1
|
Bu A, Afghah F, Castro N, Bawa M, Kohli S, Shah K, Rios B, Butty V, Raman R. Actuating Extracellular Matrices Decouple the Mechanical and Biochemical Effects of Muscle Contraction on Motor Neurons. Adv Healthc Mater 2024:e2403712. [PMID: 39523700 DOI: 10.1002/adhm.202403712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Emerging in vivo evidence suggests that repeated muscle contraction, or exercise, impacts peripheral nerves. However, the difficulty of isolating the muscle-specific impact on motor neurons in vivo, as well as the inability to decouple the biochemical and mechanical impacts of muscle contraction in this setting, motivates investigating this phenomenon in vitro. This study demonstrates that tuning the mechanical properties of fibrin enables longitudinal culture of highly contractile skeletal muscle monolayers, enabling functional characterization of and long-term secretome harvesting from exercised tissues. Motor neurons stimulated with exercised muscle-secreted factors significantly upregulate neurite outgrowth and migration, with an effect size dependent on muscle contraction intensity. Actuating magnetic microparticles embedded within fibrin hydrogels enable dynamically stretching motor neurons and non-invasively mimicking the mechanical effects of muscle contraction. Interestingly, axonogenesis is similarly upregulated in both mechanically and biochemically stimulated motor neurons, but RNA sequencing reveals different transcriptomic signatures between groups, with biochemical stimulation having a greater impact on cell signaling related to axonogenesis and synapse maturation. This study leverages actuating extracellular matrices to robustly validate a previously hypothesized role for muscle contraction in regulating motor neuron growth and maturation from the bottom-up through both mechanical and biochemical signaling.
Collapse
Affiliation(s)
- Angel Bu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ferdows Afghah
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nicolas Castro
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Maheera Bawa
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sonika Kohli
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Karina Shah
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Brandon Rios
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vincent Butty
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ritu Raman
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
2
|
Dong S, Zhu F, Pan J, Zhou XY, Du XL, Xie XJ, Wu YJ. Immediate Ansa cervicalis-to-recurrent laryngeal nerve low-tension anastomosis: A new technique for phonation recovery and bilateral anastomoses to avoid tracheotomy. Am J Otolaryngol 2024; 45:104358. [PMID: 38754262 DOI: 10.1016/j.amjoto.2024.104358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVE This case series study investigated the outcomes of an innovative approach, ansa cervicalis nerve (ACN)-to-recurrent laryngeal nerve (RLN) low-tension anastomosis. METHODS Patients who received laryngeal nerve anastomosis between May 2015 and September 2021 at the facility were enrolled. The inclusion criteria were patients with RLN dissection and anastomosis immediately during thyroid surgery. Exclusion criteria were cases with anastomosis other than cervical loop-RLN anastomosis or pronunciation recovery time > 6 months. Patients admitted before January 2020 were assigned to group A which underwent the conventional tension-free anastomosis, and patients admitted after January 2020 were group B and underwent the innovative low-tension anastomosis (Dong's method). RESULTS A total of 13 patients were included, 11 patients received unilateral surgery, and 2 underwent bilateral surgery. For patients who underwent unilateral anastomosis, group B had a significantly higher percentage of normal pronunciation via GRBAS scale (83.3 % vs. 0 %, p = 0.015) and voice handicap index (66.7 % vs. 0 %, p = 0.002), and shorter recovery time in pronunciation (median: 1-day vs. 4 months, p = 0.001) than those in group A after surgery. CONCLUSIONS ACNs-to-RLN low-tension anastomosis with a laryngeal segment ≤1 cm (Dong's method) significantly improves postoperative pronunciation and recovery time. The results provide clinicians with a new strategy for ACN -to-RLN anastomosis during thyroid surgery.
Collapse
Affiliation(s)
- Shuai Dong
- Department of Thyroid Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Feng Zhu
- Department of Thyroid Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jun Pan
- Department of Thyroid Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xue-Yu Zhou
- Department of Thyroid Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiao-Long Du
- Department of Thyroid Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiao-Jun Xie
- Department of Thyroid Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Yi-Jun Wu
- Department of Thyroid Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
3
|
Salles M, Horikawa F, Allegrini Jr S, Zangrando D, Yoshimoto M, Shinohara E. Clinical evaluation of the perception of post-trauma paresthesia in the mandible, using a biomimetic material: A preliminary study in humans. Heliyon 2023; 9:e18304. [PMID: 37520975 PMCID: PMC10382299 DOI: 10.1016/j.heliyon.2023.e18304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
There is a great effort from numerous research groups in the development of materials and therapeutic strategies for the functional recovery of patients who have suffered peripheral nerve injuries (PNI). In an article in vivo, the formation of a nerve bridge was observed, reconnecting the distal and proximal stumps, in the sciatic nerve of rats, indicating the effective participation of the biomaterial in the recovery of peripheral nerve injuries. For the current pilot study, 15 cases of multiple fractures of the mandible, with involvement of the inferior alveolar nerve (IAN) were selected and studied: JC (control cases) n = 6 with conventional treatment, and JT (treated cases) n = 9, with the use of biomimetic biomaterial. The evaluation of the return to sensitivity was measured through a self-assessment, where the patients assigned scores from 0 to 10, where zero (0) represented the complete absence of sensitivity and ten (10) the normality of the perception of local sensitivity. Patients were evaluated from the preoperative period to the 360th day. The statistical results obtained by the t-Student, Shapiro-Wilk normality and non-parametric One-Way ANOVA tests indicated statistically significant differences (p < 0.005; 0.005 e 0.5 respectively), between the two treatments, which were reflected in the clinical results observed, we also calculate the size of the effect represented by ϵ2, calculated by Cohen's d. The results indicate a great difference between the treatments performed,ϵ2 = 1.00. In the 6 cases followed up in the JC group, four remained with a significant deficit until the end of the evaluations and two indicated the remission of the lack of sensitivity in this period. In the JT group, in 28 days, all cases indicated complete remission of the lack of sensitivity with healing concentration. In one of the cases where there was a complete rupture of the mental nerve, the (score-10) was observed in 60 days. The observed results indicate the existence of a statistical significance between the groups and an important relationship when using the biomimetic biomaterial during the recovery of the perception of sensitivity in polytraumatized patients, compatible with the results observed in laboratory animals, which may indicate its clinical feasibility in the reduction of sequelae in PNI.
