1
|
Ren H, Zhang R, Zhang H, Bian C. Ecnomotopic olfactory receptors in metabolic regulation. Biomed Pharmacother 2024; 179:117403. [PMID: 39241572 DOI: 10.1016/j.biopha.2024.117403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
Olfactory receptors are seven-transmembrane G-protein-coupled receptors on the cell surface. Over the past few decades, evidence has been mounting that olfactory receptors are not unique to the nose and that their ectopic existence plays an integral role in extranasal diseases. Coupled with the discovery of many natural or synthetic odor-compound ligands, new roles of ecnomotopic olfactory receptors regulating blood glucose, obesity, blood pressure, and other metabolism-related diseases are emerging. Many well-known scientific journals have called for attention to extranasal functions of ecnomotopic olfactory receptors. Thus, the prospect of ecnomotopic olfactory receptors in drug target research has been greatly underestimated. Here, we have provided an overview for the role of ecnomotopic olfactory receptors in metabolic diseases, focusing on their effects on various metabolic tissues, and discussed the possible molecular biological and pathophysiological mechanisms, which provide the basis for drug development and clinical application targeting the function of ecnomotopic olfactory receptors via literature machine learning and screening.
Collapse
Affiliation(s)
- Huiwen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Ruijing Zhang
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Haibo Zhang
- Departments of Infectious Disease, the Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Che Bian
- Department of General Medicine, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
2
|
Shi K, Jiao Y, Yang L, Yuan G, Jia J. New insights into the roles of olfactory receptors in cardiovascular disease. Mol Cell Biochem 2024; 479:1615-1626. [PMID: 38761351 DOI: 10.1007/s11010-024-05024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024]
Abstract
Olfactory receptors (ORs) are G protein coupled receptors (GPCRs) with seven transmembrane domains that bind to specific exogenous chemical ligands and transduce intracellular signals. They constitute the largest gene family in the human genome. They are expressed in the epithelial cells of the olfactory organs and in the non-olfactory tissues such as the liver, kidney, heart, lung, pancreas, intestines, muscle, testis, placenta, cerebral cortex, and skin. They play important roles in the normal physiological and pathophysiological mechanisms. Recent evidence has highlighted a close association between ORs and several metabolic diseases. Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality globally. Furthermore, ORs play an essential role in the development and functional regulation of the cardiovascular system and are implicated in the pathophysiological mechanisms of CVDs, including atherosclerosis (AS), heart failure (HF), aneurysms, and hypertension (HTN). This review describes the specific mechanistic roles of ORs in the CVDs, and highlights the future clinical application prospects of ORs in the diagnosis, treatment, and prevention of the CVDs.
Collapse
Affiliation(s)
- Kangru Shi
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yang Jiao
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ling Yang
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Jue Jia
- Department of Endocrinology and Metabolissm, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
3
|
Abaffy T, Fu O, Harume-Nagai M, Goldenberg JM, Kenyon V, Kenakin T. Intracellular Allosteric Antagonist of the Olfactory Receptor OR51E2. Mol Pharmacol 2024; 106:21-32. [PMID: 38719475 PMCID: PMC11187688 DOI: 10.1124/molpharm.123.000843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/16/2024] [Indexed: 06/20/2024] Open
Abstract
Olfactory receptors are members of class A (rhodopsin-like) family of G protein-coupled receptors (GPCRs). Their expression and function have been increasingly studied in nonolfactory tissues, and many have been identified as potential therapeutic targets. In this manuscript, we focus on the discovery of novel ligands for the olfactory receptor family 51 subfamily E2 (OR51E2). We performed an artificial intelligence-based virtual drug screen of a ∼2.2 million small molecule library. Cell-based functional assay identified compound 80 (C80) as an antagonist and inverse agonist, and detailed pharmacological analysis revealed C80 acts as a negative allosteric modulator by significantly decreasing the agonist efficacy, while having a minimal effect on receptor affinity for agonist. C80 binds to an allosteric binding site formed by a network of nine residues localized in the intracellular parts of transmembrane domains 3, 5, 6, 7, and H8, which also partially overlaps with a G protein binding site. Mutational experiments of residues involved in C80 binding uncovered the significance of the C2406.37 position in blocking the activation-related conformational change and keeping the receptor in the inactive form. Our study provides a mechanistic understanding of the negative allosteric action of C80 on agonist-ctivated OR51E2. We believe the identification of the antagonist of OR51E2 will enable a multitude of studies aiming to determine the functional role of this receptor in specific biologic processes. SIGNIFICANCE STATEMENT: OR51E2 has been implicated in various biological processes, and its antagonists that can effectively modulate its activity have therapeutic potential. Here we report the discovery of a negative allosteric modulator of OR51E2 and provide a mechanistic understanding of its action. We demonstrate that this modulator has an inhibitory effect on the efficacy of the agonist for the receptor and reveal a network of nine residues that constitute its binding pocket, which also partially overlaps with the G protein binding site.
