
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Adventist Hospital Clinical School, University of Sydney, Sydney, NSW 2076, Australia
| |
Collapse
|
33
|
Messineo L, Eckert DJ, Lim R, Chiang A, Azarbarzin A, Carter SG, Carberry JC. Zolpidem increases sleep efficiency and the respiratory arousal threshold without changing sleep apnoea severity and pharyngeal muscle activity. J Physiol 2020; 598:4681-4692. [PMID: 32864734 DOI: 10.1113/jp280173] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022] Open
Abstract
KEY POINTS A decreased respiratory arousal threshold is one of the main contributors to obstructive sleep apnoea (OSA) pathogenesis. Several recent studies have sought to find a drug capable of increasing the respiratory arousal threshold without impairing pharyngeal muscle activity to reduce OSA severity, with variable success. Here we show that zolpidem increases the respiratory arousal threshold by ∼15%, an effect size which was insufficient to systematically decrease OSA severity as measured by the apnoea-hypopnoea index. Unlike recent physiological findings that showed paradoxical increases in pharyngeal muscle responsiveness during transient manipulations of airway pressure, zolpidem did not alter pharyngeal muscle responsiveness during natural sleep. It did, however, increase sleep efficiency without changing apnoea length, oxygen desaturation, next-day perceived sleepiness and alertness. These novel findings indicate that zolpidem was well tolerated and effective in promoting sleep in people with OSA, which may be therapeutically useful for people with OSA and comorbid insomnia. ABSTRACT A recent physiology study performed using continuous positive airway pressure (CPAP) manipulations indicated that the hypnotic zolpidem increases the arousal threshold and genioglossus responsiveness in people with and without obstructive sleep apnoea (OSA). Thus, zolpidem may stabilise breathing and reduce OSA severity without CPAP. Accordingly, we sought to determine the effects of zolpidem on OSA severity, upper airway physiology and next-day sleepiness and alertness. Nineteen people with OSA with low-to-moderate arousal threshold received 10 mg zolpidem or placebo according to a double-blind, randomised, cross-over design. Participants completed two overnight in-laboratory polysomnographies (1-week washout), with an epiglottic catheter, intramuscular genioglossus electromyography, nasal mask and pneumotachograph to measure OSA severity, arousal threshold and upper airway muscle responsiveness. Next-morning sleepiness and alertness were also assessed. Zolpidem did not change the apnoea-hypopnoea index versus placebo (40.6 ± 12.3 vs. 40.3 ± 16.4 events/h (means ± SD), p = 0.938) or nadir oxyhaemoglobin saturation (79.6 ± 6.6 vs. 79.7 ± 7.4%, p = 0.932), but was well tolerated. Zolpidem increased sleep efficiency by 9 ± 14% (83 ± 11 vs. 73 ± 17%, p = 0.010). Arousal threshold increased by 15 ± 5% with zolpidem throughout all sleep stages (p = 0.010), whereas genioglossus muscle responsiveness did not change. Next-morning sleepiness and alertness were not different between nights. In summary, a single night of 10 mg zolpidem is well tolerated and does not cause next-day impairment in alertness or sleepiness, or overnight hypoxaemia in OSA. However, despite increases in arousal threshold without any change in pharyngeal muscle responsiveness, zolpidem does not alter OSA severity. It does, however, increase sleep efficiency by ∼10%, which may be beneficial in people with OSA and insomnia.
