1
|
Walcott KCE, Mauthner SE, Tsubouchi A, Robertson J, Tracey WD. The Drosophila Small Conductance Calcium-Activated Potassium Channel Negatively Regulates Nociception. Cell Rep 2019; 24:3125-3132.e3. [PMID: 30231996 PMCID: PMC6454897 DOI: 10.1016/j.celrep.2018.08.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 06/11/2018] [Accepted: 08/23/2018] [Indexed: 12/20/2022] Open
Abstract
Inhibition of nociceptor activity is important for the prevention of spontaneous pain and hyperalgesia. To identify the critical K+ channels that regulate nociceptor excitability, we performed a forward genetic screen using a Drosophila larval nociception paradigm. Knockdown of three K+ channel loci, the small conductance calcium-activated potassium channel (SK), seizure, and tiwaz, causes marked hypersensitive nociception behaviors. In more detailed studies of SK, we found that hypersensitive phenotypes can be recapitulated with a genetically null allele. Optical recordings from nociceptive neurons showed a significant increase in mechanically activated Ca2+ signals in SK mutant nociceptors. SK is expressed in peripheral neurons, including nociceptive neurons. Interestingly, SK proteins localize to axons of these neurons but are not detected in dendrites. Our findings suggest a major role for SK channels in the regulation of nociceptor excitation and are inconsistent with the hypothesis that the important site of action is within dendrites. Walcott et al. performed a forward genetic screen and identify three potassium channel subunits that negatively regulate nociception in Drosophila larvae. In a more detailed investigation of the SK channel, null mutants, rescue experiments, optical recordings, and protein localization studies indicate a functional role for SK in nociceptor excitability.
Collapse
Affiliation(s)
- Kia C E Walcott
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Stephanie E Mauthner
- Gill Center for Biomolecular Research, Indiana University, Bloomington, IN, USA; Department of Biology, Indiana University, Bloomington, IN, USA
| | - Asako Tsubouchi
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Jessica Robertson
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - W Daniel Tracey
- Gill Center for Biomolecular Research, Indiana University, Bloomington, IN, USA; Department of Biology, Indiana University, Bloomington, IN, USA; Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
2
|
Castañeda MS, Tonini R, Richards CD, Stocker M, Pedarzani P. Benzamil inhibits neuronal and heterologously expressed small conductance Ca2+-activated K+ channels. Neuropharmacology 2019; 158:107738. [DOI: 10.1016/j.neuropharm.2019.107738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/10/2019] [Accepted: 08/07/2019] [Indexed: 10/26/2022]
|
3
|
Mäki-Marttunen T, Krull F, Bettella F, Hagen E, Næss S, Ness TV, Moberget T, Elvsåshagen T, Metzner C, Devor A, Edwards AG, Fyhn M, Djurovic S, Dale AM, Andreassen OA, Einevoll GT. Alterations in Schizophrenia-Associated Genes Can Lead to Increased Power in Delta Oscillations. Cereb Cortex 2019; 29:875-891. [PMID: 30475994 PMCID: PMC6319172 DOI: 10.1093/cercor/bhy291] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/03/2018] [Indexed: 12/13/2022] Open
Abstract
Genome-wide association studies have implicated many ion channels in schizophrenia pathophysiology. Although the functions of these channels are relatively well characterized by single-cell studies, the contributions of common variation in these channels to neurophysiological biomarkers and symptoms of schizophrenia remain elusive. Here, using computational modeling, we show that a common biomarker of schizophrenia, namely, an increase in delta-oscillation power, may be a direct consequence of altered expression or kinetics of voltage-gated ion channels or calcium transporters. Our model of a circuit of layer V pyramidal cells highlights multiple types of schizophrenia-related variants that contribute to altered dynamics in the delta-frequency band. Moreover, our model predicts that the same membrane mechanisms that increase the layer V pyramidal cell network gain and response to delta-frequency oscillations may also cause a deficit in a single-cell correlate of the prepulse inhibition, which is a behavioral biomarker highly associated with schizophrenia.
