1
|
Schneider AC, Itani O, Bucher D, Nadim F. Neuromodulation reduces interindividual variability of neuronal output. eNeuro 2022; 9:ENEURO.0166-22.2022. [PMID: 35853725 PMCID: PMC9361792 DOI: 10.1523/eneuro.0166-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
In similar states, neural circuits produce similar outputs across individuals despite substantial interindividual variability in neuronal ionic conductances and synapses. Circuit states are largely shaped by neuromodulators that tune ionic conductances. It is therefore possible that, in addition to producing flexible circuit output, neuromodulators also contribute to output similarity despite varying ion channel expression. We studied whether neuromodulation at saturating concentrations can increase the output similarity of a single identified neuron across individual animals. Using the LP neuron of the crab stomatogastric ganglion (STG), we compared the variability of f-I curves and rebound properties in the presence of neuropeptides. The two neuropeptides we used converge to activate the same target current, which increases neuronal excitability. Output variability was lower in the presence of the neuropeptides, regardless of whether the neuropeptides significantly changed the mean of the corresponding parameter or not. However, the addition of the second neuropeptide did not add further to the reduction of variability. With a family of computational LP-like models, we explored how increased excitability and target variability contribute to output similarity and found two mechanisms: Saturation of the responses and a differential increase in baseline activity. Saturation alone can reduce the interindividual variability only if the population shares a similar ceiling for the responses. In contrast, reduction of variability due to the increase in baseline activity is independent of ceiling effects.Significance StatementThe activity of single neurons and neural circuits can be very similar across individuals even though the ionic currents underlying activity are variable. The mechanisms that compensate for the underlying variability and promote output similarity are poorly understood but may involve neuromodulation. Using an identified neuron, we show that neuropeptide modulation of excitability can reduce interindividual variability of response properties at a single-neuron level in two ways. First, the neuropeptide increases baseline excitability in a differential manner, resulting in similar response thresholds. Second, the neuropeptide increases excitability towards a shared saturation level, promoting similar maximal firing rates across individuals. Such tuning of neuronal excitability could be an important mechanism compensating for interindividual variability of ion channel expression.
Collapse
Affiliation(s)
- Anna C Schneider
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, NJ 07102
| | - Omar Itani
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, NJ 07102
| | - Dirk Bucher
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, NJ 07102
| | - Farzan Nadim
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, NJ 07102
| |
Collapse
|
2
|
Ainerua MO, Tinwell J, Murphy R, Galli GLJ, van Dongen BE, White KN, Shiels HA. Prolonged phenanthrene exposure reduces cardiac function but fails to mount a significant oxidative stress response in the signal crayfish (Pacifastacus leniusculus). CHEMOSPHERE 2021; 268:129297. [PMID: 33359987 DOI: 10.1016/j.chemosphere.2020.129297] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Crustaceans are important ecosystem bio-indicators but their response to pollutants such as polyaromatic hydrocarbons (PAHs) remains understudied, particularly in freshwater habitats. Here we investigated the effect of phenanthrene (at 0.5, 1.0 and 1.5 mg L-1), a 3-ringed PAH associated with petroleum-based aquatic pollution on survival, in vivo and in situ cardiac performance, the oxidative stress response and the tissue burden in the signal crayfish (Pacifastacus leniusculus). Non-invasive sensors were used to monitor heart rate during exposure. Phenanthrene reduced maximum attainable heart rate in the latter half (days 8-15) of the exposure period but had no impact on routine heart rate. At the end of the 15-day exposure period, the electrical activity of the semi-isolated in situ crayfish heart was assessed and significant prolongation of the QT interval of the electrocardiogram was observed. Enzyme pathways associated with oxidative stress (superoxide dismutase and total oxyradical scavenging capacity) were also assessed after 15 days of phenanthrene exposure in gill, hepatopancreas and skeletal muscle; the results suggest limited induction of protective antioxidant pathways. Lastly, we report that 15 days exposure caused a dose-dependent increase in phenanthrene in hepatopancreas and heart tissues which was associated with reduced survivability. To our knowledge, this study is the first to provide such a thorough understanding of the impact of phenanthrene on a crustacean.
