1
|
Rana S, Fusco AF, Witkin JM, Radin DP, Cerne R, Lippa A, Fuller DD. Pharmacological modulation of respiratory control: Ampakines as a therapeutic strategy. Pharmacol Ther 2025; 265:108744. [PMID: 39521442 DOI: 10.1016/j.pharmthera.2024.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Ampakines are a class of compounds that are positive allosteric modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and enhance glutamatergic neurotransmission. Glutamatergic synaptic transmission and AMPA receptor activation are fundamentally important to the genesis and propagation of the neural impulses driving breathing, including respiratory motoneuron depolarization. Ampakines therefore have the potential to modulate the neural control of breathing. In this paper, we describe the influence of ampakines on respiratory motor output in health and disease. We dissect the molecular mechanisms underlying ampakine action, delineate the diverse targets of ampakines along the respiratory neuraxis, survey the spectrum of respiratory disorders in which ampakines have been tested, and culminate with an examination of how ampakines modulate respiratory function after spinal cord injury. Collectively, the studies reviewed here indicate that ampakines may be a useful adjunctive strategy to pair with conventional respiratory rehabilitation approaches in conditions with impaired neural activation of the respiratory muscles.
Collapse
Affiliation(s)
- Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States of America.
| | - Anna F Fusco
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States of America
| | - Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, IN, United States of America; Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN, United States of America; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America
| | - Daniel P Radin
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, IN, United States of America; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America; Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, Ljubljana, Slovenia
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States of America
| |
Collapse
|
2
|
Fuller DD, Rana S, Thakre P, Benevides E, Pope M, Todd AG, Jensen VN, Vaught L, Cloutier D, Ribas RA, Larson RC, Gentry MS, Sun RC, Chandran V, Corti M, Falk DJ, Byrne BJ. Neonatal systemic gene therapy restores cardiorespiratory function in a rat model of Pompe disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627800. [PMID: 39763722 PMCID: PMC11702543 DOI: 10.1101/2024.12.10.627800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Absence of functional acid-α-glucosidase (GAA) leads to early-onset Pompe disease with cardiorespiratory and neuromuscular failure. A novel Pompe rat model (Gaa -/-) was used to test the hypothesis that neonatal gene therapy with adeno-associated virus serotype 9 (AAV9) restores cardiorespiratory neuromuscular function across the lifespan. Temporal vein administration of AAV9-DES-GAA or sham (saline) injection was done on post-natal day 1; rats were studied at 6-12 months old. Whole-body plethysmography showed that reduced inspiratory tidal volumes in Gaa -/- rats were corrected by AAV-GAA treatment. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI) revealed that AAV-GAA treatment normalized diaphragm muscle glycogen as well as glycans. Neurophysiological recordings of phrenic nerve output and immunohistochemical evaluation of the cervical spinal cord indicated a neurologic benefit of AAV-GAA treatment. In vivo magnetic resonance imaging demonstrated that impaired cardiac volumes in Gaa -/- rats were corrected by AAV-GAA treatment. Biochemical assays showed that AAV treatment increased GAA activity in the heart, diaphragm, quadriceps and spinal cord. We conclude that neonatal AAV9-DES-GAA therapy drives sustained, functional GAA expression and improved cardiorespiratory function in the Gaa -/- rat model of Pompe disease.
