1
|
Bagnato S. The role of plasticity in the recovery of consciousness. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:375-395. [PMID: 35034750 DOI: 10.1016/b978-0-12-819410-2.00020-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Disorders of consciousness (DOCs), i.e., coma, vegetative state, and minimally conscious state are the consequences of a severe brain injury that disrupts the brain ability to generate consciousness. Recovery from DOCs requires functional and structural changes in the brain. The sites where these plastic changes take place vary according to the pathophysiology of the DOC. The ascending reticular activating system of the brainstem and its complex connections with the thalamus and cortex are involved in the pathophysiology of coma. Subcortical structures, such as the striatum and globus pallidus, together with thalamocortical and corticothalamic projections, the basal forebrain, and several networks among different cortical areas are probably involved in vegetative and minimally conscious states. Some mechanisms of plasticity that allegedly operate in each of these sites to promote recovery of consciousness will be discussed in this chapter. While some mechanisms of plasticity work at a local level, others produce functional changes in complex neuronal networks, for example by entraining neuronal oscillations. The specific mechanisms of brain plasticity represent potential targets for future treatments aiming to restore consciousness in patients with severe DOCs.
Collapse
Affiliation(s)
- Sergio Bagnato
- Unit of Neurophysiology and Unit for Severe Acquired Brain Injuries, Rehabilitation Department, Giuseppe Giglio Foundation, Cefalù (PA), Italy.
| |
Collapse
|
2
|
Kommajosyula SP, Bartlett EL, Cai R, Ling L, Caspary DM. Corticothalamic projections deliver enhanced responses to medial geniculate body as a function of the temporal reliability of the stimulus. J Physiol 2021; 599:5465-5484. [PMID: 34783016 PMCID: PMC10630908 DOI: 10.1113/jp282321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/11/2021] [Indexed: 01/12/2023] Open
Abstract
Ageing and challenging signal-in-noise conditions are known to engage the use of cortical resources to help maintain speech understanding. Extensive corticothalamic projections are thought to provide attentional, mnemonic and cognitive-related inputs in support of sensory inferior colliculus (IC) inputs to the medial geniculate body (MGB). Here we show that a decrease in modulation depth, a temporally less distinct periodic acoustic signal, leads to a jittered ascending temporal code, changing MGB unit responses from adapting responses to responses showing repetition enhancement, posited to aid identification of important communication and environmental sounds. Young-adult male Fischer Brown Norway rats, injected with the inhibitory opsin archaerhodopsin T (ArchT) into the primary auditory cortex (A1), were subsequently studied using optetrodes to record single-units in MGB. Decreasing the modulation depth of acoustic stimuli significantly increased repetition enhancement. Repetition enhancement was blocked by optical inactivation of corticothalamic terminals in MGB. These data support a role for corticothalamic projections in repetition enhancement, implying that predictive anticipation could be used to improve neural representation of weakly modulated sounds. KEY POINTS: In response to a less temporally distinct repeating sound with low modulation depth, medial geniculate body (MGB) single units show a switch from adaptation towards repetition enhancement. Repetition enhancement was reversed by blockade of MGB inputs from the auditory cortex. Collectively, these data argue that diminished acoustic temporal cues such as weak modulation engage cortical processes to enhance coding of those cues in auditory thalamus.