Collapse
Affiliation(s)
- Martins Oshioriamhe Ainerua
- Cardiovascular Division, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Core Technology Facility Building, Manchester, M13 9NT, United Kingdom; Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin, PMB, 1154, Benin City, Nigeria
| | - Jake Tinwell
- Cardiovascular Division, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Core Technology Facility Building, Manchester, M13 9NT, United Kingdom
| | - Rory Murphy
- Cardiovascular Division, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Core Technology Facility Building, Manchester, M13 9NT, United Kingdom
| | - Gina L J Galli
- Cardiovascular Division, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Core Technology Facility Building, Manchester, M13 9NT, United Kingdom
| | - Bart E van Dongen
- Department of Earth and Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering and Williamson Research Centre for Molecular Science. University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Keith N White
- Department of Earth and Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9GB, United Kingdom
| | - Holly A Shiels
- Cardiovascular Division, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Core Technology Facility Building, Manchester, M13 9NT, United Kingdom.
| |
Collapse
|
3
|
DeLaney K, Li L. Neuropeptidomic Profiling and Localization in the Crustacean Cardiac Ganglion Using Mass Spectrometry Imaging with Multiple Platforms. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2469-2478. [PMID: 33595330 PMCID: PMC7893679 DOI: 10.1021/jasms.0c00191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The crustacean cardiac neuromuscular system is a useful model for studying how neural circuits generate behavior, as it is comprised of a simple ganglion containing nine neurons, yet acts as a robust central pattern generator. The crustacean heart is neurogenic, receiving input from neuropeptides. However, the specific effects of neuropeptides on cardiac output is not fully understood, and the large degree of comodulation between multiple neuropeptides makes studying these effects more challenging. To address this challenge, matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) imaging was used to localize neuropeptides within the cardiac ganglion (CG), providing information about the identity and localization of neuropeptides being present. CG extracts were also profiled using liquid chromatography coupled to tandem mass spectrometry (MS/MS) with a data independent acquisition method, resulting in the confirmation of 316 neuropeptides. Two MS imaging (MSI) platforms were compared to provide comprehensive results, including a MALDI-Orbitrap instrument for high mass spectral resolution for accurate identifications and a MALDI TOF/TOF instrument for improved spatial resolution and sensitivity, providing more descriptive MS images. MS images for 235 putative neuropeptides were obtained, with the identification of 145 of these being confirmed by either complementary MS/MS data or accurate mass matching. The MSI studies demonstrate the sensitivity and power of this MALDI-based in situ analytical strategy for unraveling the chemical complexity present in a small nine-cell neuronal system. The results of this study will enable more informative assays of the functions of neuropeptides within this important neural circuit.
Collapse
Affiliation(s)
- Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705
- Address reprint requests to Dr. Lingjun Li. Mailing Address: 5125 Rennebohm Hall, 777 Highland Avenue, Madison, WI 53705-2222. Phone: (608)265-8491, Fax: (608)262-5345.
| |
Collapse
|
4
|
Wenning A, Chang YR, Norris BJ, Calabrese RL. The neuromuscular transform in a single segment of a segmented heart tube. J Neurophysiol 2020; 124:914-929. [PMID: 32755357 DOI: 10.1152/jn.00640.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Leech hearts are hybrids; they are myogenic but need entrainment by a heartbeat central pattern generator (CPG) to execute functional constriction patterns. Leech hearts are modular: two lateral segmented heart tubes running the length of the animal. Moving blood through the segmented heart tubes of leeches requires sequential constrictions, timed by a heartbeat CPG and relayed to each heart segment by likewise segmental motor neurons. The heartbeat CPG produces bilaterally asymmetric coordinations: rear-to-front peristaltic on one side and nearly synchronous on the other, periodically switching sides. We examined the neuromuscular transform of isolated heart segments in response to electrical nerve stimulation to identify the range of parameters (burst duration, intraburst pulse frequency, period) allowing the heart to constrict continuously and reliably. Constriction amplitudes increased with increasing intraburst frequencies and decreased with decreasing burst durations. Similar amplitudes were achieved with longer burst durations combined with lower frequencies or with shorter burst durations combined with higher frequencies. Long burst durations delayed relaxation, leading to summation and tetanus. The time, and its variability, between stimulus onset and time to constriction onset or to peak decreased with increasing frequency. Data previously obtained in vivo showed that the heart excitatory motor neurons fired longer bursts at lower frequencies at long periods moving to shorter bursts with higher intraburst frequencies as the period shortened. In this scenario, active constriction started earlier and the time to reach full systole shortened, allowing more time for relaxation. Relaxation time before the next motor neuron burst appears critical for maintaining constriction amplitude.NEW & NOTEWORTHY Moving blood through the segmented heart tubes of leeches requires sequential constrictions driven by motor neurons controlled by a central pattern generator. In a single heart segment, we varied stimuli to explore the neuromuscular transform. Decreasing the cycle period, e.g., to increase volume pumped over time, without altering motor burst duration and intraburst spike frequency shortens relaxation time and decreases amplitude. The likely strategy to preserve constriction amplitude is to shorten burst duration while increasing spike frequency.