Collapse
Affiliation(s)
- Ludovico Messineo
- Neuroscience Research Australia (NeuRA) and the University of New South Wales, Randwick, Sydney, New South Wales, Australia.,Adelaide Institute for Sleep Health (AISH), Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Danny J Eckert
- Neuroscience Research Australia (NeuRA) and the University of New South Wales, Randwick, Sydney, New South Wales, Australia.,Adelaide Institute for Sleep Health (AISH), Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Richard Lim
- Neuroscience Research Australia (NeuRA) and the University of New South Wales, Randwick, Sydney, New South Wales, Australia.,Adelaide Institute for Sleep Health (AISH), Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Alan Chiang
- Neuroscience Research Australia (NeuRA) and the University of New South Wales, Randwick, Sydney, New South Wales, Australia
| | - Ali Azarbarzin
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham & Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Sophie G Carter
- Neuroscience Research Australia (NeuRA) and the University of New South Wales, Randwick, Sydney, New South Wales, Australia
| | - Jayne C Carberry
- Adelaide Institute for Sleep Health (AISH), Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, Adelaide, South Australia, Australia
| |
Collapse
|
34
|
Novel method for evaluating the upper airway resistance using the ratio of neural respiratory drive to flow in OSA. Sleep Med 2020; 73:162-169. [PMID: 32836084 DOI: 10.1016/j.sleep.2020.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/15/2020] [Accepted: 05/04/2020] [Indexed: 11/21/2022]
Abstract
STUDY OBJECTIVES Sleep is associated with a reduction in ventilation and an increase in upper airway resistance (UAR) in patients with obstructive sleep apnea (OSA). However, there is no consensus on the standard for assessment of UAR and therefore it is important to develop a method to reliably assess UAR in patients with OSA. The purpose of the present study is to determine whether the ratio of neural respiratory drive (NRD) to flow can be used to assess changes in UAR in OSA during sleep. METHODS A total of 24 patients (21 men) with OSA and 10 normal subjects (6 males) were studied. The UAR was assessed by the ratio of NRD to flow, which measured by esophageal pressure (Poes), diaphragm electromyography (EMGdi) and superficial diaphragm electromyography (SEMGdi) in various stages including wakefulness, N2 sleep, N2 sleep with snoring, hypopneas, the in the "preapnea" states in OSA versus wakefulness, sleeponset, N2 sleep, N3 sleep in normal subjects. All subjects underwent overnight full polysomnography using standard techniques. RESULTS Our study indicate that UAR was progressively higher from wakefulness to N2 sleep, N2 sleep with snoring, hypopneas, and the in the "preapnea" states in patients with OSA and had obvious difference in statistical significance (p < 0.05). We found NRD in hypopneas was lower than that in N2-snoring while the UAR in hypopneas was higher than that in N2-snoring.The UAR and NRD increased consecutively from wakefulness to N2 sleep and N3 sleep in normal subjects while the ventilation was reduced consecutively in NREM sleep. CONCLUSIONS It is feasible to use the ratio of neural respiratory drive to flow to assess UAR in patients with OSA during sleep.
Collapse
|
35
|
Hajipour F, Giannouli E, Moussavi Z. Acoustic characterization of upper airway variations from wakefulness to sleep with respect to obstructive sleep apnea. Med Biol Eng Comput 2020; 58:2375-2385. [PMID: 32719933 DOI: 10.1007/s11517-020-02234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/18/2020] [Indexed: 11/28/2022]
Abstract
The upper airway (UA) is in general thicker and narrower in obstructive sleep apnea (OSA) population than in normal. Additionally, the UA changes during sleep are much more in the OSA population. The UA changes can alter the tracheal breathing sound (TBS) characteristics. Therefore, we hypothesize the TBS changes from wakefulness to sleep are significantly correlated to the OSA severity; thus, they may represent the physiological characteristics of the UA. To investigate our hypothesis, we recorded TBS of 18 mild-OSA (AHI < 15) and 22 moderate/severe-OSA (AHI > 15) during daytime (wakefulness) and then during sleep. The power spectral density (PSD) of the TBS was calculated and compared within the two OSA groups and between wakefulness and sleep. The average PSD of the mild-OSA group in the low-frequency range (< 280 Hz) was found to be decreased significantly from wakefulness to sleep (p-value < 10-4). On the other hand, the average PSD of the moderate/severe-OSA group in the high-frequency range (> 900 Hz) increased marginally significantly from wakefulness to sleep (p-value < 9 × 10-3). Our findings show that the changes in spectral characteristics of TBS from wakefulness to sleep correlate with the severity of OSA and can represent physiological variations of UA. Therefore, TBS analysis has the potentials to assist with diagnosis and clinical management decisions in OSA patients based on their OSA severity stratification; thus, obviating the need for more expensive and time-consuming sleep studies. Graphical abstract Tracheal breathing sound (TBS) changes from wakefulness to sleep and their correlation with Obstructive sleep apnea (OSA) were investigated in individuals with different levels of OSA severity. We also assessed the classification power of the spectral characteristics of these TBS for screening purposes. Consequently, we analyzed and compared spectral characteristics of TBS recorded during wakefulness (a combination of mouth and nasal TBS) to those during sleep for mild and moderate/severe OSA groups.
