1
|
Wu Y, Lu L, Qing T, Shi S, Fang G. Transient Increases in Neural Oscillations and Motor Deficits in a Mouse Model of Parkinson's Disease. Int J Mol Sci 2024; 25:9545. [PMID: 39273491 PMCID: PMC11394686 DOI: 10.3390/ijms25179545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor symptoms like tremors and bradykinesia. PD's pathology involves the aggregation of α-synuclein and loss of dopaminergic neurons, leading to altered neural oscillations in the cortico-basal ganglia-thalamic network. Despite extensive research, the relationship between the motor symptoms of PD and transient changes in brain oscillations before and after motor tasks in different brain regions remain unclear. This study aimed to investigate neural oscillations in both healthy and PD model mice using local field potential (LFP) recordings from multiple brain regions during rest and locomotion. The histological evaluation confirmed the significant dopaminergic neuron loss in the injection side in 6-OHDA lesioned mice. Behavioral tests showed motor deficits in these mice, including impaired coordination and increased forelimb asymmetry. The LFP analysis revealed increased delta, theta, alpha, beta, and gamma band activity in 6-OHDA lesioned mice during movement, with significant increases in multiple brain regions, including the primary motor cortex (M1), caudate-putamen (CPu), subthalamic nucleus (STN), substantia nigra pars compacta (SNc), and pedunculopontine nucleus (PPN). Taken together, these results show that the motor symptoms of PD are accompanied by significant transient increases in brain oscillations, especially in the gamma band. This study provides potential biomarkers for early diagnosis and therapeutic evaluation by elucidating the relationship between specific neural oscillations and motor deficits in PD.
Collapse
Affiliation(s)
- Yue Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Lidi Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Tao Qing
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Suxin Shi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Guangzhan Fang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
2
|
Cox KM, Kase D, Znati T, Turner RS. Detecting rhythmic spiking through the power spectra of point process model residuals. J Neural Eng 2024; 21:046041. [PMID: 38986461 PMCID: PMC11299538 DOI: 10.1088/1741-2552/ad6188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Objective. Oscillations figure prominently as neurological disease hallmarks and neuromodulation targets. To detect oscillations in a neuron's spiking, one might attempt to seek peaks in the spike train's power spectral density (PSD) which exceed a flat baseline. Yet for a non-oscillating neuron, the PSD is not flat: The recovery period ('RP', the post-spike drop in spike probability, starting with the refractory period) introduces global spectral distortion. An established 'shuffling' procedure corrects for RP distortion by removing the spectral component explained by the inter-spike interval (ISI) distribution. However, this procedure sacrifices oscillation-related information present in the ISIs, and therefore in the PSD. We asked whether point process models (PPMs) might achieve more selective RP distortion removal, thereby enabling improved oscillation detection.Approach. In a novel 'residuals' method, we first estimate the RP duration (nr) from the ISI distribution. We then fit the spike train with a PPM that predicts spike likelihood based on the time elapsed since the most recent of any spikes falling within the precedingnrmilliseconds. Finally, we compute the PSD of the model's residuals.Main results. We compared the residuals and shuffling methods' ability to enable accurate oscillation detection with flat baseline-assuming tests. Over synthetic data, the residuals method generally outperformed the shuffling method in classification of true- versus false-positive oscillatory power, principally due to enhanced sensitivity in sparse spike trains. In single-unit data from the internal globus pallidus (GPi) and ventrolateral anterior thalamus (VLa) of a parkinsonian monkey-in which alpha-beta oscillations (8-30 Hz) were anticipated-the residuals method reported the greatest incidence of significant alpha-beta power, with low firing rates predicting residuals-selective oscillation detection.Significance. These results encourage continued development of the residuals approach, to support more accurate oscillation detection. Improved identification of oscillations could promote improved disease models and therapeutic technologies.
Collapse
Affiliation(s)
- Karin M Cox
- Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Daisuke Kase
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
- Systems Neuroscience Center, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Taieb Znati
- Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Robert S Turner
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
- Systems Neuroscience Center, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| |
Collapse
|
3
|
Gittis AH, Sillitoe RV. Circuit-Specific Deep Brain Stimulation Provides Insights into Movement Control. Annu Rev Neurosci 2024; 47:63-83. [PMID: 38424473 DOI: 10.1146/annurev-neuro-092823-104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Deep brain stimulation (DBS), a method in which electrical stimulation is delivered to specific areas of the brain, is an effective treatment for managing symptoms of a number of neurological and neuropsychiatric disorders. Clinical access to neural circuits during DBS provides an opportunity to study the functional link between neural circuits and behavior. This review discusses how the use of DBS in Parkinson's disease and dystonia has provided insights into the brain networks and physiological mechanisms that underlie motor control. In parallel, insights from basic science about how patterns of electrical stimulation impact plasticity and communication within neural circuits are transforming DBS from a therapy for treating symptoms to a therapy for treating circuits, with the goal of training the brain out of its diseased state.
Collapse
Affiliation(s)
- Aryn H Gittis
- Department of Biological Sciences and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA;
| | - Roy V Sillitoe
- Departments of Neuroscience, Pathology & Immunology, and Pediatrics; and Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
4
|
Jia Q, Jing L, Zhu Y, Han M, Jiao P, Wang Y, Xu Z, Duan Y, Wang M, Cai X. Real-Time Precise Targeting of the Subthalamic Nucleus via Transfer Learning in a Rat Model of Parkinson's Disease Based on Microelectrode Arrays. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1787-1795. [PMID: 38656860 DOI: 10.1109/tnsre.2024.3393116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In neurodegenerative disorders, neuronal firing patterns and oscillatory activity are remarkably altered in specific brain regions, which can serve as valuable biomarkers for the identification of deep brain regions. The subthalamic nucleus (STN) has been the primary target for DBS in patients with Parkinson's disease (PD). In this study, changes in the spike firing patterns and spectral power of local field potentials (LFPs) in the pre-STN (zona incerta, ZI) and post-STN (cerebral peduncle, cp) regions were investigated in PD rats, providing crucial evidence for the functional localization of the STN. Sixteen-channel microelectrode arrays (MEAs) with sites distributed at different depths and widths were utilized to record neuronal activities. The spikes in the STN exhibited higher firing rates than those in the ZI and cp. Furthermore, the LFP power in the delta band in the STN was the greatest, followed by that in the ZI, and was greater than that in the cp. Additionally, increased LFP power was observed in the beta bands in the STN. To identify the best performing classification model, we applied various convolutional neural networks (CNNs) based on transfer learning to analyze the recorded raw data, which were processed using the Gram matrix of the spikes and the fast Fourier transform of the LFPs. The best transfer learning model achieved an accuracy of 95.16%. After fusing the spike and LFP classification results, the time precision for processing the raw data reached 500 ms. The pretrained model, utilizing raw data, demonstrated the feasibility of employing transfer learning for training models on neural activity. This approach highlights the potential for functional localization within deep brain regions.