Collapse
Affiliation(s)
- Srinivasa P Kommajosyula
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Edward L Bartlett
- Department of Biological Sciences and the Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Rui Cai
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Lynne Ling
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Donald M Caspary
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
3
|
Pan W, Pan J, Zhao Y, Zhang H, Tang J. Serotonin Transporter Defect Disturbs Structure and Function of the Auditory Cortex in Mice. Front Neurosci 2021; 15:749923. [PMID: 34690685 PMCID: PMC8527018 DOI: 10.3389/fnins.2021.749923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022] Open
Abstract
Serotonin transporter (SERT) modulates the level of 5-HT and significantly affects the activity of serotonergic neurons in the central nervous system. The manipulation of SERT has lasting neurobiological and behavioral consequences, including developmental dysfunction, depression, and anxiety. Auditory disorders have been widely reported as the adverse events of these mental diseases. It is unclear how SERT impacts neuronal connections/interactions and what mechanism(s) may elicit the disruption of normal neural network functions in auditory cortex. In the present study, we report on the neuronal morphology and function of auditory cortex in SERT knockout (KO) mice. We show that the dendritic length of the fourth layer (L-IV) pyramidal neurons and the second-to-third layer (L-II/III) interneurons were reduced in the auditory cortex of the SERT KO mice. The number and density of dendritic spines of these neurons were significantly less than those of wild-type neurons. Also, the frequency-tonotopic organization of primary auditory cortex was disrupted in SERT KO mice. The auditory neurons of SERT KO mice exhibited border frequency tuning with high-intensity thresholds. These findings indicate that SERT plays a key role in development and functional maintenance of auditory cortical neurons. Auditory function should be examined when SERT is selected as a target in the treatment for psychiatric disorders.
Collapse
Affiliation(s)
- Wenlu Pan
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Functional Nucleic Acid Basic and Clinical Research Center, Department of Physiology, School of Basic Medical Sciences, Changsha Medical College, Changsha, China
| | - Jing Pan
- Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Hearing Research Center, Southern Medical University, Guangzhou, China
| | - Yan Zhao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hongzheng Zhang
- Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Hearing Research Center, Southern Medical University, Guangzhou, China
| | - Jie Tang
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Hearing Research Center, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Homma NY, Bajo VM. Lemniscal Corticothalamic Feedback in Auditory Scene Analysis. Front Neurosci 2021; 15:723893. [PMID: 34489635 PMCID: PMC8417129 DOI: 10.3389/fnins.2021.723893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Sound information is transmitted from the ear to central auditory stations of the brain via several nuclei. In addition to these ascending pathways there exist descending projections that can influence the information processing at each of these nuclei. A major descending pathway in the auditory system is the feedback projection from layer VI of the primary auditory cortex (A1) to the ventral division of medial geniculate body (MGBv) in the thalamus. The corticothalamic axons have small glutamatergic terminals that can modulate thalamic processing and thalamocortical information transmission. Corticothalamic neurons also provide input to GABAergic neurons of the thalamic reticular nucleus (TRN) that receives collaterals from the ascending thalamic axons. The balance of corticothalamic and TRN inputs has been shown to refine frequency tuning, firing patterns, and gating of MGBv neurons. Therefore, the thalamus is not merely a relay stage in the chain of auditory nuclei but does participate in complex aspects of sound processing that include top-down modulations. In this review, we aim (i) to examine how lemniscal corticothalamic feedback modulates responses in MGBv neurons, and (ii) to explore how the feedback contributes to auditory scene analysis, particularly on frequency and harmonic perception. Finally, we will discuss potential implications of the role of corticothalamic feedback in music and speech perception, where precise spectral and temporal processing is essential.
Collapse
Affiliation(s)
- Natsumi Y. Homma
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, United States
- Coleman Memorial Laboratory, Department of Otolaryngology – Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Victoria M. Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Low-Intensity Ultrasound Causes Direct Excitation of Auditory Cortical Neurons. Neural Plast 2021; 2021:8855055. [PMID: 33883994 PMCID: PMC8041518 DOI: 10.1155/2021/8855055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/02/2020] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
Cochlear implantation is the first-line treatment for severe and profound hearing loss in children and adults. However, deaf patients with cochlear malformations or with cochlear nerve deficiencies are ineligible for cochlear implants. Meanwhile, the limited spatial selectivity and high risk of invasive craniotomy restrict the wide application of auditory brainstem implants. A noninvasive alternative strategy for safe and effective neuronal stimulation is urgently needed to address this issue. Because of its advantage in neural modulation over electrical stimulation, low-intensity ultrasound (US) is considered a safe modality for eliciting neural activity in the central auditory system. Although the neural modulation ability of low-intensity US has been demonstrated in the human primary somatosensory cortex and primary visual cortex, whether low-intensity US can directly activate auditory cortical neurons is still a topic of debate. To clarify the direct effects on auditory neurons, in the present study, we employed low-intensity US to stimulate auditory cortical neurons in vitro. Our data show that both low-frequency (0.8 MHz) and high-frequency (>27 MHz) US stimulation can elicit the inward current and action potentials in cultured neurons. c-Fos staining results indicate that low-intensity US is efficient for stimulating most neurons. Our study suggests that low-intensity US can excite auditory cortical neurons directly, implying that US-induced neural modulation can be a potential approach for activating the auditory cortex of deaf patients.