Collapse
Affiliation(s)
- Farahnaz Hajipour
- Biomedical Engineering Program, University of Manitoba, Winnipeg, MB, Canada.
| | - Eleni Giannouli
- Department of Internal Medicine, Section of Respirology, University of Manitoba, Winnipeg, MB, Canada
| | - Zahra Moussavi
- Biomedical Engineering Program, University of Manitoba, Winnipeg, MB, Canada.,Department of Electrical & Computer Engineering, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
36
|
Bosi M, De Vito A, Eckert D, Steier J, Kotecha B, Vicini C, Poletti V. Qualitative Phenotyping of Obstructive Sleep Apnea and Its Clinical Usefulness for the Sleep Specialist. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17062058. [PMID: 32244892 PMCID: PMC7143772 DOI: 10.3390/ijerph17062058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The anatomical collapsibility of the upper airway, neuromuscular tone and function, sleep-wake and ventilatory control instability, and the arousal threshold all interact and contribute to certain pathophysiologic features that characterize different types of obstructive sleep apnea (OSA). A model of qualitative phenotypizationallowsus to characterize the different pathophysiological traits in OSA patients. METHODS A narrative review was performed, to analyze the available literature evidence, with the purpose of generating a model of qualitative phenotypization to characterize pathophysiological traits in patients with OSA. RESULTS 96 out of 3829 abstracts were selected for full-text review. Qualitative phenotyping model of OSA:Data concerning the OSA qualitative pathophysiological traits' measurement can be deducted by means of clinical PSG, grade of OSA severity, and therapeutic level of Continuous Positive Airway Pressure (CPAP) and are reported in the text. This approach would allow qualitative phenotyping with widely accessible methodology in a routine clinical scenario and is of particular interest for the sleep specialist, surgical treatment decision-making, and customized OSA multimodality treatment.
Collapse
Affiliation(s)
- Marcello Bosi
- Pulmonary Operative Unit, Department of Thoracic Diseases, Morgagni-Pierantoni Hospital, Romagna Health Company, 47121 Forlì, Italy;
| | - Andrea De Vito
- Head & Neck Department, Ear Nose Throat (ENT) Unit, Santa Maria delle Croci Hospital, Romagna Health Company, 48121 Ravenna, Italy
- Correspondence:
| | - Danny Eckert
- Adelaide Institute for Sleep Health, A. Flinders University. Centre of Research Excellence, Adelaide 5049, Australia;
| | - Joerg Steier
- Lane Fox Unit/Sleep Disorders Centre, Guy’s & St Thomas’ National Health Service (NHS) Foundation Trust, London SE19RT, UK;
- Centre of Human & Aerospace Physiological Sciences, Faculty of Life Sciences and Medicine, King’s College, London WC2R 2LS, UK
| | - Bhik Kotecha
- Nuffield Health Brentwood, Shenfield Road, Brentwood, Essex CM15 8EH, UK;
| | - Claudio Vicini
- Head & Neck Department, ENT & Oral Surgery Unit, Morgagni-Pierantoni/Infermi Hospital, Romagna Health Company, 47121 Forlì, Italy;
- Ear Nose and Throat (ENT) Clinic, Special Surgery Department, Arcispedale S. Anna Hospital, Ferrara University, 44124 Ferrara, Italy
- Department of Otolaryngology Head and Neck surgery, S.Orsola-Malpighi University Hospital, 40138 Bologna, Italy
| | - Venerino Poletti
- Pulmonary Operative Unit, Department of Thoracic Diseases, Morgagni-Pierantoni Hospital, Romagna Health Company, 47121 Forlì, Italy;
- Department of Respiratory Diseases & Allergy, Aarhus University Hospital, 8200 Aarhus, Denmark
| |
Collapse
|
37
|
Abstract
The pathogenesis of obstructive sleep apnea (OSA) has undergone major revisions since it was first described in 1978. This article focuses on new advances. Although it is still necessary to have a collapsible airway to develop OSA, it is primarily the response to obstruction that determines OSA severity and clinical presentation. Identifying factors that determine whether the response is stable or unstable through phenotyping is a promising approach that may lead to pharmacologic therapy in selected patients.