Collapse
Affiliation(s)
| | - F.K. Horikawa
- Depart. Oral and Maxillofac. Surg. Hospital Regional de Osasco SUS, São Paulo, Brazil
| | - S. Allegrini Jr
- Program in Biodentistry, Ibirapuera University (UNIB), São Paulo, SP, 04661 100, Brazil
- Católica Portuguesa University (UCP), Viseu, Portugal
| | - D. Zangrando
- Depart. Oral and Maxillofac. Surg. Hospital Regional de Osasco SUS, São Paulo, Brazil
- Department of Surgery Stomatology Pathology and Radiology of the Faculty of Dentistry of Bauru, University of São Paulo (FOB-USP) Bauru, São Paulo, Brazil
| | | | - E.H. Shinohara
- Depart. Oral and Maxillofac. Surg. Hospital Regional de Osasco SUS, São Paulo, Brazil
| |
Collapse
|
4
|
Ghose A, Pullarkat P. The role of mechanics in axonal stability and development. Semin Cell Dev Biol 2023; 140:22-34. [PMID: 35786351 PMCID: PMC7615100 DOI: 10.1016/j.semcdb.2022.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 01/28/2023]
Abstract
Much of the focus of neuronal cell biology has been devoted to growth cone guidance, synaptogenesis, synaptic activity, plasticity, etc. The axonal shaft too has received much attention, mainly for its astounding ability to transmit action potentials and the transport of material over long distances. For these functions, the axonal cytoskeleton and membrane have been often assumed to play static structural roles. Recent experiments have changed this view by revealing an ultrastructure much richer in features than previously perceived and one that seems to be maintained at a dynamic steady state. The role of mechanics in this is only beginning to be broadly appreciated and appears to involve passive and active modes of coupling different biopolymer filaments, filament turnover dynamics and membrane biophysics. Axons, being unique cellular processes in terms of high aspect ratios and often extreme lengths, also exhibit unique passive mechanical properties that might have evolved to stabilize them under mechanical stress. In this review, we summarize the experiments that have exposed some of these features. It is our view that axonal mechanics deserves much more attention not only due to its significance in the development and maintenance of the nervous system but also due to the susceptibility of axons to injury and neurodegeneration.
Collapse
Affiliation(s)
- Aurnab Ghose
- Indian Institute of Science Education and Research, Pune 411 008, India.
| | - Pramod Pullarkat
- Raman Research Institute, C. V. Raman Avenue, Bengaluru 560 080, India.
| |
Collapse
|
5
|
Abdelrahman SA, Abdelfatah MM, Keshta AT. Rapamycin-filgrastim combination therapy ameliorates portal hypertension-induced splenomegaly: Role of β actin and S100A9 proteins modulation. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:732-744. [PMID: 35949314 PMCID: PMC9320204 DOI: 10.22038/ijbms.2022.64034.14101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/07/2022] [Indexed: 11/06/2022]
Abstract
Objectives Thioacetamide (TAA) was administered to induce an animal model of liver disease with secondary splenomegaly to assess the mechanisms underlying the effects of rapamycin and filgrastim when taken separately or in combination on the biochemical and histopathological aspects of the liver and spleen. Materials and Methods Thirty adult male albino rats were divided into five groups (control, TAA-treated group, TAA+rapamycin, TAA+filgrastim, and TAA+rapamycin+filgrastim group). We measured relative liver and spleen weights, serum levels of alanine transaminase (ALT), aspartate transaminase (AST), and albumin. Molecular docking modeling and histopathological examination of liver and spleen sections with hematoxylin and eosin and Masson trichrome staining with immunohistochemical detection of splenic CD3 and CD20 lymphocytes, S100A9 and β actin antibodies were detected. Morphometric and statistical analyses of the results were performed. Results TAA administration altered the histological structure of the liver and spleen and impaired liver function. It increased the expression of splenic CD3, CD20 lymphocytes, and S100A9 while diminishing the expression of β actin. Each of rapamycin and filgrastim, when administered separately, improved liver and spleen indices and liver function, but rapamycin did not affect the albumin level. They lowered splenic B and T lymphocyte levels. Expression levels of S100A9 showed down-regulation while β actin levels were up-regulated when compared with TAA. Combination therapy improved liver and spleen tissue pathology and significantly ameliorated the expression of splenic lymphocytes through regulation of S100A9 and β actin expression. Conclusion The synergistic effect of combination therapy was dependent on the regulation of splenic S100A9 and β actin levels.