Collapse
Affiliation(s)
- David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, FL
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Prajwal Thakre
- Department of Physical Therapy, University of Florida, Gainesville, FL
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Ethan Benevides
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Megan Pope
- Powell Gene Therapy Center, University of Florida, Gainesville, FL
| | - Adrian G Todd
- Department of Pediatrics, University of Florida, Gainesville, FL
- Powell Gene Therapy Center, University of Florida, Gainesville, FL
| | - Victoria N Jensen
- Department of Physical Therapy, University of Florida, Gainesville, FL
| | - Lauren Vaught
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Denise Cloutier
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Roberto A Ribas
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
| | - Reece C Larson
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
| | - Matthew S Gentry
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
| | - Ramon C Sun
- McKnight Brain Institute, University of Florida, Gainesville, FL
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
| | - Vijay Chandran
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Manuela Corti
- Department of Pediatrics, University of Florida, Gainesville, FL
- Powell Gene Therapy Center, University of Florida, Gainesville, FL
| | - Darin J Falk
- Department of Pediatrics, University of Florida, Gainesville, FL
- Powell Gene Therapy Center, University of Florida, Gainesville, FL
| | - Barry J Byrne
- Department of Pediatrics, University of Florida, Gainesville, FL
- Powell Gene Therapy Center, University of Florida, Gainesville, FL
| |
Collapse
|
3
|
Yoon JK, Schindler JW, Loperfido M, Baricordi C, DeAndrade MP, Jacobs ME, Treleaven C, Plasschaert RN, Yan A, Barese CN, Dogan Y, Chen VP, Fiorini C, Hull F, Barbarossa L, Unnisa Z, Ivanov D, Kutner RH, Guda S, Oborski C, Maiwald T, Michaud V, Rothe M, Schambach A, Pfeifer R, Mason C, Biasco L, van Til NP. Preclinical lentiviral hematopoietic stem cell gene therapy corrects Pompe disease-related muscle and neurological manifestations. Mol Ther 2024; 32:3847-3864. [PMID: 39295144 PMCID: PMC11573599 DOI: 10.1016/j.ymthe.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/27/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024] Open
Abstract
Pompe disease, a rare genetic neuromuscular disorder, is caused by a deficiency of acid alpha-glucosidase (GAA), leading to an accumulation of glycogen in lysosomes, and resulting in the progressive development of muscle weakness. The current standard treatment, enzyme replacement therapy (ERT), is not curative and has limitations such as poor penetration into skeletal muscle and both the central and peripheral nervous systems, a risk of immune responses against the recombinant enzyme, and the requirement for high doses and frequent infusions. To overcome these limitations, lentiviral vector-mediated hematopoietic stem and progenitor cell (HSPC) gene therapy has been proposed as a next-generation approach for treating Pompe disease. This study demonstrates the potential of lentiviral HSPC gene therapy to reverse the pathological effects of Pompe disease in a preclinical mouse model. It includes a comprehensive safety assessment via integration site analysis, along with single-cell RNA sequencing analysis of central nervous tissue samples to gain insights into the underlying mechanisms of phenotype correction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Aimin Yan
- AVROBIO, Inc., Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - Véronique Michaud
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Chris Mason
- AVROBIO, Inc., Cambridge, MA 02139, USA; Advanced Centre for Biochemical Engineering, University College London, London WC1E 6AE, UK
| | - Luca Biasco
- AVROBIO, Inc., Cambridge, MA 02139, USA; Zayed Centre for Research, University College London, London WC1N 1DZ, UK
| | - Niek P van Til
- AVROBIO, Inc., Cambridge, MA 02139, USA; Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, VU University, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, 1081 HV, Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Najac C, van der Beek NAME, Boer VO, van Doorn PA, van der Ploeg AT, Ronen I, Kan HE, van den Hout JMP. Brain glycogen build-up measured by magnetic resonance spectroscopy in classic infantile Pompe disease. Brain Commun 2024; 6:fcae303. [PMID: 39309683 PMCID: PMC11416038 DOI: 10.1093/braincomms/fcae303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 06/04/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
Classic infantile Pompe disease is caused by abnormal lysosomal glycogen accumulation in multiple tissues, including the brain due to a deficit in acid α-glucosidase. Although treatment with recombinant human acid α-glucosidase has dramatically improved survival, recombinant human acid α-glucosidase does not reach the brain, and surviving classic infantile Pompe patients develop progressive cognitive deficits and white matter lesions. We investigated the feasibility of measuring non-invasively glycogen build-up and other metabolic alterations in the brain of classic infantile Pompe patients. Four classic infantile patients (8-16 years old) and 4 age-matched healthy controls were scanned on a 7 T MRI scanner. We used T2-weighted MRI to assess the presence of white matter lesions as well as 1H magnetic resonance spectroscopy and magnetic resonance spectroscopy imaging to obtain the neurochemical profile and its spatial distribution, respectively. All patients had widespread white matter lesions on T2-weighted images. Magnetic resonance spectroscopy data from a single volume of interest positioned in the periventricular white matter showed a clear shift in the neurochemical profile, particularly a significant increase in glycogen (result of acid α-glucosidase deficiency) and decrease in N-acetyl-aspartate (marker of neuronal damage) in patients. Magnetic resonance spectroscopy imaging results were in line and showed a widespread accumulation of glycogen and a significant lower level of N-acetyl-aspartate in patients. Our results illustrate the unique potential of 1H magnetic resonance spectroscopy (imaging) to provide a non-invasive readout of the disease pathology in the brain. Further study will assess its potential to monitor disease progression and the correlation with cognitive decline.