Collapse
Affiliation(s)
- Angela Wenning
- Department of Biology, Emory University, Atlanta, Georgia
| | | | - Brian J Norris
- Department of Biology, Emory University, Atlanta, Georgia.,Department of Biological Sciences, California State University, San Marcos, California
| | | |
Collapse
|
5
|
Oleisky ER, Stanhope ME, Hull JJ, Christie AE, Dickinson PS. Differential neuropeptide modulation of premotor and motor neurons in the lobster cardiac ganglion. J Neurophysiol 2020; 124:1241-1256. [PMID: 32755328 PMCID: PMC7654637 DOI: 10.1152/jn.00089.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The American lobster, Homarus americanus, cardiac neuromuscular system is controlled by the cardiac ganglion (CG), a central pattern generator consisting of four premotor and five motor neurons. Here, we show that the premotor and motor neurons can establish independent bursting patterns when decoupled by a physical ligature. We also show that mRNA encoding myosuppressin, a cardioactive neuropeptide, is produced within the CG. We thus asked whether myosuppressin modulates the decoupled premotor and motor neurons, and if so, how this modulation might underlie the role(s) that these neurons play in myosuppressin's effects on ganglionic output. Although myosuppressin exerted dose-dependent effects on burst frequency and duration in both premotor and motor neurons in the intact CG, its effects on the ligatured ganglion were more complex, with different effects and thresholds on the two types of neurons. These data suggest that the motor neurons are more important in determining the changes in frequency of the CG elicited by low concentrations of myosuppressin, whereas the premotor neurons have a greater impact on changes elicited in burst duration. A single putative myosuppressin receptor (MSR-I) was previously described from the Homarus nervous system. We identified four additional putative MSRs (MSR-II-V) and investigated their individual distributions in the CG premotor and motor neurons using RT-PCR. Transcripts for only three receptors (MSR-II-IV) were amplified from the CG. Potential differential distributions of the receptors were observed between the premotor and motor neurons; these differences may contribute to the distinct physiological responses of the two neuron types to myosuppressin.NEW & NOTEWORTHY Premotor and motor neurons of the Homarus americanus cardiac ganglion (CG) are normally electrically and chemically coupled, and generate rhythmic bursting that drives cardiac contractions; we show that they can establish independent bursting patterns when physically decoupled by a ligature. The neuropeptide myosuppressin modulates different aspects of the bursting pattern in these neuron types to determine the overall modulation of the intact CG. Differential distribution of myosuppressin receptors may underlie the observed responses to myosuppressin.
Collapse
Affiliation(s)
| | | | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, Arizona
| | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii
| | | |
Collapse
|
6
|
Golowasch J. Neuromodulation of central pattern generators and its role in the functional recovery of central pattern generator activity. J Neurophysiol 2019; 122:300-315. [PMID: 31066614 DOI: 10.1152/jn.00784.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neuromodulators play an important role in how the nervous system organizes activity that results in behavior. Disruption of the normal patterns of neuromodulatory release or production is known to be related to the onset of severe pathologies such as Parkinson's disease, Rett syndrome, Alzheimer's disease, and affective disorders. Some of these pathologies involve neuronal structures that are called central pattern generators (CPGs), which are involved in the production of rhythmic activities throughout the nervous system. Here I discuss the interplay between CPGs and neuromodulatory activity, with particular emphasis on the potential role of neuromodulators in the recovery of disrupted neuronal activity. I refer to invertebrate and vertebrate model systems and some of the lessons we have learned from research on these systems and propose a few avenues for future research. I make one suggestion that may guide future research in the field: neuromodulators restrict the parameter landscape in which CPG components operate, and the removal of neuromodulators may enable a perturbed CPG in finding a new set of parameter values that can allow it to regain normal function.