Collapse
Affiliation(s)
- Shaimaa A. Abdelrahman
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt,Corresponding author: Shaimaa A. Abdelrahman. Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Mohammed M. Abdelfatah
- Biochemistry Division, Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Akaber T. Keshta
- Biochemistry Division, Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
6
|
Xu K, Liu X, Li X, Yin J, Wei P, Qian J, Sun J. Effect of Electrical and Electromechanical Stimulation on PC12 Cell Proliferation and Axon Outgrowth. Front Bioeng Biotechnol 2021; 9:757906. [PMID: 34746110 PMCID: PMC8566739 DOI: 10.3389/fbioe.2021.757906] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Peripheral nerve injuries have become a common clinical disease with poor prognosis and complicated treatments. The development of tissue engineering pointed a promising direction to produce nerve conduits for nerve regeneration. Electrical and mechanical stimulations have been incorporated with tissue engineering, since such external stimulations could promote nerve cell proliferation, migration and differentiation. However, the combination of electrical and mechanical stimulations (electromechanical stimulation) and its effects on neuron proliferation and axon outgrowth have been rarely investigated. Herein, silver nanowires (AgNWs) embedded polydimethylsiloxane (PDMS) electrodes were developed to study the effects of electromechanical stimulation on rat pheochromocytoma cells (PC12 cells) behaviors. AgNWs/PDMS electrodes demonstrated good biocompatibility and established a stable electric field during mechanical stretching. PC12 cells showed enhanced proliferation rate and axon outgrowth under electrical stimulation alone, and the cell number significantly increased with higher electrical stimulation intensity. The involvement of mechanical stretching in electrical stimulation reduced the cell proliferation rate and axon outgrowth, compared with the case of electrical stimulation alone. Interestingly, the cellular axons outgrowth was found to depend on the stretching direction, where the axons prefer to align perpendicularly to the stretch direction. These results suggested that AgNWs/PDMS electrodes provide an in vitro platform to investigate the effects of electromechanical stimulation on nerve cell behaviors and can be potentially used for nerve regeneration in the future.
Collapse
Affiliation(s)
- Kailei Xu
- Central Laboratory, Ningbo First Hospital, Ningbo, China
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Xixia Liu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- School of Mechanical Engineering, Guizhou University, Guiyang, China
| | - Xiaokeng Li
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Peng Wei
- Department of Hand and Foot Microsurgery, Ningbo First Hospital, Ningbo, China
| | - Jin Qian
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Jie Sun
- Central Laboratory, Ningbo First Hospital, Ningbo, China
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
7
|
Bazarek S, Brown JM, Shah SB. Clinical potential of tension-lengthening strategies during nerve repair. Neural Regen Res 2021; 17:779-780. [PMID: 34472468 PMCID: PMC8530125 DOI: 10.4103/1673-5374.322461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Stanley Bazarek
- Department of Neurosurgery, Massachusetts General Hospital/Harvard Medical School; Department of Neurosurgery, Brigham & Women's Hospital/Harvard Medical School, Boston, MA, USA
| | - Justin M Brown
- Department of Neurosurgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Sameer B Shah
- Departments of Orthopedic Surgery and Bioengineering, University of California-San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Marinval N, Chew SY. Mechanotransduction assays for neural regeneration strategies: A focus on glial cells. APL Bioeng 2021; 5:021505. [PMID: 33948526 PMCID: PMC8088332 DOI: 10.1063/5.0037814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/19/2021] [Indexed: 01/22/2023] Open
Abstract
Glial cells are mechanosensitive, and thus, engineered systems have taken a step forward to design mechanotransduction platforms in order to impart diverse mechanical stresses to cells. Mechanical strain encountered in the central nervous system can arise from diverse mechanisms, such as tissue reorganization, fluid flow, and axon growth, as well as pathological events including axon swelling or mechanical trauma. Biomechanical relevance of the in vitro mechanical testing requires to be placed in line with the physiological and mechanical changes in central nervous tissues that occur during the progression of neurodegenerative diseases. Mechanotransduction signaling utilized by glial cells and the recent approaches intended to model altered microenvironment adapted to pathological context are discussed in this review. New insights in systems merging substrate's stiffness and topography should be considered for further glial mechanotransduction studies, while testing platforms for drug discoveries promise great advancements in pharmacotherapy. Potential leads and strategies for clinical outcomes are expected to be developed following the exploration of these glial mechanosensitive signaling pathways.
Collapse
Affiliation(s)
- Nicolas Marinval
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459
| | - Sing Yian Chew
- Author to whom correspondence should be addressed: . Tel.: +65 6316 8812. Fax: +65 6794 7553
| |
Collapse
|
9
|
Gupta RS, Berrellez D, Chhugani N, Luna Lopez C, Maldonado A, Shah SB. Effects of paclitaxel on the viscoelastic properties of mouse sensory nerves. J Biomech 2020; 115:110125. [PMID: 33257008 DOI: 10.1016/j.jbiomech.2020.110125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/23/2020] [Accepted: 11/03/2020] [Indexed: 11/18/2022]
Abstract
Paclitaxel is an effective and widely used chemotherapeutic, but also causes debilitating peripheral sensory neuropathy. Due to its influence on microtubule stability, we and others have hypothesized that paclitaxel alters neuromechanical properties. A prior study suggested that paclitaxel increases the tensile moduli of rat sensory nerves. However, the effects of paclitaxel on tissue level viscoelasticity have not been tested. In this study, sural branches of C57BL/6J mouse sciatic nerves were bilaterally excised. One nerve was treated with Ringer's solution containing paclitaxel, and the contralateral nerve with Ringer's alone. Nerves were then subject to a passive loading protocol in which peak stress, relaxed stress, and stress-relaxation dynamics were monitored at increasing strain. Elastic and tangent tensile moduli were calculated from both peak and relaxed stress-strain curves as well as failure stress were significantly elevated in paclitaxel-treated nerves compared to controls. Double-exponential fits (with τm and τn indicating fast and slow time constants, respectively) were successfully applied to model stress-relaxation. Though no significant differences in the τm and τn were found between groups, paclitaxel treatment significantly increased the variability of τm, suggesting heterogeneous effects on nerve biomechanical properties. Our data establish that paclitaxel effects at the cellular level influence tensile viscoelastic properties of nerves at the tissue level. These results have implications for understanding biomechanical influences on the progression and physical rehabilitation of paclitaxel-induced neuropathy.