Collapse
Affiliation(s)
- Tatjana Abaffy
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| | - Olivia Fu
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| | - Maira Harume-Nagai
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| | - Josh M Goldenberg
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| | - Victor Kenyon
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| | - Terry Kenakin
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| |
Collapse
|
4
|
Kang T, Zhu L, Xue Y, Yang Q, Lei Q, Wang Q. Overexpression of olfactory receptor 78 ameliorates brain injury in cerebral ischaemia-reperfusion rats by activating Prkaca-mediated cAMP/PKA-MAPK pathway. J Cell Mol Med 2024; 28:e18366. [PMID: 38856956 PMCID: PMC11163950 DOI: 10.1111/jcmm.18366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 06/11/2024] Open
Abstract
Ischemic stroke is one of the main causes of disability and death. However, recanalization of occluded cerebral arteries is effective only within a very narrow time window. Therefore, it is particularly important to find neuroprotective biological targets for cerebral artery recanalization. Here, gene expression profiles of datasets GSE160500 and GSE97537 were downloaded from the GEO database, which were related to ischemic stroke in rats. Olfactory receptor 78 (Olfr78) was screened, and which highly associated with Calcium signalling pathway and MAPK pathway. Interacting protein of Olfr78, Prkaca, was predicted by STRING, and their interaction was validated by Co-IP analysis. Then, a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) and a neuronal cell model stimulated by oxygen-glucose deprivation/reoxygenation (OGD/R) were constructed, and the results showed that expression of Olfr78 and Prkaca was downregulated in MCAO rats and OGD/R-stimulated neurons. Overexpression of Olfr78 or Prkaca inhibited the secretion of inflammatory factors, Ca2+ overload, and OGD/R-induced neuronal apoptosis. Moreover, Overexpression of Prkaca increased protein levels of cAMP, PKA and phosphorylated p38 in OGD/R-stimulated neurons, while SB203580, a p38 inhibitor, treatment inhibited activation of the cAMP/PKA-MAPK pathway and counteracted the effect of Olfr78 overexpression on improvement of neuronal functions. Meanwhile, overexpression of Olfr78 or Prkaca markedly inhibited neuronal apoptosis and improved brain injury in MCAO/R rats. In conclusion, overexpression of Olfr78 inhibited Ca2+ overload and reduced neuronal apoptosis in MCAO/R rats by promoting Prkaca-mediated activation of the cAMP/PKA-MAPK pathway, thereby improving brain injury in cerebral ischaemia-reperfusion.
Collapse
Affiliation(s)
- Tao Kang
- Department of NeurologyShaanxi Provincial People's HospitalXi'anChina
| | - Lijuan Zhu
- Department of AnesthesiaShaanxi Provincial People's HospitalXi'anChina
| | - Yanli Xue
- Department of NeurologyShaanxi Provincial People's HospitalXi'anChina
| | - Qian Yang
- Department of NeurologyShaanxi Provincial People's HospitalXi'anChina
| | - Qi Lei
- Department of NeurologyShaanxi Provincial People's HospitalXi'anChina
| | - Qianqian Wang
- Department of Traditional Chinese MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
5
|
Zambrano AK, Cadena-Ullauri S, Ruiz-Pozo VA, Tamayo-Trujillo R, Paz-Cruz E, Guevara-Ramírez P, Frias-Toral E, Simancas-Racines D. Impact of fundamental components of the Mediterranean diet on the microbiota composition in blood pressure regulation. J Transl Med 2024; 22:417. [PMID: 38702795 PMCID: PMC11067105 DOI: 10.1186/s12967-024-05175-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/05/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND The Mediterranean diet (MedDiet) is a widely studied dietary pattern reflecting the culinary traditions of Mediterranean regions. High adherence to MedDiet correlates with reduced blood pressure and lower cardiovascular disease (CVD) incidence and mortality. Furthermore, microbiota, influenced by diet, plays a crucial role in cardiovascular health, and dysbiosis in CVD patients suggests the possible beneficial effects of microbiota modulation on blood pressure. The MedDiet, rich in fiber and polyphenols, shapes a distinct microbiota, associated with higher biodiversity and positive health effects. The review aims to describe how various Mediterranean diet components impact gut microbiota, influencing blood pressure dynamics. MAIN BODY The MedDiet promotes gut health and blood pressure regulation through its various components. For instance, whole grains promote a healthy gut microbiota given that they act as substrates leading to the production of short-chain fatty acids (SCFAs) that can modulate the immune response, preserve gut barrier integrity, and regulate energy metabolism. Other components of the MedDiet, including olive oil, fuits, vegetables, red wine, fish, and lean proteins, have also been associated with blood pressure and gut microbiota regulation. CONCLUSION The MedDiet is a dietary approach that offers several health benefits in terms of cardiovascular disease management and its associated risk factors, including hypertension. Furthermore, the intake of MedDiet components promote a favorable gut microbiota environment, which, in turn, has been shown that aids in other physiological processes like blood pressure regulation.
Collapse
Affiliation(s)
- Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, 170527, Ecuador.
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, 170527, Ecuador
| | - Viviana A Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, 170527, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, 170527, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, 170527, Ecuador
| | - Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, 170527, Ecuador
| | - Evelyn Frias-Toral
- Escuela de Medicina, Universidad Espíritu Santo, Samborondón, 0901952, Ecuador
| | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, 170527, Ecuador
| |
Collapse
|
6
|
Huff AD, Karlen-Amarante M, Oliveira LM, Ramirez JM. Chronic intermittent hypoxia reveals role of the Postinspiratory Complex in the mediation of normal swallow production. eLife 2024; 12:RP92175. [PMID: 38655918 PMCID: PMC11042803 DOI: 10.7554/elife.92175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Obstructive sleep apnea (OSA) is a prevalent sleep-related breathing disorder that results in multiple bouts of intermittent hypoxia. OSA has many neurological and systemic comorbidities, including dysphagia, or disordered swallow, and discoordination with breathing. However, the mechanism in which chronic intermittent hypoxia (CIH) causes dysphagia is unknown. Recently, we showed the postinspiratory complex (PiCo) acts as an interface between the swallow pattern generator (SPG) and the inspiratory rhythm generator, the preBötzinger complex, to regulate proper swallow-breathing coordination (Huff et al., 2023). PiCo is characterized by interneurons co-expressing transporters for glutamate (Vglut2) and acetylcholine (ChAT). Here we show that optogenetic stimulation of ChATcre:Ai32, Vglut2cre:Ai32, and ChATcre:Vglut2FlpO:ChR2 mice exposed to CIH does not alter swallow-breathing coordination, but unexpectedly disrupts swallow behavior via triggering variable swallow motor patterns. This suggests that glutamatergic-cholinergic neurons in PiCo are not only critical for the regulation of swallow-breathing coordination, but also play an important role in the modulation of swallow motor patterning. Our study also suggests that swallow disruption, as seen in OSA, involves central nervous mechanisms interfering with swallow motor patterning and laryngeal activation. These findings are crucial for understanding the mechanisms underlying dysphagia, both in OSA and other breathing and neurological disorders.