Collapse
Affiliation(s)
- Chloé Najac
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Nadine A M E van der Beek
- Center for Lysosomal and Metabolic Diseases, Department of Neurology, Erasmus MC University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Vincent O Boer
- Danish Research Center for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, DK2650 Copenhagen, Denmark
| | - Pieter A van Doorn
- Center for Lysosomal and Metabolic Diseases, Department of Neurology, Erasmus MC University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Ans T van der Ploeg
- Center for Lysosomal and Metabolic Diseases, Department of Pediatrics, Erasmus MC University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Itamar Ronen
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, East Sussex BN1 9RR, UK
| | - Hermien E Kan
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Duchenne Center Netherlands, 2333 ZA Leiden, The Netherlands
| | - Johanna M P van den Hout
- Center for Lysosomal and Metabolic Diseases, Department of Pediatrics, Erasmus MC University Medical Center, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
5
|
Colpaert M, Singh PK, Donohue KJ, Pires NT, Fuller DD, Corti M, Byrne BJ, Sun RC, Vander Kooi CW, Gentry MS. Neurological glycogen storage diseases and emerging therapeutics. Neurotherapeutics 2024; 21:e00446. [PMID: 39277505 PMCID: PMC11581880 DOI: 10.1016/j.neurot.2024.e00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024] Open
Abstract
Glycogen storage diseases (GSDs) comprise a group of inherited metabolic disorders characterized by defects in glycogen metabolism, leading to abnormal glycogen accumulation in multiple tissues, most notably affecting the liver, skeletal muscle, and heart. Recent findings have uncovered the importance of glycogen metabolism in the brain, sustaining a myriad of physiological functions and linking its perturbation to central nervous system (CNS) pathology. This link resulted in classification of neurological-GSDs (n-GSDs), a group of diseases with shared deficits in neurological glycogen metabolism. The n-GSD patients exhibit a spectrum of clinical presentations with common etiology while requiring tailored therapeutic approaches from the traditional GSDs. Recent research has elucidated the genetic and biochemical mechanisms and pathophysiological basis underlying different n-GSDs. Further, the last decade has witnessed some promising developments in novel therapeutic approaches, including enzyme replacement therapy (ERT), substrate reduction therapy (SRT), small molecule drugs, and gene therapy targeting key aspects of glycogen metabolism in specific n-GSDs. This preclinical progress has generated noticeable success in potentially modifying disease course and improving clinical outcomes in patients. Herein, we provide an overview of current perspectives on n-GSDs, emphasizing recent advances in understanding their molecular basis, therapeutic developments, underscore key challenges and the need to deepen our understanding of n-GSDs pathogenesis to develop better therapeutic strategies that could offer improved treatment and sustainable benefits to the patients.