Collapse
|
6
|
Xia C, Yin M, Wu C, Ji Y, Zhou Y. Neuroglial activation in the auditory cortex and medial geniculate body of salicylate-induced tinnitus rats. Am J Transl Res 2020; 12:6043-6059. [PMID: 33194013 PMCID: PMC7653558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Neuroglial activation has been recognized as a pathological hallmark of a variety of neurological diseases, yet the role of neuroglia in tinnitus hasn't been well established so far. To explore the potential roles of two types of glia cells (astrocyte and microglia) in the development of tinnitus, we examined markers associated with them in the primary auditory (A1) cortex and medial geniculate body (MGB) of rats with salicylate-induced tinnitus. The results demonstrated that acute and chronic administrations of salicylate could cause reversible tinnitus-like behavior in rats. The expression level of GFAP markedly increased in the A1 cortex of rats following acute and chronic treatments of salicylate, accompanied by increased endpoint and process length of astrocyte. The expression level of GFAP and the morphology of astrocyte in the rat MGB remained almost constant following salicylate treatment. On the other hand, the expression level of Iba1 markedly increased in the rat A1 cortex and MGB following acute and chronic treatments of salicylate, together with increased endpoint and process length of microglia in the MGB. Additionally, interleukin 1β (IL-1β), a pro-inflammatory cytokine released by activated glia was significantly up-regulated in the A1 cortex and MGB of rats after salicylate treatments. These findings highlight astrocyte activation and microglia proliferation in the central auditory system of rats experiencing tinnitus, which potently implicate an indispensable glial regulation in tinnitus development.
Collapse
Affiliation(s)
- Chenchen Xia
- Institute of Biomembrane and Biopharmaceutics, Shanghai UniversityShanghai 200444, China
| | - Manli Yin
- Institute of Biomembrane and Biopharmaceutics, Shanghai UniversityShanghai 200444, China
| | - Cong Wu
- Department of Otolaryngology-Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiaotong University School of MedicineShanghai 200011, China
- Ear Institute, Shanghai Jiaotong University School of MedicineShanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai 200125, China
| | - Yonghua Ji
- Institute of Biomembrane and Biopharmaceutics, Shanghai UniversityShanghai 200444, China
- Translational Institute for Cancer Pain, Xinhua Hospital Chongming BranchShanghai 202150, China
| | - You Zhou
- Department of Otolaryngology-Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiaotong University School of MedicineShanghai 200011, China
- Ear Institute, Shanghai Jiaotong University School of MedicineShanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai 200125, China
| |
Collapse
|
7
|
Suga N. Plasticity of the adult auditory system based on corticocortical and corticofugal modulations. Neurosci Biobehav Rev 2020; 113:461-478. [DOI: 10.1016/j.neubiorev.2020.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 10/24/2022]
|
8
|
Lohse M, Bajo VM, King AJ. Development, organization and plasticity of auditory circuits: Lessons from a cherished colleague. Eur J Neurosci 2018; 49:990-1004. [PMID: 29804304 PMCID: PMC6519211 DOI: 10.1111/ejn.13979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/11/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022]
Abstract
Ray Guillery was a neuroscientist known primarily for his ground-breaking studies on the development of the visual pathways and subsequently on the nature of thalamocortical processing loops. The legacy of his work, however, extends well beyond the visual system. Thanks to Ray Guillery's pioneering anatomical studies, the ferret has become a widely used animal model for investigating the development and plasticity of sensory processing. This includes our own work on the auditory system, where experiments in ferrets have revealed the role of sensory experience during development in shaping the neural circuits responsible for sound localization, as well as the capacity of the mature brain to adapt to changes in inputs resulting from hearing loss. Our research has also built on Ray Guillery's ideas about the possible functions of the massive descending projections that link sensory areas of the cerebral cortex to the thalamus and other subcortical targets, by demonstrating a role for corticothalamic feedback in the perception of complex sounds and for corticollicular projection neurons in learning to accommodate altered auditory spatial cues. Finally, his insights into the organization and functions of transthalamic corticocortical connections have inspired a raft of research, including by our own laboratory, which has attempted to identify how information flows through the thalamus.