Collapse
Affiliation(s)
- Jorge Golowasch
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University-Newark , Newark, New Jersey
| |
Collapse
|
7
|
Voltage-dependent calcium channels in the neurosecretory cells of cerebral ganglia of the mud crab, Scylla paramamosain. Neuroreport 2019; 29:1068-1074. [PMID: 29965872 DOI: 10.1097/wnr.0000000000001074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Voltage-dependent calcium channels (VDCCs) play a critical role in stimulus-secretion coupling in neurosecretory cells (NSCs). The crustacean cerebral ganglion plays a crucial role in neuromodulation and controls neuropeptide release. The present study used patch-clamp and Illumina sequencing techniques to investigate the potential features of VDCC in the cerebral ganglia of the mud crab (Scylla paramamosain). The electrophysiological characteristics of VDCC were analyzed in three types of NSCs with a patch clamp. The thresholds for activation of Ca channel current recorded from all the three types of NSCs were all above -40 mV, with peak amplitudes occurring around 0 mV. Therefore, it was concluded that the currents recorded in NSCs were mediated by high-voltage-activated Ca channels. Ca channel current densities in I type NSCs were significantly lower than those in II and III type NSCs. Four VDCC subunits derived from three transcripts were predicted from a transcriptome database of the cerebral ganglia. Among these transcripts, Cavα1, Cavβ, and Cavα2/δ were predicted to encode 1674, 554, and 776 amino acids, respectively, and they shared conservative domains with VDCC subunits in other species. Overall, these findings provide an important basis for further studies on the neuroendocrine mechanisms in crustaceans.
Collapse
|
8
|
Haley JA, Hampton D, Marder E. Two central pattern generators from the crab, Cancer borealis, respond robustly and differentially to extreme extracellular pH. eLife 2018; 7:41877. [PMID: 30592258 PMCID: PMC6328273 DOI: 10.7554/elife.41877] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/25/2018] [Indexed: 12/18/2022] Open
Abstract
The activity of neuronal circuits depends on the properties of the constituent neurons and their underlying synaptic and intrinsic currents. We describe the effects of extreme changes in extracellular pH – from pH 5.5 to 10.4 – on two central pattern generating networks, the stomatogastric and cardiac ganglia of the crab, Cancer borealis. Given that the physiological properties of ion channels are known to be sensitive to pH within the range tested, it is surprising that these rhythms generally remained robust from pH 6.1 to pH 8.8. The pH sensitivity of these rhythms was highly variable between animals and, unexpectedly, between ganglia. Animal-to-animal variability was likely a consequence of similar network performance arising from variable sets of underlying conductances. Together, these results illustrate the potential difficulty in generalizing the effects of environmental perturbation across circuits, even within the same animal.
Collapse
Affiliation(s)
- Jessica A Haley
- Volen Center and Biology Department, Brandeis University, Waltham, United States
| | - David Hampton
- Volen Center and Biology Department, Brandeis University, Waltham, United States
| | - Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, United States
| |
Collapse
|
9
|
Modulator-Gated, SUMOylation-Mediated, Activity-Dependent Regulation of Ionic Current Densities Contributes to Short-Term Activity Homeostasis. J Neurosci 2018; 39:596-611. [PMID: 30504282 DOI: 10.1523/jneurosci.1379-18.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/23/2018] [Accepted: 11/03/2018] [Indexed: 02/07/2023] Open
Abstract
Neurons operate within defined activity limits, and feedback control mechanisms dynamically tune ionic currents to maintain this optimal range. This study describes a novel, rapid feedback mechanism that uses SUMOylation to continuously adjust ionic current densities according to changes in activity. Small ubiquitin-like modifier (SUMO) is a peptide that can be post-translationally conjugated to ion channels to influence their surface expression and biophysical properties. Neuronal activity can regulate the extent of protein SUMOylation. This study on the single, unambiguously identifiable lateral pyloric neuron (LP), a component of the pyloric network in the stomatogastric nervous system of male and female spiny lobsters (Panulirus interruptus), focused on dynamic SUMOylation in the context of activity homeostasis. There were four major findings: First, neuronal activity adjusted the balance between SUMO conjugation and deconjugation to continuously and bidirectionally fine-tune the densities of two opposing conductances: the hyperpolarization activated current (Ih) and the transient potassium current (IA). Second, tonic 5 nm dopamine (DA) gated activity-dependent SUMOylation to permit and prevent activity-dependent regulation of Ih and IA, respectively. Third, DA-gated, activity-dependent SUMOylation contributed to a feedback mechanism that restored the timing and duration of LP activity during prolonged modulation by 5 μm DA, which initially altered these and other activity features. Fourth, DA modulatory and metamoduatory (gating) effects were tailored to simultaneously alter and stabilize neuronal output. Our findings suggest that modulatory tone may select a subset of rapid activity-dependent mechanisms from a larger menu to achieve homeostasis under varying conditions.SIGNIFICANCE STATEMENT Post-translational SUMOylation of ion channel subunits controls their interactions. When subunit SUMOylation is dysregulated, conductance densities mediated by the channels are distorted, leading to nervous system disorders, such as seizures and chronic pain. Regulation of ion channel SUMOylation is poorly understood. This study demonstrated that neuronal activity can regulate SUMOylation to reconfigure ionic current densities over minutes, and this regulation was gated by tonic nanomolar dopamine. Dynamic SUMOylation was necessary to maintain specific aspects of neuronal output while the neuron was being modulated by high (5 μm) concentrations of dopamine, suggesting that the gating function may ensure neuronal homeostasis during extrinsic modulation of a circuit.