Collapse
|
5
|
Cox KM, Kase D, Znati T, Turner RS. Detecting rhythmic spiking through the power spectra of point process model residuals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.08.556120. [PMID: 38586036 PMCID: PMC10996479 DOI: 10.1101/2023.09.08.556120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Objective Oscillations figure prominently as neurological disease hallmarks and neuromodulation targets. To detect oscillations in a neuron's spiking, one might attempt to seek peaks in the spike train's power spectral density (PSD) which exceed a flat baseline. Yet for a non-oscillating neuron, the PSD is not flat: The recovery period ("RP", the post-spike drop in spike probability, starting with the refractory period) introduces global spectral distortion. An established "shuffling" procedure corrects for RP distortion by removing the spectral component explained by the inter-spike interval (ISI) distribution. However, this procedure sacrifices oscillation-related information present in the ISIs, and therefore in the PSD. We asked whether point process models (PPMs) might achieve more selective RP distortion removal, thereby enabling improved oscillation detection. Approach In a novel "residuals" method, we first estimate the RP duration (nr) from the ISI distribution. We then fit the spike train with a PPM that predicts spike likelihood based on the time elapsed since the most recent of any spikes falling within the preceding nr milliseconds. Finally, we compute the PSD of the model's residuals. Main results We compared the residuals and shuffling methods' ability to enable accurate oscillation detection with flat baseline-assuming tests. Over synthetic data, the residuals method generally outperformed the shuffling method in classification of true- versus false-positive oscillatory power, principally due to enhanced sensitivity in sparse spike trains. In single-unit data from the internal globus pallidus (GPi) and ventrolateral anterior thalamus (VLa) of a parkinsonian monkey -- in which alpha-beta oscillations (8-30 Hz) were anticipated -- the residuals method reported the greatest incidence of significant alpha-beta power, with low firing rates predicting residuals-selective oscillation detection. Significance These results encourage continued development of the residuals approach, to support more accurate oscillation detection. Improved identification of oscillations could promote improved disease models and therapeutic technologies.
Collapse
Affiliation(s)
- Karin M. Cox
- Department of Computer Science, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States of America
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, Maryland, 20815, United States of America
| | - Daisuke Kase
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, Maryland, 20815, United States of America
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
- Systems Neuroscience Center, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
| | - Taieb Znati
- Department of Computer Science, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States of America
| | - Robert S. Turner
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, Maryland, 20815, United States of America
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
- Systems Neuroscience Center, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
| |
Collapse
|
6
|
Qi ZX, Yan Q, Fan XJ, Peng JY, Zhu HX, Jiang YM, Chen L, Zhuang QX. Role of HCN channels in the functions of basal ganglia and Parkinson's disease. Cell Mol Life Sci 2024; 81:135. [PMID: 38478096 PMCID: PMC10937777 DOI: 10.1007/s00018-024-05163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 03/17/2024]
Abstract
Parkinson's disease (PD) is a motor disorder resulting from dopaminergic neuron degeneration in the substantia nigra caused by age, genetics, and environment. The disease severely impacts a patient's quality of life and can even be life-threatening. The hyperpolarization-activated cyclic nucleotide-gated (HCN) channel is a member of the HCN1-4 gene family and is widely expressed in basal ganglia nuclei. The hyperpolarization-activated current mediated by the HCN channel has a distinct impact on neuronal excitability and rhythmic activity associated with PD pathogenesis, as it affects the firing activity, including both firing rate and firing pattern, of neurons in the basal ganglia nuclei. This review aims to comprehensively understand the characteristics of HCN channels by summarizing their regulatory role in neuronal firing activity of the basal ganglia nuclei. Furthermore, the distribution and characteristics of HCN channels in each nucleus of the basal ganglia group and their effect on PD symptoms through modulating neuronal electrical activity are discussed. Since the roles of the substantia nigra pars compacta and reticulata, as well as globus pallidus externus and internus, are distinct in the basal ganglia circuit, they are individually described. Lastly, this investigation briefly highlights that the HCN channel expressed on microglia plays a role in the pathological process of PD by affecting the neuroinflammatory response.
Collapse
Affiliation(s)
- Zeng-Xin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200030, China
- National Center for Neurological Disorders, Shanghai, 200030, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200030, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200030, China
| | - Qi Yan
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Xiu-Juan Fan
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Jian-Ya Peng
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Hui-Xian Zhu
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Yi-Miao Jiang
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200030, China.
- National Center for Neurological Disorders, Shanghai, 200030, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200030, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200030, China.
| | - Qian-Xing Zhuang
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
7
|
Østergaard FG. Knocking out the LRRK2 gene increases sensitivity to wavelength information in rats. Sci Rep 2024; 14:4984. [PMID: 38424139 PMCID: PMC10904730 DOI: 10.1038/s41598-024-55350-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a gene related to familial Parkinson's disease (PD). It has been associated with nonmotor symptoms such as disturbances in the visual system affecting colour discrimination and contrast sensitivity. This study examined how deficiency of LRRK2 impacts visual processing in adult rats. Additionally, we investigated whether these changes can be modelled in wild-type rats by administering the LRRK2 inhibitor PFE360. Visual evoked potentials (VEPs) and steady-state visual evoked potentials (SSVEPs) were recorded in the visual cortex and superior colliculus of female LRRK2-knockout and wild-type rats to study how the innate absence of LRRK2 changes visual processing. Exposing the animals to stimulation at five different wavelengths revealed an interaction between genotype and the response to stimulation at different wavelengths. Differences in VEP amplitudes and latencies were robust and barely impacted by the presence of the LRRK2 inhibitor PFE360, suggesting a developmental effect. Taken together, these results indicate that alterations in visual processing were related to developmental deficiency of LRRK2 and not acute deficiency of LRRK2, indicating a role of LRRK2 in the functional development of the visual system and synaptic transmission.