Collapse
Affiliation(s)
- Michael Lohse
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Victoria M Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Andrew J King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
The Effects of Urethane on Rat Outer Hair Cells. Neural Plast 2016; 2016:3512098. [PMID: 28050287 PMCID: PMC5165230 DOI: 10.1155/2016/3512098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 10/16/2016] [Indexed: 11/17/2022] Open
Abstract
The cochlea converts sound vibration into electrical impulses and amplifies the low-level sound signal. Urethane, a widely used anesthetic in animal research, has been shown to reduce the neural responses to auditory stimuli. However, the effects of urethane on cochlea, especially on the function of outer hair cells, remain largely unknown. In the present study, we compared the cochlear microphonic responses between awake and urethane-anesthetized rats. The results revealed that the amplitude of the cochlear microphonic was decreased by urethane, resulting in an increase in the threshold at all of the sound frequencies examined. To deduce the possible mechanism underlying the urethane-induced decrease in cochlear sensitivity, we examined the electrical response properties of isolated outer hair cells using whole-cell patch-clamp recording. We found that urethane hyperpolarizes the outer hair cell membrane potential in a dose-dependent manner and elicits larger outward current. This urethane-induced outward current was blocked by strychnine, an antagonist of the α9 subunit of the nicotinic acetylcholine receptor. Meanwhile, the function of the outer hair cell motor protein, prestin, was not affected. These results suggest that urethane anesthesia is expected to decrease the responses of outer hair cells, whereas the frequency selectivity of cochlea remains unchanged.
Collapse
|
10
|
Milinkeviciute G, Muniak MA, Ryugo DK. Descending projections from the inferior colliculus to the dorsal cochlear nucleus are excitatory. J Comp Neurol 2016; 525:773-793. [PMID: 27513294 DOI: 10.1002/cne.24095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/10/2016] [Accepted: 08/08/2016] [Indexed: 12/19/2022]
Abstract
Ascending projections of the dorsal cochlear nucleus (DCN) target primarily the contralateral inferior colliculus (IC). In turn, the IC sends bilateral descending projections back to the DCN. We sought to determine the nature of these descending axons in order to infer circuit mechanisms of signal processing at one of the earliest stages of the central auditory pathway. An anterograde tracer was injected in the IC of CBA/Ca mice to reveal terminal characteristics of the descending axons. Retrograde tracer deposits were made in the DCN of CBA/Ca and transgenic GAD67-EGFP mice to investigate the cells giving rise to these projections. A multiunit best frequency was determined for each injection site. Brains were processed by using standard histologic methods for visualization and examined by fluorescent, brightfield, and electron microscopy. Descending projections from the IC were inferred to be excitatory because the cell bodies of retrogradely labeled neurons did not colabel with EGFP expression in neurons of GAD67-EGFP mice. Furthermore, additional experiments yielded no glycinergic or cholinergic positive cells in the IC, and descending projections to the DCN were colabeled with antibodies against VGluT2, a glutamate transporter. Anterogradely labeled endings in the DCN formed asymmetric postsynaptic densities, a feature of excitatory neurotransmission. These descending projections to the DCN from the IC were topographic and suggest a feedback pathway that could underlie a frequency-specific enhancement of some acoustic signals and suppression of others. The involvement of this IC-DCN circuit is especially noteworthy when considering the gating of ascending signal streams for auditory processing. J. Comp. Neurol. 525:773-793, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Giedre Milinkeviciute
