1
|
Rivi V, Batabyal A, Lukowiak K. The multifaceted effects of flavonoids on neuroplasticity. Restor Neurol Neurosci 2024; 42:93-111. [PMID: 38995810 DOI: 10.3233/rnn-230150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
There has been a significant increase in the incidence of multiple neurodegenerative and terminal diseases in the human population with life expectancy increasing in the current times. This highlights the urgent need for a more comprehensive understanding of how different aspects of lifestyle, in particular diet, may affect neural functioning and consequently cognitive performance as well as in enhancing overall health. Flavonoids, found in a variety of fruits, vegetables, and derived beverages, provide a new avenue of research that shows a promising influence on different aspects of brain function. However, despite the promising evidence, most bioactive compounds lack strong clinical research efficacy. In the current scoping review, we highlight the effects of Flavonoids on cognition and neural plasticity across vertebrates and invertebrates with special emphasis on the studies conducted in the pond snail, Lymnaea stagnalis, which has emerged to be a functionally dynamic model for studies on learning and memory. In conclusion, we suggest future research directions and discuss the social, cultural, and ethnic dependencies of bioactive compounds that influence how these compounds are used and accepted globally. Bridging the gap between preclinical and clinical studies about the effects of bioactive natural compounds on brain health will surely lead to lifestyle choices such as dietary Flavonoids being used complementarily rather than as replacements to classical drugs bringing about a healthier future.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anuradha Batabyal
- Department of Physical and Natural Sciences, FLAME University, India
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Rivi V, Batabyal A, Benatti C, Blom JM, Tascedda F, Lukowiak K. Novel taste, sickness, and memory: Lipopolysaccharide to induce a Garcia-like effect in inbred and wild strains of Lymnaea stagnalis. Physiol Behav 2023; 263:114137. [PMID: 36841323 DOI: 10.1016/j.physbeh.2023.114137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
Food is not only necessary for our survival but also elicits pleasure. However, when a novel food is followed sometime later by nausea or sickness animals form a long-lasting association to avoid that food. This phenomenon is called the 'Garcia effect'. We hypothesized that lipopolysaccharide (LPS) could be used as the sickness-inducing stimulus to produce a Garcia-like effect in inbred and wild populations of Lymnaea stagnalis. We first demonstrated that the injection of 25 μg (6.25 µg/mL) of Escherichia coli-derived LPS serotype O127:B8 did not by itself alter snails' feeding behavior. Then we showed that the presentation of a novel appetitive stimulus (i.e., carrot slurry) and LPS resulted in a taste-specific and long-lasting feeding suppression (i.e., the Garcia-like effect). We also found strain-specific variations in the duration of the long-term memory (LTM). That is, while the LTM for the Garcia-like effect in W-strain snails persisted for 24h, LTM persisted for 48h in freshly collected Margo snails and their F1 offspring. Finally, we demonstrated that the exposure to a non-steroidal anti-inflammatory drug, aspirin (acetylsalicylic acid) before the LPS injection prevented both the LPS-induced sickness state and the Garcia-like effect from occurring. The results of this study may pave the way for new research that aims at (1) uncovering the conserved molecular mechanisms underlying the Garcia-like effect, (2) understanding how cognitive traits vary within and between species, and (3) creating a holistic picture of the complex dialogue between the immune and central nervous systems.
Collapse
Affiliation(s)
- Veronica Rivi
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Anuradha Batabyal
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada; Department of Physical and Natural Sciences, FLAME University, India
| | - Cristina Benatti
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Johanna Mc Blom
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy; Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Tascedda
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy; CIB, Consorzio Interuniversitario Biotecnologie, Trieste, Italy
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
3
|
Rivi V, Batabyal A, Benatti C, Tascedda F, Blom JMC, Lukowiak K. A Novel Behavioral Display in Lymnaea Induced by Quercetin and Hypoxia. THE BIOLOGICAL BULLETIN 2023; 244:115-127. [PMID: 37725701 DOI: 10.1086/725689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
AbstractThe pond snail Lymnaea stagnalis employs aerial respiration under hypoxia and can be operantly conditioned to reduce this behavior. When applied individually, a heat shock (30 °C for 1 h) and the flavonoid quercetin enhance long-term memory formation for the operant conditioning of aerial respiration. However, when snails are exposed to quercetin before the heat shock, long-term memory is no longer enhanced. This is because quercetin prevents the heat-induced upregulation of heat-shock proteins 70 and 40. When we tested the memory outcome of operant conditioning due to the simultaneous exposure to quercetin and 30 °C, we found that Lymnaea entered a quiescent survival state. The same behavioral response occurred when snails were simultaneously exposed to quercetin and pond water made hypoxic by bubbling nitrogen through it. Thus, in this study, we performed six experiments to propose a physiological explanation for that curious behavioral response. Our results suggest that bubbling nitrogen in pond water, heating pond water to 30 °C, and bubbling nitrogen in 30 °C pond water create a hypoxic environment, to which organisms may respond by upregulating the heat-shock protein system. On the other hand, when snails experience quercetin together with these hypoxic conditions, they can no longer express the physiological stress response evoked by heat or hypoxia. Thus, the quiescent survival state could be an emergency response to survive the hypoxic condition when the heat-shock proteins cannot be activated.