Collapse
Affiliation(s)
- Alyssa D Huff
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Luiz M Oliveira
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
- Department of Neurological Surgery, University of Washington School of MedicineSeattleUnited States
| |
Collapse
|
7
|
Huff A, Karlen-Amarante M, Oliveira LM, Ramirez JM. Chronic Intermittent Hypoxia reveals role of the Postinspiratory Complex in the mediation of normal swallow production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.26.559560. [PMID: 37808787 PMCID: PMC10557756 DOI: 10.1101/2023.09.26.559560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Obstructive sleep apnea (OSA) is a prevalent sleep-related breathing disorder that results in multiple bouts of intermittent hypoxia. OSA has many neurologic and systemic comorbidities including dysphagia, or disordered swallow, and discoordination with breathing. However, the mechanism in which chronic intermittent hypoxia (CIH) causes dysphagia is unknown. Recently we showed the Postinspiratory complex (PiCo) acts as an interface between the swallow pattern generator (SPG) and the inspiratory rhythm generator, the preBötzinger Complex, to regulate proper swallow-breathing coordination (Huff et al., 2023). PiCo is characterized by interneurons co-expressing transporters for glutamate (Vglut2) and acetylcholine (ChAT). Here we show that optogenetic stimulation of ChATcre:Ai32, Vglut2cre:Ai32, and ChATcre:Vglut2FlpO:ChR2 mice exposed to CIH does not alter swallow-breathing coordination, but unexpectedly disrupts swallow behavior via triggering variable swallow motor patterns. This suggests, glutamatergic-cholinergic neurons in PiCo are not only critical for the regulation of swallow-breathing coordination, but also play an important role in the modulation of swallow motor patterning. Our study also suggests that swallow disruption, as seen in OSA, involves central nervous mechanisms interfering with swallow motor patterning and laryngeal activation. These findings are crucial for understanding the mechanisms underlying dysphagia, both in OSA and other breathing and neurological disorders.
Collapse
Affiliation(s)
- Alyssa Huff
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
| | - Luiz Marcelo Oliveira
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
| | - Jan Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA, 98108
| |
Collapse
|
8
|
Colinas O, Mombaerts P, López-Barneo J, Ortega-Sáenz P. Carotid Body Function in Tyrosine Hydroxylase Conditional Olfr78 Knockout Mice. FUNCTION 2024; 5:zqae010. [PMID: 38706960 PMCID: PMC11065104 DOI: 10.1093/function/zqae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 05/07/2024] Open
Abstract
The Olfr78 gene encodes a G-protein-coupled olfactory receptor that is expressed in several ectopic sites. Olfr78 is one of the most abundant mRNA species in carotid body (CB) glomus cells. These cells are the prototypical oxygen (O2) sensitive arterial chemoreceptors, which, in response to lowered O2 tension (hypoxia), activate the respiratory centers to induce hyperventilation. It has been proposed that Olfr78 is a lactate receptor and that glomus cell activation by the increase in blood lactate mediates the hypoxic ventilatory response (HVR). However, this proposal has been challenged by several groups showing that Olfr78 is not a physiologically relevant lactate receptor and that the O2-based regulation of breathing is not affected in constitutive Olfr78 knockout mice. In another study, constitutive Olfr78 knockout mice were reported to have altered systemic and CB responses to mild hypoxia. To further characterize the functional role of Olfr78 in CB glomus cells, we here generated a conditional Olfr78 knockout mouse strain and then restricted the knockout to glomus cells and other catecholaminergic cells by crossing with a tyrosine hydroxylase-specific Cre driver strain (TH-Olfr78 KO mice). We find that TH-Olfr78 KO mice have a normal HVR. Interestingly, glomus cells of TH-Olfr78 KO mice exhibit molecular and electrophysiological alterations as well as a reduced dopamine content in secretory vesicles and neurosecretory activity. These functional characteristics resemble those of CB neuroblasts in wild-type mice. We suggest that, although Olfr78 is not essential for CB O2 sensing, activation of Olfr78-dependent pathways is required for maturation of glomus cells.
Collapse
Affiliation(s)
- Olalla Colinas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevile 41013, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sevile 41013, Spain
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Frankfurt 60438, Germany
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevile 41013, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sevile 41013, Spain
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevile 41013, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sevile 41013, Spain
| |
Collapse
|
9
|
Bizanti A, Zhang Y, Toledo Z, Bendowski KT, Harden SW, Mistareehi A, Chen J, Gozal D, Heal M, Christie R, Hunter PJ, Paton JFR, Cheng ZJ. Chronic intermittent hypoxia remodels catecholaminergic nerve innervation in mouse atria. J Physiol 2024; 602:49-71. [PMID: 38156943 PMCID: PMC10842556 DOI: 10.1113/jp284961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/04/2023] [Indexed: 01/03/2024] Open
Abstract
Chronic intermittent hypoxia (CIH, a model for sleep apnoea) is a major risk factor for several cardiovascular diseases. Autonomic imbalance (sympathetic overactivity and parasympathetic withdrawal) has emerged as a causal contributor of CIH-induced cardiovascular disease. Previously, we showed that CIH remodels the parasympathetic pathway. However, whether CIH induces remodelling of the cardiac sympathetic innervation remains unknown. Mice (male, C57BL/6J, 2-3 months) were exposed to either room air (RA, 21% O2 ) or CIH (alternating 21% and 5.7% O2 , every 6 min, 10 h day-1 ) for 8-10 weeks. Flat-mounts of their left and right atria were immunohistochemically labelled for tyrosine hydroxylase (TH, a sympathetic marker). Using a confocal microscope (or fluorescence microscope) and Neurlocudia 360 digitization and tracing system, we scanned both the left and right atria and quantitatively analysed the sympathetic axon density in both groups. The segmentation data was mapped onto a 3D mouse heart scaffold. Our findings indicated that CIH significantly remodelled the TH immunoreactive (-IR) innervation of the atria by increasing its density at the sinoatrial node, the auricles and the major veins attached to the atria (P < 0.05, n = 7). Additionally, CIH increased the branching points of TH-IR axons and decreased the distance between varicosities. Abnormal patterns of TH-IR axons around intrinsic cardiac ganglia were also found following CIH. We postulate that the increased sympathetic innervation may further amplify the effects of enhanced CIH-induced central sympathetic drive to the heart. Our work provides an anatomical foundation for the understanding of CIH-induced autonomic imbalance. KEY POINTS: Chronic intermittent hypoxia (CIH, a model for sleep apnoea) causes sympathetic overactivity, cardiovascular remodelling and hypertension. We determined the effect of CIH on sympathetic innervation of the mouse atria. In vivo CIH for 8-10 weeks resulted in an aberrant axonal pattern around the principal neurons within intrinsic cardiac ganglia and an increase in the density, branching point, tortuosity of catecholaminergic axons and atrial wall thickness. Utilizing mapping tool available from NIH (SPARC) Program, the topographical distribution of the catecholaminergic innervation of the atria were integrated into a novel 3D heart scaffold for precise anatomical distribution and holistic quantitative comparison between normal and CIH mice. This work provides a unique neuroanatomical understanding of the pathophysiology of CIH-induced autonomic remodelling.
