1
|
Pascual LMM, Vusirikala A, Nemenman IM, Sober SJ, Pasek M. Millisecond-scale motor control precedes sensorimotor learning in Bengalese finches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615500. [PMID: 39386477 PMCID: PMC11463345 DOI: 10.1101/2024.09.27.615500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
A key goal of the nervous system in young animals is to learn motor skills. Songbirds learn to sing as juveniles, providing a unique opportunity to identify the neural correlates of skill acquisition. Prior studies have shown that spike rate variability decreases during song acquisition, suggesting a transition from rate-based neural control to the millisecond-precise motor codes known to underlie adult vocal performance. By quantifying how the ensemble of spike patterns fired by cortical neurons (the "neural vocabulary") and the relationship between spike patterns and song acoustics (the "neural code") change during song acquisition, we quantified how vocal control changes across learning in juvenile Bengalese finches. We found that despite the expected drop in rate variability (a learning-related change in spike vocabulary), the precision of the neural code in the youngest singers is the same as in adults, with 1-2 millisecond variations in spike timing transduced into quantifiably different behaviors. In contrast, fluctuations of firing rates on longer timescales fail to affect the motor output. The consistent presence of millisecond-scale motor coding during changing levels of spike rate and behavioral variability supports the view that variability early in learning stems from deliberate motor exploration rather than imprecise motor control.
Collapse
Affiliation(s)
| | - Aanya Vusirikala
- Neuroscience Graduate Program, Emory University, Atlanta, United States
| | - Ilya M. Nemenman
- Department of Physics, Emory University, Atlanta, United States
- Initiative in Theory and Modeling of Living Systems, Emory University, Atlanta, United States
- Department of Biology, Emory University, Atlanta, United States
| | - Samuel J. Sober
- Department of Biology, Emory University, Atlanta, United States
| | - Michael Pasek
- Department of Physics, Emory University, Atlanta, United States
- Initiative in Theory and Modeling of Living Systems, Emory University, Atlanta, United States
| |
Collapse
|
2
|
Abstract
Neuroscience has convinced people that much of their behavior is determined by causes unknown to them and beyond their control. However, are advances in neuroscience truly a prerequisite for such beliefs? Robert Kane's theory of ultimate responsibility is libertarian theory. Its innovative nature makes it possible to discuss the neurophysiological basis of its postulates. Using the functions of the midbrain dopaminergic system as an example, this article provides an overview of this neurophysiological basis. According to Kane, if we are to be ultimately responsible for our wills as well as for our actions, some actions in our lives must lack sufficient motives and causes. These are self-forming actions. Dopamine is hypothesized to mediate self-forming action execution. Dopamine not only mediates action but also ensures synaptic plasticity in the brain, that is, learning from action; hence, dopamine changes the acting individual and provides the formation of our own wills. The basal ganglia, which are the main target of dopamine in the brain, act through parallel pathways and are involved in decision-making processes. Dopamine is also involved in the regulation of the neurodynamical properties of prefrontal cortex networks with random spiking noise. It can be assumed that the activity of the dopaminergic system is closely related to the physiological basis of free will.
Collapse
Affiliation(s)
- Natalia Ivlieva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Str., 5a, Moscow, 117485, Russia.
| |
Collapse
|
3
|
Méndez JM, Cooper BG, Goller F. Note similarities affect syntactic stability in zebra finches. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024:10.1007/s00359-024-01713-6. [PMID: 39133335 DOI: 10.1007/s00359-024-01713-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
The acquisition of an acoustic template is a fundamental component of vocal imitation learning, which is used to refine innate vocalizations and develop a species-specific song. In the absence of a model, birds fail to develop species typical songs. In zebra finches (Taeniopygia guttata), tutored birds produce songs with a stereotyped sequence of distinct acoustic elements, or notes, which form the song motif. Songs of untutored individuals feature atypical acoustic and temporal structure. Here we studied songs and associated respiratory patterns of tutored and untutored male zebra finches to investigate whether similar acoustic notes influence the sequence of song elements. A subgroup of animals developed songs with multiple acoustically similar notes that are produced with alike respiratory motor gestures. These birds also showed increased syntactic variability in their adult motif. Sequence variability tended to occur near song elements which showed high similarity in acoustic structure and underlying respiratory motor gestures. The duration and depth of the inspirations preceding the syllables where syntactic variation occurred did not allow prediction of the following sequence of notes, suggesting that the varying duration and air requirement of the following expiratory pulse is not predictively encoded in the motor program. This study provides a novel method for calculation of motor/acoustic similarity, and the results of this study suggest that the note is a fundamental acoustic unit in the organization of the motif and could play a role in the neural code for song syntax.
Collapse
Affiliation(s)
- Jorge M Méndez
- Department of Physics and Astronomy, Minnesota State University-Mankato, Mankato, MN, USA.
| | - Brenton G Cooper
- Department of Psychology, Texas Christian University, Fort Worth, TX, USA
| | - Franz Goller
- Department of Biology, University of Utah, Salt Lake City, UT, USA
- Institute of Zoophysiology, University of Münster, Münster, Germany
| |
Collapse
|
4
|
Shibata Y, Toji N, Wang H, Go Y, Wada K. Expansion of learning capacity elicited by interspecific hybridization. SCIENCE ADVANCES 2024; 10:eadn3409. [PMID: 38896617 PMCID: PMC11186503 DOI: 10.1126/sciadv.adn3409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Learned behavior, a fundamental adaptive trait in fluctuating environments, is shaped by species-specific constraints. This phenomenon is evident in songbirds, which acquire their species-specific songs through vocal learning. To explore the neurogenetic mechanisms underlying species-specific song learning, we generated F1 hybrid songbirds by crossing Taeniopygia guttata with Aidemosyne modesta. These F1 hybrids demonstrate expanded learning capacities, adeptly mimicking songs from both parental species and other heterospecific songs more extensively than their parental counterparts. Despite the conserved size of brain regions and neuron numbers in the neural circuits for song learning and production, single-cell transcriptomics reveals distinctive transcriptional characteristics in the F1 hybrids, especially in vocal-motor projection neurons. These neurons exhibit enrichment for nonadditively expressed genes, particularly those related to ion channel activity and cell adhesion, which are associated with the degree of song learning among F1 individuals. Our findings provide insights into the emergence of altered learning capabilities through hybridization, linked to cell type-specific transcriptional changes.
Collapse
Affiliation(s)
- Yukino Shibata
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Research Fellowship for Young Scientists of the Japan Society for the Promotion of Science, Sapporo 060-0810, Japan
| | - Noriyuki Toji
- Research Fellowship for Young Scientists of the Japan Society for the Promotion of Science, Sapporo 060-0810, Japan
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hongdi Wang
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0497, Japan
| | - Yasuhiro Go
- Graduate School of Information Science, University of Hyogo, Kobe 650-0047, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences (NINS), Okazaki 444-8585, Japan
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki 444-8585, Japan
| | - Kazuhiro Wada
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Research and Education Center for Brain Science, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
5
|
Koparkar A, Warren TL, Charlesworth JD, Shin S, Brainard MS, Veit L. Lesions in a songbird vocal circuit increase variability in song syntax. eLife 2024; 13:RP93272. [PMID: 38635312 PMCID: PMC11026095 DOI: 10.7554/elife.93272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC's recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by 'breaks' in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.
Collapse
Affiliation(s)
- Avani Koparkar
- Neurobiology of Vocal Communication, Institute for Neurobiology, University of TübingenTübingenGermany
| | - Timothy L Warren
- Howard Hughes Medical Institute and Center for Integrative Neuroscience, University of California San FranciscoSan FranciscoUnited States
- Departments of Horticulture and Integrative Biology, Oregon State UniversityCorvallisUnited States
| | - Jonathan D Charlesworth
- Howard Hughes Medical Institute and Center for Integrative Neuroscience, University of California San FranciscoSan FranciscoUnited States
| | - Sooyoon Shin
- Howard Hughes Medical Institute and Center for Integrative Neuroscience, University of California San FranciscoSan FranciscoUnited States
| | - Michael S Brainard
- Howard Hughes Medical Institute and Center for Integrative Neuroscience, University of California San FranciscoSan FranciscoUnited States
| | - Lena Veit
- Neurobiology of Vocal Communication, Institute for Neurobiology, University of TübingenTübingenGermany
| |
Collapse
|
6
|
Casartelli L, Maronati C, Cavallo A. From neural noise to co-adaptability: Rethinking the multifaceted architecture of motor variability. Phys Life Rev 2023; 47:245-263. [PMID: 37976727 DOI: 10.1016/j.plrev.2023.10.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
In the last decade, the source and the functional meaning of motor variability have attracted considerable attention in behavioral and brain sciences. This construct classically combined different levels of description, variable internal robustness or coherence, and multifaceted operational meanings. We provide here a comprehensive review of the literature with the primary aim of building a precise lexicon that goes beyond the generic and monolithic use of motor variability. In the pars destruens of the work, we model three domains of motor variability related to peculiar computational elements that influence fluctuations in motor outputs. Each domain is in turn characterized by multiple sub-domains. We begin with the domains of noise and differentiation. However, the main contribution of our model concerns the domain of adaptability, which refers to variation within the same exact motor representation. In particular, we use the terms learning and (social)fitting to specify the portions of motor variability that depend on our propensity to learn and on our largely constitutive propensity to be influenced by external factors. A particular focus is on motor variability in the context of the sub-domain named co-adaptability. Further groundbreaking challenges arise in the modeling of motor variability. Therefore, in a separate pars construens, we attempt to characterize these challenges, addressing both theoretical and experimental aspects as well as potential clinical implications for neurorehabilitation. All in all, our work suggests that motor variability is neither simply detrimental nor beneficial, and that studying its fluctuations can provide meaningful insights for future research.