Collapse
Affiliation(s)
- Matthieu Colpaert
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Pankaj K Singh
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | | | - David D Fuller
- Department of Physical Therapy and Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Manuela Corti
- Department of Pediatrics, Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Barry J Byrne
- Department of Pediatrics, Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ramon C Sun
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA
| | - Craig W Vander Kooi
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA
| | - Matthew S Gentry
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA.
| |
Collapse
|
6
|
Leon-Astudillo C, Trivedi PD, Sun RC, Gentry MS, Fuller DD, Byrne BJ, Corti M. Current avenues of gene therapy in Pompe disease. Curr Opin Neurol 2023; 36:464-473. [PMID: 37639402 PMCID: PMC10911405 DOI: 10.1097/wco.0000000000001187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW Pompe disease is a rare, inherited, devastating condition that causes progressive weakness, cardiomyopathy and neuromotor disease due to the accumulation of glycogen in striated and smooth muscle, as well as neurons. While enzyme replacement therapy has dramatically changed the outcome of patients with the disease, this strategy has several limitations. Gene therapy in Pompe disease constitutes an attractive approach due to the multisystem aspects of the disease and need to address the central nervous system manifestations. This review highlights the recent work in this field, including methods, progress, shortcomings, and future directions. RECENT FINDINGS Recombinant adeno-associated virus (rAAV) and lentiviral vectors (LV) are well studied platforms for gene therapy in Pompe disease. These products can be further adapted for safe and efficient administration with concomitant immunosuppression, with the modification of specific receptors or codon optimization. rAAV has been studied in multiple clinical trials demonstrating safety and tolerability. SUMMARY Gene therapy for the treatment of patients with Pompe disease is feasible and offers an opportunity to fully correct the principal pathology leading to cellular glycogen accumulation. Further work is needed to overcome the limitations related to vector production, immunologic reactions and redosing.
Collapse
Affiliation(s)
- Carmen Leon-Astudillo
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Prasad D Trivedi
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Ramon C Sun
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville FL, United States
- Lafora Epilepsy Cure Initiative, United States
| | - Matthew S Gentry
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville FL, United States
- Lafora Epilepsy Cure Initiative, United States
| | | | - Barry J Byrne
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Manuela Corti
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
7
|
Liberati C, Byrne BJ, Fuller DD, Croft C, Pitts T, Ehrbar J, Leon-Astudillo C, Smith BK. Diaphragm pacing and independent breathing in individuals with severe Pompe disease. FRONTIERS IN REHABILITATION SCIENCES 2023; 4:1184031. [PMID: 37583873 PMCID: PMC10423945 DOI: 10.3389/fresc.2023.1184031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023]
Abstract
Introduction Pompe disease is an inherited disease characterized by a deficit in acid-α-glucosidase (GAA), an enzyme which degrades lysosomal glycogen. The phrenic-diaphragm motor system is affected preferentially, and respiratory failure often occurs despite GAA enzyme replacement therapy. We hypothesized that the continued use of diaphragm pacing (DP) might improve ventilator-dependent subjects' respiratory outcomes and increase ventilator-free time tolerance. Methods Six patients (3 pediatric) underwent clinical DP implantation and started diaphragm conditioning, which involved progressively longer periods of daily, low intensity stimulation. Longitudinal respiratory breathing pattern, diaphragm electromyography, and pulmonary function tests were completed when possible, to assess feasibility of use, as well as diaphragm and ventilatory responses to conditioning. Results All subjects were eventually able to undergo full-time conditioning via DP and increase their maximal tolerated time off-ventilator, when compared to pre-implant function. Over time, 3 of 6 subjects also demonstrated increased or stable minute ventilation throughout the day, without positive-pressure ventilation assistance. Discussion Respiratory insufficiency is one of the main causes of death in patients with Pompe disease. Our results indicate that DP in Pompe disease was feasible, led to few adverse events and stabilized breathing for up to 7 years.