Collapse
|
10
|
Lane BJ, Kick DR, Wilson DK, Nair SS, Schulz DJ. Dopamine maintains network synchrony via direct modulation of gap junctions in the crustacean cardiac ganglion. eLife 2018; 7:e39368. [PMID: 30325308 PMCID: PMC6199132 DOI: 10.7554/elife.39368] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/11/2018] [Indexed: 01/14/2023] Open
Abstract
The Large Cell (LC) motor neurons of the crab cardiac ganglion have variable membrane conductance magnitudes even within the same individual, yet produce identical synchronized activity in the intact network. In a previous study we blocked a subset of K+ conductances across LCs, resulting in loss of synchronous activity (Lane et al., 2016). In this study, we hypothesized that this same variability of conductances makes LCs vulnerable to desynchronization during neuromodulation. We exposed the LCs to serotonin (5HT) and dopamine (DA) while recording simultaneously from multiple LCs. Both amines had distinct excitatory effects on LC output, but only 5HT caused desynchronized output. We further determined that DA rapidly increased gap junctional conductance. Co-application of both amines induced 5HT-like output, but waveforms remained synchronized. Furthermore, DA prevented desynchronization induced by the K+ channel blocker tetraethylammonium (TEA), suggesting that dopaminergic modulation of electrical coupling plays a protective role in maintaining network synchrony.
Collapse
Affiliation(s)
- Brian J Lane
- Division of Biological SciencesUniversity of MissouriColumbiaUnited States
| | - Daniel R Kick
- Division of Biological SciencesUniversity of MissouriColumbiaUnited States
| | - David K Wilson
- Division of Biological SciencesUniversity of MissouriColumbiaUnited States
| | - Satish S Nair
- Department of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaUnited States
| | - David J Schulz
- Division of Biological SciencesUniversity of MissouriColumbiaUnited States
| |
Collapse
|
11
|
Northcutt AJ, Fischer EK, Puhl JG, Mesce KA, Schulz DJ. An annotated CNS transcriptome of the medicinal leech, Hirudo verbana: De novo sequencing to characterize genes associated with nervous system activity. PLoS One 2018; 13:e0201206. [PMID: 30028871 PMCID: PMC6054404 DOI: 10.1371/journal.pone.0201206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/10/2018] [Indexed: 11/19/2022] Open
Abstract
The medicinal leech is one of the most venerated model systems for the study of fundamental nervous system principles, ranging from single-cell excitability to complex sensorimotor integration. Yet, molecular analyses have yet to be extensively applied to complement the rich history of electrophysiological study that this animal has received. Here, we generated the first de novo transcriptome assembly from the entire central nervous system of Hirudo verbana, with the goal of providing a molecular resource, as well as to lay the foundation for a comprehensive discovery of genes fundamentally important for neural function. Our assembly generated 107,704 contigs from over 900 million raw reads. Of these 107,704 contigs, 39,047 (36%) were annotated using NCBI's validated RefSeq sequence database. From this annotated central nervous system transcriptome, we began the process of curating genes related to nervous system function by identifying and characterizing 126 unique ion channel, receptor, transporter, and enzyme contigs. Additionally, we generated sequence counts to estimate the relative abundance of each identified ion channel and receptor contig in the transcriptome through Kallisto mapping. This transcriptome will serve as a valuable community resource for studies investigating the molecular underpinnings of neural function in leech and provide a reference for comparative analyses.