Collapse
Affiliation(s)
- Tuomo Mäki-Marttunen
- Simula Research Laboratory, Oslo, Norway
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Florian Krull
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Francesco Bettella
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Espen Hagen
- Department of Physics, University of Oslo, Oslo, Norway
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Solveig Næss
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Torbjørn V Ness
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Torgeir Moberget
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torbjørn Elvsåshagen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Christoph Metzner
- Centre for Computer Science and Informatics Research, University of Hertfordshire, Hatfield, UK
| | - Anna Devor
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | | | - Marianne Fyhn
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anders M Dale
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Gaute T Einevoll
- Department of Physics, University of Oslo, Oslo, Norway
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
4
|
Kshatri AS, Gonzalez-Hernandez A, Giraldez T. Physiological Roles and Therapeutic Potential of Ca 2+ Activated Potassium Channels in the Nervous System. Front Mol Neurosci 2018; 11:258. [PMID: 30104956 PMCID: PMC6077210 DOI: 10.3389/fnmol.2018.00258] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/06/2018] [Indexed: 12/21/2022] Open
Abstract
Within the potassium ion channel family, calcium activated potassium (KCa) channels are unique in their ability to couple intracellular Ca2+ signals to membrane potential variations. KCa channels are diversely distributed throughout the central nervous system and play fundamental roles ranging from regulating neuronal excitability to controlling neurotransmitter release. The physiological versatility of KCa channels is enhanced by alternative splicing and co-assembly with auxiliary subunits, leading to fundamental differences in distribution, subunit composition and pharmacological profiles. Thus, understanding specific KCa channels’ mechanisms in neuronal function is challenging. Based on their single channel conductance, KCa channels are divided into three subtypes: small (SK, 4–14 pS), intermediate (IK, 32–39 pS) and big potassium (BK, 200–300 pS) channels. This review describes the biophysical characteristics of these KCa channels, as well as their physiological roles and pathological implications. In addition, we also discuss the current pharmacological strategies and challenges to target KCa channels for the treatment of various neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Aravind S Kshatri
- Department of Basic Medical Sciences, Medical School, Universidad de La Laguna, Tenerife, Spain.,Instituto de Tecnologias Biomedicas, Universidad de La Laguna, Tenerife, Spain
| | - Alberto Gonzalez-Hernandez
- Department of Basic Medical Sciences, Medical School, Universidad de La Laguna, Tenerife, Spain.,Instituto de Tecnologias Biomedicas, Universidad de La Laguna, Tenerife, Spain
| | - Teresa Giraldez
- Department of Basic Medical Sciences, Medical School, Universidad de La Laguna, Tenerife, Spain.,Instituto de Tecnologias Biomedicas, Universidad de La Laguna, Tenerife, Spain
| |
Collapse
|
5
|
A stepwise neuron model fitting procedure designed for recordings with high spatial resolution: Application to layer 5 pyramidal cells. J Neurosci Methods 2017; 293:264-283. [PMID: 28993204 DOI: 10.1016/j.jneumeth.2017.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 09/07/2017] [Accepted: 10/05/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND Recent progress in electrophysiological and optical methods for neuronal recordings provides vast amounts of high-resolution data. In parallel, the development of computer technology has allowed simulation of ever-larger neuronal circuits. A challenge in taking advantage of these developments is the construction of single-cell and network models in a way that faithfully reproduces neuronal biophysics with subcellular level of details while keeping the simulation costs at an acceptable level. NEW METHOD In this work, we develop and apply an automated, stepwise method for fitting a neuron model to data with fine spatial resolution, such as that achievable with voltage sensitive dyes (VSDs) and Ca2+ imaging. RESULT We apply our method to simulated data from layer 5 pyramidal cells (L5PCs) and construct a model with reduced neuronal morphology. We connect the reduced-morphology neurons into a network and validate against simulated data from a high-resolution L5PC network model. COMPARISON WITH EXISTING METHODS Our approach combines features from several previously applied model-fitting strategies. The reduced-morphology neuron model obtained using our approach reliably reproduces the membrane-potential dynamics across the dendrites as predicted by the full-morphology model. CONCLUSIONS The network models produced using our method are cost-efficient and predict that interconnected L5PCs are able to amplify delta-range oscillatory inputs across a large range of network sizes and topologies, largely due to the medium after hyperpolarization mediated by the Ca2+-activated SK current.