Collapse
Affiliation(s)
- Cristina Liberati
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
| | - Barry J. Byrne
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - David D. Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
- Breathing Research and Therapeutics (BREATHE) Center, University of Florida, Gainesville, FL, United States
| | - Chasen Croft
- Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Teresa Pitts
- Department of Speech, Language and Hearing Sciences, University of Missouri, Columbia, MO, United States
- Dalton Cardiovascular Center Investigator, University of Missouri, Columbia, MO, United States
| | - Jessica Ehrbar
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
| | | | - Barbara K. Smith
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
- Breathing Research and Therapeutics (BREATHE) Center, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Smith EC, Hopkins S, Case LE, Xu M, Walters C, Dearmey S, Han SO, Spears TG, Chichester JA, Bossen EH, Hornik CP, Cohen JL, Bali D, Kishnani PS, Koeberl DD. Phase I study of liver depot gene therapy in late-onset Pompe disease. Mol Ther 2023; 31:1994-2004. [PMID: 36805083 PMCID: PMC10362382 DOI: 10.1016/j.ymthe.2023.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/03/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023] Open
Abstract
Gene therapy with an adeno-associated virus serotype 8 (AAV8) vector (AAV8-LSPhGAA) could eliminate the need for enzyme replacement therapy (ERT) by creating a liver depot for acid α-glucosidase (GAA) production. We report initial safety and bioactivity of the first dose (1.6 × 1012 vector genomes/kg) cohort (n = 3) in a 52-week open-label, single-dose, dose-escalation study (NCT03533673) in patients with late-onset Pompe disease (LOPD). Subjects discontinued biweekly ERT after week 26 based on the detection of elevated serum GAA activity and the absence of clinically significant declines per protocol. Prednisone (60 mg/day) was administered as immunoprophylaxis through week 4, followed by an 11-week taper. All subjects demonstrated sustained serum GAA activities from 101% to 235% of baseline trough activity 2 weeks following the preceding ERT dose. There were no treatment-related serious adverse events. No subject had anti-capsid T cell responses that decreased transgene expression. Muscle biopsy at week 24 revealed unchanged muscle glycogen content in two of three subjects. At week 52, muscle GAA activity for the cohort was significantly increased (p < 0.05). Overall, these initial data support the safety and bioactivity of AAV8-LSPhGAA, the safety of withdrawing ERT, successful immunoprophylaxis, and justify continued clinical development of AAV8-LSPhGAA therapy in Pompe disease.
Collapse
Affiliation(s)
- Edward C Smith
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Sam Hopkins
- Asklepios Biopharmaceutical, Inc. (Askbio), Durham, NC, USA
| | - Laura E Case
- Department of Orthopedics, Duke University School of Medicine, Durham, NC, USA
| | - Ming Xu
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Crista Walters
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Stephanie Dearmey
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Sang-Oh Han
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Tracy G Spears
- Clinical Trials Statistics, Duke Clinical Research Institute, Durham, NC, USA
| | - Jessica A Chichester
- Immunology Core, Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward H Bossen
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Christoph P Hornik
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Jennifer L Cohen
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Deeksha Bali
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Priya S Kishnani
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Dwight D Koeberl
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
9
|
Zhang WC, Mao YY, Chen Q. [Research progress of nervous system damage in Pompe disease]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:420-424. [PMID: 37073849 PMCID: PMC10120337 DOI: 10.7499/j.issn.1008-8830.2211052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Pompe disease, also known as glycogen storage disease type Ⅱ, is a rare autosomal recessive disease. With the application of enzyme replacement therapy, more and more patients with Pompe disease can survive to adulthood, and nervous system-related clinical manifestations gradually emerge. Nervous system involvement seriously affects the quality of life of patients with Pompe disease, and a systematic understanding of the clinical manifestations, imaging features and pathological changes of nervous system injury in Pompe disease is of great significance for the early identification and intervention of Pompe disease. This article reviews the research progress of neurological damage in Pompe disease.