Collapse
Affiliation(s)
- Magdy Younes
- Department of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
38
|
Saha S, Kabir M, Montazeri Ghahjaverestan N, Hafezi M, Gavrilovic B, Zhu K, Alshaer H, Yadollahi A. Portable diagnosis of sleep apnea with the validation of individual event detection. Sleep Med 2020; 69:51-57. [PMID: 32045854 DOI: 10.1016/j.sleep.2019.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/21/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
Abstract
STUDY OBJECTIVE To develop an algorithm for improving apnea hypopnea index (AHI) estimation which includes event by event validation and event duration estimation. The algorithm uses breathing sounds, respiratory related movements and blood oxygen saturation (SaO2). METHODS Adults with suspected sleep apnea underwent overnight polysomnography (PSG) at Toronto Rehabilitations Institute. Simultaneously with PSG, breathing sounds and respiratory related movements were recorded over the suprasternal notch using the Patch. The Patch had a microphone and an accelerometer to record respiratory sounds and movement, respectively. First, we calculated the amount of drops in SaO2 from pulse oximeter. Subsequently, energy of breaths and accelerometer were extracted. Features were normalized, weighted, summed and passed through a threshold to estimate PatchAHI. PatchAHI was compared to the AHI obtained from PSG (PSGAHI). Furthermore, performance of event detection was evaluated using F1-score. Moreover, event duration difference between estimated and PSG-based events was compared. RESULTS Data from 69 subjects were investigated. PatchAHI had high correlation with PSGAHI (r2 = 0.88). Considering a diagnostic AHI cut-off of ≥15, sensitivity and specificity were 91.42 ± 11.92% and 89.29 ± 7.62%, respectively. F1-score for individual event detection increased from 0.22 ± 0.10 for AHI≤5 to 0.72 ± 0.09 for AHI >30. Moreover, event duration difference between estimated events and PSG-based events was 5.33 ± 8.17 sec. CONCLUSION Our proposed algorithm had high accuracy in estimating individual respiratory events during sleep. The algorithm can increase reliability of acoustic methods for diagnosis of sleep apnea at home.
Collapse
Affiliation(s)
- Shumit Saha
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada; KITE-Toronto Rehabilitation Institute, University Health Network, Canada
| | - Muammar Kabir
- KITE-Toronto Rehabilitation Institute, University Health Network, Canada
| | - Nasim Montazeri Ghahjaverestan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada; KITE-Toronto Rehabilitation Institute, University Health Network, Canada
| | - Maziar Hafezi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada; KITE-Toronto Rehabilitation Institute, University Health Network, Canada
| | - Bojan Gavrilovic
- KITE-Toronto Rehabilitation Institute, University Health Network, Canada
| | - Kaiyin Zhu
- KITE-Toronto Rehabilitation Institute, University Health Network, Canada
| | - Hisham Alshaer
- KITE-Toronto Rehabilitation Institute, University Health Network, Canada; BresoTEC Inc, Toronto, ON, Canada
| | - Azadeh Yadollahi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada; KITE-Toronto Rehabilitation Institute, University Health Network, Canada.
| |
Collapse
|
39
|
Chen H, Eckert DJ, van der Stelt PF, Guo J, Ge S, Emami E, Almeida FR, Huynh NT. Phenotypes of responders to mandibular advancement device therapy in obstructive sleep apnea patients: A systematic review and meta-analysis. Sleep Med Rev 2020; 49:101229. [DOI: 10.1016/j.smrv.2019.101229] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
|
40
|
Garcia GJM, Woodson BT. The collapsing anatomical structure is not always the primary site of flow limitation in obstructive sleep apnea. J Clin Sleep Med 2020; 16:345-346. [PMID: 32003741 DOI: 10.5664/jcsm.8270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Guilherme J M Garcia
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin
| | - B Tucker Woodson
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
41
|
Younes M, Giannouli E. Mechanism of excessive wake time when associated with obstructive sleep apnea or periodic limb movements. J Clin Sleep Med 2020; 16:389-399. [PMID: 31992415 DOI: 10.5664/jcsm.8214] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
STUDY OBJECTIVES It is uncertain whether obstructive apnea (OSA) or periodic limb movements (PLMs) contribute to excessive wake time (EWT) when EWT and these disorders coexist. We hypothesized that such EWT is an independent disorder related to central regulation of sleep depth. Accordingly, we compared sleep depth in patients with EWT and OSA/PLMs (EWT+P) with patients with EWT and no OSA/PLMs (EWT-NP) and patients with a normal wake time. METHODS A total of 267 participants were divided into five groups: (1) EWT+P: n = 100 (wake time > 20% total recording time; TRT) with OSA (apnea-hypopnea index 5-110 events/h) and/or PLMs (PLM index 10-151 events/h); (2) EWT-NP: n = 49 (wake time > 20%TRT), no associated pathology; (3) normal wake time (NWT)+P: n = 54 (wake time < 20%TRT, with OSA/PLMs); (4) NWT-NP: n = 26; (5) Healthy participants: n = 38 (no sleep complaints, NWT and no OSA/PLMs). Sleep depth was evaluated by the odds ratio product (ORP; 0 = deep sleep, 2.5 = fully alert). We also measured ORP in the 9 seconds immediately following arousals (ORP-9) to distinguish between peripheral and central mechanisms of light sleep. RESULTS ORP during sleep was higher (lighter sleep) in both EWT groups than in the three NWT groups (P < 1E-11) with no difference between those with and those without OSA/PLMs. ORP-9 was also significantly higher in the EWT groups than in the NWT groups (P < 1E-19), also with no difference between those with and without OSA/PLMs, indicating that the lighter sleep was of central origin. There were highly significant correlations between wake time and ORP-9 across all groups (P < 1E-35). CONCLUSIONS EWT associated with OSA/PLMs is independent of OSA/PLMs and related to abnormal central regulation of sleep depth.