Collapse
Affiliation(s)
- Rishi S Gupta
- Department of Orthopaedic Surgery, University of California, San Diego, USA
| | - Daniel Berrellez
- Posgrado en Ciencia de Materiales, Universidad de Sonora, Mexico
| | - Neha Chhugani
- Department of Bioengineering, University of California, San Diego, USA
| | - Carlos Luna Lopez
- Department of Cell Biology, California State University San Marcos, USA
| | | | - Sameer B Shah
- Department of Orthopaedic Surgery, University of California, San Diego, USA; Department of Bioengineering, University of California, San Diego, USA; Research Division, VA San Diego Healthcare System, USA.
| |
Collapse
|
10
|
A comparative assessment of lengthening followed by end-to-end repair and isograft repair of chronically injured peripheral nerves. Exp Neurol 2020; 331:113328. [DOI: 10.1016/j.expneurol.2020.113328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/02/2020] [Accepted: 04/20/2020] [Indexed: 01/09/2023]
|
11
|
Andrade RJ, Freitas SR, Hug F, Le Sant G, Lacourpaille L, Gross R, Quillard JB, McNair PJ, Nordez A. Chronic effects of muscle and nerve-directed stretching on tissue mechanics. J Appl Physiol (1985) 2020; 129:1011-1023. [PMID: 32853116 DOI: 10.1152/japplphysiol.00239.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tissue-directed stretching interventions can preferentially load muscular or nonmuscular structures such as peripheral nerves. How these tissues adapt mechanically to long-term stretching is poorly understood. This randomized, single-blind, controlled study used ultrasonography and dynamometry to compare the effects of 12-wk nerve-directed and muscle-directed stretching programs versus control on maximal ankle dorsiflexion range of motion (ROM) and passive torque, shear wave velocity (SWV; an index of stiffness), and architecture of triceps surae and sciatic nerve. Sixty healthy adults were randomized to receive nerve-directed stretching, muscle-directed stretching, or no intervention (control). The muscle-directed protocol was designed to primarily stretch the plantar flexor muscle group, whereas the nerve-directed intervention targeted the sciatic nerve tract. Compared with the control group [mean; 95% confidence interval (CI)], muscle-directed intervention showed increased ROM (+7.3°; 95% CI: 4.1-10.5), decreased SWV of triceps surae (varied from -0.8 to -2.3 m/s across muscles), decreased passive torque (-6.8 N·m; 95% CI: -11.9 to -1.7), and greater gastrocnemius medialis fascicle length (+0.4 cm; 95% CI: 0.1-0.8). Muscle-directed intervention did not affect the SWV and size of sciatic nerve. Participants in the nerve-directed group showed a significant increase in ROM (+9.9°; 95% CI: 6.2-13.6) and a significant decrease in sciatic nerve SWV (> -1.8 m/s across nerve regions) compared with the control group. Nerve-directed intervention had no effect on the main outcomes at muscle and joint levels. These findings provide new insights into the long-term mechanical effects of stretching interventions and have relevance to clinical conditions where change in mechanical properties has occurred.NEW & NOTEWORTHY This study demonstrates that the mechanical properties of plantar flexor muscles and sciatic nerve can adapt mechanically to long-term stretching programs. Although interventions targeting muscular or nonmuscular structures are both effective at increasing maximal range of motion, the changes in tissue mechanical properties (stiffness) are specific to the structure being preferentially stretched by each program. We provide the first in vivo evidence that stiffness of peripheral nerves adapts to long-term loading stimuli using appropriate nerve-directed stretching.
Collapse
Affiliation(s)
- Ricardo J Andrade
- Laboratory of Movement, Interactions, Performance (EA 4334), Faculty of Sport Sciences, Nantes, University of Nantes, France.,School of Allied Health Sciences, Griffith University, Brisbane and Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Sandro R Freitas
- Universidade de Lisboa, Faculdade de Motricidade Humana, Centro Interdisciplinar de Estudo da Performance Humana (CIPER), Lisbon, Portugal
| | - François Hug
- Laboratory of Movement, Interactions, Performance (EA 4334), Faculty of Sport Sciences, Nantes, University of Nantes, France.,Institut Universitaire de France (IUF), Paris, France.,The University of Queensland, National Health and Medical Research Council (NHMRC) Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia
| | - Guillaume Le Sant
- Laboratory of Movement, Interactions, Performance (EA 4334), Faculty of Sport Sciences, Nantes, University of Nantes, France.,School of Physiotherapy (IFM3R), Nantes, France
| | - Lilian Lacourpaille
- Laboratory of Movement, Interactions, Performance (EA 4334), Faculty of Sport Sciences, Nantes, University of Nantes, France
| | - Raphaël Gross
- Laboratory of Movement, Interactions, Performance (EA 4334), Faculty of Sport Sciences, Nantes, University of Nantes, France.,Gait Analysis Laboratory, Physical and Rehabilitation Medicine Department, University Hospital of Nantes, Nantes, France
| | - Jean-Baptiste Quillard
- Laboratory of Movement, Interactions, Performance (EA 4334), Faculty of Sport Sciences, Nantes, University of Nantes, France
| | - Peter J McNair
- Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Antoine Nordez
- Laboratory of Movement, Interactions, Performance (EA 4334), Faculty of Sport Sciences, Nantes, University of Nantes, France.,Institut Universitaire de France (IUF), Paris, France.,Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
12
|