Collapse
Affiliation(s)
- Freja Gam Østergaard
- H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark.
- GELIFES, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
8
|
Azizpour Lindi S, Mallet NP, Leblois A. Synaptic Changes in Pallidostriatal Circuits Observed in the Parkinsonian Model Triggers Abnormal Beta Synchrony with Accurate Spatio-temporal Properties across the Basal Ganglia. J Neurosci 2024; 44:e0419232023. [PMID: 38123981 PMCID: PMC10903930 DOI: 10.1523/jneurosci.0419-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Excessive oscillatory activity across basal ganglia (BG) nuclei in the β frequencies (12-30 Hz) is a hallmark of Parkinson's disease (PD). While the link between oscillations and symptoms remains debated, exaggerated β oscillations constitute an important biomarker for therapeutic effectiveness in PD. The neuronal mechanisms of β-oscillation generation however remain unknown. Many existing models rely on a central role of the subthalamic nucleus (STN) or cortical inputs to BG. Contrarily, neural recordings and optogenetic manipulations in normal and parkinsonian rats recently highlighted the central role of the external pallidum (GPe) in abnormal β oscillations, while showing that the integrity of STN or motor cortex is not required. Here, we evaluate the mechanisms for the generation of abnormal β oscillations in a BG network model where neuronal and synaptic time constants, connectivity, and firing rate distributions are strongly constrained by experimental data. Guided by a mean-field approach, we show in a spiking neural network that several BG sub-circuits can drive oscillations. Strong recurrent STN-GPe connections or collateral intra-GPe connections drive γ oscillations (>40 Hz), whereas strong pallidostriatal loops drive low-β (10-15 Hz) oscillations. We show that pathophysiological strengthening of striatal and pallidal synapses following dopamine depletion leads to the emergence of synchronized oscillatory activity in the mid-β range with spike-phase relationships between BG neuronal populations in-line with experiments. Furthermore, inhibition of GPe, contrary to STN, abolishes oscillations. Our modeling study uncovers the neural mechanisms underlying PD β oscillations and may thereby guide the future development of therapeutic strategies.
Collapse
Affiliation(s)
- Shiva Azizpour Lindi
- CNRS, Institut des Maladies Neurodégénératives (IMN), UMR 5293, Université de Bordeaux, Bordeaux F-33000, France
| | - Nicolas P Mallet
- CNRS, Institut des Maladies Neurodégénératives (IMN), UMR 5293, Université de Bordeaux, Bordeaux F-33000, France
| | - Arthur Leblois
- CNRS, Institut des Maladies Neurodégénératives (IMN), UMR 5293, Université de Bordeaux, Bordeaux F-33000, France
| |
Collapse
|
9
|
Reakkamnuan C, Kumarnsit E, Cheaha D. Local field potential (LFP) power and phase-amplitude coupling (PAC) changes in the striatum and motor cortex reflect neural mechanisms associated with bradykinesia and rigidity during D2R suppression in an animal model. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110838. [PMID: 37557945 DOI: 10.1016/j.pnpbp.2023.110838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Impairments in motor control are the primary feature of Parkinson's disease, which is caused by dopaminergic imbalance in the basal ganglia. Identification of neural biomarkers of dopamine D2 receptor (D2R) suppression would be useful for monitoring the progress of neuropathologies and effects of treatment. Male Swiss albino ICR mice were deeply anesthetized, and electrodes were implanted in the striatum and motor cortex to record local field potential (LFP). Haloperidol (HAL), a D2R antagonist, was administered to induce decreased D2R activity. Following HAL treatment, the mice showed significantly decreased movement velocity in open field test, increased latency to descend in a bar test, and decreased latency to fall in a rotarod test. LFP signals during HAL-induced immobility (open field test) and catalepsy (bar test) were analyzed. Striatal low-gamma (30.3-44.9 Hz) power decreased during immobility periods, but during catalepsy, delta power (1-4 Hz) increased, beta1(13.6-18 Hz) and low-gamma powers decreased, and high-gamma (60.5-95.7 Hz) power increased. Striatal delta-high-gamma phase-amplitude coupling (PAC) was significantly increased during catalepsy but not immobility. In the motor cortex, during HAL-induced immobility, beta1 power significantly increased and low-gamma power decreased, but during HAL-induced catalepsy, low-gamma and beta1 powers decreased and high-gamma power increased. Delta-high-gamma PAC in the motor cortex significantly increased during catalepsy but not during immobility. Altogether, the present study demonstrated changes in delta, beta1 and gamma powers and delta-high-gamma PAC in the striatum and motor cortex in association with D2R suppression. In particular, delta power in the striatum and delta-high-gamma PAC in the striatum and motor cortex appear to represent biomarkers of neural mechanisms associated with bradykinesia and rigidity.