Collapse
Affiliation(s)
- Wen-Chao Zhang
- Department of Neurology, Children's Hospital, Capital Institute of Pediatrics, Beijing 100020, China
| | - Ying-Ying Mao
- Department of Neurology, Children's Hospital, Capital Institute of Pediatrics, Beijing 100020, China
| | - Qian Chen
- Department of Neurology, Children's Hospital, Capital Institute of Pediatrics, Beijing 100020, China
| |
Collapse
|
10
|
Lin S, Nateqi J, Weingartner-Ortner R, Gruarin S, Marling H, Pilgram V, Lagler FB, Aigner E, Martin AG. An artificial intelligence-based approach for identifying rare disease patients using retrospective electronic health records applied for Pompe disease. Front Neurol 2023; 14:1108222. [PMID: 37153672 PMCID: PMC10160659 DOI: 10.3389/fneur.2023.1108222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/03/2023] [Indexed: 05/10/2023] Open
Abstract
Objective We retrospectively screened 350,116 electronic health records (EHRs) to identify suspected patients for Pompe disease. Using these suspected patients, we then describe their phenotypical characteristics and estimate the prevalence in the respective population covered by the EHRs. Methods We applied Symptoma's Artificial Intelligence-based approach for identifying rare disease patients to retrospective anonymized EHRs provided by the "University Hospital Salzburg" clinic group. Within 1 month, the AI screened 350,116 EHRs reaching back 15 years from five hospitals, and 104 patients were flagged as probable for Pompe disease. Flagged patients were manually reviewed and assessed by generalist and specialist physicians for their likelihood for Pompe disease, from which the performance of the algorithms was evaluated. Results Of the 104 patients flagged by the algorithms, generalist physicians found five "diagnosed," 10 "suspected," and seven patients with "reduced suspicion." After feedback from Pompe disease specialist physicians, 19 patients remained clinically plausible for Pompe disease, resulting in a specificity of 18.27% for the AI. Estimating from the remaining plausible patients, the prevalence of Pompe disease for the greater Salzburg region [incl. Bavaria (Germany), Styria (Austria), and Upper Austria (Austria)] was one in every 18,427 people. Phenotypes for patient cohorts with an approximated onset of symptoms above or below 1 year of age were established, which correspond to infantile-onset Pompe disease (IOPD) and late-onset Pompe disease (LOPD), respectively. Conclusion Our study shows the feasibility of Symptoma's AI-based approach for identifying rare disease patients using retrospective EHRs. Via the algorithm's screening of an entire EHR population, a physician had only to manually review 5.47 patients on average to find one suspected candidate. This efficiency is crucial as Pompe disease, while rare, is a progressively debilitating but treatable neuromuscular disease. As such, we demonstrated both the efficiency of the approach and the potential of a scalable solution to the systematic identification of rare disease patients. Thus, similar implementation of this methodology should be encouraged to improve care for all rare disease patients.
Collapse
Affiliation(s)
- Simon Lin
- Science Department, Symptoma GmbH, Vienna, Austria
- Department of Internal Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Jama Nateqi
- Science Department, Symptoma GmbH, Vienna, Austria
- Department of Internal Medicine, Paracelsus Medical University, Salzburg, Austria
| | | | | | | | - Vinzenz Pilgram
- Medical and Information Technology - MIT, University Hospital Salzburg (SALK), Salzburg, Austria
| | - Florian B. Lagler
- Medical and Information Technology - MIT, University Hospital Salzburg (SALK), Salzburg, Austria
- Department of Pediatrics and Institute for Inherited Metabolic Diseases, Paracelsus Medical University, Salzburg, Austria
| | - Elmar Aigner
- Department of Internal Medicine, Paracelsus Medical University, Salzburg, Austria
- Medical and Information Technology - MIT, University Hospital Salzburg (SALK), Salzburg, Austria
| | - Alistair G. Martin
- Science Department, Symptoma GmbH, Vienna, Austria
- *Correspondence: Alistair G. Martin
| |
Collapse
|
11
|
Singer ML, Rana S, Benevides ES, Barral BE, Byrne BJ, Fuller DD. Chemogenetic activation of hypoglossal motoneurons in a mouse model of Pompe disease. J Neurophysiol 2022; 128:1133-1142. [PMID: 35976060 PMCID: PMC9621710 DOI: 10.1152/jn.00026.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022] Open
Abstract