Collapse
Affiliation(s)
- Luca Casartelli
- Theoretical and Cognitive Neuroscience Unit, Scientific Institute IRCCS E. MEDEA, Italy
| | - Camilla Maronati
- Move'n'Brains Lab, Department of Psychology, Università degli Studi di Torino, Italy
| | - Andrea Cavallo
- Move'n'Brains Lab, Department of Psychology, Università degli Studi di Torino, Italy; C'MoN Unit, Fondazione Istituto Italiano di Tecnologia, Genova, Italy.
| |
Collapse
|
7
|
Nevue AA, Zemel BM, Friedrich SR, von Gersdorff H, Mello CV. Cell type specializations of the vocal-motor cortex in songbirds. Cell Rep 2023; 42:113344. [PMID: 37910500 PMCID: PMC10752865 DOI: 10.1016/j.celrep.2023.113344] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/30/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Identifying molecular specializations in cortical circuitry supporting complex behaviors, like learned vocalizations, requires understanding of the neuroanatomical context from which these circuits arise. In songbirds, the robust arcopallial nucleus (RA) provides descending cortical projections for fine vocal-motor control. Using single-nuclei transcriptomics and spatial gene expression mapping in zebra finches, we have defined cell types and molecular specializations that distinguish RA from adjacent regions involved in non-vocal motor and sensory processing. We describe an RA-specific projection neuron, differential inhibitory subtypes, and glia specializations and have probed predicted GABAergic interneuron subtypes electrophysiologically within RA. Several cell-specific markers arise developmentally in a sex-dependent manner. Our interactive apps integrate cellular data with developmental and spatial distribution data from the gene expression brain atlas ZEBrA. Users can explore molecular specializations of vocal-motor neurons and support cells that likely reflect adaptations key to the physiology and evolution of vocal control circuits and refined motor skills.
Collapse
Affiliation(s)
- Alexander A Nevue
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Benjamin M Zemel
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Samantha R Friedrich
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
8
|
Colquitt BM, Li K, Green F, Veline R, Brainard MS. Neural circuit-wide analysis of changes to gene expression during deafening-induced birdsong destabilization. eLife 2023; 12:e85970. [PMID: 37284822 PMCID: PMC10259477 DOI: 10.7554/elife.85970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/17/2023] [Indexed: 06/08/2023] Open
Abstract
Sensory feedback is required for the stable execution of learned motor skills, and its loss can severely disrupt motor performance. The neural mechanisms that mediate sensorimotor stability have been extensively studied at systems and physiological levels, yet relatively little is known about how disruptions to sensory input alter the molecular properties of associated motor systems. Songbird courtship song, a model for skilled behavior, is a learned and highly structured vocalization that is destabilized following deafening. Here, we sought to determine how the loss of auditory feedback modifies gene expression and its coordination across the birdsong sensorimotor circuit. To facilitate this system-wide analysis of transcriptional responses, we developed a gene expression profiling approach that enables the construction of hundreds of spatially-defined RNA-sequencing libraries. Using this method, we found that deafening preferentially alters gene expression across birdsong neural circuitry relative to surrounding areas, particularly in premotor and striatal regions. Genes with altered expression are associated with synaptic transmission, neuronal spines, and neuromodulation and show a bias toward expression in glutamatergic neurons and Pvalb/Sst-class GABAergic interneurons. We also found that connected song regions exhibit correlations in gene expression that were reduced in deafened birds relative to hearing birds, suggesting that song destabilization alters the inter-region coordination of transcriptional states. Finally, lesioning LMAN, a forebrain afferent of RA required for deafening-induced song plasticity, had the largest effect on groups of genes that were also most affected by deafening. Combined, this integrated transcriptomics analysis demonstrates that the loss of peripheral sensory input drives a distributed gene expression response throughout associated sensorimotor neural circuitry and identifies specific candidate molecular and cellular mechanisms that support the stability and plasticity of learned motor skills.
Collapse
Affiliation(s)
- Bradley M Colquitt
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Physiology, University of California, San FranciscoSan FranciscoUnited States
| | - Kelly Li
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Physiology, University of California, San FranciscoSan FranciscoUnited States
| | - Foad Green
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Physiology, University of California, San FranciscoSan FranciscoUnited States
| | - Robert Veline
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Physiology, University of California, San FranciscoSan FranciscoUnited States
| | - Michael S Brainard
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Physiology, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
9
|
Tripson M, Litwa K, Soderstrom K. Cannabidiol inhibits neuroinflammatory responses and circuit-associated synaptic loss following damage to a songbird vocal pre-motor cortical-like region. Sci Rep 2023; 13:7907. [PMID: 37193782 DOI: 10.1038/s41598-023-34924-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/10/2023] [Indexed: 05/18/2023] Open
Abstract
The non-euphorigenic phytocannabinoid cannabidiol (CBD) has been used successfully to treat childhood-onset epilepsies. These conditions are associated with developmental delays that often include vocal learning. Zebra finch song, like language, is a complex behavior learned during a sensitive period of development. Song quality is maintained through continuous sensorimotor refinement involving circuits that control learning and production. Within the vocal motor circuit, HVC is a cortical-like region that when partially lesioned temporarily disrupts song structure. We previously found CBD (10 mg/kg/day) improves post-lesion vocal recovery. The present studies were done to begin to understand mechanisms possibly responsible for CBD vocal protection. We found CBD markedly reduced expression of inflammatory mediators and oxidative stress markers. These effects were associated with regionally-reduced expression of the microglial marker TMEM119. As microglia are key regulators of synaptic reorganization, we measured synapse densities, finding significant lesion-induced circuit-wide decreases that were largely reversed by CBD. Synaptic protection was accompanied by NRF2 activation and BDNF/ARC/ARG3.1/MSK1 expression implicating mechanisms important to song circuit node mitigation of oxidative stress and promotion of synaptic homeostasis. Our findings demonstrate that CBD promotes an array of neuroprotective processes consistent with modulation of multiple cell signaling systems, and suggest these mechanisms are important to post-lesion recovery of a complex learned behavior.
Collapse
Affiliation(s)
- Mark Tripson
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Karen Litwa
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, 27834, USA
| | - Ken Soderstrom
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
10
|
Zemel BM, Nevue AA, Tavares LES, Dagostin A, Lovell PV, Jin DZ, Mello CV, von Gersdorff H. Motor cortex analogue neurons in songbirds utilize Kv3 channels to generate ultranarrow spikes. eLife 2023; 12:e81992. [PMID: 37158590 PMCID: PMC10241522 DOI: 10.7554/elife.81992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 05/08/2023] [Indexed: 05/10/2023] Open
Abstract
Complex motor skills in vertebrates require specialized upper motor neurons with precise action potential (AP) firing. To examine how diverse populations of upper motor neurons subserve distinct functions and the specific repertoire of ion channels involved, we conducted a thorough study of the excitability of upper motor neurons controlling somatic motor function in the zebra finch. We found that robustus arcopallialis projection neurons (RAPNs), key command neurons for song production, exhibit ultranarrow spikes and higher firing rates compared to neurons controlling non-vocal somatic motor functions (dorsal intermediate arcopallium [AId] neurons). Pharmacological and molecular data indicate that this striking difference is associated with the higher expression in RAPNs of high threshold, fast-activating voltage-gated Kv3 channels, that likely contain Kv3.1 (KCNC1) subunits. The spike waveform and Kv3.1 expression in RAPNs mirror properties of Betz cells, specialized upper motor neurons involved in fine digit control in humans and other primates but absent in rodents. Our study thus provides evidence that songbirds and primates have convergently evolved the use of Kv3.1 to ensure precise, rapid AP firing in upper motor neurons controlling fast and complex motor skills.
Collapse
Affiliation(s)
- Benjamin M Zemel
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
| | - Alexander A Nevue
- Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortlandUnited States
| | - Leonardo ES Tavares
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
- Department of Physics, Pennsylvania State UniversityUniversity ParkUnited States
| | - Andre Dagostin
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
| | - Peter V Lovell
- Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortlandUnited States
| | - Dezhe Z Jin
- Department of Physics, Pennsylvania State UniversityUniversity ParkUnited States
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortlandUnited States
| | - Henrique von Gersdorff
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
- Oregon Hearing Research Center, Oregon Health and Science UniversityPortlandUnited States
| |
Collapse
|
11
|
Giret N, Rolland M, Del Negro C. Multisensory processes in birds: from single neurons to the influence of social interactions and sensory loss. Neurosci Biobehav Rev 2022; 143:104942. [DOI: 10.1016/j.neubiorev.2022.104942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
|
12
|
Friedrich SR, Nevue AA, Andrade ALP, Velho TAF, Mello CV. Emergence of sex-specific transcriptomes in a sexually dimorphic brain nucleus. Cell Rep 2022; 40:111152. [PMID: 35926465 PMCID: PMC9385264 DOI: 10.1016/j.celrep.2022.111152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/26/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
We present the transcriptomic changes underlying the development of an extreme neuroanatomical sex difference. The robust nucleus of the arcopallium (RA) is a key component of the songbird vocal motor system. In zebra finch, the RA is initially monomorphic and then atrophies in females but grows up to 7-fold larger in males. Mirroring this divergence, we show here that sex-differential gene expression in the RA expands from hundreds of predominantly sex chromosome Z genes in early development to thousands of predominantly autosomal genes by the time sexual dimorphism asymptotes. Male-specific developmental processes include cell and axonal growth, synapse assembly and activity, and energy metabolism; female-specific processes include cell polarity and differentiation, transcriptional repression, and steroid hormone and immune signaling. Transcription factor binding site analyses support female-biased activation of pro-apoptotic regulatory networks. The extensive and sex-specific transcriptomic reorganization of RA provides insights into potential drivers of sexually dimorphic neurodevelopment.