Collapse
Affiliation(s)
- Chayaporn Reakkamnuan
- Physiology program, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University (PSU), Hat Yai, Songkhla 90110, Thailand; Biosignal Research Center for Health, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
| | - Ekkasit Kumarnsit
- Physiology program, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University (PSU), Hat Yai, Songkhla 90110, Thailand; Biosignal Research Center for Health, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
| | - Dania Cheaha
- Biology program, Division of Biological Sciences, Faculty of Science, Prince of Songkla University (PSU), Hat Yai, Songkhla 90110, Thailand; Biosignal Research Center for Health, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand.
| |
Collapse
|
10
|
Gimenez-Aparisi G, Guijarro-Estelles E, Chornet-Lurbe A, Ballesta-Martinez S, Pardo-Hernandez M, Ye-Lin Y. Early detection of Parkinson's disease: Systematic analysis of the influence of the eyes on quantitative biomarkers in resting state electroencephalography. Heliyon 2023; 9:e20625. [PMID: 37829809 PMCID: PMC10565694 DOI: 10.1016/j.heliyon.2023.e20625] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/24/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
While resting state electroencephalography (EEG) provides relevant information on pathological changes in Parkinson's disease, most studies focus on the eyes-closed EEG biomarkers. Recent evidence has shown that both eyes-open EEG and reactivity to eyes-opening can also differentiate Parkinson's disease from healthy aging, but no consensus has been reached on a discriminatory capability benchmark. The aim of this study was to determine the resting-state EEG biomarkers suitable for real-time application that can differentiate Parkinson's patients from healthy subjects under both eyes closed and open. For this, we analysed and compared the quantitative EEG analyses of 13 early-stage cognitively normal Parkinson's patients with an age and sex-matched healthy group. We found that Parkinson's disease exhibited abnormal excessive theta activity in eyes-closed, which was reflected by a significantly higher relative theta power, a higher time percentage with a frequency peak in the theta band and a reduced alpha/theta ratio, while Parkinson's patients showed a significantly steeper non-oscillatory spectral slope activity than that of healthy subjects. We also found considerably less alpha and beta reactivity to eyes-opening in Parkinson's disease plus a significant moderate correlation between these EEG-biomarkers and the MDS-UPDRS score, used to assesses the clinical symptoms of Parkinson's Disease. Both EEG recordings with the eyes open and reactivity to eyes-opening provided additional information to the eyes-closed condition. We thus strongly recommend that both eyes open and closed be used in clinical practice recording protocols to promote EEG as a complementary non-invasive screening method for the early detection of Parkinson's disease, which would allow clinicians to design patient-oriented treatment and improve the patient's quality of life.
Collapse
Affiliation(s)
- G. Gimenez-Aparisi
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022, València, Spain
| | - E. Guijarro-Estelles
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022, València, Spain
| | - A. Chornet-Lurbe
- Servicio de Neurofisiología Clínica, Hospital Lluís Alcanyís, departamento de salud Xàtiva-Ontinyent, 46800, Xàtiva, València, Spain
| | - S. Ballesta-Martinez
- Servicio de Neurofisiología Clínica, Hospital Lluís Alcanyís, departamento de salud Xàtiva-Ontinyent, 46800, Xàtiva, València, Spain
| | - M. Pardo-Hernandez
- Servicio de Neurofisiología Clínica, Hospital Lluís Alcanyís, departamento de salud Xàtiva-Ontinyent, 46800, Xàtiva, València, Spain
| | - Y. Ye-Lin
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022, València, Spain
| |
Collapse
|
11
|
Kwak Y, Lim S, Cho HU, Sim J, Lee S, Jeong S, Jeon SJ, Im CH, Jang DP. Effect of temporal interference electrical stimulation on phasic dopamine release in the striatum. Brain Stimul 2023; 16:1377-1383. [PMID: 37716638 DOI: 10.1016/j.brs.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Temporal interference stimulation (TIS) is a neuromodulation technique that could stimulate deep brain regions by inducing interfering electrical signals based on high-frequency electrical stimulations of multiple electrode pairs from outside the brain. Despite numerous TIS studies, however, there has been limited investigation into the neurochemical effects of TIS. OBJECTIVE We performed two experiments to investigate the effect of TIS on the medial forebrain bundle (MFB)-evoked phasic dopamine (DA) response. METHODS In the first experiment, we applied TIS next to a carbon fiber microelectrode (CFM) to examine the modulation of the MFB-evoked phasic DA response in the striatum (STr). Beat frequencies and intensities of TIS were 0, 2, 6, 10, 20, 60, 130 Hz and 0, 100, 200, 300, 400, 500 μA. In the second experiment, we examined the effect of TIS with a 2 Hz beat frequency (based on the first experiment) on MFB-evoked phasic DA release when applied above the cortex (with a simulation-based stimulation site targeting the striatum). We employed 0 Hz and 2 Hz beat frequencies and a control condition without stimulation. RESULTS In the first experiment, TIS with a beat frequency of 2 Hz and an intensity of 400 μA or greater decreased MFB-evoked phasic DA release by roughly 40%, which continued until the experiment's end. In contrast, TIS at beat frequencies other than 2 Hz and intensities less than 400 μA did not affect MFB-evoked phasic DA release. In the second experiment, TIS with a 2 Hz beat frequency decreased only the MFB-evoked phasic DA response, but the reduction in DA release was not sustained. CONCLUSIONS STr-applied and cortex-applied TIS with delta frequency dampens evoked phasic DA release in the STr. These findings demonstrate that TIS could influence the neurochemical modulation of the brain.
Collapse
Affiliation(s)
- Youngjong Kwak
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Seokbeen Lim
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hyun-U Cho
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Jeongeun Sim
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Sangjun Lee
- Department of Biomedical Engineering, University of Minnesota, MN, USA
| | - Suhyeon Jeong
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, Republic of Korea
| | - Se Jin Jeon
- Department of Pharmacology, College of Medicine, Hallym University, Gangwon, Republic of Korea
| | - Chang-Hwan Im
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Dong Pyo Jang
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Ortone A, Vergani AA, Ahmadipour M, Mannella R, Mazzoni A. Dopamine depletion leads to pathological synchronization of distinct basal ganglia loops in the beta band. PLoS Comput Biol 2023; 19:e1010645. [PMID: 37104542 PMCID: PMC10168586 DOI: 10.1371/journal.pcbi.1010645] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 05/09/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Motor symptoms of Parkinson's Disease (PD) are associated with dopamine deficits and pathological oscillation of basal ganglia (BG) neurons in the β range ([12-30] Hz). However, how dopamine depletion affects the oscillation dynamics of BG nuclei is still unclear. With a spiking neurons model, we here capture the features of BG nuclei interactions leading to oscillations in dopamine-depleted condition. We highlight that both the loop between subthalamic nucleus (STN) and Globus Pallidus pars externa (GPe) and the loop between striatal fast spiking and medium spiny neurons and GPe display resonances in the β range, and synchronize to a common β frequency through interaction. Crucially, the synchronization depends on dopamine depletion: the two loops are largely independent for high levels of dopamine, but progressively synchronize as dopamine is depleted due to the increased strength of the striatal loop. The model is validated against recent experimental reports on the role of cortical inputs, STN and GPe activity in the generation of β oscillations. Our results highlight the role of the interplay between the GPe-STN and the GPe-striatum loop in generating sustained β oscillations in PD subjects, and explain how this interplay depends on the level of dopamine. This paves the way to the design of therapies specifically addressing the onset of pathological β oscillations.