Collapse
Affiliation(s)
- Magdy Younes
- Sleep Disorders Centre, Misericordia Health Centre, University of Manitoba, Winnipeg, Canada
| | - Eleni Giannouli
- Sleep Disorders Centre, Misericordia Health Centre, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
42
|
Souza GMPR, Stornetta RL, Stornetta DS, Abbott SBG, Guyenet PG. Contribution of the Retrotrapezoid Nucleus and Carotid Bodies to Hypercapnia- and Hypoxia-induced Arousal from Sleep. J Neurosci 2019; 39:9725-9737. [PMID: 31641048 PMCID: PMC6891059 DOI: 10.1523/jneurosci.1268-19.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/03/2019] [Accepted: 10/16/2019] [Indexed: 11/21/2022] Open
Abstract
The combination of hypoxia and hypercapnia during sleep produces arousal, which helps restore breathing and normalizes blood gases. Hypercapnia and hypoxia produce arousal in mammals by activating central (pH-sensitive) and peripheral (primarily O2-sensitive) chemoreceptors. The relevant chemoreceptors and the neuronal circuits responsible for arousal are largely unknown. Here we examined the contribution of two lower brainstem nuclei that could be implicated in CO2 and hypoxia-induced arousal: the retrotrapezoid nucleus (RTN), a CO2-responsive nucleus, which mediates the central respiratory chemoreflex; and the C1 neurons, which are hypoxia activated and produce arousal and blood pressure increases when directly stimulated. Additionally, we assessed the contribution of the carotid bodies (CBs), the main peripheral chemoreceptors in mammals, to hypoxia and CO2-induced arousal. In unanesthetized male rats, we tested whether ablation of the RTN, CBs, or C1 neurons affects arousal from sleep and respiratory responses to hypercapnia or hypoxia. The sleep-wake pattern was monitored by EEG and neck EMG recordings and breathing by whole-body plethysmography. The latency to arousal in response to hypoxia or hypercapnia was determined along with changes in ventilation coincident with the arousal. RTN lesions impaired CO2-induced arousal but had no effect on hypoxia-induced arousal. CB ablation impaired arousal to hypoxia and, to a lesser extent, hypercapnia. C1 neuron ablation had no effect on arousal. Thus, the RTN contributes to CO2-induced arousal, whereas the CBs contribute to both hypoxia and CO2-induced arousal. Asphyxia-induced arousal likely requires the combined activation of RTN, CBs and other central chemoreceptors.SIGNIFICANCE STATEMENT Hypercapnia and hypoxia during sleep elicit arousal, which facilitates airway clearing in the case of obstruction and reinstates normal breathing in the case of hypoventilation or apnea. Arousal can also be detrimental to health by interrupting sleep. We sought to clarify how CO2 and hypoxia cause arousal. We show that the retrotrapezoid nucleus, a brainstem nucleus that mediates the effect of brain acidification on breathing, also contributes to arousal elicited by CO2 but not hypoxia. We also show that the carotid bodies contribute predominantly to hypoxia-induced arousal. Lesions of the retrotrapezoid nucleus or carotid bodies attenuate, but do not eliminate, arousal to CO2 or hypoxia; therefore, we conclude that these structures are not the sole trigger of CO2 or hypoxia-induced arousal.