Collapse
Affiliation(s)
- Ariege Bizanti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Yuanyuan Zhang
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Zulema Toledo
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Kohlton T Bendowski
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Scott W Harden
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Anas Mistareehi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - David Gozal
- Joan C. Edwards School of medicine, Marshall University, Huntington, WV, USA
| | - Maci Heal
- MBF Bioscience, Williston, Vermont, USA
| | - Richard Christie
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peter J Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Julian F R Paton
- Department Physiology, Manaaki Manawa-the Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Zixi Jack Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
10
|
Prabhakar NR, Peng YJ, Nanduri J. Carotid body hypersensitivity in intermittent hypoxia and obtructive sleep apnoea. J Physiol 2023; 601:5481-5494. [PMID: 37029496 DOI: 10.1113/jp284111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
Carotid bodies are the principal sensory organs for detecting changes in arterial blood oxygen concentration, and the carotid body chemoreflex is a major regulator of the sympathetic tone, blood pressure and breathing. Intermittent hypoxia is a hallmark manifestation of obstructive sleep apnoea (OSA), which is a widespread respiratory disorder. In the first part of this review, we discuss the role of carotid bodies in heightened sympathetic tone and hypertension in rodents treated with intermittent hypoxia, and the underlying cellular, molecular and epigenetic mechanisms. We also present evidence for hitherto-uncharacterized role of carotid body afferents in triggering cellular and molecular changes induced by intermittent hypoxia. In the second part of the review, we present evidence for a contribution of a hypersensitive carotid body to OSA and potential therapeutic intervention to mitigate OSA in a murine model.
Collapse
Affiliation(s)
- Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| | - Ying-Jie Peng
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| | - Jayasri Nanduri
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
11
|
Hirata AHDL, Camargo LADJR, da Silva VA, de Almeida RJ, Bacigalupo LDS, Albejante MC, Curi FSD, Varela P, Martins L, Pesquero JB, Delle H, Camacho CP. Exploring the Potential of Olfactory Receptor Circulating RNA Measurement for Preeclampsia Prediction and Its Linkage to Mild Gestational Hypothyroidism. Int J Mol Sci 2023; 24:16681. [PMID: 38069004 PMCID: PMC10706743 DOI: 10.3390/ijms242316681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Gestational hypothyroidism may lead to preeclampsia development. However, this pathophysiological is unknown. We expect to find a shared mechanism by comparing hypothyroidism and preeclampsia. From our transcriptome data, we recognized olfactory receptors as that fingerprint. The reduction of taste and smell in hypothyroid patients has been known for a long time. Therefore, we decided to look to the olfactory receptors and aimed to identify genes capable of predicting preeclampsia (PEC). Methods: An Ion Proton Sequencer (Thermo Fisher Scientific, Waltham, MA, USA) was used to construct the transcriptome databases. RStudio with packages Limma v.3.50.0, GEOquery v.2.62.2, and umap v.0.2.8.8 were used to analyze the differentially expressed genes in GSE149440 from the Gene Expression Omnibus (GEO). The 7500 Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) was used for RT-qPCR amplification of OR6X1 and OR4E2. Results: Our transcriptomic datasets analysis revealed 25.08% and 26.75% downregulated olfactory receptor (ORs) in mild nontreated gestational hypothyroidism (GHT) and PEC, respectively. In the GSE149440 GEO dataset, we found OR5H1, OR5T3, OR51A7, OR51B6, OR10J5, OR6C6, and OR2AG2 as predictors of early-onset PEC. We also evaluate two chosen biomarkers' responses to levothyroxine. The RT-qPCR demonstrated a difference in OR6X1 and OR4E2 expression between GHT and healthy pregnancy (p < 0.05). Those genes presented a negative correlation with TSH (r: -0.51, p < 0.05; and r: -0.44, p < 0.05), a strong positive correlation with each other (r: 0.89; p < 0.01) and the levothyroxine-treated group had no difference from the healthy one. We conclude that ORs could be used as biomarkers at the beginning of gestation, and the downregulated ORs found in GHT may be improved with levothyroxine treatment.