Collapse
Affiliation(s)
- Andrea Ortone
- Dipartimento di Fisica, Università di Pisa, Pisa, Italy
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Alberto Arturo Vergani
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Mahboubeh Ahmadipour
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | | | - Alberto Mazzoni
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| |
Collapse
|
13
|
Belov D, Fesenko Z, Efimov A, Lakstygal A, Efimova E. Different sensitivity to anesthesia according to ECoG data in dopamine transporter knockout and heterozygous rats. Neurosci Lett 2022; 788:136839. [PMID: 35964824 DOI: 10.1016/j.neulet.2022.136839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
Dopamine in the brain is involved in many important functions, including the regulation of wakefulness. There is also some evidence suggesting that the dopamine function is crucial in anesthetic function. The state of anesthesia is characterized by a change in the level of consciousness and a change in brain electrical activity. Due to impaired mechanisms of dopamine transportation back to the synaptic terminal, dopamine transporter (DAT) knockout and heterozygous rats have increased levels of the extracellular dopamine. In our work, we registered ECoG disturbances in knockout and heterozygous rats, as well as disturbances in tone and activity in acute experiments under the anesthesia Zoletil (tiletamine and zolazepam) from the somatosensory cortex using a NeuroNexus flat multielectrode array to study gamma activity. We also used four low-resistance electrodes to control the slow rhythm. Both low-resistance and high-resistance electrodes showed differences in the ECoG spectrum of heterozygotes and total knockouts from the wild type and from each other. Heterozygous rats for the DAT gene (HET) showed increased rapid beta and gamma activity and decreased slow delta activity, while complete knockouts (KO), on the contrary, showed increased delta activity and decreased beta and gamma activity. Thus, the ECoG spectrum of HET is shifted to the right, while that of KO is shifted to the left. Full knockouts also showed decreased spatial synchronization in the 30-100 Hz gamma range compared to the wild type (WT). It is assumed that sedation of HET and KO is shifted towards opposite directions compared to WT under the same anesthesia conditions.
Collapse
Affiliation(s)
- Dmitry Belov
- V.A. Almazov NMRC, 2 Akkuratova, St., St. Petersburg 197341, Russia.
| | - Zoia Fesenko
- Department of Biology, Saint Petersburg State University, Universitetskaya nab., 7-9, Saint Petersburg 199034, Russia; Institute of Translational Biomedicine, Saint Petersburg State University, 7-9 Universitetskaya nab., Saint Petersburg 199034, Russia
| | - Andrey Efimov
- Institute of Translational Biomedicine, Saint Petersburg State University, 7-9 Universitetskaya nab., Saint Petersburg 199034, Russia
| | - Anton Lakstygal
- Department of Biology, Saint Petersburg State University, Universitetskaya nab., 7-9, Saint Petersburg 199034, Russia
| | - Evgeniya Efimova
- Institute of Translational Biomedicine, Saint Petersburg State University, 7-9 Universitetskaya nab., Saint Petersburg 199034, Russia
| |
Collapse
|
14
|
Whalen TC, Parker JE, Gittis AH, Rubin JE. Transmission of delta band (0.5-4 Hz) oscillations from the globus pallidus to the substantia nigra pars reticulata in dopamine depletion. J Comput Neurosci 2022; 51:361-380. [PMID: 37266768 PMCID: PMC10527635 DOI: 10.1007/s10827-023-00853-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 01/20/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023]
Abstract
Parkinson's disease (PD) and animal models of PD feature enhanced oscillations in several frequency bands in the basal ganglia (BG). Past research has emphasized the enhancement of 13-30 Hz beta oscillations. Recently, however, oscillations in the delta band (0.5-4 Hz) have been identified as a robust predictor of dopamine loss and motor dysfunction in several BG regions in mouse models of PD. In particular, delta oscillations in the substantia nigra pars reticulata (SNr) were shown to lead oscillations in motor cortex (M1) and persist under M1 lesion, but it is not clear where these oscillations are initially generated. In this paper, we use a computational model to study how delta oscillations may arise in the SNr due to projections from the globus pallidus externa (GPe). We propose a network architecture that incorporates inhibition in SNr from oscillating GPe neurons and other SNr neurons. In our simulations, this configuration yields firing patterns in model SNr neurons that match those measured in vivo. In particular, we see the spontaneous emergence of near-antiphase active-predicting and inactive-predicting neural populations in the SNr, which persist under the inclusion of STN inputs based on experimental recordings. These results demonstrate how delta oscillations can propagate through BG nuclei despite imperfect oscillatory synchrony in the source site, narrowing down potential targets for the source of delta oscillations in PD models and giving new insight into the dynamics of SNr oscillations.
Collapse
Affiliation(s)
- Timothy C Whalen
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
- Design Interactive, Inc., Orlando, FL, United States
| | - John E Parker
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
| | - Aryn H Gittis
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
| | - Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, United States.
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States.
| |
Collapse
|
15
|
Rauschenberger L, Güttler C, Volkmann J, Kühn AA, Ip CW, Lofredi R. A translational perspective on pathophysiological changes of oscillatory activity in dystonia and parkinsonism. Exp Neurol 2022; 355:114140. [PMID: 35690132 DOI: 10.1016/j.expneurol.2022.114140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/14/2022] [Accepted: 06/03/2022] [Indexed: 11/19/2022]
Abstract
Intracerebral recordings from movement disorders patients undergoing deep brain stimulation have allowed the identification of pathophysiological patterns in oscillatory activity that correlate with symptom severity. Changes in oscillatory synchrony occur within and across brain areas, matching the classification of movement disorders as network disorders. However, the underlying mechanisms of oscillatory changes are difficult to assess in patients, as experimental interventions are technically limited and ethically problematic. This is why animal models play an important role in neurophysiological research of movement disorders. In this review, we highlight the contributions of translational research to the mechanistic understanding of pathological changes in oscillatory activity, with a focus on parkinsonism and dystonia, while addressing the limitations of current findings and proposing possible future directions.
