1
|
Azadi R, McPeek RM. Contextual saccade adaptation induced by sequential saccades. J Neurophysiol 2022; 127:746-755. [PMID: 35171695 PMCID: PMC8917932 DOI: 10.1152/jn.00221.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Saccade adaptation is the gradual adjustment of saccade end point to maintain spatial accuracy. Contextual adaptation refers to a situation in which the adaptation-related change in saccade end point is contingent on the behavioral context in which the saccade is made. For example, in some situations, the same saccade to the same retinotopic location can be simultaneously adapted in opposite directions depending on the context in which it is made. Saccade adaptation has traditionally been studied in isolated movements, but in everyday life, saccades are often planned and executed in sequences. The oculomotor system may therefore have adaptive mechanisms specific to sequential saccades. Here, in five experiments, we investigated contextual saccade adaptation in sequences of saccades. In the first experiment, we demonstrate that saccades to a given retinotopic location can be simultaneously adapted in opposite directions depending on whether they occur in isolation or in a sequence. In the other experiments, we measured the extent to which properties of the previous and following saccades in a sequence can induce contextual saccade adaptation. Overall, we find that the existence, direction, and amplitude of previous and subsequent saccades, as well as the order of the current saccade within a movement sequence, can all induce contextual adaptation. These novel findings demonstrate the surprising flexibility of the system in maintaining end point accuracy, and support the idea that saccades made in a movement sequence are planned concurrently rather than independently.NEW & NOTEWORTHY This study reveals a new type of contextual saccade adaptation: sequential saccades are able to induce contextual saccade adaptation when direction, amplitude, or the existence of preceding and following saccades are used as contexts. These novel findings are also consistent with the idea that saccades made in a sequence are planned concurrently rather than independently.
Collapse
Affiliation(s)
- Reza Azadi
- 1Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, Maryland,2Graduate Center for Vision Research, State University of
New York College of Optometry, New York, New York
| | - Robert M. McPeek
- 2Graduate Center for Vision Research, State University of
New York College of Optometry, New York, New York
| |
Collapse
|
2
|
Abstract
Visual processing varies dramatically across the visual field. These differences start in the retina and continue all the way to the visual cortex. Despite these differences in processing, the perceptual experience of humans is remarkably stable and continuous across the visual field. Research in the last decade has shown that processing in peripheral and foveal vision is not independent, but is more directly connected than previously thought. We address three core questions on how peripheral and foveal vision interact, and review recent findings on potentially related phenomena that could provide answers to these questions. First, how is the processing of peripheral and foveal signals related during fixation? Peripheral signals seem to be processed in foveal retinotopic areas to facilitate peripheral object recognition, and foveal information seems to be extrapolated toward the periphery to generate a homogeneous representation of the environment. Second, how are peripheral and foveal signals re-calibrated? Transsaccadic changes in object features lead to a reduction in the discrepancy between peripheral and foveal appearance. Third, how is peripheral and foveal information stitched together across saccades? Peripheral and foveal signals are integrated across saccadic eye movements to average percepts and to reduce uncertainty. Together, these findings illustrate that peripheral and foveal processing are closely connected, mastering the compromise between a large peripheral visual field and high resolution at the fovea.
Collapse
Affiliation(s)
- Emma E M Stewart
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany.,
| | - Matteo Valsecchi
- Dipartimento di Psicologia, Universitá di Bologna, Bologna, Italy.,
| | - Alexander C Schütz
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-Universität Marburg, Marburg, Germany., https://www.uni-marburg.de/en/fb04/team-schuetz/team/alexander-schutz
| |
Collapse
|
3
|
Valsecchi M, Cassanello C, Herwig A, Rolfs M, Gegenfurtner KR. A comparison of the temporal and spatial properties of trans-saccadic perceptual recalibration and saccadic adaptation. J Vis 2020; 20:2. [PMID: 32271892 PMCID: PMC7409593 DOI: 10.1167/jov.20.4.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Repeated exposure to a consistent trans-saccadic step in the position of the saccadic target reliably produces a change of saccadic gain, a well-established trans-saccadic motor learning phenomenon known as saccadic adaptation. Trans-saccadic changes can also produce perceptual effects. Specifically, a systematic increase or decrease in the size of the object that is being foveated changes the perceptually equivalent size between fovea and periphery. Previous studies have shown that this recalibration of perceived size can be established within a few dozen trials, persists overnight, and generalizes across hemifields. In the current study, we use a novel adjustment paradigm to characterize both temporally and spatially the learning process that subtends this form of recalibration, and directly compare its properties to those of saccadic adaptation. We observed that sinusoidal oscillations in the amplitude of the trans-saccadic change produce sinusoidal oscillations in the reported peripheral size, with a lag of under 10 trials. This is qualitatively similar to what has been observed in the case of saccadic adaptation. We also tested whether learning is generalized to the mirror location on the opposite hemifield for both size recalibration and saccade adaptation. Here the results were markedly different, showing almost complete generalization for recalibration and no generalization for saccadic adaptation. We conclude that perceptual and visuomotor consequences of trans-saccadic changes rely on learning mechanisms that are distinct but develop on similar time scales.