Collapse
Affiliation(s)
- Samantha R Friedrich
- Department of Behavioral Neuroscience, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Alexander A Nevue
- Department of Behavioral Neuroscience, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Abraão L P Andrade
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Tarciso A F Velho
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health & Science University (OHSU), Portland, OR 97239, USA.
| |
Collapse
|
13
|
Ivlieva NY. The Role of the Basal Ganglia in the Development and Organization of Vocal Behavior in Songbirds. Russ J Dev Biol 2022. [DOI: 10.1134/s106236042204004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Parker NF, Baidya A, Cox J, Haetzel LM, Zhukovskaya A, Murugan M, Engelhard B, Goldman MS, Witten IB. Choice-selective sequences dominate in cortical relative to thalamic inputs to NAc to support reinforcement learning. Cell Rep 2022; 39:110756. [PMID: 35584665 PMCID: PMC9218875 DOI: 10.1016/j.celrep.2022.110756] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 02/18/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022] Open
Abstract
How are actions linked with subsequent outcomes to guide choices? The nucleus accumbens, which is implicated in this process, receives glutamatergic inputs from the prelimbic cortex and midline regions of the thalamus. However, little is known about whether and how representations differ across these input pathways. By comparing these inputs during a reinforcement learning task in mice, we discovered that prelimbic cortical inputs preferentially represent actions and choices, whereas midline thalamic inputs preferentially represent cues. Choice-selective activity in the prelimbic cortical inputs is organized in sequences that persist beyond the outcome. Through computational modeling, we demonstrate that these sequences can support the neural implementation of reinforcement-learning algorithms, in both a circuit model based on synaptic plasticity and one based on neural dynamics. Finally, we test and confirm a prediction of our circuit models by direct manipulation of nucleus accumbens input neurons.
Collapse
Affiliation(s)
- Nathan F Parker
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Avinash Baidya
- Center for Neuroscience, University of California, Davis, Davis, CA 95616, USA; Department of Physics and Astronomy, University of California, Davis, Davis, CA 95616, USA
| | - Julia Cox
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Laura M Haetzel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Anna Zhukovskaya
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Malavika Murugan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Ben Engelhard
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Mark S Goldman
- Center for Neuroscience, University of California, Davis, Davis, CA 95616, USA; Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA; Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA 95616, USA.
| | - Ilana B Witten
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Psychology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
15
|
Warren MR, Campbell D, Borie AM, Ford CL, Dharani AM, Young LJ, Liu RC. Maturation of Social-Vocal Communication in Prairie Vole ( Microtus ochrogaster) Pups. Front Behav Neurosci 2022; 15:814200. [PMID: 35087387 PMCID: PMC8787284 DOI: 10.3389/fnbeh.2021.814200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Impairments in social communication are common among neurodevelopmental disorders. While traditional animal models have advanced our understanding of the physiological and pathological development of social behavior, they do not recapitulate some aspects where social communication is essential, such as biparental care and the ability to form long-lasting social bonds. Prairie voles (Microtus ochrogaster) have emerged as a valuable rodent model in social neuroscience because they naturally display these behaviors. Nonetheless, the role of vocalizations in prairie vole social communication remains unclear. Here, we studied the ontogeny [from postnatal days (P) 8-16] of prairie vole pup ultrasonic vocalizations (USVs), both when isolated and when the mother was present but physically unattainable. In contrast to other similarly sized rodents such as mice, prairie vole pups of all ages produced isolation USVs with a relatively low fundamental frequency between 22 and 50 kHz, often with strong harmonic structure. Males consistently emitted vocalizations with a lower frequency than females. With age, pups vocalized less, and the acoustic features of vocalizations (e.g., duration and bandwidth) became more stereotyped. Manipulating an isolated pup's social environment by introducing its mother significantly increased vocal production at older (P12-16) but not younger ages, when pups were likely unable to hear or see her. Our data provide the first indication of a maturation in social context-dependent vocal emission, which may facilitate more active acoustic communication. These results help lay a foundation for the use of prairie voles as a model organism to probe the role of early life experience in the development of social-vocal communication.
Collapse
Affiliation(s)
- Megan R. Warren
- Department of Biology, Emory University, Atlanta, GA, United States
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Drayson Campbell
- Department of Biology, Emory University, Atlanta, GA, United States
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Amélie M. Borie
- Department of Biology, Emory University, Atlanta, GA, United States
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Charles L. Ford
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, United States
| | - Ammar M. Dharani
- Summer Opportunities of Academic Research Program, James T. Laney School of Graduate Studies, Emory University, Atlanta, GA, United States
| | - Larry J. Young
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, United States
| | - Robert C. Liu
- Department of Biology, Emory University, Atlanta, GA, United States
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
| |
Collapse
|
16
|
Resurgent Na + currents promote ultrafast spiking in projection neurons that drive fine motor control. Nat Commun 2021; 12:6762. [PMID: 34799550 PMCID: PMC8604930 DOI: 10.1038/s41467-021-26521-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
The underlying mechanisms that promote precise spiking in upper motor neurons controlling fine motor skills are not well understood. Here we report that projection neurons in the adult zebra finch song nucleus RA display robust high-frequency firing, ultra-narrow spike waveforms, superfast Na+ current inactivation kinetics, and large resurgent Na+ currents (INaR). These properties of songbird pallial motor neurons closely resemble those of specialized large pyramidal neurons in mammalian primary motor cortex. They emerge during the early phases of song development in males, but not females, coinciding with a complete switch of Na+ channel subunit expression from Navβ3 to Navβ4. Dynamic clamping and dialysis of Navβ4's C-terminal peptide into juvenile RA neurons provide evidence that Navβ4, and its associated INaR, promote neuronal excitability. We thus propose that INaR modulates the excitability of upper motor neurons that are required for the execution of fine motor skills.
Collapse
|
17
|
Sankar R, Rougier NP, Leblois A. Computational benefits of structural plasticity, illustrated in songbirds. Neurosci Biobehav Rev 2021; 132:1183-1196. [PMID: 34801257 DOI: 10.1016/j.neubiorev.2021.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022]
Abstract
The plasticity of nervous systems allows animals to quickly adapt to a changing environment. In particular, the structural plasticity of brain networks is often critical to the development of the central nervous system and the acquisition of complex behaviors. As an example, structural plasticity is central to the development of song-related brain circuits and may be critical for song acquisition in juvenile songbirds. Here, we review current evidences for structural plasticity and their significance from a computational point of view. We start by reviewing evidence for structural plasticity across species and categorizing them along the spatial axes as well as the along the time course during development. We introduce the vocal learning circuitry in zebra finches, as a useful example of structural plasticity, and use this specific case to explore the possible contributions of structural plasticity to computational models. Finally, we discuss current modeling studies incorporating structural plasticity and unexplored questions which are raised by such models.
Collapse
Affiliation(s)
- Remya Sankar
- Inria Bordeaux Sud-Ouest, Talence, France; Institut des Maladies Neurodégénératives, Université de Bordeaux, Bordeaux, France; Institut des Maladies Neurodégénératives, CNRS, UMR 5293, France; LaBRI, Université de Bordeaux, INP, CNRS, UMR 5800, Talence, France
| | - Nicolas P Rougier
- Inria Bordeaux Sud-Ouest, Talence, France; Institut des Maladies Neurodégénératives, Université de Bordeaux, Bordeaux, France; Institut des Maladies Neurodégénératives, CNRS, UMR 5293, France; LaBRI, Université de Bordeaux, INP, CNRS, UMR 5800, Talence, France
| | - Arthur Leblois
- Institut des Maladies Neurodégénératives, Université de Bordeaux, Bordeaux, France; Institut des Maladies Neurodégénératives, CNRS, UMR 5293, France.
| |
Collapse
|
18
|
Dhawale AK, Wolff SBE, Ko R, Ölveczky BP. The basal ganglia control the detailed kinematics of learned motor skills. Nat Neurosci 2021; 24:1256-1269. [PMID: 34267392 PMCID: PMC11152194 DOI: 10.1038/s41593-021-00889-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/08/2021] [Indexed: 02/06/2023]
Abstract
The basal ganglia are known to influence action selection and modulation of movement vigor, but whether and how they contribute to specifying the kinematics of learned motor skills is not understood. Here, we probe this question by recording and manipulating basal ganglia activity in rats trained to generate complex task-specific movement patterns with rich kinematic structure. We find that the sensorimotor arm of the basal ganglia circuit is crucial for generating the detailed movement patterns underlying the acquired motor skills. Furthermore, the neural representations in the striatum, and the control function they subserve, do not depend on inputs from the motor cortex. Taken together, these results extend our understanding of the basal ganglia by showing that they can specify and control the fine-grained details of learned motor skills through their interactions with lower-level motor circuits.
Collapse
Affiliation(s)
- Ashesh K Dhawale
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Steffen B E Wolff
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Raymond Ko
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Bence P Ölveczky
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
19
|
Xie Z, He F, Fu S, Sato I, Tao D, Sugiyama M. Artificial Neural Variability for Deep Learning: On Overfitting, Noise Memorization, and Catastrophic Forgetting. Neural Comput 2021; 33:2163-2192. [PMID: 34310675 DOI: 10.1162/neco_a_01403] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/22/2021] [Indexed: 12/26/2022]
Abstract
Deep learning is often criticized by two serious issues that rarely exist in natural nervous systems: overfitting and catastrophic forgetting. It can even memorize randomly labeled data, which has little knowledge behind the instance-label pairs. When a deep network continually learns over time by accommodating new tasks, it usually quickly overwrites the knowledge learned from previous tasks. Referred to as the neural variability, it is well known in neuroscience that human brain reactions exhibit substantial variability even in response to the same stimulus. This mechanism balances accuracy and plasticity/flexibility in the motor learning of natural nervous systems. Thus, it motivates us to design a similar mechanism, named artificial neural variability (ANV), that helps artificial neural networks learn some advantages from "natural" neural networks. We rigorously prove that ANV plays as an implicit regularizer of the mutual information between the training data and the learned model. This result theoretically guarantees ANV a strictly improved generalizability, robustness to label noise, and robustness to catastrophic forgetting. We then devise a neural variable risk minimization (NVRM) framework and neural variable optimizers to achieve ANV for conventional network architectures in practice. The empirical studies demonstrate that NVRM can effectively relieve overfitting, label noise memorization, and catastrophic forgetting at negligible costs.