Collapse
Affiliation(s)
- Lisa Rauschenberger
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Christopher Güttler
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Andrea A Kühn
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt-Universität, Berlin, Germany; NeuroCure, Exzellenzcluster, Charité-Universitätsmedizin Berlin, Berlin, Germany; DZNE, German Center for Neurodegenerative Diseases, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Roxanne Lofredi
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany.
| |
Collapse
|
16
|
Heshmati M, Bruchas MR. Historical and Modern Evidence for the Role of Reward Circuitry in Emergence. Anesthesiology 2022; 136:997-1014. [PMID: 35362070 PMCID: PMC9467375 DOI: 10.1097/aln.0000000000004148] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Increasing evidence supports a role for brain reward circuitry in modulating arousal along with emergence from anesthesia. Emergence remains an important frontier for investigation, since no drug exists in clinical practice to initiate rapid and smooth emergence. This review discusses clinical and preclinical evidence indicating a role for two brain regions classically considered integral components of the mesolimbic brain reward circuitry, the ventral tegmental area and the nucleus accumbens, in emergence from propofol and volatile anesthesia. Then there is a description of modern systems neuroscience approaches to neural circuit investigations that will help span the large gap between preclinical and clinical investigation with the shared aim of developing therapies to promote rapid emergence without agitation or delirium. This article proposes that neuroscientists include models of whole-brain network activity in future studies to inform the translational value of preclinical investigations and foster productive dialogues with clinician anesthesiologists.
Collapse
Affiliation(s)
- Mitra Heshmati
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, and Department of Biological Structure, University of Washington, Seattle, Washington
| | - Michael R Bruchas
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, and Department of Pharmacology, University of Washington, Seattle, Washington
| |
Collapse
|
17
|
Efimova EV, Kuvarzin SR, Mor MS, Katolikova NV, Shemiakova TS, Razenkova V, Ptukha M, Kozlova AA, Murtazina RZ, Smirnova D, Veshchitskii AA, Merkulyeva NS, Volnova AB, Musienko PE, Korzhevskii DE, Budygin EA, Gainetdinov RR. Trace Amine-Associated Receptor 2 Is Expressed in the Limbic Brain Areas and Is Involved in Dopamine Regulation and Adult Neurogenesis. Front Behav Neurosci 2022; 16:847410. [PMID: 35431833 PMCID: PMC9011332 DOI: 10.3389/fnbeh.2022.847410] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/28/2022] [Indexed: 01/22/2023] Open
Abstract
Trace amines are a group of biogenic amines that are structurally and functionally close to classical monoamine neurotransmitters. Trace amine-associated receptors (TAARs) are emerging as promising targets for treating neuropsychiatric disorders. It has been documented that all TAARs, apart from TAAR1, function as olfactory receptors involved in sensing innate odors encoded by volatile amines. However, recently, brain expression and function of TAAR5 were also demonstrated. In this study, we assessed the behavior, brain neurochemistry, and electrophysiology changes in knock-out mice lacking Trace amine-associated receptor 2 (TAAR2) but expressing beta-Galactosidase mapping expression of TAAR2 receptors. As expected, we detected beta-Galactosidase staining in the glomerular layer of the olfactory bulb. However, we also found staining in the deeper layers of the olfactory bulb and several brain regions, including the hippocampus, cerebellum, cortex, raphe nuclei, hypothalamus, and habenula, indicating that TAAR2 receptors are not only expressed in the olfactory system but are also present in the limbic brain areas that receive olfactory input. In behavioral experiments, TAAR2 knock-out (TAAR2-KO) mice showed increased locomotor activity and less immobility in the forced swim test, with no changes in anxiety level. Furthermore, TAAR2-KO mice showed alterations in brain electrophysiological activity—particularly, decreased spectral power of the cortex and striatum in the 0, 9–20 Hz range. TAAR2-KO mice also had elevated tissue dopamine levels in the striatum and an increased dopaminergic neuron number in the Substantia Nigra. In addition, an increased brain-derived neurotrophic factor (BDNF) mRNA level in the striatum and Monoamine Oxidase B (MAO-B) mRNA level in the striatum and midbrain was found in TAAR2-KO mice. Importantly, TAAR2-KO mice demonstrated an increased neuroblast-like and proliferating cell number in the subventricular and subgranular zone, indicating increased adult neurogenesis. These data indicate that in addition to its role in the innate olfaction of volatile amines, TAAR2 is expressed in limbic brain areas and regulates the brain dopamine system, neuronal electrophysiological activity, and adult neurogenesis. These findings further corroborated observations in TAAR1-KO and TAAR5-KO mice, indicating common for TAAR family pattern of expression in limbic brain areas and role in regulating monoamine levels and adult neurogenesis, but with variable involvement of each subtype of TAAR receptors in these functions.