Xia B, Gao J, Li S, Huang L, Zhu L, Ma T, Zhao L, Yang Y, Luo K, Shi X, Mei L, Zhang H, Zheng Y, Lu L, Luo Z, Huang J. Mechanical stimulation of Schwann cells promote peripheral nerve regeneration via extracellular vesicle-mediated transfer of microRNA 23b-3p. Theranostics 2020; 10:8974-8995. [PMID: 32802175 PMCID: PMC7415818 DOI: 10.7150/thno.44912] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Peripheral nerves are unique in their remarkable elasticity. Schwann cells (SCs), important components of the peripheral nervous system (PNS), are constantly subjected to physiological and mechanical stresses from dynamic stretching and compression forces during movement. So far, it is not clear if SCs sense and respond to mechanical signals. It is also unknown whether mechanical stimuli can interfere with the intercellular communications between neurons and SCs, and what role extracellular vesicles (EVs) play in this process. The present study aimed to examine the effect of mechanical stimuli on the EV-mediated intercellular communication between neurons and SCs, explore their effect on axonal regeneration, and investigate the underlying mechanism. Methods: Purified SCs were stimulated using a magnetic force-based mechanical stimulation (MS) system and EVs were purified from mechanically stimulated SCs (MS-SCs-EVs) and non-stimulated SCs (SCs-EVs). The effect of MS-SCs-EVs on axonal elongation was examined in vitro and in vivo. High throughput miRNA sequencing was performed to compare the differential miRNA profiles between MS-SCs-EVs and SCs-EVs. The functional role of differentially expressed miRNAs on neurite extension in MS-SCs-EVs was examined. Also, the putative target genes of differentially expressed miRNAs in MS-SCs-EVs were predicted by bioinformatics tools, and the regulatory effect of those miRNAs on putative target genes was validated both in vitro and in vivo. Results: The MS-SCs-EVs showed an average size of 137.52±1.77 nm, and could be internalized by dorsal root ganglion (DRG) neurons. Compared to SCs-EVs, MS-SCs-EVs showed a stronger ability to enhance neurite outgrowth in vitro and nerve regeneration in vivo. High throughput miRNA sequencing identified a number of differentially expressed miRNAs in MS-SCs-EVs. Further analysis of those EV-miRNAs demonstrated that miR-23b-3p played a predominant role in MS-SCs-EVs since its deprivation abolished their enhanced axonal elongation. Furthermore, we identified neuropilin 1 (Nrp1) in neurons as the target gene of miR-23b-3p in MS-SCs-EVs. This observation was supported by the evidence that miR-23b-3p could decrease Nrp1-3'-UTR-WT luciferase activity in vitro and down-regulate Nrp1 expression in neurons. Conclusion: Our findings suggested that mechanical stimuli are capable of modulating the intercellular communication between neurons and SCs by altering miRNA composition in MS-SCs-EVs. Transfer of miR-23b-3p by MS-SCs-EVs from mechanically stimulated SCs to neurons decreased neuronal Nrp1 expression, which was responsible, at least in part, for the beneficial effect of MS-SCs-EVs on axonal regeneration. Our results highlighted the potential therapeutic value of MS-SCs-EVs and miR-23b-3p-enriched EVs in peripheral nerve injury repair.
Collapse
Affiliation(s)
- Bing Xia
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jianbo Gao
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Shengyou Li
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Liangliang Huang
- Department of Orthopedics, the General Hospital of Central Theater Command of People's Liberation Army, Wuhan, 430070, People's Republic of China
| | - Lei Zhu
- Department of Spine Surgery, Honghui Hospital Affiliated to Medical School of Xi'an Jiaotong University, Xi'an Shaanxi, 710054, People's Republic of China
| | - Teng Ma
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Laihe Zhao
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yujie Yang
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Kai Luo
- Department of Orthopedics, the 985th Hospital People's Liberation Army Joint Logistics Support Force, Taiyuan, 030000, People's Republic of China
| | - Xiaowei Shi
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Liangwei Mei
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Hao Zhang
- Department of Spinal Surgery, the People's Hospital of Longhua District, Shenzhen, 518109, People's Republic of China
| | - Yi Zheng
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Lei Lu
- Department of Oral Anatomy and Physiology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Zhuojing Luo
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jinghui Huang
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| |
Collapse
|
13
|
|
14
|
Sousa SC, Sousa MM. The cytoskeleton as a modulator of tension driven axon elongation. Dev Neurobiol 2020; 81:300-309. [PMID: 32302060 DOI: 10.1002/dneu.22747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/11/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
Throughout development, neurons are capable of integrating external and internal signals leading to the morphological changes required for neuronal polarization and axon growth. The first phase of axon elongation occurs during neuronal polarization. At this stage, membrane remodeling and cytoskeleton dynamics are crucial for the growth cone to advance and guide axon elongation. When a target is recognized, the growth cone collapses to form the presynaptic terminal. Once a synapse is established, the growth of the organism results in an increased distance between the neuronal cell bodies and their targets. In this second phase of axon elongation, growth cone-independent molecular mechanisms and cytoskeleton changes must occur to enable axon growth to accompany the increase in body size. While the field has mainly focused on growth-cone mediated axon elongation during development, tension driven axon growth remains largely unexplored. In this review, we will discuss in a critical perspective the current knowledge on the mechanisms guiding axon growth following synaptogenesis, with a particular focus on the putative role played by the axonal cytoskeleton.