Collapse
Affiliation(s)
- Andréa Harumy de Lima Hirata
- Molecular Innovation and Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (Uninove), Rua Vergueiro, 235/249, São Paulo 01525-000, SP, Brazil
| | - Luiz Antônio de Jesus Rocha Camargo
- Molecular Innovation and Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (Uninove), Rua Vergueiro, 235/249, São Paulo 01525-000, SP, Brazil
- Thyroid Diseases Center, Laboratory of Molecular and Translational Endocrinology, Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, 11th Floor, São Paulo 04039-032, SP, Brazil
| | - Valdelena Alessandra da Silva
- Molecular Innovation and Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (Uninove), Rua Vergueiro, 235/249, São Paulo 01525-000, SP, Brazil
| | - Robson José de Almeida
- Molecular Innovation and Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (Uninove), Rua Vergueiro, 235/249, São Paulo 01525-000, SP, Brazil
| | - Lucas dos Santos Bacigalupo
- Molecular Innovation and Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (Uninove), Rua Vergueiro, 235/249, São Paulo 01525-000, SP, Brazil
- Department of Obstetrics and Gynecology, Conjunto Hospitalar do Mandaqui, Rua Voluntários da Pátria, 4301, São Paulo 02401-400, SP, Brazil
| | - Maria Clara Albejante
- Molecular Innovation and Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (Uninove), Rua Vergueiro, 235/249, São Paulo 01525-000, SP, Brazil
- Department of Obstetrics and Gynecology, Conjunto Hospitalar do Mandaqui, Rua Voluntários da Pátria, 4301, São Paulo 02401-400, SP, Brazil
| | - Flavia Salomão d’Avila Curi
- Department of Obstetrics and Gynecology, Conjunto Hospitalar do Mandaqui, Rua Voluntários da Pátria, 4301, São Paulo 02401-400, SP, Brazil
| | - Patrícia Varela
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo 669, 9th Floor, São Paulo 04039-032, SP, Brazil
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Leonardo Martins
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo 669, 9th Floor, São Paulo 04039-032, SP, Brazil
- Division of Medical Sciences, Laboratory of Transcriptional Regulation, Institute of Medical Biology of Polish Academy of Sciences (IMB-PAS), Lodowa 106, 93-232 Łódź, Poland
| | - João Bosco Pesquero
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo 669, 9th Floor, São Paulo 04039-032, SP, Brazil
| | - Humberto Delle
- Molecular Innovation and Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (Uninove), Rua Vergueiro, 235/249, São Paulo 01525-000, SP, Brazil
| | - Cleber P. Camacho
- Molecular Innovation and Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (Uninove), Rua Vergueiro, 235/249, São Paulo 01525-000, SP, Brazil
- Thyroid Diseases Center, Laboratory of Molecular and Translational Endocrinology, Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, 11th Floor, São Paulo 04039-032, SP, Brazil
| |
Collapse
|
12
|
Cetin-Atalay R, Meliton AY, Ozcan C, Woods PS, Sun KA, Fang Y, Hamanaka RB, Mutlu GM. Loss of heme oxygenase 2 causes reduced expression of genes in cardiac muscle development and contractility and leads to cardiomyopathy in mice. PLoS One 2023; 18:e0292990. [PMID: 37844118 PMCID: PMC10578579 DOI: 10.1371/journal.pone.0292990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a common breathing disorder that affects a significant portion of the adult population. In addition to causing excessive daytime sleepiness and neurocognitive effects, OSA is an independent risk factor for cardiovascular disease; however, the underlying mechanisms are not completely understood. Using exposure to intermittent hypoxia (IH) to mimic OSA, we have recently reported that mice exposed to IH exhibit endothelial cell (EC) activation, which is an early process preceding the development of cardiovascular disease. Although widely used, IH models have several limitations such as the severity of hypoxia, which does not occur in most patients with OSA. Recent studies reported that mice with deletion of hemeoxygenase 2 (Hmox2-/-), which plays a key role in oxygen sensing in the carotid body, exhibit spontaneous apneas during sleep and elevated levels of catecholamines. Here, using RNA-sequencing we investigated the transcriptomic changes in aortic ECs and heart tissue to understand the changes that occur in Hmox2-/- mice. In addition, we evaluated cardiac structure, function, and electrical properties by using echocardiogram and electrocardiogram in these mice. We found that Hmox2-/- mice exhibited aortic EC activation. Transcriptomic analysis in aortic ECs showed differentially expressed genes enriched in blood coagulation, cell adhesion, cellular respiration and cardiac muscle development and contraction. Similarly, transcriptomic analysis in heart tissue showed a differentially expressed gene set enriched in mitochondrial translation, oxidative phosphorylation and cardiac muscle development. Analysis of transcriptomic data from aortic ECs and heart tissue showed loss of Hmox2 gene might have common cellular network footprints on aortic endothelial cells and heart tissue. Echocardiographic evaluation showed that Hmox2-/- mice develop progressive dilated cardiomyopathy and conduction abnormalities compared to Hmox2+/+ mice. In conclusion, we found that Hmox2-/- mice, which spontaneously develop apneas exhibit EC activation and transcriptomic and functional changes consistent with heart failure.
Collapse
Affiliation(s)
- Rengul Cetin-Atalay
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Angelo Y. Meliton
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Cevher Ozcan
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, Illinois, United States of America
| | - Parker S. Woods
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Kaitlyn A. Sun
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Yun Fang
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Robert B. Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Gökhan M. Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
13
|
Peng YJ, Nanduri J, Wang N, Kumar GK, Bindokas V, Paul BD, Chen X, Fox AP, Vignane T, Filipovic MR, Prabhakar NR. Hypoxia sensing requires H 2S-dependent persulfidation of olfactory receptor 78. SCIENCE ADVANCES 2023; 9:eadf3026. [PMID: 37406126 PMCID: PMC10321732 DOI: 10.1126/sciadv.adf3026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/31/2023] [Indexed: 07/07/2023]
Abstract
Oxygen (O2) sensing by the carotid body is critical for maintaining cardiorespiratory homeostasis during hypoxia. Hydrogen sulfide (H2S) signaling is implicated in carotid body activation by low O2. Here, we show that persulfidation of olfactory receptor 78 (Olfr78) by H2S is an integral component of carotid body activation by hypoxia. Hypoxia and H2S increased persulfidation in carotid body glomus cells and persulfidated cysteine240 in Olfr78 protein in heterologous system. Olfr78 mutants manifest impaired carotid body sensory nerve, glomus cell, and breathing responses to H2S and hypoxia. Glomus cells are positive for GOlf, adenylate cyclase 3 (Adcy3) and cyclic nucleotide-gated channel alpha 2 (Cnga2), key molecules of odorant receptor signaling. Adcy3 or Cnga2 mutants exhibited impaired carotid body and glomus cell responses to H2S and breathing responses to hypoxia. These results suggest that H2S through redox modification of Olfr78 participates in carotid body activation by hypoxia to regulate breathing.