Collapse
Affiliation(s)
- Evgeniya V. Efimova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Saveliy R. Kuvarzin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Mikael S. Mor
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Nataliia V. Katolikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Taisiia S. Shemiakova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | | | - Maria Ptukha
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Alena A. Kozlova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Ramilya Z. Murtazina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Daria Smirnova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | | | | | - Anna B. Volnova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Pavel E. Musienko
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Pavlov Institute of Physiology Russian Academy of Sciences, St. Petersburg, Russia
| | | | - Evgeny A. Budygin
- Department of Neurobiology, Sirius University of Science and Technology, Sochi, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- St. Petersburg University Hospital, St. Petersburg State University, St. Petersburg, Russia
- *Correspondence: Raul R. Gainetdinov,
| |
Collapse
|
18
|
Chu C, Zhang Z, Wang J, Liu S, Wang F, Sun Y, Han X, Li Z, Zhu X, Liu C. Deep learning reveals personalized spatial spectral abnormalities of high delta and low alpha bands in EEG of patients with early Parkinson's disease. J Neural Eng 2021; 18. [PMID: 34875634 DOI: 10.1088/1741-2552/ac40a0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/07/2021] [Indexed: 11/11/2022]
Abstract
Objective.Parkinson's disease (PD) is one of the most common neurodegenerative diseases, and early diagnosis is crucial to delay disease progression. The diagnosis of early PD has always been a difficult clinical problem due to the lack of reliable biomarkers. Electroencephalogram (EEG) is the most common clinical detection method, and studies have attempted to discover the EEG spectrum characteristics of early PD, but the reported conclusions are not uniform due to the heterogeneity of early PD patients. There is an urgent need for a more advanced algorithm to extract spectrum characteristics from EEG to satisfy the personalized requirements.Approach.The structured power spectral density with spatial distribution was used as the input of convolutional neural network (CNN). A visualization technique called gradient-weighted class activation mapping was used to extract the optimal frequency bands for identifying early PD. Based on the model visualization, we proposed a novel quantitative index of spectral characteristics, spatial-mapping relative power (SRP), to detect personalized abnormalities in the spatial spectral characteristics of EEG in early PD.Main results.We demonstrated the feasibility of applying CNN to identify the patients with early PD with an accuracy of 99.87% ± 0.03%. The models indicated the characteristic frequency bands (high-delta (3.5-4.5 Hz) and low-alpha (7.5-11 Hz) frequency bands) that are used to identify the early PD. The SRP of these two characteristic bands in early PD patients was significantly higher than that in the control group, and the abnormalities were consistent at the group and individual levels.Significance.This study provides a novel personalized detection algorithm based on deep learning to reveal the optimal frequency bands for identifying early PD and obtain the spatial frequency characteristics of early PD. The findings of this study will provide an effective reference for the auxiliary diagnosis of early PD in clinical practice.
Collapse
Affiliation(s)
- Chunguang Chu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Zhen Zhang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Shang Liu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Fei Wang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Yanan Sun
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Xiaoxuan Han
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Zhen Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Xiaodong Zhu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Chen Liu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
19
|
Role of the trace amine associated receptor 5 (TAAR5) in the sensorimotor functions. Sci Rep 2021; 11:23092. [PMID: 34845253 PMCID: PMC8630200 DOI: 10.1038/s41598-021-02289-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
Classical monoamines are well-known modulators of sensorimotor neural networks. However, the role of trace amines and their receptors in sensorimotor function remains unexplored. Using trace amine-associated receptor 5 knockout (TAAR5-KO) mice, that express beta-galactosidase mapping its localization, we observed TAAR5 expression in the Purkinje cells of the cerebellum and the medial vestibular nucleus, suggesting that TAAR5 might be involved in the vestibular and motor control. Accordingly, in various behavioral tests, TAAR5-KO mice demonstrated lower endurance, but better coordination and balance compared to wild-type controls. Furthermore, we found specific changes in striatal local field potentials and motor cortex electrocorticogram, such as a decrease in delta and an increase in theta oscillations of power spectra, respectively. The obtained data indicate that TAAR5 plays a considerable role in regulation postural stability, muscle force, balance, and motor coordination during active movements, likely via modulation of monoaminergic systems at different levels of sensorimotor control involving critical brain areas such as the brainstem, cerebellum, and forebrain.
Collapse
|
20
|
Sharma A, Vidaurre D, Vesper J, Schnitzler A, Florin E. Differential dopaminergic modulation of spontaneous cortico-subthalamic activity in Parkinson's disease. eLife 2021; 10:66057. [PMID: 34085932 PMCID: PMC8177893 DOI: 10.7554/elife.66057] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/12/2021] [Indexed: 11/20/2022] Open
Abstract
Pathological oscillations including elevated beta activity in the subthalamic nucleus (STN) and between STN and cortical areas are a hallmark of neural activity in Parkinson’s disease (PD). Oscillations also play an important role in normal physiological processes and serve distinct functional roles at different points in time. We characterised the effect of dopaminergic medication on oscillatory whole-brain networks in PD in a time-resolved manner by employing a hidden Markov model on combined STN local field potentials and magnetoencephalography (MEG) recordings from 17 PD patients. Dopaminergic medication led to coherence within the medial and orbitofrontal cortex in the delta/theta frequency range. This is in line with known side effects of dopamine treatment such as deteriorated executive functions in PD. In addition, dopamine caused the beta band activity to switch from an STN-mediated motor network to a frontoparietal-mediated one. In contrast, dopamine did not modify local STN–STN coherence in PD. STN–STN synchrony emerged both on and off medication. By providing electrophysiological evidence for the differential effects of dopaminergic medication on the discovered networks, our findings open further avenues for electrical and pharmacological interventions in PD.
Collapse
Affiliation(s)
- Abhinav Sharma
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Diego Vidaurre
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom.,Department of Clinical Health, Aarhus University, Aarhus, Denmark
| | - Jan Vesper
- Department of Neurosurgery, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.,Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Esther Florin
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
21
|
Brazhnik E, Novikov N, McCoy AJ, Ilieva NM, Ghraib MW, Walters JR. Early decreases in cortical mid-gamma peaks coincide with the onset of motor deficits and precede exaggerated beta build-up in rat models for Parkinson's disease. Neurobiol Dis 2021; 155:105393. [PMID: 34000417 DOI: 10.1016/j.nbd.2021.105393] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/27/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022] Open
Abstract
Evidence suggests that exaggerated beta range local field potentials (LFP) in basal ganglia-thalamocortical circuits constitute an important biomarker for feedback for deep brain stimulation in Parkinson's disease patients, although the role of this phenomenon in triggering parkinsonian motor symptoms remains unclear. A useful model for probing the causal role of motor circuit LFP synchronization in motor dysfunction is the unilateral dopamine cell-lesioned rat, which shows dramatic motor deficits walking contralaterally to the lesion but can walk steadily ipsilaterally on a circular treadmill. Within hours after 6-OHDA injection, rats show marked deficits in ipsilateral walking with early loss of significant motor cortex (MCx) LFP peaks in the mid-gamma 41-45 Hz range in the lesioned hemisphere; both effects were reversed by dopamine agonist administration. Increases in MCx and substantia nigra pars reticulata (SNpr) coherence and LFP power in the 29-40 Hz range emerged more gradually over 7 days, although without further progression of walking deficits. Twice-daily chronic dopamine antagonist treatment induced rapid onset of catalepsy and also reduced MCx 41-45 Hz LFP activity at 1 h, with increases in MCx and SNpr 29-40 Hz power/coherence emerging over 7 days, as assessed during periods of walking before the morning treatments. Thus, increases in high beta power in these parkinsonian models emerge gradually and are not linearly correlated with motor deficits. Earlier changes in cortical circuits, reflected in the rapid decreases in MCx LFP mid-gamma LFP activity, may contribute to evolving plasticity supporting increased beta range synchronized activity in basal ganglia-thalamocortical circuits after loss of dopamine receptor stimulation.