Collapse
Affiliation(s)
- Adam J. Northcutt
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Eva K. Fischer
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Joshua G. Puhl
- Department of Entomology and Graduate Program in Neuroscience, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Karen A. Mesce
- Department of Entomology and Graduate Program in Neuroscience, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - David J. Schulz
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| |
Collapse
|
12
|
Northcutt AJ, Lett KM, Garcia VB, Diester CM, Lane BJ, Marder E, Schulz DJ. Deep sequencing of transcriptomes from the nervous systems of two decapod crustaceans to characterize genes important for neural circuit function and modulation. BMC Genomics 2016; 17:868. [PMID: 27809760 PMCID: PMC5096308 DOI: 10.1186/s12864-016-3215-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 10/26/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Crustaceans have been studied extensively as model systems for nervous system function from single neuron properties to behavior. However, lack of molecular sequence information and tools have slowed the adoption of these physiological systems as molecular model systems. In this study, we sequenced and performed de novo assembly for the nervous system transcriptomes of two decapod crustaceans: the Jonah crab (Cancer borealis) and the American lobster (Homarus americanus). RESULTS Forty-two thousand, seven hundred sixty-six and sixty thousand, two hundred seventy-three contigs were assembled from C. borealis and H. americanus respectively, representing 9,489 and 11,061 unique coding sequences. From these transcripts, genes associated with neural function were identified and manually curated to produce a characterization of multiple gene families important for nervous system function. This included genes for 34 distinct ion channel types, 17 biogenic amine and 5 GABA receptors, 28 major transmitter receptor subtypes including glutamate and acetylcholine receptors, and 6 gap junction proteins - the Innexins. CONCLUSION With this resource, crustacean model systems are better poised for incorporation of modern genomic and molecular biology technologies to further enhance the interrogation of fundamentals of nervous system function.
Collapse
Affiliation(s)
- Adam J. Northcutt
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO USA
| | - Kawasi M. Lett
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO USA
| | - Virginia B. Garcia
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO USA
| | - Clare M. Diester
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO USA
| | - Brian J. Lane
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO USA
| | - Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, MA USA
| | - David J. Schulz
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO USA
| |
Collapse
|
13
|
The neural control of heartbeat in invertebrates. Curr Opin Neurobiol 2016; 41:68-77. [PMID: 27589603 DOI: 10.1016/j.conb.2016.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/12/2016] [Accepted: 08/17/2016] [Indexed: 11/23/2022]
Abstract
The neurogenic heartbeat of certain invertebrates has long been studied both as a way of understanding how automatic functions are regulated and for how neuronal networks generate the inherent rhythmic activity that controls and coordinates this vital function. This review focuses on the heartbeat of decapod crustaceans and hirudinid leeches, which remain important experimental systems for the exploration of central pattern generator networks, their properties, network and cellular mechanisms, modulation, and how animal-to-animal variation in neuronal and network properties are managed to produce functional output.
Collapse
|
14
|
Lane BJ, Samarth P, Ransdell JL, Nair SS, Schulz DJ. Synergistic plasticity of intrinsic conductance and electrical coupling restores synchrony in an intact motor network. eLife 2016; 5. [PMID: 27552052 PMCID: PMC5026470 DOI: 10.7554/elife.16879] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/22/2016] [Indexed: 01/12/2023] Open
Abstract
Motor neurons of the crustacean cardiac ganglion generate virtually identical, synchronized output despite the fact that each neuron uses distinct conductance magnitudes. As a result of this variability, manipulations that target ionic conductances have distinct effects on neurons within the same ganglion, disrupting synchronized motor neuron output that is necessary for proper cardiac function. We hypothesized that robustness in network output is accomplished via plasticity that counters such destabilizing influences. By blocking high-threshold K+ conductances in motor neurons within the ongoing cardiac network, we discovered that compensation both resynchronized the network and helped restore excitability. Using model findings to guide experimentation, we determined that compensatory increases of both GA and electrical coupling restored function in the network. This is one of the first direct demonstrations of the physiological regulation of coupling conductance in a compensatory context, and of synergistic plasticity across cell- and network-level mechanisms in the restoration of output. DOI:http://dx.doi.org/10.7554/eLife.16879.001 Neurons can communicate with each other by releasing chemicals called neurotransmitters, or by forming direct connections with each other known as gap junctions. These direct connections allow electrical impulses to flow from one neuron to another via pores in the membranes between the cells. Unlike communication via neurotransmitters, gap junctions are usually thought to be hard-wired and unchanging over the life of the animal. Lane et al. recorded electrical activity in a network of neurons that generates rhythmic heart contractions in the Jonah crab. Neurons in this network usually all fire an electrical impulse at the same time, which is crucial to make sure that the whole heart contracts at the same time. The experiments show that drugs that block potassium channel pores in the membrane cause the neurons to fire too much and at different times to each other. However, the network of neurons soon adapted to the changes caused by the drugs and returned to working as normal. Mimicking these changes in a computer model of the neuron network, together with experimental data, showed that changes to the gap junctions play a major role in restoring normal activity to the network. The next step following on from this research is to understand how a network of neurons ‘senses’ that it is not working normally and changes its electrical activity. DOI:http://dx.doi.org/10.7554/eLife.16879.002