Collapse
Affiliation(s)
- George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Daniel S Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
43
|
Kim LJ, Freire C, Fleury Curado T, Jun JC, Polotsky VY. The Role of Animal Models in Developing Pharmacotherapy for Obstructive Sleep Apnea. J Clin Med 2019; 8:jcm8122049. [PMID: 31766589 PMCID: PMC6947279 DOI: 10.3390/jcm8122049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a highly prevalent disease characterized by recurrent closure of the upper airway during sleep. It has a complex pathophysiology involving four main phenotypes. An abnormal upper airway anatomy is the key factor that predisposes to sleep-related collapse of the pharynx, but it may not be sufficient for OSA development. Non-anatomical traits, including (1) a compromised neuromuscular response of the upper airway to obstruction, (2) an unstable respiratory control (high loop gain), and (3) a low arousal threshold, predict the development of OSA in association with anatomical abnormalities. Current therapies for OSA, such as continuous positive airway pressure (CPAP) and oral appliances, have poor adherence or variable efficacy among patients. The search for novel therapeutic approaches for OSA, including pharmacological agents, has been pursued over the past years. New insights into OSA pharmacotherapy have been provided by preclinical studies, which highlight the importance of appropriate use of animal models of OSA, their applicability, and limitations. In the present review, we discuss potential pharmacological targets for OSA discovered using animal models.
Collapse
|
44
|
Su PL, Lin WK, Lin CY, Lin SH. Alpha-1 Adrenergic-Antagonist Use Increases the Risk of Sleep Apnea: A Nationwide Population-Based Cohort Study. J Clin Sleep Med 2019; 15:1571-1579. [PMID: 31739846 PMCID: PMC6853405 DOI: 10.5664/jcsm.8014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022]
Abstract
STUDY OBJECTIVES Decreased upper-airway muscle responsiveness is one of the major phenotypes of obstructive sleep apnea. Use of α1-adrenergic antagonists is correlated with decreased muscle responsiveness in animal studies, but this association has not yet been demonstrated in humans. This study examined whether use of α1-adrenergic antagonists is an independent risk factor for sleep apnea in humans. METHODS Data for this retrospective cohort study were obtained from the National Health Insurance Research Database from Taiwan. Between 2000 and 2012, 25,466 patients with hypertension and 18,930 patients without hypertension were enrolled. These groups were divided into α1-adrenergic antagonist users and nonusers, matched by age, sex, and index year. Individuals were monitored for diagnosis of sleep apnea until 2013. RESULTS After adjusting for propensity score and potential confounders, including age, geographic location, enrollee category, income, urbanization level, comorbidities, and medication, the adjusted hazard ratios (HRs) for development of sleep apnea with α1-adrenergic antagonist use were 2.38 (95% confidence interval [CI] 1.82-3.10) and 2.82 (95% CI 1.79-4.44) in the hypertension and nonhypertension groups, respectively. Similarly, the adjusted HRs for development of severe sleep apnea with α1-adrenergic antagonist use were 2.74 (95% CI 1.78-4.22) and 4.23 (95% CI 1.57-11.40) in hypertension and nonhypertension patient groups, respectively. The interaction between α1-adrenergic-antagonist user and patients with hypertension was tested using multivariable Cox regression. The results showed that there are positive additive interactions for developing sleep apnea and severe sleep apnea, respectively. CONCLUSIONS Our study suggests that patients with hypertension using α1-adrenergic antagonists have a higher risk of sleep apnea. Routine sleep apnea screening would be beneficial for patients with hypertension who take α1-adrenergic antagonists.
Collapse
Affiliation(s)
- Po-Lan Su
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Sleep Medicine Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Kuei Lin
- Sleep Medicine Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Yu Lin
- Sleep Medicine Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Contributed equally
| | - Sheng-Hsiang Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Biostatistics Consulting Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Contributed equally
| |
Collapse
|
45
|
Targeting Endotypic Traits with Medications for the Pharmacological Treatment of Obstructive Sleep Apnea. A Review of the Current Literature. J Clin Med 2019; 8:jcm8111846. [PMID: 31684047 PMCID: PMC6912255 DOI: 10.3390/jcm8111846] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/28/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a highly prevalent condition with few therapeutic options. To date there is no approved pharmacotherapy for this disorder, but several attempts have been made in the past and are currently ongoing to find one. The recent identification of multiple endotypes underlying this disorder has oriented the pharmacological research towards tailored therapies targeting specific pathophysiological traits that contribute differently to cause OSA in each patient. In this review we retrospectively analyze the literature on OSA pharmacotherapy dividing the medications tested on the basis of the four main endotypes: anatomy, upper airway muscle activity, arousal threshold and ventilatory instability (loop gain). We show how recently introduced drugs for weight loss that modify upper airway anatomy may play an important role in the management of OSA in the near future, and promising results have been obtained with drugs that increase upper airway muscle activity during sleep and reduce loop gain. The lack of a medication that can effectively increase the arousal threshold makes this strategy less encouraging, although recent studies have shown that the use of certain sedatives do not worsen OSA severity and could actually improve patients' sleep quality.