Collapse
Affiliation(s)
- Ying-Jie Peng
- Institute for Integrative Physiology, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Jayasri Nanduri
- Institute for Integrative Physiology, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Ning Wang
- Institute for Integrative Physiology, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Ganesh K. Kumar
- Institute for Integrative Physiology, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Vytautas Bindokas
- Department of Physiology and Pharmacological Sciences, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Bindu D. Paul
- Department of Pharmacology, The Johns Hopkins University, Baltimore, MD, USA
| | - Xuanmao Chen
- Department of Molecular, Cellular and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH USA
| | - Aaron P. Fox
- Department of Physiology and Pharmacological Sciences, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Thibaut Vignane
- Leibniz-Institut für Analytische Wissenschaften–ISAS, Bunsen-Kirchhoff-Straße, 1144139 Dortmund, Germany
| | - Milos R. Filipovic
- Leibniz-Institut für Analytische Wissenschaften–ISAS, Bunsen-Kirchhoff-Straße, 1144139 Dortmund, Germany
| | - Nanduri R. Prabhakar
- Institute for Integrative Physiology, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
Kong D, Hu C, Zhu H. Oxygen desaturation index, lowest arterial oxygen saturation and time spent below 90% oxygen saturation as diagnostic markers for obstructive sleep apnea. Am J Transl Res 2023; 15:3597-3606. [PMID: 37303658 PMCID: PMC10250969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/19/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) syndrome is associated with a high mortality, and blood oxygen indexes play an important role in evaluating this disease. The objective of this study was to explore the value of blood oxygen indexes, including minimum oxygen saturation (LSpO2), oxygen reduction index (ODI) and time spent with oxygen saturation below 90% (TS 90%), as diagnostic markers for OSA syndrome. METHODS In this retrospective study, 320 patients with OSA treated in Ningbo First Hospital from June 2018 to June 2021 were included and divided into mild, moderate, and severe groups according to the severity of the condition (n = 104, 92, and 124, respectively). The blood oxygen indexes as well as the apnea-hypopnea index (AHI) were compared. The Spearman correlation analysis was performed to explore the relationship between the parameters. Receiver operating characteristic curves were generated to evaluate the diagnostic value of the blood oxygen indexes for OSA syndrome. RESULTS There were significant differences in body weight, body mass index, and blood pressure before and after sleep among the groups (P < 0.05). LSpO2 levels followed a pattern with the severe group showing the lowest values, followed by the moderate group, and then the mild group, whereas ODI and TS 90% levels showed the opposite (P < 0.05). Spearman correlation analysis showed that AHI, ODI, TS 90% were positively correlated with severity of OSA, whereas LSpO2 was negatively correlated with severity of OSA. ODI showed a high diagnostic value for OSA (area under curve (AUC) = 0.823, 95% CI: 0.730-0.917). TS 90% showed a high diagnostic value for OSA (AUC = 0.872, 95% CI: 0.794-0.950). LSpO2 showed high accuracy in diagnostic value for OSA (AUC = 0.716, 95% CI: 0.596-0.835). The combination of the 3 indexes demonstrated a high diagnostic value for OSA (AUC = 0.939, 95% CI: 0.890-0.989). The diagnostic value of the combined signature was found to be significantly higher compared to the value of individual indexes (P < 0.05). CONCLUSION The evaluation of the severity of OSA should not rely solely on a single observation index, but rather on a combination of ODI, LSpO2 and TS 90%. This combined diagnostic signature can provide a more comprehensive assessment of the patient's condition and serve as an alternative diagnostic basis to ensure timely diagnosis and appropriate clinical treatment for OSA.
Collapse
Affiliation(s)
- Deqiu Kong
- Department of Otorhinolaryngology-Head and Neck Surgery, Ningbo First Hospital Ningbo, Zhejiang, China
| | - Cihao Hu
- Department of Otorhinolaryngology-Head and Neck Surgery, Ningbo First Hospital Ningbo, Zhejiang, China
| | - Hualin Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, Ningbo First Hospital Ningbo, Zhejiang, China
| |
Collapse
|
15
|
Marullo AL, Lucking EF, Pender D, Dhaliwal P, O'Halloran KD. Three Days of Chronic Intermittent Hypoxia Induce β 1-Adrenoceptor Dependent Increases in Left Ventricular Contractility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1427:43-51. [PMID: 37322334 DOI: 10.1007/978-3-031-32371-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Sleep apnea is characterized by bouts of chronic intermittent hypoxia (CIH) that elicit sympathetic hyperactivity resulting in residual hypertension. We previously demonstrated that exposure to CIH increases cardiac output and sought to determine if enhanced cardiac contractility manifests prior to hypertension.Male Wistar rats were exposed to cyclical bouts of hypoxia (FiO2 = 0.05 nadir; 90 s) and normoxia (FiO2 = 0.21; 210 s) 8 h/day for 3 days (CIH; n = 6). Control animals (n = 7) were exposed to room air. Data are presented as mean ± SD and were analyzed using unpaired Student t-tests.Three-day exposure to CIH did not elicit changes in heart rate and blood pressure (p > 0.05). However, baseline left ventricular contractility (dP/dtMAX) was significantly increased in CIH-exposed animals compared with control (15300 ± 2002 vs. 12320 ± 2725 mmHg/s; p = 0.025), despite no difference in catecholamine concentrations. Acute β1-adrenoceptor inhibition reduced contractility in CIH-exposed animals (-7604 ± 1298 vs. -4747 ± 2080 mmHg/s; p = 0.014), to levels equivalent to control, while preserving cardiovascular parameters. Sympathetic ganglion blockade (hexamethonium 25 mg/kg; i.v.) produced equivalent cardiovascular responses suggesting similar global sympathetic activity between groups. Interestingly, gene expression of the β1-adrenoceptor pathway in cardiac tissue was unchanged.Our results suggest that CIH increases cardiac contractility via β1-adrenoceptor dependent mechanisms prior to development of global sympathetic hyperactivity suggesting that positive cardiac inotropy contributes to the development of hypertension in CIH-exposed rats.