Collapse
Affiliation(s)
- Elena Brazhnik
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3702, United States of America
| | - Nikolay Novikov
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3702, United States of America
| | - Alex J McCoy
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3702, United States of America
| | - Neda M Ilieva
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3702, United States of America
| | - Marian W Ghraib
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3702, United States of America
| | - Judith R Walters
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3702, United States of America.
| |
Collapse
|
22
|
Abnormal Cortico-Basal Ganglia Neurotransmission in a Mouse Model of l-DOPA-Induced Dyskinesia. J Neurosci 2021; 41:2668-2683. [PMID: 33563724 DOI: 10.1523/jneurosci.0267-20.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 10/16/2020] [Accepted: 12/11/2020] [Indexed: 12/23/2022] Open
Abstract
l-3,4-dihydroxyphenylalanine (l-DOPA) is an effective treatment for Parkinson's disease (PD); however, long-term treatment induces l-DOPA-induced dyskinesia (LID). To elucidate its pathophysiology, we developed a mouse model of LID by daily administration of l-DOPA to PD male ICR mice treated with 6-hydroxydopamine (6-OHDA), and recorded the spontaneous and cortically evoked neuronal activity in the external segment of the globus pallidus (GPe) and substantia nigra pars reticulata (SNr), the connecting and output nuclei of the basal ganglia, respectively, in awake conditions. Spontaneous firing rates of GPe neurons were decreased in the dyskinesia-off state (≥24 h after l-DOPA injection) and increased in the dyskinesia-on state (20-100 min after l-DOPA injection while showing dyskinesia), while those of SNr neurons showed no significant changes. GPe and SNr neurons showed bursting activity and low-frequency oscillation in the PD, dyskinesia-off, and dyskinesia-on states. In the GPe, cortically evoked late excitation was increased in the PD and dyskinesia-off states but decreased in the dyskinesia-on state. In the SNr, cortically evoked inhibition was largely suppressed, and monophasic excitation became dominant in the PD state. Chronic l-DOPA treatment partially recovered inhibition and suppressed late excitation in the dyskinesia-off state. In the dyskinesia-on state, inhibition was further enhanced, and late excitation was largely suppressed. Cortically evoked inhibition and late excitation in the SNr are mediated by the cortico-striato-SNr direct and cortico-striato-GPe-subthalamo-SNr indirect pathways, respectively. Thus, in the dyskinesia-on state, signals through the direct pathway that release movements are enhanced, while signals through the indirect pathway that stop movements are suppressed, underlying LID.SIGNIFICANCE STATEMENT Parkinson's disease (PD) is caused by progressive loss of midbrain dopaminergic neurons, characterized by tremor, rigidity, and akinesia, and estimated to affect around six million people world-wide. Dopamine replacement therapy is the gold standard for PD treatment; however, control of symptoms using l-3,4-dihydroxyphenylalanine (l-DOPA) becomes difficult over time because of abnormal involuntary movements (AIMs) known as l-DOPA-induced dyskinesia (LID), one of the major issues for advanced PD. Our electrophysiological data suggest that dynamic changes in the basal ganglia circuitry underlie LID; signals through the direct pathway that release movements are enhanced, while signals through the indirect pathway that stop movements are suppressed. These results will provide the rationale for the development of more effective treatments for LID.
Collapse
|
23
|
Phillips RS, Rosner I, Gittis AH, Rubin JE. The effects of chloride dynamics on substantia nigra pars reticulata responses to pallidal and striatal inputs. eLife 2020; 9:e55592. [PMID: 32894224 PMCID: PMC7476764 DOI: 10.7554/elife.55592] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/14/2020] [Indexed: 11/20/2022] Open
Abstract
As a rodent basal ganglia (BG) output nucleus, the substantia nigra pars reticulata (SNr) is well positioned to impact behavior. SNr neurons receive GABAergic inputs from the striatum (direct pathway) and globus pallidus (GPe, indirect pathway). Dominant theories of action selection rely on these pathways' inhibitory actions. Yet, experimental results on SNr responses to these inputs are limited and include excitatory effects. Our study combines experimental and computational work to characterize, explain, and make predictions about these pathways. We observe diverse SNr responses to stimulation of SNr-projecting striatal and GPe neurons, including biphasic and excitatory effects, which our modeling shows can be explained by intracellular chloride processing. Our work predicts that ongoing GPe activity could tune the SNr operating mode, including its responses in decision-making scenarios, and GPe output may modulate synchrony and low-frequency oscillations of SNr neurons, which we confirm using optogenetic stimulation of GPe terminals within the SNr.
Collapse
Affiliation(s)
- Ryan S Phillips
- Department of Mathematics, University of PittsburghPittsburghUnited States
- Center for the Neural Basis of CognitionPittsburghUnited States
| | - Ian Rosner
- Center for the Neural Basis of CognitionPittsburghUnited States
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
| | - Aryn H Gittis
- Center for the Neural Basis of CognitionPittsburghUnited States
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
| | - Jonathan E Rubin
- Department of Mathematics, University of PittsburghPittsburghUnited States
- Center for the Neural Basis of CognitionPittsburghUnited States
| |
Collapse
|