Collapse
Affiliation(s)
- Sara C Sousa
- Nerve Regeneration group, Instituto de Biologia Molecular e Celular - IBMC and i3S, Instituto de Inovação e Investigação em Saúde, University of Porto, Porto, Portugal.,Doctoral Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar-ICBAS, University of Porto, Porto, Portugal
| | - Mónica M Sousa
- Nerve Regeneration group, Instituto de Biologia Molecular e Celular - IBMC and i3S, Instituto de Inovação e Investigação em Saúde, University of Porto, Porto, Portugal
| |
Collapse
|
15
|
Howarth HM, Kadoor A, Salem R, Nicolds B, Adachi S, Kanaris A, Lovering RM, Brown JM, Shah SB. Nerve lengthening and subsequent end-to-end repair yield more favourable outcomes compared with autograft repair of rat sciatic nerve defects. J Tissue Eng Regen Med 2019; 13:2266-2278. [PMID: 31670904 DOI: 10.1002/term.2980] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/17/2019] [Accepted: 10/04/2019] [Indexed: 12/31/2022]
Abstract
Outcomes of end-to-end nerve repairs are more successful compared with outcomes of repairs bridged by nerve grafts. However, end-to-end repairs are not always possible for large nerve gaps, as excessive tension may cause catastrophic failure. In this study, we built on previous nerve-lengthening studies to test the hypotheses that gradual lengthening of the proximal stump across a large nerve gap enables an end-to-end repair and such a repair results in more favourable regenerative outcomes than autografts, which represent the gold standard in bridging nerve gaps. To test these, we compared structural and functional outcomes in Lewis rats after repair of sciatic nerve gaps using either autografts or a novel compact internal fixator device, which was used to lengthen proximal nerve stumps towards the distal stump over 2 weeks, prior to end-to-end repair. Twelve weeks after the initial injury, outcomes following nerve lengthening/end-to-end repair were either comparable or superior in every measure compared with repair by autografting. The sciatic functional index was not significantly different between groups at 12 weeks. However, we observed a reduced rate of contracture and corresponding significant increase in paw length in the lengthening group. This functional improvement was consistent with structural regeneration; axonal growth distal to the injury was denser and more evenly distributed compared with the autograft group, suggesting substantial regeneration into both tibial and peroneal branches of the sciatic nerve. Our findings show that end-to-end repairs following nerve lengthening are possible for large gaps and that this strategy may be superior to graft-based repairs.
Collapse
Affiliation(s)
- Holly M Howarth
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| | - Adarsh Kadoor
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA
| | - Rayeheh Salem
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA
| | - Brogan Nicolds
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA
| | - Stephanie Adachi
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA
| | - Achilles Kanaris
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD
| | - Justin M Brown
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA
| | - Sameer B Shah
- Department of Bioengineering, University of California, San Diego, La Jolla, CA.,Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA.,Research Service, VA San Diego Healthcare System, San Diego, CA
| |
Collapse
|
16
|
Shi J, Xu X, Sun J, Wang Y, Kong Q, Shi G. Theory of Bowstring Disease: Diagnosis and Treatment Bowstring Disease. Orthop Surg 2019; 11:3-9. [PMID: 30834704 PMCID: PMC6430461 DOI: 10.1111/os.12417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/24/2018] [Indexed: 01/06/2023] Open
Abstract
Bowstring disease (BSD) is a new classification of spine disease caused by axial stretched lesion on nerve roots and the spinal cord, which is differentiated from disc herniation and canal stenosis in that it is caused by nerve compression lesions. BSD could be caused by mismatched growth rates between the spine and nerve roots (the juvenile type), or by imbalanced degenerative rates between the spine column and nerve roots (degenerative type). Here, we propose that there are several self-adjust mechanisms to relieve axial nerve tension: (i) nerve growth; (ii) posture adjustment and low back pain; (iii) autogenous degeneration of intervertebral disc; and (iv) idiopathic and degenerative scoliosis. Iatrogenic lesions could also result in BSD, which could be presented as adjacent segment degeneration, leading to adding-on effects and other neurological symptoms. The diagnosis criteria are proposed based on symptoms, physical examination, and radiological presentations. To remove axial tension on nerve roots, lumbar surgery should aim to restore the coordination of spine and cord units. Capsule surgery, shortening the spine column, could decompress cord and nerve roots 3-dimensionally.
Collapse
Affiliation(s)
- Jian‐gang Shi
- Department of Orthopedic Surgery, Spine CenterChangzheng Hospital, Second Military Medical University
| | - Xi‐ming Xu
- Department of Orthopedic Surgery, Spine CenterChangzheng Hospital, Second Military Medical University
| | - Jing‐chuan Sun
- Department of Orthopedic Surgery, Spine CenterChangzheng Hospital, Second Military Medical University
| | - Yuan Wang
- Department of Orthopedic Surgery, Spine CenterChangzheng Hospital, Second Military Medical University
| | - Qing‐jie Kong
- Department of Orthopedic Surgery, Spine CenterChangzheng Hospital, Second Military Medical University
| | - Guo‐dong Shi
- Department of Orthopedic Surgery, Spine CenterChangzheng Hospital, Second Military Medical University
| |
Collapse
|
17
|
Howarth HM, Alaziz T, Nicolds B, O'Connor S, Shah SB. Redistribution of nerve strain enables end-to-end repair under tension without inhibiting nerve regeneration. Neural Regen Res 2019; 14:1280-1288. [PMID: 30804260 PMCID: PMC6425842 DOI: 10.4103/1673-5374.251338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
End-to-end repair under no or low tension leads to improved outcomes for transected nerves with short gaps, compared to repairs with a graft. However, grafts are typically used to enable a tension-free repair for moderate to large gaps, as excessive tension can cause repairs to fail and catastrophically impede recovery. In this study, we tested the hypothesis that unloading the repair interface by redistributing tension away from the site of repair is a safe and feasible strategy for end-to-end repair of larger nerve gaps. Further, we tested the hypothesis that such an approach does not adversely affect structural and functional regeneration. In this study, we used a rat sciatic nerve injury model to compare the integrity of repair and several regenerative outcomes following end-to-end repairs of nerve gaps of increasing size. In addition, we proposed the use of a novel implantable device to safely repair end-to-end repair of larger nerve gaps by redistributing tension away from the repair interface. Our data suggest that redistriubution of tension away from the site of repair enables safe end-to-end repair of larger gap sizes. In addition, structural and functional measures of regeneration were equal or enhanced in nerves repaired under tension – with or without a tension redistribution device – compared to tension-free repairs. Provided that repair integrity is maintained, end-to-end repairs under tension should be considered as a reasonable surgical strategy. All animal experiments were performed under the approval of the Institutional Animal Care and Use Committee of University of California, San Diego (Protocol S11274).