Pompe disease is a lysosomal storage disease resulting from absence or deficiency of acid α-glucosidase (GAA). Tongue-related disorders including dysarthria, dysphagia, and obstructive sleep apnea are common in Pompe disease. Our purpose was to determine if designer receptors exclusively activated by designer drugs (DREADDs) could be used to stimulate tongue motor output in a mouse model of Pompe disease. An adeno-associated virus serotype 9 (AAV9) encoding an excitatory DREADD (AAV9-hSyn-hM3D(Gq)-mCherry, 2.44 × 1010 vg) was administered to the posterior tongue of 5-7-wk-old Gaa null (Gaa-/-) mice. Lingual EMG responses to intraperitoneal injection of saline or a DREADD ligand (JHU37160-dihydrochloride, J60) were assessed 12 wk later during spontaneous breathing. Saline injection produced no consistent changes in lingual EMG. Following the DREADD ligand, there were statistically significant (P < 0.05) increases in both tonic and phasic inspiratory EMG activity recorded from the posterior tongue. Brainstem histology confirmed mCherry expression in hypoglossal (XII) motoneurons in all mice, thus verifying retrograde movement of the AAV9 vector. Morphologically, Gaa-/- XII motoneurons showed histological characteristics that are typical of Pompe disease, including an enlarged soma and vacuolization. We conclude that lingual delivery of AAV9 can be used to drive functional expression of DREADD in XII motoneurons in a mouse model of Pompe disease.NEW & NOTEWORTHY In a mouse model of Pompe disease, lingual injection of adeno-associated virus (AAV) serotype 9 encoding DREADD was histologically verified to produce transgene expression in hypoglossal motoneurons. Subsequent intraperitoneal delivery of a DREADD ligand stimulated tonic and phase tongue motor output.In a mouse model of Pompe disease, lingual injection of adeno-associated virus (AAV) serotype 9 encoding DREADD was histologically verified to produce transgene expression in hypoglossal motoneurons. Subsequent intravenous delivery of a DREADD ligand stimulated tonic and phase tongue motor output.
Collapse
Affiliation(s)
- Michele L Singer
- Rehabilitation Science PhD Program, University of Florida, Gainesville, Florida
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Ethan S Benevides
- Rehabilitation Science PhD Program, University of Florida, Gainesville, Florida
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Brian E Barral
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Barry J Byrne
- Department of Pediatrics, University of Florida, Gainesville, Florida
- Powell Gene Therapy Center, University of Florida, Gainesville, Florida
| | - David D Fuller
- Rehabilitation Science PhD Program, University of Florida, Gainesville, Florida
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
12
|
Roger AL, Sethi R, Huston ML, Scarrow E, Bao-Dai J, Lai E, Biswas DD, Haddad LE, Strickland LM, Kishnani PS, ElMallah MK. What's new and what's next for gene therapy in Pompe disease? Expert Opin Biol Ther 2022; 22:1117-1135. [PMID: 35428407 PMCID: PMC10084869 DOI: 10.1080/14712598.2022.2067476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/14/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Pompe disease is an autosomal recessive disorder caused by a deficiency of acid-α-glucosidase (GAA), an enzyme responsible for hydrolyzing lysosomal glycogen. A lack of GAA leads to accumulation of glycogen in the lysosomes of cardiac, skeletal, and smooth muscle cells, as well as in the central and peripheral nervous system. Enzyme replacement therapy has been the standard of care for 15 years and slows disease progression, particularly in the heart, and improves survival. However, there are limitations of ERT success, which gene therapy can overcome. AREAS COVERED Gene therapy offers several advantages including prolonged and consistent GAA expression and correction of skeletal muscle as well as the critical CNS pathology. We provide a systematic review of the preclinical and clinical outcomes of adeno-associated viral mediated gene therapy and alternative gene therapy strategies, highlighting what has been successful. EXPERT OPINION Although the preclinical and clinical studies so far have been promising, barriers exist that need to be addressed in gene therapy for Pompe disease. New strategies including novel capsids for better targeting, optimized DNA vectors, and adjuctive therapies will allow for a lower dose, and ameliorate the immune response.
Collapse
Affiliation(s)
- Angela L. Roger
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Ronit Sethi
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Meredith L. Huston
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Evelyn Scarrow
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Joy Bao-Dai
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Elias Lai
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Debolina D. Biswas
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Léa El Haddad
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Laura M. Strickland
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, North Carolina USA
| | - Mai K. ElMallah
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| |
Collapse
|