- Hearing Research, Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Michael A Muniak
- Hearing Research, Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia
| | - David K Ryugo
- Hearing Research, Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, 2052, Australia.,Department of Otolaryngology, Head, Neck and Skull Base Surgery, St. Vincent's Hospital, Sydney, New South Wales, 2010, Australia
| |
Collapse
|
11
|
Terreros G, Delano PH. Corticofugal modulation of peripheral auditory responses. Front Syst Neurosci 2015; 9:134. [PMID: 26483647 PMCID: PMC4588004 DOI: 10.3389/fnsys.2015.00134] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/15/2015] [Indexed: 01/17/2023] Open
Abstract
The auditory efferent system originates in the auditory cortex and projects to the medial geniculate body (MGB), inferior colliculus (IC), cochlear nucleus (CN) and superior olivary complex (SOC) reaching the cochlea through olivocochlear (OC) fibers. This unique neuronal network is organized in several afferent-efferent feedback loops including: the (i) colliculo-thalamic-cortico-collicular; (ii) cortico-(collicular)-OC; and (iii) cortico-(collicular)-CN pathways. Recent experiments demonstrate that blocking ongoing auditory-cortex activity with pharmacological and physical methods modulates the amplitude of cochlear potentials. In addition, auditory-cortex microstimulation independently modulates cochlear sensitivity and the strength of the OC reflex. In this mini-review, anatomical and physiological evidence supporting the presence of a functional efferent network from the auditory cortex to the cochlear receptor is presented. Special emphasis is given to the corticofugal effects on initial auditory processing, that is, on CN, auditory nerve and cochlear responses. A working model of three parallel pathways from the auditory cortex to the cochlea and auditory nerve is proposed.
Collapse
Affiliation(s)
- Gonzalo Terreros
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile Santiago, Chile
| | - Paul H Delano
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile Santiago, Chile ; Departamento de Otorrinolaringología, Hospital Clínico de la Universidad de Chile Santiago, Chile
| |
Collapse
|
12
|
Auerbach BD, Rodrigues PV, Salvi RJ. Central gain control in tinnitus and hyperacusis. Front Neurol 2014; 5:206. [PMID: 25386157 PMCID: PMC4208401 DOI: 10.3389/fneur.2014.00206] [Citation(s) in RCA: 268] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/30/2014] [Indexed: 12/02/2022] Open
Abstract
Sensorineural hearing loss induced by noise or ototoxic drug exposure reduces the neural activity transmitted from the cochlea to the central auditory system. Despite a reduced cochlear output, neural activity from more central auditory structures is paradoxically enhanced at suprathreshold intensities. This compensatory increase in the central auditory activity in response to the loss of sensory input is referred to as central gain enhancement. Enhanced central gain is hypothesized to be a potential mechanism that gives rise to hyperacusis and tinnitus, two debilitating auditory perceptual disorders that afflict millions of individuals. This review will examine the evidence for gain enhancement in the central auditory system in response to cochlear damage. Further, it will address the potential cellular and molecular mechanisms underlying this enhancement and discuss the contribution of central gain enhancement to tinnitus and hyperacusis. Current evidence suggests that multiple mechanisms with distinct temporal and spectral profiles are likely to contribute to central gain enhancement. Dissecting the contributions of these different mechanisms at different levels of the central auditory system is essential for elucidating the role of central gain enhancement in tinnitus and hyperacusis and, most importantly, the development of novel treatments for these disorders.