Collapse
|
46
|
Martinot JB, Le-Dong NN, Cuthbert V, Denison S, Borel JC, Gozal D, Pépin JL. Respiratory Mandibular Movement Signals Reliably Identify Obstructive Hypopnea Events During Sleep. Front Neurol 2019; 10:828. [PMID: 31456731 PMCID: PMC6701450 DOI: 10.3389/fneur.2019.00828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/18/2019] [Indexed: 12/04/2022] Open
Abstract
Context: Accurate discrimination between obstructive and central hypopneas requires quantitative assessments of respiratory effort by esophageal pressure (OeP) measurements, which preclude widespread implementation in sleep medicine practice. Mandibular Movement (MM) signals are closely associated with diaphragmatic effort during sleep. Objective: We aimed at reliably detecting obstructive off central hypopneas events using MM statistical characteristics. Methods: A bio-signal learning approach was implemented whereby raw MM fragments corresponding to normal breathing (NPB; n = 501), central (n = 263), and obstructive hypopneas (n = 1861) were collected from 28 consecutive patients (mean age = 54 years, mean AHI = 34.7 n/h) undergoing in-lab polysomnography (PSG) coupled with a MM magnetometer, and OeP recordings. Twenty three input features were extracted from raw data fragments to explore distinctive changes in MM signals. A Random Forest model was built upon those input features to classify the central and obstructive hypopnea events. External validation and interpretive analysis were performed to evaluate the model's performance and the contribution of each feature to the model's output. Results: Obstructive hypopneas were characterized by a longer duration (21.9 vs. 17.8 s, p < 10−6), more extreme low values (p < 10−6), a more negative trend reflecting mouth opening amplitude, wider variation, and the asymmetrical distribution of MM amplitude. External validation showed a reliable performance of the MM features-based classification rule (Kappa coefficient = 0.879 and a balanced accuracy of 0.872). The interpretive analysis revealed that event duration, lower percentiles, central tendency, and the trend of MM amplitude were the most important determinants of events. Conclusions: MM signals can be used as surrogate markers of OeP to differentiate obstructive from central hypopneas during sleep.
Collapse
Affiliation(s)
- Jean-Benoit Martinot
- Sleep Laboratory, CHU UCL Namur Site Sainte-Elisabeth, Namur, Belgium.,Institute of Experimental and Clinical Research, UCL Bruxelles Woluwe, Brussels, Belgium
| | | | | | | | - Jean C Borel
- HP2 INSERM U1042, Université Grenoble Alpes, Grenoble, France
| | - David Gozal
- Department of Child Health and Child Health Research Institute, University of Missouri, Columbia, MO, United States
| | - Jean L Pépin
- HP2 INSERM U1042, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
47
|
Kim JS, Azarbarzin A, Wang R, Djonlagic IE, Punjabi NM, Zee PC, Koo BB, Soliman EZ, Younes M, Redline S. Association of novel measures of sleep disturbances with blood pressure: the Multi-Ethnic Study of Atherosclerosis. Thorax 2019; 75:57-63. [PMID: 31439722 DOI: 10.1136/thoraxjnl-2019-213533] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Mechanisms underlying blood pressure (BP) changes in obstructive sleep apnoea (OSA) are incompletely understood. We assessed the associations between BP and selected polysomnography (PSG) traits: sleep depth, airflow limitation measurements and OSA-specific hypoxic burden. METHODS This cross-sectional analysis included 2055 participants from the Multi-Ethnic Study of Atherosclerosis who underwent PSG and BP measurements in 2010-2013. Sleep depth was assessed using the 'OR product', a continuous measure of arousability. Airflow limitation was assessed by duty cycle (Ti/Tt) and % of breaths with flow limitation, and hypoxia by 'hypoxic burden'. Primary outcomes were medication-adjusted systolic BP (SBP) and diastolic BP (DBP). We used generalised linear models adjusted for age, sex, race/ethnicity, smoking, education, body mass index, alcohol use, periodic limb movements and alternative physiological disturbances. RESULTS The sample had a mean age of 68.4 years and apnoea-hypopnoea index of 14.8 events/hour. Sleep depth was not significantly associated with BP. Every 1 SD increment in log-transformed non-rapid eye movement duty cycle was associated with 0.9% decrease in SBP (95% CI: 0.1% to 1.6%), even after adjusting for sleep depth and hypoxic burden. Every 1 SD increment in log-transformed hypoxic burden was associated with a 1.1% increase in SBP (95% CI: 0.1% to 2.1%) and 1.9% increase in DBP (95% CI: 1.0% to 2.8%) among those not using hypertension medications. CONCLUSIONS Higher duty cycle was associated with lower SBP overall and hypoxic burden with higher SBP and DBP among non-BP medication users. These findings suggest changes in both respiratory effort and oxygenation during sleep influence BP.