Collapse
Affiliation(s)
- Zeke Xie
- University of Tokyo, Bunkyo-ku, Tokyo 113-0333, Japan and RIKEN Center for AIP, Chuo-ku, Tokyo 103-0027, Japan
| | - Fengxiang He
- University of Sydney, Level 1, Chippendale NSW 2008, Australia
| | - Shaopeng Fu
- University of Sydney, Level 1, Chippendale NSW 2008, Australia
| | - Issei Sato
- University of Tokyo, Bunkyo-ku, Tokyo 113-0333, Japan, and RIKEN Center for AIP, Chuo-ku, Tokyo 103-0027, Japan
| | - Dacheng Tao
- University of Sydney, Level 1, Chippendale NSW 2008, Australi
| | - Masashi Sugiyama
- RIKEN Center for AIP, Chuo-ku, Tokyo 103-0027, Japan, and University of Tokyo, Bunkyo-ku, Tokyo 113-0333, Japan
| |
Collapse
|
20
|
Hunter I, Coulson B, Zarin AA, Baines RA. The Drosophila Larval Locomotor Circuit Provides a Model to Understand Neural Circuit Development and Function. Front Neural Circuits 2021; 15:684969. [PMID: 34276315 PMCID: PMC8282269 DOI: 10.3389/fncir.2021.684969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
It is difficult to answer important questions in neuroscience, such as: "how do neural circuits generate behaviour?," because research is limited by the complexity and inaccessibility of the mammalian nervous system. Invertebrate model organisms offer simpler networks that are easier to manipulate. As a result, much of what we know about the development of neural circuits is derived from work in crustaceans, nematode worms and arguably most of all, the fruit fly, Drosophila melanogaster. This review aims to demonstrate the utility of the Drosophila larval locomotor network as a model circuit, to those who do not usually use the fly in their work. This utility is explored first by discussion of the relatively complete connectome associated with one identified interneuron of the locomotor circuit, A27h, and relating it to similar circuits in mammals. Next, it is developed by examining its application to study two important areas of neuroscience research: critical periods of development and interindividual variability in neural circuits. In summary, this article highlights the potential to use the larval locomotor network as a "generic" model circuit, to provide insight into mammalian circuit development and function.
Collapse
Affiliation(s)
- Iain Hunter
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Bramwell Coulson
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Aref Arzan Zarin
- Department of Biology, The Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Richard A Baines
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
21
|
Moorman S, Ahn JR, Kao MH. Plasticity of stereotyped birdsong driven by chronic manipulation of cortical-basal ganglia activity. Curr Biol 2021; 31:2619-2632.e4. [PMID: 33974850 PMCID: PMC8222193 DOI: 10.1016/j.cub.2021.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/05/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
Cortical-basal ganglia (CBG) circuits are critical for motor learning and performance, and are a major site of pathology. In songbirds, a CBG circuit regulates moment-by-moment variability in song and also enables song plasticity. Studies have shown that variable burst firing in LMAN, the output nucleus of this CBG circuit, actively drives acute song variability, but whether and how LMAN drives long-lasting changes in song remains unclear. Here, we ask whether chronic pharmacological augmentation of LMAN bursting is sufficient to drive plasticity in birds singing stereotyped songs. We show that altered LMAN activity drives cumulative changes in acoustic structure, timing, and sequencing over multiple days, and induces repetitions and silent pauses reminiscent of human stuttering. Changes persisted when LMAN was subsequently inactivated, indicating plasticity in song motor regions. Following cessation of pharmacological treatment, acoustic features and song sequence gradually recovered to their baseline values over a period of days to weeks. Together, our findings show that augmented bursting in CBG circuitry drives plasticity in well-learned motor skills, and may inform treatments for basal ganglia movement disorders.
Collapse
Affiliation(s)
- Sanne Moorman
- Psychology Department, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands; Biology Department, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA.
| | - Jae-Rong Ahn
- Biology Department, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA
| | - Mimi H Kao
- Biology Department, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA; Neuroscience Graduate Program, Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
22
|
Palmer SE, Wright BD, Doupe AJ, Kao MH. Variable but not random: temporal pattern coding in a songbird brain area necessary for song modification. J Neurophysiol 2020; 125:540-555. [PMID: 33296616 DOI: 10.1152/jn.00034.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Practice of a complex motor gesture involves motor exploration to attain a better match to target, but little is known about the neural code for such exploration. We examine spiking in a premotor area of the songbird brain critical for song modification and quantify correlations between spiking and time in the motor sequence. While isolated spikes code for time in song during performance of song to a female bird, extended strings of spiking and silence, particularly bursts, code for time in song during undirected (solo) singing, or "practice." Bursts code for particular times in song with more information than individual spikes, and this spike-spike synergy is significantly higher during undirected singing. The observed pattern information cannot be accounted for by a Poisson model with a matched time-varying rate, indicating that the precise timing of spikes in both bursts in undirected singing and isolated spikes in directed singing code for song with a temporal code. Temporal coding during practice supports the hypothesis that lateral magnocellular nucleus of the anterior nidopallium neurons actively guide song modification at local instances in time.NEW & NOTEWORTHY This paper shows that bursts of spikes in the songbird brain during practice carry information about the output motor pattern. The brain's code for song changes with social context, in performance versus practice. Synergistic combinations of spiking and silence code for time in the bird's song. This is one of the first uses of information theory to quantify neural information about a motor output. This activity may guide changes to the song.
Collapse
Affiliation(s)
- S E Palmer
- Department of Organismal Biology and Anatomy, Department of Physics, Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois
| | - B D Wright
- Department of Organismal Biology and Anatomy, Department of Physics, Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois
| | - A J Doupe
- Department of Organismal Biology and Anatomy, Department of Physics, Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois
| | - M H Kao
- Department of Biology & Program in Neuroscience, Tufts University, Medford, Massachusetts
| |
Collapse
|
23
|
Molecular specializations of deep cortical layer analogs in songbirds. Sci Rep 2020; 10:18767. [PMID: 33127988 PMCID: PMC7599217 DOI: 10.1038/s41598-020-75773-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022] Open
Abstract
How the evolution of complex behavioral traits is associated with the emergence of novel brain pathways is largely unknown. Songbirds, like humans, learn vocalizations via tutor imitation and possess a specialized brain circuitry to support this behavior. In a comprehensive in situ hybridization effort, we show that the zebra finch vocal robust nucleus of the arcopallium (RA) shares numerous markers (e.g. SNCA, PVALB) with the adjacent dorsal intermediate arcopallium (AId), an avian analog of mammalian deep cortical layers with involvement in motor function. We also identify markers truly unique to RA and thus likely linked to modulation of vocal motor function (e.g. KCNC1, GABRE), including a subset of the known shared markers between RA and human laryngeal motor cortex (e.g. SLIT1, RTN4R, LINGO1, PLXNC1). The data provide novel insights into molecular features unique to vocal learning circuits, and lend support for the motor theory for vocal learning origin.
Collapse
|
24
|
Dalgleish HWP, Russell LE, Packer AM, Roth A, Gauld OM, Greenstreet F, Thompson EJ, Häusser M. How many neurons are sufficient for perception of cortical activity? eLife 2020; 9:e58889. [PMID: 33103656 PMCID: PMC7695456 DOI: 10.7554/elife.58889] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/17/2020] [Indexed: 01/12/2023] Open
Abstract
Many theories of brain function propose that activity in sparse subsets of neurons underlies perception and action. To place a lower bound on the amount of neural activity that can be perceived, we used an all-optical approach to drive behaviour with targeted two-photon optogenetic activation of small ensembles of L2/3 pyramidal neurons in mouse barrel cortex while simultaneously recording local network activity with two-photon calcium imaging. By precisely titrating the number of neurons stimulated, we demonstrate that the lower bound for perception of cortical activity is ~14 pyramidal neurons. We find a steep sigmoidal relationship between the number of activated neurons and behaviour, saturating at only ~37 neurons, and show this relationship can shift with learning. Furthermore, activation of ensembles is balanced by inhibition of neighbouring neurons. This surprising perceptual sensitivity in the face of potent network suppression supports the sparse coding hypothesis, and suggests that cortical perception balances a trade-off between minimizing the impact of noise while efficiently detecting relevant signals.
Collapse
Affiliation(s)
- Henry WP Dalgleish
- Wolfson Institute for Biomedical Research, University College LondonLondonUnited Kingdom
| | - Lloyd E Russell
- Wolfson Institute for Biomedical Research, University College LondonLondonUnited Kingdom
| | - Adam M Packer
- Wolfson Institute for Biomedical Research, University College LondonLondonUnited Kingdom
| | - Arnd Roth
- Wolfson Institute for Biomedical Research, University College LondonLondonUnited Kingdom
| | - Oliver M Gauld
- Wolfson Institute for Biomedical Research, University College LondonLondonUnited Kingdom
| | - Francesca Greenstreet
- Wolfson Institute for Biomedical Research, University College LondonLondonUnited Kingdom
| | - Emmett J Thompson
- Wolfson Institute for Biomedical Research, University College LondonLondonUnited Kingdom
| | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College LondonLondonUnited Kingdom
| |
Collapse
|
25
|
An avian cortical circuit for chunking tutor song syllables into simple vocal-motor units. Nat Commun 2020; 11:5029. [PMID: 33024101 PMCID: PMC7538968 DOI: 10.1038/s41467-020-18732-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
How are brain circuits constructed to achieve complex goals? The brains of young songbirds develop motor circuits that achieve the goal of imitating a specific tutor song to which they are exposed. Here, we set out to examine how song-generating circuits may be influenced early in song learning by a cortical region (NIf) at the interface between auditory and motor systems. Single-unit recordings reveal that, during juvenile babbling, NIf neurons burst at syllable onsets, with some neurons exhibiting selectivity for particular emerging syllable types. When juvenile birds listen to their tutor, NIf neurons are also activated at tutor syllable onsets, and are often selective for particular syllable types. We examine a simple computational model in which tutor exposure imprints the correct number of syllable patterns as ensembles in an interconnected NIf network. These ensembles are then reactivated during singing to train a set of syllable sequences in the motor network. Young songbirds learn to imitate their parents’ songs. Here, the authors find that, in baby birds, neurons in a brain region at the interface of auditory and motor circuits signal the onsets of song syllables during both tutoring and babbling, suggesting a specific neural mechanism for vocal imitation.