Collapse
Affiliation(s)
- Benjamin D Auerbach
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, The State University of New York , Buffalo, NY , USA
| | - Paulo V Rodrigues
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, The State University of New York , Buffalo, NY , USA
| | - Richard J Salvi
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, The State University of New York , Buffalo, NY , USA
| |
Collapse
|
13
|
Kong L, Xiong C, Li L, Yan J. Frequency-specific corticofugal modulation of the dorsal cochlear nucleus in mice. Front Syst Neurosci 2014; 8:125. [PMID: 25071477 PMCID: PMC4076887 DOI: 10.3389/fnsys.2014.00125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 06/16/2014] [Indexed: 01/03/2023] Open
Abstract
The primary auditory cortex (AI) modulates the sound information processing in the lemniscal subcortical nuclei, including the anteroventral cochlear nucleus (AVCN), in a frequency-specific manner. The dorsal cochlear nucleus (DCN) is a non-lemniscal subcortical nucleus but it is tonotopically organized like the AVCN. However, it remains unclear how the AI modulates the sound information processing in the DCN. This study examined the impact of focal electrical stimulation of AI on the auditory responses of the DCN neurons in mice. We found that the electrical stimulation induced significant changes in the best frequency (BF) of DCN neurons. The changes in the BFs were highly specific to the BF differences between the stimulated AI neurons and the recorded DCN neurons. The DCN BFs shifted higher when the AI BFs were higher than the DCN BFs and the DCN BFs shifted lower when the AI BFs were lower than the DCN BFs. The DCN BFs showed no change when the AI and DCN BFs were similar. Moreover, the BF shifts were linearly correlated to the BF differences. Thus, our data suggest that corticofugal modulation of the DCN is also highly specific to frequency information, similar to the corticofugal modulation of the AVCN. The frequency-specificity of corticofugal modulation does not appear limited to the lemniscal ascending pathway.
Collapse
Affiliation(s)
- Lingzhi Kong
- Department of Physiology and Pharmacology, Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Colin Xiong
- Department of Physiology and Pharmacology, Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Liang Li
- Department of Psychology, Department of Machine Intelligence, Speech and Hearing Research Center, Key Laboratory on Machine Perception (Ministry of Education), PKU-IDG/McGovern Institute for Brain Research, Peking University Beijing, China
| | - Jun Yan
- Department of Physiology and Pharmacology, Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| |
Collapse
|
14
|
Bagnato S, Boccagni C, Sant'angelo A, Fingelkurts AA, Fingelkurts AA, Galardi G. Emerging from an unresponsive wakefulness syndrome: Brain plasticity has to cross a threshold level. Neurosci Biobehav Rev 2013; 37:2721-36. [PMID: 24060531 DOI: 10.1016/j.neubiorev.2013.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/29/2013] [Accepted: 09/12/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Sergio Bagnato
- Unit of Neurophysiology and Unit for Severe Acquired Brain Injury, Rehabilitation Department, Fondazione Istituto San Raffaele G. Giglio, Cefalù, PA, Italy.
| | | | | | | | | | | |
Collapse
|
15
|
Scharinger M, Henry MJ, Erb J, Meyer L, Obleser J. Thalamic and parietal brain morphology predicts auditory category learning. Neuropsychologia 2013; 53:75-83. [PMID: 24035788 DOI: 10.1016/j.neuropsychologia.2013.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/02/2013] [Accepted: 09/04/2013] [Indexed: 01/13/2023]
Abstract
Auditory categorization is a vital skill involving the attribution of meaning to acoustic events, engaging domain-specific (i.e., auditory) as well as domain-general (e.g., executive) brain networks. A listener's ability to categorize novel acoustic stimuli should therefore depend on both, with the domain-general network being particularly relevant for adaptively changing listening strategies and directing attention to relevant acoustic cues. Here we assessed adaptive listening behavior, using complex acoustic stimuli with an initially salient (but later degraded) spectral cue and a secondary, duration cue that remained nondegraded. We employed voxel-based morphometry (VBM) to identify cortical and subcortical brain structures whose individual neuroanatomy predicted task performance and the ability to optimally switch to making use of temporal cues after spectral degradation. Behavioral listening strategies were assessed by logistic regression and revealed mainly strategy switches in the expected direction, with considerable individual differences. Gray-matter probability in the left inferior parietal lobule (BA 40) and left precentral gyrus was predictive of "optimal" strategy switch, while gray-matter probability in thalamic areas, comprising the medial geniculate body, co-varied with overall performance. Taken together, our findings suggest that successful auditory categorization relies on domain-specific neural circuits in the ascending auditory pathway, while adaptive listening behavior depends more on brain structure in parietal cortex, enabling the (re)direction of attention to salient stimulus properties.