Collapse
|
4
|
Thakkar KN, Rolfs M. Disrupted Corollary Discharge in Schizophrenia: Evidence From the Oculomotor System. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:773-781. [PMID: 31105039 PMCID: PMC6733648 DOI: 10.1016/j.bpsc.2019.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/04/2019] [Accepted: 03/22/2019] [Indexed: 01/18/2023]
Abstract
Corollary discharge (CD) signals are motor-related signals that exert an influence on sensory processing. They allow mobile organisms to predict the sensory consequences of their imminent actions. Among the many functions of CD is to provide a means by which we can distinguish sensory experiences caused by our own actions from those with external causes. In this way, they contribute to a subjective sense of agency. A disruption in the sense of agency is central to many of the clinical symptoms of schizophrenia, and abnormalities in CD signaling have been theorized to underpin particularly those agency-related psychotic symptoms of the illness. Characterizing abnormal CD associated with eye movements in schizophrenia and their resulting influence on visual processing and subsequent action plans may have advantages over other sensory and motor systems. That is because the most robust psychophysiological and neurophysiological data regarding the dynamics and influence of CD as well as the neural circuitry implicated in CD generation and transmission comes from the study of eye movements in humans and nonhuman primates. We review studies of oculomotor CD signaling in the schizophrenia spectrum and possible neurobiological correlates of CD disturbances. We conclude by speculating on the ways in which oculomotor CD dysfunction, specifically, may invoke specific experiences, clinical symptoms, and cognitive impairments. These speculations lay the groundwork for empirical study, and we conclude by outlining potentially fruitful research directions.
Collapse
Affiliation(s)
- Katharine N Thakkar
- Department of Psychology, Michigan State University, East Lansing, Michigan; Division of Psychiatry and Behavioral Medicine, Michigan State University, East Lansing, Michigan.
| | - Martin Rolfs
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Berlin, Germany
| |
Collapse
|
5
|
Cassanello CR, Ostendorf F, Rolfs M. A generative learning model for saccade adaptation. PLoS Comput Biol 2019; 15:e1006695. [PMID: 31398185 PMCID: PMC6703699 DOI: 10.1371/journal.pcbi.1006695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 08/21/2019] [Accepted: 06/19/2019] [Indexed: 11/19/2022] Open
Abstract
Plasticity in the oculomotor system ensures that saccadic eye movements reliably meet their visual goals-to bring regions of interest into foveal, high-acuity vision. Here, we present a comprehensive description of sensorimotor learning in saccades. We induced continuous adaptation of saccade amplitudes using a double-step paradigm, in which participants saccade to a peripheral target stimulus, which then undergoes a surreptitious, intra-saccadic shift (ISS) as the eyes are in flight. In our experiments, the ISS followed a systematic variation, increasing or decreasing from one saccade to the next as a sinusoidal function of the trial number. Over a large range of frequencies, we confirm that adaptation gain shows (1) a periodic response, reflecting the frequency of the ISS with a delay of a number of trials, and (2) a simultaneous drift towards lower saccade gains. We then show that state-space-based linear time-invariant systems (LTIS) represent suitable generative models for this evolution of saccade gain over time. This state-equation algorithm computes the prediction of an internal (or hidden state-) variable by learning from recent feedback errors, and it can be compared to experimentally observed adaptation gain. The algorithm also includes a forgetting rate that quantifies per-trial leaks in the adaptation gain, as well as a systematic, non-error-based bias. Finally, we study how the parameters of the generative models depend on features of the ISS. Driven by a sinusoidal disturbance, the state-equation admits an exact analytical solution that expresses the parameters of the phenomenological description as functions of those of the generative model. Together with statistical model selection criteria, we use these correspondences to characterize and refine the structure of compatible state-equation models. We discuss the relation of these findings to established results and suggest that they may guide further design of experimental research across domains of sensorimotor adaptation.