Collapse
|
26
|
Adam I, Elemans CPH. Increasing Muscle Speed Drives Changes in the Neuromuscular Transform of Motor Commands during Postnatal Development in Songbirds. J Neurosci 2020; 40:6722-6731. [PMID: 32487696 PMCID: PMC7455216 DOI: 10.1523/jneurosci.0111-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 01/04/2023] Open
Abstract
Progressive changes in vocal behavior over the course of vocal imitation leaning are often attributed exclusively to developing neural circuits, but the effects of postnatal body changes remain unknown. In songbirds, the syrinx transforms song system motor commands into sound and exhibits changes during song learning. Here we test the hypothesis that the transformation from motor commands to force trajectories by syringeal muscles functionally changes over vocal development in zebra finches. Our data collected in both sexes show that, only in males, muscle speed significantly increases and that supralinear summation occurs and increases with muscle contraction speed. Furthermore, we show that previously reported submillisecond spike timing in the avian cortex can be resolved by superfast syringeal muscles and that the sensitivity to spike timing increases with speed. Because motor neuron and muscle properties are tightly linked, we make predictions on the boundaries of the yet unknown motor code that correspond well with cortical activity. Together, we show that syringeal muscles undergo essential transformations during song learning that drastically change how neural commands are translated into force profiles and thereby acoustic features. We propose that the song system motor code must compensate for these changes to achieve its acoustic targets. Our data thus support the hypothesis that the neuromuscular transformation changes over vocal development and emphasizes the need for an embodied view of song motor learning.SIGNIFICANCE STATEMENT Fine motor skill learning typically occurs in a postnatal period when the brain is learning to control a body that is changing dramatically due to growth and development. How the developing body influences motor code formation and vice versa remains largely unknown. Here we show that vocal muscles in songbirds undergo critical transformations during song learning that drastically change how neural commands are translated into force profiles and thereby acoustic features. We propose that the motor code must compensate for these changes to achieve its acoustic targets. Our data thus support the hypothesis that the neuromuscular transformation changes over vocal development and emphasizes the need for an embodied view of song motor learning.
Collapse
Affiliation(s)
- Iris Adam
- University of Southern Denmark, Department of Biology, 5230 Odense M, Denmark
| | - Coen P H Elemans
- University of Southern Denmark, Department of Biology, 5230 Odense M, Denmark
| |
Collapse
|
27
|
Otchy TM, Michas C, Lee B, Gopalan K, Nerurkar V, Gleick J, Semu D, Darkwa L, Holinski BJ, Chew DJ, White AE, Gardner TJ. Printable microscale interfaces for long-term peripheral nerve mapping and precision control. Nat Commun 2020; 11:4191. [PMID: 32826892 PMCID: PMC7442820 DOI: 10.1038/s41467-020-18032-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 07/29/2020] [Indexed: 12/28/2022] Open
Abstract
The nascent field of bioelectronic medicine seeks to decode and modulate peripheral nervous system signals to obtain therapeutic control of targeted end organs and effectors. Current approaches rely heavily on electrode-based devices, but size scalability, material and microfabrication challenges, limited surgical accessibility, and the biomechanically dynamic implantation environment are significant impediments to developing and deploying peripheral interfacing technologies. Here, we present a microscale implantable device - the nanoclip - for chronic interfacing with fine peripheral nerves in small animal models that begins to meet these constraints. We demonstrate the capability to make stable, high signal-to-noise ratio recordings of behaviorally-linked nerve activity over multi-week timescales. In addition, we show that multi-channel, current-steering-based stimulation within the confines of the small device can achieve multi-dimensional control of a small nerve. These results highlight the potential of new microscale design and fabrication techniques for realizing viable devices for long-term peripheral interfacing.
Collapse
Affiliation(s)
- Timothy M Otchy
- Department of Biology, Boston University, Boston, MA, 02215, USA.
- Neurophotonics Center, Boston University, Boston, MA, 02215, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA.
| | - Christos Michas
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Blaire Lee
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Krithi Gopalan
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Vidisha Nerurkar
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Jeremy Gleick
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Dawit Semu
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Louis Darkwa
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Bradley J Holinski
- Bioelectronics Division, GlaxoSmithKline, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Daniel J Chew
- Bioelectronics Division, GlaxoSmithKline, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Alice E White
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
| | - Timothy J Gardner
- Department of Biology, Boston University, Boston, MA, 02215, USA.
- Neurophotonics Center, Boston University, Boston, MA, 02215, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
- Knight Campus, University of Oregon, Eugene, OR, 97405, USA.
| |
Collapse
|
28
|
Sheldon ZP, Castelino CB, Glaze CM, Bibu SP, Yau E, Schmidt MF. Regulation of vocal precision by noradrenergic modulation of a motor nucleus. J Neurophysiol 2020; 124:458-470. [DOI: 10.1152/jn.00154.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Norepinephrine (NE) function is often implicated in regulating arousal levels. Recent theory suggests that the noradrenergic system also regulates the optimization of behavior with respect to reward maximization by controlling a switch between exploration and exploitation of the specific actions that yield greatest utility. We show in the songbird that NE can act directly on a cortical motor area and cause a switch between exploratory and exploitative behavior.
Collapse
Affiliation(s)
- Zachary P. Sheldon
- Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | - Steve P. Bibu
- Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elvina Yau
- Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marc F. Schmidt
- Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
29
|
Sporn S, Hein T, Herrojo Ruiz M. Alterations in the amplitude and burst rate of beta oscillations impair reward-dependent motor learning in anxiety. eLife 2020; 9:e50654. [PMID: 32423530 PMCID: PMC7237220 DOI: 10.7554/elife.50654] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 04/08/2020] [Indexed: 01/08/2023] Open
Abstract
Anxiety results in sub-optimal motor learning, but the precise mechanisms through which this effect occurs remain unknown. Using a motor sequence learning paradigm with separate phases for initial exploration and reward-based learning, we show that anxiety states in humans impair learning by attenuating the update of reward estimates. Further, when such estimates are perceived as unstable over time (volatility), anxiety constrains adaptive behavioral changes. Neurally, anxiety during initial exploration increased the amplitude and the rate of long bursts of sensorimotor and prefrontal beta oscillations (13-30 Hz). These changes extended to the subsequent learning phase, where phasic increases in beta power and burst rate following reward feedback were linked to smaller updates in reward estimates, with a higher anxiety-related increase explaining the attenuated belief updating. These data suggest that state anxiety alters the dynamics of beta oscillations during reward processing, thereby impairing proper updating of motor predictions when learning in unstable environments.
Collapse
Affiliation(s)
- Sebastian Sporn
- School of Psychology, University of BirminghamBirminghamUnited Kingdom
- Department of Psychology, Goldsmiths University of LondonLondonUnited Kingdom
| | - Thomas Hein
- Department of Psychology, Goldsmiths University of LondonLondonUnited Kingdom
| | - Maria Herrojo Ruiz
- Department of Psychology, Goldsmiths University of LondonLondonUnited Kingdom
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
| |
Collapse
|
30
|
Jaffe PI, Brainard MS. Acetylcholine acts on songbird premotor circuitry to invigorate vocal output. eLife 2020; 9:e53288. [PMID: 32425158 PMCID: PMC7237207 DOI: 10.7554/elife.53288] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/01/2020] [Indexed: 01/14/2023] Open
Abstract
Acetylcholine is well-understood to enhance cortical sensory responses and perceptual sensitivity in aroused or attentive states. Yet little is known about cholinergic influences on motor cortical regions. Here we use the quantifiable nature of birdsong to investigate how acetylcholine modulates the cortical (pallial) premotor nucleus HVC and shapes vocal output. We found that dialyzing the cholinergic agonist carbachol into HVC increased the pitch, amplitude, tempo and stereotypy of song, similar to the natural invigoration of song that occurs when males direct their songs to females. These carbachol-induced effects were associated with increased neural activity in HVC and occurred independently of basal ganglia circuitry. Moreover, we discovered that the normal invigoration of female-directed song was also accompanied by increased HVC activity and was attenuated by blocking muscarinic acetylcholine receptors. These results indicate that, analogous to its influence on sensory systems, acetylcholine can act directly on cortical premotor circuitry to adaptively shape behavior.
Collapse
Affiliation(s)
- Paul I Jaffe
- Departments of Physiology and Psychiatry, University of California, San FranciscoSan FranciscoUnited States
- Center for Integrative Neuroscience, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| | - Michael S Brainard
- Departments of Physiology and Psychiatry, University of California, San FranciscoSan FranciscoUnited States
- Center for Integrative Neuroscience, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
31
|
New Insights into the Avian Song System and Neuronal Control of Learned Vocalizations. THE NEUROETHOLOGY OF BIRDSONG 2020. [DOI: 10.1007/978-3-030-34683-6_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
32
|
Athalye VR, Carmena JM, Costa RM. Neural reinforcement: re-entering and refining neural dynamics leading to desirable outcomes. Curr Opin Neurobiol 2019; 60:145-154. [PMID: 31877493 DOI: 10.1016/j.conb.2019.11.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 01/06/2023]
Abstract
How do organisms learn to do again, on-demand, a behavior that led to a desirable outcome? Dopamine-dependent cortico-striatal plasticity provides a framework for learning behavior's value, but it is less clear how it enables the brain to re-enter desired behaviors and refine them over time. Reinforcing behavior is achieved by re-entering and refining the neural patterns that produce it. We review studies using brain-machine interfaces which reveal that reinforcing cortical population activity requires cortico-basal ganglia circuits. Then, we propose a formal framework for how reinforcement in cortico-basal ganglia circuits acts on the neural dynamics of cortical populations. We propose two parallel mechanisms: i) fast reinforcement which selects the inputs that permit the re-entrance of the particular cortical population dynamics which naturally produced the desired behavior, and ii) slower reinforcement which leads to refinement of cortical population dynamics and more reliable production of neural trajectories driving skillful behavior on-demand.