Collapse
Affiliation(s)
- Brian J Lane
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, United States
| | - Pranit Samarth
- Department of Electrical and Computer Engineering, University of Missouri-Columbia, Columbia, United States
| | - Joseph L Ransdell
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, United States
| | - Satish S Nair
- Department of Electrical and Computer Engineering, University of Missouri-Columbia, Columbia, United States
| | - David J Schulz
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, United States
| |
Collapse
|
15
|
Kadala A, Verdier D, Morquette P, Kolta A. Ion Homeostasis in Rhythmogenesis: The Interplay Between Neurons and Astroglia. Physiology (Bethesda) 2015; 30:371-88. [DOI: 10.1152/physiol.00023.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proper function of all excitable cells depends on ion homeostasis. Nowhere is this more critical than in the brain where the extracellular concentration of some ions determines neurons' firing pattern and ability to encode information. Several neuronal functions depend on the ability of neurons to change their firing pattern to a rhythmic bursting pattern, whereas, in some circuits, rhythmic firing is, on the contrary, associated to pathologies like epilepsy or Parkinson's disease. In this review, we focus on the four main ions known to fluctuate during rhythmic firing: calcium, potassium, sodium, and chloride. We discuss the synergistic interactions between these elements to promote an oscillatory activity. We also review evidence supporting an important role for astrocytes in the homeostasis of each of these ions and describe mechanisms by which astrocytes may regulate neuronal firing by altering their extracellular concentrations. A particular emphasis is put on the mechanisms underlying rhythmogenesis in the circuit forming the central pattern generator (CPG) for mastication and other CPG systems. Finally, we discuss how an impairment in the ability of glial cells to maintain such homeostasis may result in pathologies like epilepsy and Parkinson's disease.
Collapse
Affiliation(s)
- Aklesso Kadala
- Département de Neurosciences and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada; and
| | - Dorly Verdier
- Département de Neurosciences and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada; and
| | - Philippe Morquette
- Département de Neurosciences and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada; and
| | - Arlette Kolta
- Département de Neurosciences and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada; and
- Faculté de Médecine Dentaire and Réseau de Recherche en Santé Bucco-dentaire et Osseuse du Fonds de Recherche Québec-Santé, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
16
|
Krenz WDC, Rodgers EW, Baro DJ. Tonic 5nM DA stabilizes neuronal output by enabling bidirectional activity-dependent regulation of the hyperpolarization activated current via PKA and calcineurin. PLoS One 2015; 10:e0117965. [PMID: 25692473 PMCID: PMC4333293 DOI: 10.1371/journal.pone.0117965] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/05/2015] [Indexed: 01/11/2023] Open
Abstract
Volume transmission results in phasic and tonic modulatory signals. The actions of tonic dopamine (DA) at type 1 DA receptors (D1Rs) are largely undefined. Here we show that tonic 5nM DA acts at D1Rs to stabilize neuronal output over minutes by enabling activity-dependent regulation of the hyperpolarization activated current (I h). In the presence but not absence of 5nM DA, I h maximal conductance (G max) was adjusted according to changes in slow wave activity in order to maintain spike timing. Our study on the lateral pyloric neuron (LP), which undergoes rhythmic oscillations in membrane potential with depolarized plateaus, demonstrated that incremental, bi-directional changes in plateau duration produced corresponding alterations in LP I hG max when preparations were superfused with saline containing 5nM DA. However, when preparations were superfused with saline alone there was no linear correlation between LP I hGmax and duty cycle. Thus, tonic nM DA modulated the capacity for activity to modulate LP I h G max; this exemplifies metamodulation (modulation of modulation). Pretreatment with the Ca2+-chelator, BAPTA, or the specific PKA inhibitor, PKI, prevented all changes in LP I h in 5nM DA. Calcineurin inhibitors blocked activity-dependent changes enabled by DA and revealed a PKA-mediated, activity-independent enhancement of LP I hG max. These data suggested that tonic 5nM DA produced two simultaneous, PKA-dependent effects: a direct increase in LP I h G max and a priming event that permitted calcineurin regulation of LP I h. The latter produced graded reductions in LP I hG max with increasing duty cycles. We also demonstrated that this metamodulation preserved the timing of LP’s first spike when network output was perturbed with bath-applied 4AP. In sum, 5nM DA permits slow wave activity to provide feedback that maintains spike timing, suggesting that one function of low-level, tonic modulation is to stabilize specific features of a dynamic output.