Collapse
Affiliation(s)
- Holly M Howarth
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Turki Alaziz
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Brogan Nicolds
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Shawn O'Connor
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
| | - Sameer B Shah
- Department of Bioengineering, University of California; Department of Orthopaedic Surgery, University of California, San Diego, La Jolla; Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
18
|
Cheng H, Wu LY. Influence of Phosphatidylinositol-3-Kinase/Protein Kinase B-Mammalian Target of Rapamycin Signaling Pathway on the Neuropathic Pain Complicated by Nucleoside Reverse Transcriptase Inhibitors for the Treatment of HIV Infection. Chin Med J (Engl) 2018; 131:1849-1856. [PMID: 30058583 PMCID: PMC6071467 DOI: 10.4103/0366-6999.237398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background: Nucleoside reverse transcriptase inhibitors (NRTIs) are the earliest and most commonly used anti-human immunodeficiency virus drugs and play an important role in high active antiretroviral therapy. However, NRTI drug therapy can cause peripheral neuropathic pain. In this study, we aimed to investigate the mechanisms of rapamycin on the pain sensitization of model mice by in vivo experiments to explore the effect of mammalian target of rapamycin (mTOR) in the pathogenesis of neuropathic pain caused by NRTIs. Methods: Male Kun Ming (KM) mice weighing 20–22 g were divided into control, 2 mg/kg rapamycin, 12 mg/kg stavudine, and CMC-Na groups. Drugs were orally administered to mice for 42 consecutive days. The von Frey filament detection and thermal pain tests were conducted on day 7, 14, 21, 28, 35, and 42 after drug administration. After the last behavioral tests, immunohistochemistry and western blotting assay were used for the measurement of mTOR and other biomarkers. Multivariate analysis of variance was used. Results: The beneficial effects of rapamycin on neuropathic pain were attributed to a reduction in mammalian target of rapamycin sensitive complex 1 (mTORC1)-positive cells (70.80 ± 2.41 vs. 112.30 ± 5.66, F = 34.36, P < 0.01) and mTORC1 activity in the mouse spinal cord. Mechanistic studies revealed that Protein Kinase B (Akt)/mTORsignaling pathway blockade with rapamycin prevented the phosphorylation of mTORC1 in stavudine-intoxicated mice (0.72 ± 0.04 vs. 0.86 ± 0.03, F = 4.24, P = 0.045), as well as decreased the expression of phospho-p70S6K (0.47 ± 0.01 vs. 0.68 ± 0.03, F = 6.01, P = 0.022) and phospho-4EBP1 (0.90 ± 0.04 vs. 0.94 ± 0.06, F = 0.28, P = 0.646). Conclusions: Taken together, these results suggest that stavudine elevates the expression and activity of mTORC1 in the spinal cord through activating the Akt/mTOR signaling pathway. The data also provide evidence that rapamycin might be useful for the treatment of peripheral neuropathic pain.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Anesthesiology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Liang-Yu Wu
- Department of Anesthesiology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| |
Collapse
|
19
|
A kinome-wide RNAi screen identifies ALK as a target to sensitize neuroblastoma cells for HDAC8-inhibitor treatment. Cell Death Differ 2018. [PMID: 29515255 PMCID: PMC6261943 DOI: 10.1038/s41418-018-0080-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The prognosis of advanced stage neuroblastoma patients remains poor and, despite intensive therapy, the 5-year survival rate remains less than 50%. We previously identified histone deacetylase (HDAC) 8 as an indicator of poor clinical outcome and a selective drug target for differentiation therapy in vitro and in vivo. Here, we performed kinome-wide RNAi screening to identify genes that are synthetically lethal with HDAC8 inhibitors. These experiments identified the neuroblastoma predisposition gene ALK as a candidate gene. Accordingly, the combination of the ALK/MET inhibitor crizotinib and selective HDAC8 inhibitors (3–6 µM PCI-34051 or 10 µM 20a) efficiently killed neuroblastoma cell lines carrying wildtype ALK (SK-N-BE(2)-C, IMR5/75), amplified ALK (NB-1), and those carrying the activating ALK F1174L mutation (Kelly), and, in cells carrying the activating R1275Q mutation (LAN-5), combination treatment decreased viable cell count. The effective dose of crizotinib in neuroblastoma cell lines ranged from 0.05 µM (ALK-amplified) to 0.8 µM (wildtype ALK). The combinatorial inhibition of ALK and HDAC8 also decreased tumor growth in an in vivo zebrafish xenograft model. Bioinformatic analyses revealed that the mRNA expression level of HDAC8 was significantly correlated with that of ALK in two independent patient cohorts, the Academic Medical Center cohort (n = 88) and the German Neuroblastoma Trial cohort (n = 649), and co-expression of both target genes identified patients with very poor outcome. Mechanistically, HDAC8 and ALK converge at the level of receptor tyrosine kinase (RTK) signaling and their downstream survival pathways, such as ERK signaling. Combination treatment of HDAC8 inhibitor with crizotinib efficiently blocked the activation of growth receptor survival signaling and shifted the cell cycle arrest and differentiation phenotype toward effective cell death of neuroblastoma cell lines, including sensitization of resistant models, but not of normal cells. These findings reveal combined targeting of ALK and HDAC8 as a novel strategy for the treatment of neuroblastoma.