Collapse
Affiliation(s)
- John S Kim
- Department of Medicine, Columbia University Medical Center, New York City, New York, USA
| | - Ali Azarbarzin
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Rui Wang
- Department of Biostatistics, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, United States.,Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, Massachusetts, United States
| | - Ina E Djonlagic
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Naresh M Punjabi
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Phyllis C Zee
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brian B Koo
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Elsayed Z Soliman
- Department of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Magdy Younes
- Department of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Susan Redline
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| |
Collapse
|
48
|
Non-Contact Monitoring of Breathing Pattern and Respiratory Rate via RGB Signal Measurement. SENSORS 2019; 19:s19122758. [PMID: 31248200 PMCID: PMC6631485 DOI: 10.3390/s19122758] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/10/2019] [Accepted: 06/18/2019] [Indexed: 12/14/2022]
Abstract
Among all the vital signs, respiratory rate remains the least measured in several scenarios, mainly due to the intrusiveness of the sensors usually adopted. For this reason, all contactless monitoring systems are gaining increasing attention in this field. In this paper, we present a measuring system for contactless measurement of the respiratory pattern and the extraction of breath-by-breath respiratory rate. The system consists of a laptop’s built-in RGB camera and an algorithm for post-processing of acquired video data. From the recording of the chest movements of a subject, the analysis of the pixel intensity changes yields a waveform indicating respiratory pattern. The proposed system has been tested on 12 volunteers, both males and females seated in front of the webcam, wearing both slim-fit and loose-fit t-shirts. The pressure-drop signal recorded at the level of nostrils with a head-mounted wearable device was used as reference respiratory pattern. The two methods have been compared in terms of mean of absolute error, standard error, and percentage error. Additionally, a Bland–Altman plot was used to investigate the bias between methods. Results show the ability of the system to record accurate values of respiratory rate, with both slim-fit and loose-fit clothing. The measuring system shows better performance on females. Bland–Altman analysis showed a bias of −0.01 breaths·min−1, with respiratory rate values between 10 and 43 breaths·min−1. Promising performance has been found in the preliminary tests simulating tachypnea.
Collapse
|
49
|
Holley AB. OSA, Exercise, and the Military. J Clin Sleep Med 2019; 15:819-820. [PMID: 31138394 DOI: 10.5664/jcsm.7824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 11/13/2022]
Affiliation(s)
- Aaron B Holley
- Pulmonary/Sleep and Critical Care Medicine Service, Walter Reed National Military Medical Center, Bethesda, Maryland
| |
Collapse
|
50
|
Obstructive sleep apnoea in adults: peri-operative considerations: A narrative review. Eur J Anaesthesiol 2019; 35:245-255. [PMID: 29300271 DOI: 10.1097/eja.0000000000000765] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
: Obstructive sleep apnoea (OSA) is a common breathing disorder of sleep with a prevalence increasing in parallel with the worldwide rise in obesity. Alterations in sleep duration and architecture, hypersomnolence, abnormal gas exchange and also associated comorbidities may all feature in affected patients.The peri-operative period poses a special challenge for surgical patients with OSA who are often undiagnosed, and are at an increased risk for complications including pulmonary and cardiovascular, during that time. In order to ensure the best peri-operative management, anaesthetists caring for these patients should have a thorough understanding of the disorder, and be aware of the individual's peri-operative risk constellation, which depends on the severity and phenotype of OSA, the invasiveness of the surgical procedure, anaesthesia and also the requirement for postoperative opioids.The objective of this review is to educate clinicians in the epidemiology, pathogenesis and diagnosis of OSA in adults and also to highlight specific tasks in the preoperative assessment, namely to select a suitable intra-operative anaesthesia regimen, and manage the extent and duration of postoperative care to facilitate the best peri-operative outcome.
Collapse
|