Collapse
Affiliation(s)
- Carlos R. Cassanello
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin, Germany
- * E-mail: (CRC); (MR)
| | - Florian Ostendorf
- Department of Neurology, Charité – University Medicine Berlin, Berlin, Germany
| | - Martin Rolfs
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin, Germany
- * E-mail: (CRC); (MR)
| |
Collapse
|
6
|
Gaffin-Cahn E, Hudson TE, Landy MS. Did I do that? Detecting a perturbation to visual feedback in a reaching task. J Vis 2019; 19:5. [PMID: 30640373 PMCID: PMC6334820 DOI: 10.1167/19.1.5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The motor system executes actions in a highly stereotyped manner despite the high number of degrees of freedom available. Studies of motor adaptation leverage this fact by disrupting, or perturbing, visual feedback to measure how the motor system compensates. To elicit detectable effects, perturbations are often large compared to trial-to-trial reach endpoint variability. However, awareness of large perturbations can elicit qualitatively different compensation processes than unnoticeable ones can. The current experiment measures the perturbation detection threshold, and investigates how humans combine proprioception and vision to decide whether displayed reach endpoint errors are self-generated only, or are due to experimenter-imposed perturbation. We scaled or rotated the position of the visual feedback of center-out reaches to targets and asked subjects to indicate whether visual feedback was perturbed. Subjects detected perturbations when they were at least 1.5 times the standard deviation of trial-to-trial endpoint variability. In contrast to previous studies, subjects suboptimally combined vision and proprioception. Instead of using proprioceptive input, they responded based on the final (possibly perturbed) visual feedback. These results inform methodology in motor system experimentation, and more broadly highlight the ability to attribute errors to one's own motor output and combine visual and proprioceptive feedback to make decisions.
Collapse
Affiliation(s)
- Elon Gaffin-Cahn
- Department of Psychology, New York University, New York, NY, USA
| | - Todd E Hudson
- Departments of Neurology and Rehabilitation Medicine, New York University Langone Medical Center, New York, NY, USA
| | - Michael S Landy
- Departments of Psychology and Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
7
|
Inter-individual variability and consistency of saccade adaptation in oblique saccades: Amplitude increase and decrease in the horizontal or vertical saccade component. Vision Res 2019; 160:82-98. [PMID: 31082404 DOI: 10.1016/j.visres.2019.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/10/2019] [Accepted: 05/03/2019] [Indexed: 11/21/2022]
Abstract
Despite changes in the physical structures controlling the eyes, saccades, the rapid eye movements used to explore the visual environment, remain accurate throughout the lifetime. The process underlying this sensorimotor adaptation is studied using a double step paradigm: an intra-saccadic target displacement introduces a systematic position error which triggers changes in saccadic amplitude or direction across trials. Numerous researches on this saccade adaptation have been conducted, but the level of inter-individual variability and consistency in saccade gain change and how it relates to increase- or decrease-amplitude paradigms is not fully described. We conducted experiments in four groups of 25 participants with 800 trials per participant, including 200 baseline trials and 200 recovery trials. We used four distinct double-step paradigms that differed by the intra-saccadic target-step leading to either a horizontal (Backward or Forward) or vertical (Upward or Downward) gain modulation. Across experiments 95% of the participants exhibited adaptation, revealing the consistency of this phenomenon. We observed strong inter-individual differences, both in the extent and rate of adaptation, which were not correlated with the individual baseline saccades characteristics. As previously reported, the rates of adaptation were higher for gain decrease than for gain increase experiments but the final extent of adaptation were similar. Our results also support the view that adaptation of oblique saccades occurs where the saccade command is represented as a vector. Finally, at the individual level, we did not observe systematic changes in the saccade metrics in relation to adaptation.
Collapse
|
8
|
Rolfs M, Murray-Smith N, Carrasco M. Perceptual learning while preparing saccades. Vision Res 2018; 152:126-138. [PMID: 29277450 PMCID: PMC6028304 DOI: 10.1016/j.visres.2017.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 10/18/2022]
Abstract
Traditional perceptual learning protocols rely almost exclusively on long periods of uninterrupted fixation. Taking a first step towards understanding perceptual learning in natural vision, we had observers report the orientation of a briefly flashed stimulus (clockwise or counterclockwise from a reference orientation) presented strictly during saccade preparation at a location offset from the saccade target. For each observer, the saccade direction, stimulus location, and orientation remained the same throughout training. Subsequently, we assessed performance during fixation in three transfer sessions, either at the trained or at an untrained location, and either using an untrained (Experiment 1) or the trained (Experiment 2) stimulus orientation. We modeled the evolution of contrast thresholds (i.e., the stimulus contrast necessary to discriminate its orientation correctly 75% of the time) as an exponential learning curve, and quantified departures from this curve in transfer sessions using two new, complementary measures of transfer costs (i.e., performance decrements after the transition into the Transfer phase). We observed robust perceptual learning and associated transfer costs for untrained locations and orientations. We also assessed if spatial transfer costs were reduced for the remapped location of the pre-saccadic stimulus-the location the stimulus would have had (but never had) after the saccade. Although the pattern of results at that location differed somewhat from that at the control location, we found no clear evidence for perceptual learning at remapped locations. Using novel, model-based ways to assess learning and transfer costs, our results show that location and feature specificity, hallmarks of perceptual learning, subsist if the target stimulus is presented strictly during saccade preparation throughout training.
Collapse
Affiliation(s)
- Martin Rolfs
- Department of Psychology, New York University, NY, USA; Center for Neural Science, New York University, NY, USA; Department of Psychology, Humboldt-Universität zu Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Germany.
| | | | - Marisa Carrasco
- Department of Psychology, New York University, NY, USA; Center for Neural Science, New York University, NY, USA
| |
Collapse
|