Collapse
Affiliation(s)
- Vivek R Athalye
- Zuckerman Mind Brain Behavior Institute, Departments of Neuroscience and Neurology, Columbia University, New York, NY, USA
| | - Jose M Carmena
- Helen Wills Neuroscience Institute, Department of Electrical Engineering and Computer Sciences, University of California-Berkeley, Berkeley, CA, USA
| | - Rui M Costa
- Zuckerman Mind Brain Behavior Institute, Departments of Neuroscience and Neurology, Columbia University, New York, NY, USA.
| |
Collapse
|
33
|
Friedrich SR, Lovell PV, Kaser TM, Mello CV. Exploring the molecular basis of neuronal excitability in a vocal learner. BMC Genomics 2019; 20:629. [PMID: 31375088 PMCID: PMC6679542 DOI: 10.1186/s12864-019-5871-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/31/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Vocal learning, the ability to learn to produce vocalizations through imitation, relies on specialized brain circuitry known in songbirds as the song system. While the connectivity and various physiological properties of this system have been characterized, the molecular genetic basis of neuronal excitability in song nuclei remains understudied. We have focused our efforts on examining voltage-gated ion channels to gain insight into electrophysiological and functional features of vocal nuclei. A previous investigation of potassium channel genes in zebra finches (Taeniopygia guttata) revealed evolutionary modifications unique to songbirds, as well as transcriptional specializations in the song system [Lovell PV, Carleton JB, Mello CV. BMC Genomics 14:470 2013]. Here, we expand this approach to sodium, calcium, and chloride channels along with their modulatory subunits using comparative genomics and gene expression analysis encompassing microarrays and in situ hybridization. RESULTS We found 23 sodium, 38 calcium, and 33 chloride channel genes (HGNC-based classification) in the zebra finch genome, several of which were previously unannotated. We determined 15 genes are missing relative to mammals, including several genes (CLCAs, BEST2) linked to olfactory transduction. The majority of sodium and calcium but few chloride channels showed differential expression in the song system, among them SCN8A and CACNA1E in the direct motor pathway, and CACNG4 and RYR2 in the anterior forebrain pathway. In several cases, we noted a seemingly coordinated pattern across multiple nuclei (SCN1B, SCN3B, SCN4B, CACNB4) or sparse expression (SCN1A, CACNG5, CACNA1B). CONCLUSION The gene families examined are highly conserved between avian and mammalian lineages. Several cases of differential expression likely support high-frequency and burst firing in specific song nuclei, whereas cases of sparse patterns of expression may contribute to the unique electrophysiological signatures of distinct cell populations. These observations lay the groundwork for manipulations to determine how ion channels contribute to the neuronal excitability properties of vocal learning systems.
Collapse
Affiliation(s)
- Samantha R. Friedrich
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 Sam Jackson Park Rd L470, Portland, OR USA
| | - Peter V. Lovell
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 Sam Jackson Park Rd L470, Portland, OR USA
| | - Taylor M. Kaser
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 Sam Jackson Park Rd L470, Portland, OR USA
| | - Claudio V. Mello
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 Sam Jackson Park Rd L470, Portland, OR USA
| |
Collapse
|
34
|
Vocal Motor Performance in Birdsong Requires Brain-Body Interaction. eNeuro 2019; 6:ENEURO.0053-19.2019. [PMID: 31182473 PMCID: PMC6595438 DOI: 10.1523/eneuro.0053-19.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
|
35
|
Pyle R, Rosenbaum R. A Reservoir Computing Model of Reward-Modulated Motor Learning and Automaticity. Neural Comput 2019; 31:1430-1461. [PMID: 31113300 DOI: 10.1162/neco_a_01198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Reservoir computing is a biologically inspired class of learning algorithms in which the intrinsic dynamics of a recurrent neural network are mined to produce target time series. Most existing reservoir computing algorithms rely on fully supervised learning rules, which require access to an exact copy of the target response, greatly reducing the utility of the system. Reinforcement learning rules have been developed for reservoir computing, but we find that they fail to converge on complex motor tasks. Current theories of biological motor learning pose that early learning is controlled by dopamine-modulated plasticity in the basal ganglia that trains parallel cortical pathways through unsupervised plasticity as a motor task becomes well learned. We developed a novel learning algorithm for reservoir computing that models the interaction between reinforcement and unsupervised learning observed in experiments. This novel learning algorithm converges on simulated motor tasks on which previous reservoir computing algorithms fail and reproduces experimental findings that relate Parkinson's disease and its treatments to motor learning. Hence, incorporating biological theories of motor learning improves the effectiveness and biological relevance of reservoir computing models.
Collapse
Affiliation(s)
- Ryan Pyle
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, U.S.A.
| | - Robert Rosenbaum
- Department of Applied and Computational Mathematics and Statistics and Interdisciplinary Center for Network Science and Applications, University of Notre Dame, Notre Dame, IN 46556, U.S.A.
| |
Collapse
|
36
|
Vellema M, Diales Rocha M, Bascones S, Zsebők S, Dreier J, Leitner S, Van der Linden A, Brewer J, Gahr M. Accelerated redevelopment of vocal skills is preceded by lasting reorganization of the song motor circuitry. eLife 2019; 8:43194. [PMID: 31099755 PMCID: PMC6570526 DOI: 10.7554/elife.43194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/16/2019] [Indexed: 01/16/2023] Open
Abstract
Complex motor skills take considerable time and practice to learn. Without continued practice the level of skill performance quickly degrades, posing a problem for the timely utilization of skilled motor behaviors. Here we quantified the recurring development of vocal motor skills and the accompanying changes in synaptic connectivity in the brain of a songbird, while manipulating skill performance by consecutively administrating and withdrawing testosterone. We demonstrate that a songbird with prior singing experience can significantly accelerate the re-acquisition of vocal performance. We further demonstrate that an increase in vocal performance is accompanied by a pronounced synaptic pruning in the forebrain vocal motor area HVC, a reduction that is not reversed when birds stop singing. These results provide evidence that lasting synaptic changes in the motor circuitry are associated with the savings of motor skills, enabling a rapid recovery of motor performance under environmental time constraints.
Collapse
Affiliation(s)
- Michiel Vellema
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany.,Bio Imaging Lab, University of Antwerp, Antwerp, Belgium
| | - Mariana Diales Rocha
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Sabrina Bascones
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Sándor Zsebők
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, Hungary
| | - Jes Dreier
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Stefan Leitner
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | | | - Jonathan Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Manfred Gahr
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
37
|
The Role of Sleep in Song Learning Processes in Songbird. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/b978-0-12-813743-7.00026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
38
|
Yuan RC, Bottjer SW. Differential developmental changes in cortical representations of auditory-vocal stimuli in songbirds. J Neurophysiol 2018; 121:530-548. [PMID: 30540540 DOI: 10.1152/jn.00714.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Procedural skill learning requires iterative comparisons between feedback of self-generated motor output and a goal sensorimotor pattern. In juvenile songbirds, neural representations of both self-generated behaviors (each bird's own immature song) and the goal motor pattern (each bird's adult tutor song) are essential for vocal learning, yet little is known about how these behaviorally relevant stimuli are encoded. We made extracellular recordings during song playback in anesthetized juvenile and adult zebra finches ( Taeniopygia guttata) in adjacent cortical regions RA (robust nucleus of the arcopallium), AId (dorsal intermediate arcopallium), and RA cup, each of which is well situated to integrate auditory-vocal information: RA is a motor cortical region that drives vocal output, AId is an adjoining cortical region whose projections converge with basal ganglia loops for song learning in the dorsal thalamus, and RA cup surrounds RA and receives inputs from primary and secondary auditory cortex. We found strong developmental differences in neural selectivity within RA, but not in AId or RA cup. Juvenile RA neurons were broadly responsive to multiple songs but preferred juvenile over adult vocal sounds; in addition, spiking responses lacked consistent temporal patterning. By adulthood, RA neurons responded most strongly to each bird's own song with precisely timed spiking activity. In contrast, we observed a complete lack of song responsivity in both juvenile and adult AId, even though this region receives song-responsive inputs. A surprisingly large proportion of sites in RA cup of both juveniles and adults did not respond to song playback, and responsive sites showed little evidence of song selectivity. NEW & NOTEWORTHY Motor skill learning entails changes in selectivity for behaviorally relevant stimuli across cortical regions, yet the neural representation of these stimuli remains understudied. We investigated how information important for vocal learning in zebra finches is represented in regions analogous to infragranular layers of motor and auditory cortices during vs. after the developmentally regulated learning period. The results provide insight into how neurons in higher level stages of cortical processing represent stimuli important for motor skill learning.
Collapse
Affiliation(s)
- Rachel C Yuan
- Neuroscience Graduate Program, University of Southern California , Los Angeles, California
| | - Sarah W Bottjer
- Section of Neurobiology, University of Southern California , Los Angeles, California
| |
Collapse
|
39
|
The Avian Basal Ganglia Are a Source of Rapid Behavioral Variation That Enables Vocal Motor Exploration. J Neurosci 2018; 38:9635-9647. [PMID: 30249800 DOI: 10.1523/jneurosci.2915-17.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 11/21/2022] Open
Abstract
The basal ganglia (BG) participate in aspects of reinforcement learning that require evaluation and selection of motor programs associated with improved performance. However, whether the BG additionally contribute to behavioral variation ("motor exploration") that forms the substrate for such learning remains unclear. In songbirds, a tractable system for studying BG-dependent skill learning, a role for the BG in generating exploratory variability, has been challenged by the finding that lesions of Area X, the song-specific component of the BG, have no lasting effects on several forms of vocal variability that have been studied. Here we demonstrate that lesions of Area X in adult male zebra finches (Taeniopygia gutatta) permanently eliminate rapid within-syllable variation in fundamental frequency (FF), which can act as motor exploration to enable reinforcement-driven song learning. In addition, we found that this within-syllable variation is elevated in juveniles and in adults singing alone, conditions that have been linked to enhanced song plasticity and elevated neural variability in Area X. Consistent with a model that variability is relayed from Area X, via its cortical target, the lateral magnocellular nucleus of the anterior nidopallium (LMAN), to influence song motor circuitry, we found that lesions of LMAN also eliminate within-syllable variability. Moreover, we found that electrical perturbation of LMAN can drive fluctuations in FF that mimic naturally occurring within-syllable variability. Together, these results demonstrate that the BG are a central source of rapid behavioral variation that can serve as motor exploration for vocal learning.SIGNIFICANCE STATEMENT Many complex motor skills, such as speech, are not innately programmed but are learned gradually through trial and error. Learning involves generating exploratory variability in action ("motor exploration") and evaluating subsequent performance to acquire motor programs that lead to improved performance. Although it is well established that the basal ganglia (BG) process signals relating to action evaluation and selection, whether and how the BG promote exploratory motor variability remain unclear. We investigated this question in songbirds, which learn to produce complex vocalizations through trial and error. In contrast with previous studies that did not find effects of BG lesions on vocal motor variability, we demonstrate that the BG are an essential source of rapid behavioral variation linked to vocal learning.