Collapse
|
20
|
Breau MA, Schneider-Maunoury S. [Stretch-induced axon growth: a universal, yet poorly explored process]. Biol Aujourdhui 2018; 211:215-222. [PMID: 29412131 DOI: 10.1051/jbio/2017028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Indexed: 12/21/2022]
Abstract
The growth of axons is a key step in neuronal circuit assembly. The axon starts elongating with the migration of its growth cone in response to molecular signals present in the surrounding embryonic tissues. Following the formation of a synapse between the axon and the target cell, the distance which separates the cell body from the synapse continues to increase to accommodate the growth of the organism. This second phase of elongation, which is universal and crucial since it contributes to an important proportion of the final axon size, has been historically referred to as "stretch-induced axon growth". It is indeed likely to result from a mechanical tension generated by the growth of the body, but the underlying mechanisms remain poorly characterized. This article reviews the experimental studies of this process, mainly analysed on cultured neurons so far. The recent development of in vivo imaging techniques and tools to probe and perturb mechanical forces within embryos will shed new light on this universal mode of axonal growth. This knowledge may inspire the design of novel tissue engineering strategies dedicated to brain and spinal cord repair.
Collapse
Affiliation(s)
- Marie Anne Breau
- Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, CNRS UMR7622, INSERM U1156, 75005 Paris, France - Sorbonne Universités, UPMC Université Paris 06, 75005 Paris, France
| | - Sylvie Schneider-Maunoury
- Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, CNRS UMR7622, INSERM U1156, 75005 Paris, France - Sorbonne Universités, UPMC Université Paris 06, 75005 Paris, France
| |
Collapse
|
21
|
Belin S, Zuloaga KL, Poitelon Y. Influence of Mechanical Stimuli on Schwann Cell Biology. Front Cell Neurosci 2017; 11:347. [PMID: 29209171 PMCID: PMC5701625 DOI: 10.3389/fncel.2017.00347] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/19/2017] [Indexed: 12/05/2022] Open
Abstract
Schwann cells are the glial cells of the peripheral nervous system (PNS). They insulate axons by forming a specialized extension of plasma membrane called the myelin sheath. The formation of myelin is essential for the rapid saltatory propagation of action potentials and to maintain the integrity of axons. Although both axonal and extracellular matrix (ECM) signals are necessary for myelination to occur, the cellular and molecular mechanisms regulating myelination continue to be elucidated. Schwann cells in peripheral nerves are physiologically exposed to mechanical stresses (i.e., tensile, compressive and shear strains), occurring during development, adulthood and injuries. In addition, there is a growing body of evidences that Schwann cells are sensitive to the stiffness of their environment. In this review, we detail the mechanical constraints of Schwann cells and peripheral nerves. We explore the regulation of Schwann cell signaling pathways in response to mechanical stimulation. Finally, we provide a comprehensive overview of the experimental studies addressing the mechanobiology of Schwann cells. Understanding which mechanical properties can interfere with the cellular and molecular biology of Schwann cell during development, myelination and following injuries opens new insights in the regulation of PNS development and treatment approaches in peripheral neuropathies.
Collapse
Affiliation(s)
- Sophie Belin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Kristen L. Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Yannick Poitelon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| |
Collapse
|
22
|
Thomson SE, Charalambous C, Smith CA, Tsimbouri PM, Déjardin T, Kingham PJ, Hart AM, Riehle MO. Microtopographical cues promote peripheral nerve regeneration via transient mTORC2 activation. Acta Biomater 2017; 60:220-231. [PMID: 28754648 PMCID: PMC5593812 DOI: 10.1016/j.actbio.2017.07.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/04/2017] [Accepted: 07/20/2017] [Indexed: 12/16/2022]
Abstract
Despite microsurgical repair, recovery of function following peripheral nerve injury is slow and often incomplete. Outcomes could be improved by an increased understanding of the molecular biology of regeneration and by translation of experimental bioengineering strategies. Topographical cues have been shown to be powerful regulators of the rate and directionality of neurite regeneration, and in this study we investigated the downstream molecular effects of linear micropatterned structures in an organotypic explant model. Linear topographical cues enhanced neurite outgrowth and our results demonstrated that the mTOR pathway is important in regulating these responses. mTOR gene expression peaked between 48 and 72 h, coincident with the onset of rapid neurite outgrowth and glial migration, and correlated with neurite length at 48 h. mTOR protein was located to glia and in a punctate distribution along neurites. mTOR levels peaked at 72 h and were significantly increased by patterned topography (p < 0.05). Furthermore, the topographical cues could override pharmacological inhibition. Downstream phosphorylation assays and inhibition of mTORC1 using rapamycin highlighted mTORC2 as an important mediator, and more specific therapeutic target. Quantitative immunohistochemistry confirmed the presence of the mTORC2 component rictor at the regenerating front where it co-localised with F-actin and vinculin. Collectively, these results provide a deeper understanding of the mechanism of action of topography on neural regeneration, and support the incorporation of topographical patterning in combination with pharmacological mTORC2 potentiation within biomaterial constructs used to repair peripheral nerves. Statement of Significance Peripheral nerve injury is common and functionally devastating. Despite microsurgical repair, healing is slow and incomplete, with lasting functional deficit. There is a clear need to translate bioengineering approaches and increase our knowledge of the molecular processes controlling nerve regeneration to improve the rate and success of healing. Topographical cues are powerful determinants of neurite outgrowth and represent a highly translatable engineering strategy. Here we demonstrate, for the first time, that microtopography potentiates neurite outgrowth via the mTOR pathway, with the mTORC2 subtype being of particular importance. These results give further evidence for the incorporation of microtopographical cues into peripheral nerve regeneration conduits and indicate that mTORC2 may be a suitable therapeutic target to potentiate nerve regeneration.
Collapse
|