Collapse
Affiliation(s)
- Mathias Scharinger
- Max Planck Research Group "Auditory Cognition", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Molly J Henry
- Max Planck Research Group "Auditory Cognition", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Julia Erb
- Max Planck Research Group "Auditory Cognition", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Lars Meyer
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jonas Obleser
- Max Planck Research Group "Auditory Cognition", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
16
|
Budinger E, Brosch M, Scheich H, Mylius J. The subcortical auditory structures in the Mongolian gerbil: II. Frequency-related topography of the connections with cortical field AI. J Comp Neurol 2013; 521:2772-97. [DOI: 10.1002/cne.23314] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/20/2012] [Accepted: 01/23/2013] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | - Judith Mylius
- Special Laboratory for Primate Neurobiology; Leibniz Institute for Neurobiology; D-39118 Magdeburg; Germany
| |
Collapse
|
17
|
Herrmann B, Henry MJ, Obleser J. Frequency-specific adaptation in human auditory cortex depends on the spectral variance in the acoustic stimulation. J Neurophysiol 2013; 109:2086-96. [DOI: 10.1152/jn.00907.2012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In auditory cortex, activation and subsequent adaptation is strongest for regions responding best to a stimulated tone frequency and less for regions responding best to other frequencies. Previous attempts to characterize the spread of neural adaptation in humans investigated the auditory cortex N1 component of the event-related potentials. Importantly, however, more recent studies in animals show that neural response properties are not independent of the stimulation context. To link these findings in animals to human scalp potentials, we investigated whether contextual factors of the acoustic stimulation, namely, spectral variance, affect the spread of neural adaptation. Electroencephalograms were recorded while human participants listened to random tone sequences varying in spectral variance (narrow vs. wide). Spread of adaptation was investigated by modeling single-trial neural adaptation and subsequent recovery based on the spectro-temporal stimulation history. Frequency-specific neural responses were largest on the N1 component, and the modeled neural adaptation indices were strongly predictive of trial-by-trial amplitude variations. Yet the spread of adaption varied depending on the spectral variance in the stimulation, such that adaptation spread was broadened for tone sequences with wide spectral variance. Thus the present findings reveal context-dependent auditory cortex adaptation and point toward a flexibly adjusting auditory system that changes its response properties with the spectral requirements of the acoustic environment.
Collapse
Affiliation(s)
- Björn Herrmann
- Max Planck Research Group “Auditory Cognition,” Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Molly J. Henry
- Max Planck Research Group “Auditory Cognition,” Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jonas Obleser
- Max Planck Research Group “Auditory Cognition,” Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
18
|
Ji W, Suga N. Histaminergic modulation of nonspecific plasticity of the auditory system and differential gating. J Neurophysiol 2012; 109:792-802. [PMID: 23136340 DOI: 10.1152/jn.00930.2011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the auditory system of the big brown bat (Eptesicus fuscus), paired conditioned tonal (CS) and unconditioned leg stimuli (US) for auditory fear conditioning elicit tone-specific plasticity represented by best-frequency (BF) shifts that are augmented by acetylcholine, whereas unpaired CS and US for pseudoconditioning elicit a small BF shift and prominent nonspecific plasticity at the same time. The latter represents the nonspecific augmentations of auditory responses accompanied by the broadening of frequency tuning and decrease in threshold. It is unknown which neuromodulators are important in evoking the nonspecific plasticity. We found that histamine (HA) and an HA3 receptor (HA3R) agonist (α-methyl-HA) decreased, but an HA3R antagonist (thioperamide) increased, cortical auditory responses; that the HA3R agonist applied to the primary auditory cortex before pseudoconditioning abolished the nonspecific augmentation in the cortex without affecting the small cortical BF shift; and that antagonists of acetylcholine, norepinephrine, dopamine, and serotonin receptors did not abolish the nonspecific augmentation elicited by pseudoconditioning. The histaminergic system plays an important role in eliciting the arousal and defensive behavior, possibly through nonspecific augmentation. Thus HA modulates the nonspecific augmentation, whereas acetylcholine amplifies the BF shifts. These two neuromodulators may mediate differential gating of cortical plasticity.
Collapse
Affiliation(s)
- Weiqing Ji
- Dept. of Biology, Washington Univ, St. Louis, MO 63130, USA.
| | | |
Collapse
|