Collapse
|
40
|
Vocal practice regulates singing activity-dependent genes underlying age-independent vocal learning in songbirds. PLoS Biol 2018; 16:e2006537. [PMID: 30208028 PMCID: PMC6152990 DOI: 10.1371/journal.pbio.2006537] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/24/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022] Open
Abstract
The development of highly complex vocal skill, like human language and bird songs, is underlain by learning. Vocal learning, even when occurring in adulthood, is thought to largely depend on a sensitive/critical period during postnatal development, and learned vocal patterns emerge gradually as the long-term consequence of vocal practice during this critical period. In this scenario, it is presumed that the effect of vocal practice is thus mainly limited by the intrinsic timing of age-dependent maturation factors that close the critical period and reduce neural plasticity. However, an alternative, as-yet untested hypothesis is that vocal practice itself, independently of age, regulates vocal learning plasticity. Here, we explicitly discriminate between the influences of age and vocal practice using a songbird model system. We prevented zebra finches from singing during the critical period of sensorimotor learning by reversible postural manipulation. This enabled to us to separate lifelong vocal experience from the effects of age. The singing-prevented birds produced juvenile-like immature song and retained sufficient ability to acquire a tutored song even at adulthood when allowed to sing freely. Genome-wide gene expression network analysis revealed that this adult vocal plasticity was accompanied by an intense induction of singing activity-dependent genes, similar to that observed in juvenile birds, rather than of age-dependent genes. The transcriptional changes of activity-dependent genes occurred in the vocal motor robust nucleus of the arcopallium (RA) projection neurons that play a critical role in the production of song phonology. These gene expression changes were accompanied by neuroanatomical changes: dendritic spine pruning in RA projection neurons. These results show that self-motivated practice itself changes the expression dynamics of activity-dependent genes associated with vocal learning plasticity and that this process is not tightly linked to age-dependent maturational factors. How is plasticity associated with vocal learning regulated during a critical period? Although there are abundant studies on the critical period in sensory systems, which are passively regulated by the external environment, few studies have manipulated the sensorimotor experience through the entire critical period. Thus, it is a commonly held belief that age or intrinsic maturation is a crucial factor for the closure of the critical period of vocal learning. Contrary to this idea, our study using songbirds provides a new insight that self-motivated vocal practice, not age, regulates vocal learning plasticity during the critical period. To examine the effects of vocal practice on vocal learning, we prevented juvenile zebra finches from singing during the critical period by postural manipulation, which separated the contribution of lifelong vocal experience from that of age. When these birds were allowed to freely sing as adults, they generated highly plastic songs and maintained the ability to mimic tutored songs, as normal juveniles did. Genome-wide transcriptome analysis revealed that both juveniles and singing-prevented adults, but not normally reared adults, expressed a similar set of singing-dependent genes in a song nucleus in the brain that regulates syllable acoustics. However, age-dependent genes were still similarly expressed in both singing-prevented and normally reared adult birds. These results exhibit that vocal learning plasticity is actively controlled by self-motivated vocal practice.
Collapse
|
41
|
Puzerey PA, Maher K, Prasad N, Goldberg JH. Vocal learning in songbirds requires cholinergic signaling in a motor cortex-like nucleus. J Neurophysiol 2018; 120:1796-1806. [PMID: 29995601 DOI: 10.1152/jn.00078.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cholinergic inputs to cortex modulate plasticity and sensory processing, yet little is known about their role in motor control. Here, we show that cholinergic signaling in a songbird vocal motor cortical area, the robust nucleus of the arcopallium (RA), is required for song learning. Reverse microdialysis of nicotinic and muscarinic receptor antagonists into RA in juvenile birds did not significantly affect syllable timing or acoustic structure during vocal babbling. However, chronic blockade over weeks reduced singing quantity and impaired learning, resulting in an impoverished song with excess variability, abnormal acoustic features, and reduced similarity to tutor song. The demonstration that cholinergic signaling in a motor cortical area is required for song learning motivates the songbird as a tractable model system to identify roles of the basal forebrain cholinergic system in motor control. NEW & NOTEWORTHY Cholinergic inputs to cortex are evolutionarily conserved and implicated in sensory processing and synaptic plasticity. However, functions of cholinergic signals in motor areas are understudied and poorly understood. Here, we show that cholinergic signaling in a songbird vocal motor cortical area is not required for normal vocal variability during babbling but is essential for developmental song learning. Cholinergic modulation of motor cortex is thus required for learning but not for the ability to sing.
Collapse
Affiliation(s)
- Pavel A Puzerey
- Department of Neurobiology and Behavior, Cornell University , Ithaca, New York
| | - Kamal Maher
- Department of Neurobiology and Behavior, Cornell University , Ithaca, New York
| | - Nikil Prasad
- Department of Neurobiology and Behavior, Cornell University , Ithaca, New York
| | - Jesse H Goldberg
- Department of Neurobiology and Behavior, Cornell University , Ithaca, New York
| |
Collapse
|
42
|
Hayase S, Wada K. Singing activity-driven Arc expression associated with vocal acoustic plasticity in juvenile songbird. Eur J Neurosci 2018; 48:1728-1742. [PMID: 29935048 PMCID: PMC6099458 DOI: 10.1111/ejn.14057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 05/08/2018] [Accepted: 06/07/2018] [Indexed: 02/04/2023]
Abstract
Learned vocalization, including birdsong and human speech, is acquired through self‐motivated vocal practice during the sensitive period of vocal learning. The zebra finch (Taeniopygia guttata) develops a song characterized by vocal variability and crystallizes a defined song pattern as adulthood. However, it remains unknown how vocal variability is regulated with diurnal singing during the sensorimotor learning period. Here, we investigated the expression of activity‐dependent neuroplasticity‐related gene Arc during the early plastic song phase to examine its potential association with vocal plasticity. We first confirmed that multiple acoustic features of syllables in the plastic song were dramatically and simultaneously modulated during the first 3 hr of singing in a day and the altered features were maintained until sleep. In a concurrent manner, Arc was intensely induced during morning singing and a subsequent attenuation during afternoon singing in the robust nucleus of the arcopallium (RA) and the interfacial nucleus of the nidopallium (NIf). The singing‐driven Arc expression was not altered by circadian rhythm, but rather reduced during the day as juveniles produced more songs. Song stabilization accelerated by testosterone administration in juveniles was accompanied with attenuation of Arc induction in RA and NIf. In contrast, although early‐deafened birds produced highly unstable song even at adulthood, singing‐driven Arc expression was not different between intact and early‐deafened adults. These results suggest a potential functional link between Arc expression in RA and NIf and vocal plasticity during the sensorimotor phase of song learning. Nonetheless, Arc expression did not reflect the quality of bird's own song or auditory feedback.
Collapse
Affiliation(s)
- Shin Hayase
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kazuhiro Wada
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Biological Sciences, Hokkaido University, Sapporo, Hokkaido, Japan.,Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
43
|
Michail G, Nikulin VV, Curio G, Maess B, Herrojo Ruiz M. Disruption of Boundary Encoding During Sensorimotor Sequence Learning: An MEG Study. Front Hum Neurosci 2018; 12:240. [PMID: 29946246 PMCID: PMC6005865 DOI: 10.3389/fnhum.2018.00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/24/2018] [Indexed: 11/13/2022] Open
Abstract
Music performance relies on the ability to learn and execute actions and their associated sounds. The process of learning these auditory-motor contingencies depends on the proper encoding of the serial order of the actions and sounds. Among the different serial positions of a behavioral sequence, the first and last (boundary) elements are particularly relevant. Animal and patient studies have demonstrated a specific neural representation for boundary elements in prefrontal cortical regions and in the basal ganglia, highlighting the relevance of their proper encoding. The neural mechanisms underlying the encoding of sequence boundaries in the general human population remain, however, largely unknown. In this study, we examined how alterations of auditory feedback, introduced at different ordinal positions (boundary or within-sequence element), affect the neural and behavioral responses during sensorimotor sequence learning. Analysing the neuromagnetic signals from 20 participants while they performed short piano sequences under the occasional effect of altered feedback (AF), we found that at around 150-200 ms post-keystroke, the neural activities in the dorsolateral prefrontal cortex (DLPFC) and supplementary motor area (SMA) were dissociated for boundary and within-sequence elements. Furthermore, the behavioral data demonstrated that feedback alterations on boundaries led to greater performance costs, such as more errors in the subsequent keystrokes. These findings jointly support the idea that the proper encoding of boundaries is critical in acquiring sensorimotor sequences. They also provide evidence for the involvement of a distinct neural circuitry in humans including prefrontal and higher-order motor areas during the encoding of the different classes of serial order.