Collapse
Affiliation(s)
- Anthony L Marullo
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Eric F Lucking
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Daniel Pender
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Pardeep Dhaliwal
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland.
| |
Collapse
|
16
|
Cetin-Atalay R, Meliton AY, Sun KA, Glass ME, Woods PS, Peng YJ, Fang Y, Hamanaka RB, Prabhakar NR, Mutlu GM. Intermittent hypoxia inhibits epinephrine-induced transcriptional changes in human aortic endothelial cells. Sci Rep 2022; 12:17167. [PMID: 36229484 PMCID: PMC9561121 DOI: 10.1038/s41598-022-21614-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 09/29/2022] [Indexed: 02/02/2023] Open
Abstract
Obstructive sleep apnea (OSA) is an independent risk factor for cardiovascular disease. While intermittent hypoxia (IH) and catecholamine release play an important role in this increased risk, the mechanisms are incompletely understood. We have recently reported that IH causes endothelial cell (EC) activation, an early phenomenon in the development of cardiovascular disease, via IH-induced catecholamine release. Here, we investigated the effects of IH and epinephrine on gene expression in human aortic ECs using RNA-sequencing. We found a significant overlap between IH and epinephrine-induced differentially expressed genes (DEGs) including enrichment in leukocyte migration, cytokine-cytokine receptor interaction, cell adhesion and angiogenesis. Epinephrine caused higher number of DEGs compared to IH. Interestingly, IH when combined with epinephrine had an inhibitory effect on epinephrine-induced gene expression. Combination of IH and epinephrine induced MT1G (Metallothionein 1G), which has been shown to be highly expressed in ECs from parts of aorta (i.e., aortic arch) where atherosclerosis is more likely to occur. In conclusion, epinephrine has a greater effect than IH on EC gene expression in terms of number of genes and their expression level. IH inhibited the epinephrine-induced transcriptional response. Further investigation of the interaction between IH and epinephrine is needed to better understand how OSA causes cardiovascular disease.
Collapse
Affiliation(s)
- Rengul Cetin-Atalay
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA
| | - Angelo Y. Meliton
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA
| | - Kaitlyn A. Sun
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA
| | - Mariel E. Glass
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA
| | - Parker S. Woods
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA
| | - Ying-Jie Peng
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Emergency Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Institute for Integrative Physiology, University of Chicago, Chicago, IL USA
| | - Yun Fang
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA ,grid.170205.10000 0004 1936 7822Institute for Integrative Physiology, University of Chicago, Chicago, IL USA
| | - Robert B. Hamanaka
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA ,grid.170205.10000 0004 1936 7822Institute for Integrative Physiology, University of Chicago, Chicago, IL USA
| | - Nanduri R. Prabhakar
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Emergency Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Institute for Integrative Physiology, University of Chicago, Chicago, IL USA
| | - Gökhan M. Mutlu
- grid.170205.10000 0004 1936 7822Department of Medicine, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL 60637 USA ,grid.170205.10000 0004 1936 7822Institute for Integrative Physiology, University of Chicago, Chicago, IL USA
| |
Collapse
|
17
|
Wang L, Wang S, Zhang Q, He C, Fu C, Wei Q. The role of the gut microbiota in health and cardiovascular diseases. MOLECULAR BIOMEDICINE 2022; 3:30. [PMID: 36219347 PMCID: PMC9554112 DOI: 10.1186/s43556-022-00091-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiota is critical to human health, such as digesting nutrients, forming the intestinal epithelial barrier, regulating immune function, producing vitamins and hormones, and producing metabolites to interact with the host. Meanwhile, increasing evidence indicates that the gut microbiota has a strong correlation with the occurrence, progression and treatment of cardiovascular diseases (CVDs). In patients with CVDs and corresponding risk factors, the composition and ratio of gut microbiota have significant differences compared with their healthy counterparts. Therefore, gut microbiota dysbiosis, gut microbiota-generated metabolites, and the related signaling pathway may serve as explanations for some of the mechanisms about the occurrence and development of CVDs. Several studies have also demonstrated that many traditional and latest therapeutic treatments of CVDs are associated with the gut microbiota and its generated metabolites and related signaling pathways. Given that information, we summarized the latest advances in the current research regarding the effect of gut microbiota on health, the main cardiovascular risk factors, and CVDs, highlighted the roles and mechanisms of several metabolites, and introduced corresponding promising treatments for CVDs regarding the gut microbiota. Therefore, this review mainly focuses on exploring the role of gut microbiota related metabolites and their therapeutic potential in CVDs, which may eventually provide better solutions in the development of therapeutic treatment as well as the prevention of CVDs.
Collapse
Affiliation(s)
- Lu Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Shiqi Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Qing Zhang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chengqi He
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chenying Fu
- grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,grid.412901.f0000 0004 1770 1022Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Quan Wei
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| |
Collapse
|
18
|
Nakashima A, Nakashima N, Nakashima K, Takano M. Olfactory receptor 78 is expressed in hypothalamic vasopressin/oxytocin neurons, parenchymal microglia and choroidal macrophages in mice. Mol Brain 2022; 15:29. [PMID: 35379313 PMCID: PMC8981654 DOI: 10.1186/s13041-022-00917-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/25/2022] [Indexed: 11/10/2022] Open
Abstract
Olfactory receptors have been detected in extraolfactory organs. Olfactory receptor 78 (Olfr78), proposed to respond to small organic acids, is widely expressed in the kidney, arterioles, colon, and prostate. However, its expression patterns in the brain remain largely unknown. Using immunohistochemistry, we revealed that Olfr78 was densely expressed in the hypothalamus and choroid plexus and sparsely expressed throughout the parenchyma. By costaining with cellular markers, we further found that Olfr78 was expressed in the somata and axons of vasopressin/oxytocin neurons in the hypothalamic paraventricular/supraoptic nuclei. Olfr78 was also strongly expressed in macrophages in the choroid plexus and moderately expressed in microglia near the parenchymal vasculature. Considering that these brain regions should communicate with cerebral blood flow, Olfr78 could contribute to sensing the humoral conditions surrounding the cerebrovascular system.