Collapse
Affiliation(s)
- Wulf-Dieter C. Krenz
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Edmund W. Rodgers
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Deborah J. Baro
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
17
|
Temporal S, Lett KM, Schulz DJ. Activity-dependent feedback regulates correlated ion channel mRNA levels in single identified motor neurons. Curr Biol 2014; 24:1899-904. [PMID: 25088555 DOI: 10.1016/j.cub.2014.06.067] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 11/19/2022]
Abstract
Neurons generate cell-specific outputs via interactions of conductances carried by ion channel proteins that are homeostatically regulated to maintain key quantitative relationships among subsets of conductances. Given the challenges of both normal channel protein turnover and short-term plasticity, how is the balance of membrane conductances maintained over long-term timescales to ensure stable electrophysiological phenotype? One possible mechanism is to dynamically regulate production of channel protein via feedback that constrains relationships at the channel mRNA level. Recent modeling work has postulated that such mRNA relationships could emerge as a result of activity-dependent homeostatic tuning rules that ensure an appropriate ratio of mRNA for key ion channels is maintained to preserve robust cellular output. Yet, this has never been demonstrated in biological neurons. In this study, we quantified multiple ion channel mRNAs from single identified motor neurons of the stomatogastric ganglion to determine whether correlations among channel mRNAs are actively maintained, and, if so, by what form of feedback. In these neurons, we identified correlations among mRNAs for voltage-gated calcium and potassium channels. By performing experiments that decoupled activity, synaptic connectivity, and neuromodulatory state, we determined that correlated channel mRNAs are maintained by an activity-dependent process. This is the first study to demonstrate that distinct relationships across channel mRNAs are dynamically maintained in an activity-dependent manner. This feedback from cellular activity to coordinated transcriptome-level interactions represents a novel aspect of regulation of neuronal output with implications for long-term stability of neuron function.
Collapse
Affiliation(s)
- Simone Temporal
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Kawasi M Lett
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - David J Schulz
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA.
| |
Collapse
|
18
|
Abstract
Different modulatory inputs commonly elicit distinct rhythmic motor patterns from a central pattern generator (CPG), but they can instead elicit the same pattern. We are determining the rhythm-generating mechanisms in this latter situation, using the gastric mill (chewing) CPG in the crab (Cancer borealis) stomatogastric ganglion, where stimulating the projection neuron MCN1 (modulatory commissural neuron 1) or bath applying CabPK (C. borealis pyrokinin) peptide elicits the same gastric mill motor pattern, despite configuring different gastric mill circuits. In both cases, the core rhythm generator includes the same reciprocally inhibitory neurons LG (lateral gastric) and Int1 (interneuron 1), but the pyloric (food-filtering) circuit pacemaker neuron AB (anterior burster) is additionally necessary only for CabPK rhythm generation. MCN1 drives this rhythm generator by activating in the LG neuron the modulator-activated inward current (IMI), which waxes and wanes periodically due to phasic feedback inhibition of MCN1 transmitter release. Each buildup of IMI enables the LG neuron to generate a self-terminating burst and thereby alternate with Int1 activity. Here we establish that CabPK drives gastric mill rhythm generation by activating in the LG neuron IMI plus a slowly activating transient, low-threshold inward current (ITrans-LTS) that is voltage, time, and Ca(2+) dependent. Unlike MCN1, CabPK maintains a steady IMI activation, causing a subthreshold depolarization in LG that facilitates a periodic postinhibitory rebound burst caused by the regular buildup and decay of the availability of ITrans-LTS. Thus, different modulatory inputs can use different rhythm-generating mechanisms to drive the same neuronal rhythm. Additionally, the same ionic current (IMI) can play different roles under these different conditions, while different currents (IMI, ITrans-LTS) can play the same role.
Collapse
|
19
|
Neurons within the same network independently achieve conserved output by differentially balancing variable conductance magnitudes. J Neurosci 2013; 33:9950-6. [PMID: 23761890 DOI: 10.1523/jneurosci.1095-13.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biological and theoretical evidence suggest that individual neurons may achieve similar outputs by differentially balancing variable underlying ionic conductances. Despite the substantial amount of data consistent with this idea, a direct biological demonstration that cells with conserved output, particularly within the same network, achieve these outputs via different solutions has been difficult to achieve. Here we demonstrate definitively that neurons from native neural networks with highly similar output achieve this conserved output by differentially tuning underlying conductance magnitudes. Multiple motor neurons of the crab (Cancer borealis) cardiac ganglion have highly conserved output within a preparation, despite showing a 2-4-fold range of conductance magnitudes. By blocking subsets of these currents, we demonstrate that the remaining conductances become unbalanced, causing disparate output as a result. Therefore, as strategies to understand neuronal excitability become increasingly sophisticated, it is important that such variability in excitability of neurons, even among those within the same individual, is taken into account.
Collapse
|