Collapse
Affiliation(s)
- Georgios Michail
- Neurophysics Group, Department of Neurology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Vadim V. Nikulin
- Neurophysics Group, Department of Neurology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Center for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russia
| | - Gabriel Curio
- Neurophysics Group, Department of Neurology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Burkhard Maess
- Research Group “MEG and Cortical Networks”, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - María Herrojo Ruiz
- Neurophysics Group, Department of Neurology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychology, Whitehead Building, Goldsmiths, University of London, London, United Kingdom
| |
Collapse
|
44
|
Katlowitz KA, Picardo MA, Long MA. Stable Sequential Activity Underlying the Maintenance of a Precisely Executed Skilled Behavior. Neuron 2018; 98:1133-1140.e3. [PMID: 29861283 DOI: 10.1016/j.neuron.2018.05.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/10/2018] [Accepted: 05/09/2018] [Indexed: 11/17/2022]
Abstract
A vast array of motor skills can be maintained throughout life. Do these behaviors require stability of individual neuron tuning or can the output of a given circuit remain constant despite fluctuations in single cells? This question is difficult to address due to the variability inherent in most motor actions studied in the laboratory. A notable exception, however, is the courtship song of the adult zebra finch, which is a learned, highly precise motor act mediated by orderly dynamics within premotor neurons of the forebrain. By longitudinally tracking the activity of excitatory projection neurons during singing using two-photon calcium imaging, we find that both the number and the precise timing of song-related spiking events remain nearly identical over the span of several weeks to months. These findings demonstrate that learned, complex behaviors can be stabilized by maintaining precise and invariant tuning at the level of single neurons.
Collapse
Affiliation(s)
- Kalman A Katlowitz
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Michel A Picardo
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Michael A Long
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
45
|
Pre-Bout Neural Activity Changes in Premotor Nucleus HVC Correlate with Successful Initiation of Learned Song Sequence. J Neurosci 2018; 38:5925-5938. [PMID: 29853628 DOI: 10.1523/jneurosci.3003-17.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/31/2022] Open
Abstract
Preparatory activity, characterized by gradual, longer timescale changes in neural activity, is present in a number of different brain areas before the onset of simple movements and is believed to be important for movement initiation. However, relatively little is known about such activity before initiation of naturally learned movement sequences. The song of an adult male zebra finch is a well studied example of a naturally learned movement sequence and previous studies have shown robust premotor activity immediately before song. Here, I characterize longer timescale changes in neural activity in adult male zebra finch premotor nucleus HVC before onset of song bouts. I show that interneurons and a subset of basal-ganglia-projecting neurons change their activity several hundred milliseconds before song bout onset. Interneurons increased their activity, whereas basal-ganglia-projecting neurons either increased or decreased their activity. Such changes in neural activity were larger, started earlier, and were more common specifically before song bouts that began with the short, repetitive, introductory notes (INs) characteristic of zebra finch song bouts. Further, stronger and earlier changes were also correlated with successful song sequence initiation. Finally, a small fraction of basal-ganglia-projecting neurons that increased their activity before song bout onset did not have song or IN-related activity, suggesting a specialized preparatory role for such neurons. Overall, these data suggest that pre-bout activity in HVC represents preparatory activity important for initiation of a naturally learned movement sequence.SIGNIFICANCE STATEMENT Changes in neuronal activity well before the onset of simple movements are thought to be important for movement initiation. However, a number of animal movements consist of sequences of simple movements and relatively little is known about neuronal activity before such movement sequences. Using adult zebra finch song, a well studied example of a movement sequence, I show here that neurons in premotor nucleus HVC change their activity hundreds of milliseconds before song bout onset. In most neurons, the presence of such changes correlated with successful song sequence initiation. My results show the presence of preparatory neural activity in HVC and suggest a role for HVC in sequence initiation in addition to its established role in song sequence timing.
Collapse
|
46
|
Athalye VR, Santos FJ, Carmena JM, Costa RM. Evidence for a neural law of effect. Science 2018; 359:1024-1029. [PMID: 29496877 DOI: 10.1126/science.aao6058] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/08/2018] [Indexed: 01/11/2023]
Abstract
Thorndike's law of effect states that actions that lead to reinforcements tend to be repeated more often. Accordingly, neural activity patterns leading to reinforcement are also reentered more frequently. Reinforcement relies on dopaminergic activity in the ventral tegmental area (VTA), and animals shape their behavior to receive dopaminergic stimulation. Seeking evidence for a neural law of effect, we found that mice learn to reenter more frequently motor cortical activity patterns that trigger optogenetic VTA self-stimulation. Learning was accompanied by gradual shaping of these patterns, with participating neurons progressively increasing and aligning their covariance to that of the target pattern. Motor cortex patterns that lead to phasic dopaminergic VTA activity are progressively reinforced and shaped, suggesting a mechanism by which animals select and shape actions to reliably achieve reinforcement.
Collapse
Affiliation(s)
- Vivek R Athalye
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal.,Department of Electrical Engineering and Computer Sciences, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Fernando J Santos
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal
| | - Jose M Carmena
- Department of Electrical Engineering and Computer Sciences, University of California-Berkeley, Berkeley, CA 94720, USA. .,Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, CA 94720, USA.,Joint Graduate Group in Bioengineering University of California-Berkeley and University of California-San Francisco, Berkeley, CA 94720, USA
| | - Rui M Costa
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal. .,Departments of Neuroscience and Neurology, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| |
Collapse
|
47
|
Wolff SB, Ölveczky BP. The promise and perils of causal circuit manipulations. Curr Opin Neurobiol 2018; 49:84-94. [PMID: 29414070 DOI: 10.1016/j.conb.2018.01.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/27/2017] [Accepted: 01/15/2018] [Indexed: 02/07/2023]
Abstract
The development of increasingly sophisticated methods for recording and manipulating neural activity is revolutionizing neuroscience. By probing how activity patterns in different types of neurons and circuits contribute to behavior, these tools can help inform mechanistic models of brain function and explain the roles of distinct circuit elements. However, in systems where functions are distributed over large networks, interpreting causality experiments can be challenging. Here we review common assumptions underlying circuit manipulations in behaving animals and discuss the strengths and limitations of different approaches.
Collapse
Affiliation(s)
- Steffen Be Wolff
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Bence P Ölveczky
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
48
|
The Magnitude of Trial-By-Trial Neural Variability Is Reproducible over Time and across Tasks in Humans. eNeuro 2017; 4:eN-NWR-0292-17. [PMID: 29279861 PMCID: PMC5739532 DOI: 10.1523/eneuro.0292-17.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 11/21/2022] Open
Abstract
Numerous studies have shown that neural activity in sensory cortices is remarkably variable over time and across trials even when subjects are presented with an identical repeating stimulus or task. This trial-by-trial neural variability is relatively large in the prestimulus period and considerably smaller (quenched) following stimulus presentation. Previous studies have suggested that the magnitude of neural variability affects behavior such that perceptual performance is better on trials and in individuals where variability quenching is larger. To what degree are neural variability magnitudes of individual subjects flexible or static? Here, we used EEG recordings from adult humans to demonstrate that neural variability magnitudes in visual cortex are remarkably consistent across different tasks and recording sessions. While magnitudes of neural variability differed dramatically across individual subjects, they were surprisingly stable across four tasks with different stimuli, temporal structures, and attentional/cognitive demands as well as across experimental sessions separated by one year. These experiments reveal that, in adults, neural variability magnitudes are mostly solidified individual characteristics that change little with task or time, and are likely to predispose individual subjects to exhibit distinct behavioral capabilities.
Collapse
|
49
|
Achiro JM, Shen J, Bottjer SW. Neural activity in cortico-basal ganglia circuits of juvenile songbirds encodes performance during goal-directed learning. eLife 2017; 6:e26973. [PMID: 29256393 PMCID: PMC5762157 DOI: 10.7554/elife.26973] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 12/02/2017] [Indexed: 11/13/2022] Open
Abstract
Cortico-basal ganglia circuits are thought to mediate goal-directed learning by a process of outcome evaluation to gradually select appropriate motor actions. We investigated spiking activity in core and shell subregions of the cortical nucleus LMAN during development as juvenile zebra finches are actively engaged in evaluating feedback of self-generated behavior in relation to their memorized tutor song (the goal). Spiking patterns of single neurons in both core and shell subregions during singing correlated with acoustic similarity to tutor syllables, suggesting a process of outcome evaluation. Both core and shell neurons encoded tutor similarity via either increases or decreases in firing rate, although only shell neurons showed a significant association at the population level. Tutor similarity predicted firing rates most strongly during early stages of learning, and shell but not core neurons showed decreases in response variability across development, suggesting that the activity of shell neurons reflects the progression of learning.
Collapse
Affiliation(s)
- Jennifer M Achiro
- Neuroscience Graduate ProgramUniversity of Southern CaliforniaLos AngelesUnited States
| | - John Shen
- Neuroscience Graduate ProgramUniversity of Southern CaliforniaLos AngelesUnited States
| | - Sarah W Bottjer
- Section of NeurobiologyUniversity of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
50
|
Mackevicius EL, Fee MS. Building a state space for song learning. Curr Opin Neurobiol 2017; 49:59-68. [PMID: 29268193 DOI: 10.1016/j.conb.2017.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/05/2017] [Accepted: 12/02/2017] [Indexed: 11/29/2022]
Abstract
The songbird system has shed light on how the brain produces precisely timed behavioral sequences, and how the brain implements reinforcement learning (RL). RL is a powerful strategy for learning what action to produce in each state, but requires a unique representation of the states involved in the task. Songbird RL circuitry is thought to operate using a representation of each moment within song syllables, consistent with the sparse sequential bursting of neurons in premotor cortical nucleus HVC. However, such sparse sequences are not present in very young birds, which sing highly variable syllables of random lengths. Here, we review and expand upon a model for how the songbird brain could construct latent sequences to support RL, in light of new data elucidating connections between HVC and auditory cortical areas. We hypothesize that learning occurs via four distinct plasticity processes: 1) formation of 'tutor memory' sequences in auditory areas; 2) formation of appropriately-timed latent HVC sequences, seeded by inputs from auditory areas spontaneously replaying the tutor song; 3) strengthening, during spontaneous replay, of connections from HVC to auditory neurons of corresponding timing in the 'tutor memory' sequence, aligning auditory and motor representations for subsequent song evaluation; and 4) strengthening of connections from premotor neurons to motor output neurons that produce the desired sounds, via well-described song RL circuitry.
Collapse
Affiliation(s)
- Emily Lambert Mackevicius
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, 46-5133 Cambridge, MA, USA
| | - Michale Sean Fee
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, 46-5133 Cambridge, MA, USA.
| |
Collapse
|