Collapse
|
19
|
Abstract
The carotid body (CB) is a bilateral arterial chemoreceptor located in the carotid artery bifurcation with an essential role in cardiorespiratory homeostasis. It is composed of highly perfused cell clusters, or glomeruli, innervated by sensory fibers. Glomus cells, the most abundant in each glomerulus, are neuron-like multimodal sensory elements able to detect and integrate changes in several physical and chemical parameters of the blood, in particular O2 tension, CO2 and pH, as well as glucose, lactate, or blood flow. Activation of glomus cells (e.g., during hypoxia or hypercapnia) stimulates the afferent fibers which impinge on brainstem neurons to elicit rapid compensatory responses (hyperventilation and sympathetic activation). This chapter presents an updated view of the structural organization of the CB and the mechanisms underlying the chemosensory responses of glomus cells, with special emphasis on the molecular processes responsible for acute O2 sensing. The properties of the glomus cell-sensory fiber synapse as well as the organization of CB output are discussed. The chapter includes the description of recently discovered CB stem cells and progenitor cells, and their role in CB growth during acclimatization to hypoxemia. Finally, the participation of the CB in the mechanisms of disease is briefly discussed.
Collapse
Affiliation(s)
- José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, Seville, Spain; Biomedical Research Center for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
20
|
Ramirez JM, Karlen-Amarante M, Wang JDJ, Huff A, Burgraff N. Breathing disturbances in Rett syndrome. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:139-151. [PMID: 36031301 PMCID: PMC10029146 DOI: 10.1016/b978-0-323-91532-8.00018-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Rett Syndrome is an X-linked neurological disorder characterized by behavioral and neurological regression, seizures, motor deficits, and dysautonomia. A particularly prominent presentation includes breathing abnormalities characterized by breathing irregularities, hyperventilation, repetitive breathholding during wakefulness, obstructive and central apneas during sleep, and abnormal responses to hypoxia and hypercapnia. The condition and pathology of the respiratory system is further complicated by dysfunctions of breathing-motor coordination, which is reflected in dysphagia. The discovery of the X-linked mutations in the MECP2 gene has transformed our understanding of the cellular and molecular mechanisms that are at the root of various clinical phenotypes. However, the genotype-phenotype relationship is complicated by various factors which include not only X-inactivation but also consequences of the intermittent hypoxia and oxidative stress associated with the breathing abnormalities.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States; Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States.
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Jia-Der Ju Wang
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Alyssa Huff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Nicholas Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| |
Collapse
|
21
|
Cetin-Atalay R, Meliton AY, Wu D, Woods PS, Sun KA, Peng YJ, Nanduri J, Su X, Fang Y, Hamanaka RB, Prabhakar N, Mutlu GM. Intermittent Hypoxia-Induced Activation of Endothelial Cells Is Mediated via Sympathetic Activation-Dependent Catecholamine Release. Front Physiol 2021; 12:701995. [PMID: 34322038 PMCID: PMC8311436 DOI: 10.3389/fphys.2021.701995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/22/2021] [Indexed: 02/03/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a common breathing disorder affecting a significant percentage of the adult population. OSA is an independent risk factor for cardiovascular disease (CVD); however, the underlying mechanisms are not completely understood. Since the severity of hypoxia correlates with some of the cardiovascular effects, intermittent hypoxia (IH) is thought to be one of the mechanisms by which OSA may cause CVD. Here, we investigated the effect of IH on endothelial cell (EC) activation, characterized by the expression of inflammatory genes, that is known to play an important role in the pathogenesis of CVD. Exposure of C57BL/6 mice to IH led to aortic EC activation, while in vitro exposure of ECs to IH failed to do so, suggesting that IH does not induce EC activation directly, but indirectly. One of the consequences of IH is activation of the sympathetic nervous system and catecholamine release. We found that exposure of mice to IH caused elevation of circulating levels of catecholamines. Inhibition of the IH-induced increase in catecholamines by pharmacologic inhibition or by adrenalectomy or carotid body ablation prevented the IH-induced EC activation in mice. Supporting a key role for catecholamines, epinephrine alone was sufficient to cause EC activation in vivo and in vitro. Together, these results suggested that IH does not directly induce EC activation, but does so indirectly via release of catecholamines. These results suggest that targeting IH-induced sympathetic nerve activity and catecholamine release may be a potential therapeutic target to attenuate the CV effects of OSA.
Collapse
Affiliation(s)
- Rengul Cetin-Atalay
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States
| | - Angelo Y Meliton
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States
| | - David Wu
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States
| | - Parker S Woods
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States
| | - Kaitlyn A Sun
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States
| | - Ying-Jie Peng
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Emergency Medicine, University of Chicago, Chicago, IL, United States.,Institute for Integrative Physiology, University of Chicago, Chicago, IL, United States
| | - Jayasri Nanduri
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Emergency Medicine, University of Chicago, Chicago, IL, United States.,Institute for Integrative Physiology, University of Chicago, Chicago, IL, United States
| | - Xiaoyu Su
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Emergency Medicine, University of Chicago, Chicago, IL, United States.,Institute for Integrative Physiology, University of Chicago, Chicago, IL, United States
| | - Yun Fang
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States.,Institute for Integrative Physiology, University of Chicago, Chicago, IL, United States
| | - Robert B Hamanaka
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States.,Institute for Integrative Physiology, University of Chicago, Chicago, IL, United States
| | - Nanduri Prabhakar
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Emergency Medicine, University of Chicago, Chicago, IL, United States.,Institute for Integrative Physiology, University of Chicago, Chicago, IL, United States
| | - Gökhan M Mutlu
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States.,Institute for Integrative Physiology, University of Chicago, Chicago, IL, United States
| |
Collapse
|