Collapse
|
6
|
Abiraman K, Sah M, Walikonis RS, Lykotrafitis G, Tzingounis AV. Tonic PKA Activity Regulates SK Channel Nanoclustering and Somatodendritic Distribution. J Mol Biol 2016; 428:2521-2537. [PMID: 27107637 DOI: 10.1016/j.jmb.2016.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/28/2016] [Accepted: 04/07/2016] [Indexed: 01/02/2023]
Abstract
Small-conductance calcium-activated potassium (SK) channels mediate a potassium conductance in the brain and are involved in synaptic plasticity, learning, and memory. SK channels show a distinct subcellular localization that is crucial for their neuronal functions. However, the mechanisms that control this spatial distribution are unknown. We imaged SK channels labeled with fluorophore-tagged apamin and monitored SK channel nanoclustering at the single molecule level by combining atomic force microscopy and toxin (i.e., apamin) pharmacology. Using these two complementary approaches, we found that native SK channel distribution in pyramidal neurons, across the somatodendritic domain, depends on ongoing cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) levels, strongly limiting SK channel expression at the pyramidal neuron soma. Furthermore, tonic cAMP-PKA levels also controlled whether SK channels were expressed in nanodomains as single entities or as a group of multiple channels. Our study reveals a new level of regulation of SK channels by cAMP-PKA and suggests that ion channel topography and nanoclustering might be under the control of second messenger cascades.
Collapse
Affiliation(s)
- Krithika Abiraman
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Megha Sah
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Randall S Walikonis
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - George Lykotrafitis
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | - Anastasios V Tzingounis
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
7
|
Poetschke C, Dragicevic E, Duda J, Benkert J, Dougalis A, DeZio R, Snutch TP, Striessnig J, Liss B. Compensatory T-type Ca2+ channel activity alters D2-autoreceptor responses of Substantia nigra dopamine neurons from Cav1.3 L-type Ca2+ channel KO mice. Sci Rep 2015; 5:13688. [PMID: 26381090 PMCID: PMC4585382 DOI: 10.1038/srep13688] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/03/2015] [Indexed: 12/17/2022] Open
Abstract
The preferential degeneration of Substantia nigra dopamine midbrain neurons (SN DA) causes the motor-symptoms of Parkinson's disease (PD). Voltage-gated L-type calcium channels (LTCCs), especially the Cav1.3-subtype, generate an activity-related oscillatory Ca(2+) burden in SN DA neurons, contributing to their degeneration and PD. While LTCC-blockers are already in clinical trials as PD-therapy, age-dependent functional roles of Cav1.3 LTCCs in SN DA neurons remain unclear. Thus, we analysed juvenile and adult Cav1.3-deficient mice with electrophysiological and molecular techniques. To unmask compensatory effects, we compared Cav1.3 KO mice with pharmacological LTCC-inhibition. LTCC-function was not necessary for SN DA pacemaker-activity at either age, but rather contributed to their pacemaker-precision. Moreover, juvenile Cav1.3 KO but not WT mice displayed adult wildtype-like, sensitised inhibitory dopamine-D2-autoreceptor (D2-AR) responses that depended upon both, interaction of the neuronal calcium sensor NCS-1 with D2-ARs, and on voltage-gated T-type calcium channel (TTCC) activity. This functional KO-phenotype was accompanied by cell-specific up-regulation of NCS-1 and Cav3.1-TTCC mRNA. Furthermore, in wildtype we identified an age-dependent switch of TTCC-function from contributing to SN DA pacemaker-precision in juveniles to pacemaker-frequency in adults. This novel interplay of Cav1.3 L-type and Cav3.1 T-type channels, and their modulation of SN DA activity-pattern and D2-AR-sensitisation, provide new insights into flexible age- and calcium-dependent activity-control of SN DA neurons and its pharmacological modulation.
Collapse
Affiliation(s)
| | - Elena Dragicevic
- Institute of Applied Physiology, University of Ulm, 89081 Ulm, Germany
| | - Johanna Duda
- Institute of Applied Physiology, University of Ulm, 89081 Ulm, Germany
| | - Julia Benkert
- Institute of Applied Physiology, University of Ulm, 89081 Ulm, Germany
| | - Antonios Dougalis
- Institute of Applied Physiology, University of Ulm, 89081 Ulm, Germany
| | - Roberta DeZio
- Institute of Applied Physiology, University of Ulm, 89081 Ulm, Germany
| | - Terrance P. Snutch
- Djavad Mowafaghian Centre for Brain and Health and Michael Smith Laboratories, University of British Columbia, V6T1Z4 Vancouver, Canada
| | - Joerg Striessnig
- Institute of Pharmacy, Department of Pharmacology and Toxicology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Birgit Liss
- Institute of Applied Physiology, University of Ulm, 89081 Ulm, Germany
| |
Collapse
|