Collapse
|
4
|
Rivi V, Benatti C, Rigillo G, Blom JMC. Invertebrates as models of learning and memory: investigating neural and molecular mechanisms. J Exp Biol 2023; 226:jeb244844. [PMID: 36719249 DOI: 10.1242/jeb.244844] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this Commentary, we shed light on the use of invertebrates as model organisms for understanding the causal and conserved mechanisms of learning and memory. We provide a condensed chronicle of the contribution offered by mollusks to the studies on how and where the nervous system encodes and stores memory and describe the rich cognitive capabilities of some insect species, including attention and concept learning. We also discuss the use of planarians for investigating the dynamics of memory during brain regeneration and highlight the role of stressful stimuli in forming memories. Furthermore, we focus on the increasing evidence that invertebrates display some forms of emotions, which provides new opportunities for unveiling the neural and molecular mechanisms underlying the complex interaction between stress, emotions and cognition. In doing so, we highlight experimental challenges and suggest future directions that we expect the field to take in the coming years, particularly regarding what we, as humans, need to know for preventing and/or delaying memory loss. This article has an associated ECR Spotlight interview with Veronica Rivi.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giovanna Rigillo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Joan M C Blom
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
5
|
Komatsuzaki Y, Lukowiak K. Epicatechin Alters the Activity of a Neuron Necessary for Long-Term Memory of Aerial Respiratory Behavior in Lymnaea stagnalis. Zoolog Sci 2022; 39. [DOI: 10.2108/zs220008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/16/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Yoshimasa Komatsuzaki
- College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo 101-8308, Japan
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| |
Collapse
|
6
|
Pfeiffer P, Barreda Tomás FJ, Wu J, Schleimer JH, Vida I, Schreiber S. A dynamic clamp protocol to artificially modify cell capacitance. eLife 2022; 11:75517. [PMID: 35362411 PMCID: PMC9135398 DOI: 10.7554/elife.75517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Dynamics of excitable cells and networks depend on the membrane time constant, set by membrane resistance and capacitance. Whereas pharmacological and genetic manipulations of ionic conductances of excitable membranes are routine in electrophysiology, experimental control over capacitance remains a challenge. Here, we present capacitance clamp, an approach that allows electrophysiologists to mimic a modified capacitance in biological neurons via an unconventional application of the dynamic clamp technique. We first demonstrate the feasibility to quantitatively modulate capacitance in a mathematical neuron model and then confirm the functionality of capacitance clamp in in vitro experiments in granule cells of rodent dentate gyrus with up to threefold virtual capacitance changes. Clamping of capacitance thus constitutes a novel technique to probe and decipher mechanisms of neuronal signaling in ways that were so far inaccessible to experimental electrophysiology.
Collapse
Affiliation(s)
- Paul Pfeiffer
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Jiameng Wu
- Institute for Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jan-Hendrik Schleimer
- Institute of Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Imre Vida
- Institute for Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne Schreiber
- Institute of Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
7
|
Activity-dependent compensation of cell size is vulnerable to targeted deletion of ion channels. Sci Rep 2020; 10:15989. [PMID: 32994529 PMCID: PMC7524806 DOI: 10.1038/s41598-020-72977-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/25/2020] [Indexed: 01/13/2023] Open
Abstract
In many species, excitable cells preserve their physiological properties despite significant variation in physical size across time and in a population. For example, neurons in crustacean central pattern generators generate similar firing patterns despite several-fold increases in size between juveniles and adults. This presents a biophysical problem because the electrical properties of cells are highly sensitive to membrane area and channel density. It is not known whether specific mechanisms exist to sense membrane area and adjust channel expression to keep a consistent channel density, or whether regulation mechanisms that sense activity alone are capable of compensating cell size. We show that destabilising effects of growth can be specifically compensated by feedback mechanism that senses average calcium influx and jointly regulate multiple conductances. However, we further show that this class of growth-compensating regulation schemes is necessarily sensitive to perturbations that alter the expression of subsets of ion channel types. Targeted perturbations of specific ion channels can trigger a pathological response of the regulation mechanism and a failure of homeostasis. Our findings suggest that physiological regulation mechanisms that confer robustness to growth may be specifically vulnerable to deletions or mutations that affect subsets of ion channels.
Collapse
|
8
|
Rothwell CM, Lukowiak K. Strain transformation: Enhancement of invertebrate memory in a new rearing environment. J Exp Biol 2019; 222:jeb.205112. [DOI: 10.1242/jeb.205112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/24/2019] [Indexed: 11/20/2022]
Abstract
Memory formation is influenced by a variety of factors, including the environmental conditions in which an organism is reared. Here, we studied the memory-forming ability of the lab-bred B-strain of Lymnaea following a change in their rearing environment from Brock University to the University of Calgary. We have previously demonstrated that this move enhances memory-forming ability and here we studied the magnitude of this phenotypic change. Once reared to adulthood at the University of Calgary, the B-strain animals were first tested to determine how many training sessions were required for the formation of long-term memory (LTM) to occur. Following this change in environment, the B-strain transformed into a ‘smart’ lab-bred strain requiring only a single 0.5 h session to form LTM. Next, we tested whether exposure to physiologically relevant stressors would block the formation of LTM in this ‘transformed’ B-strain, as this obstruction has previously been observed in ‘smart’ snails collected from the wild. Interestingly, neither stressor tested in this study perturbed memory formation in this ‘transformed’ lab-bred strain. Additionally, both the ‘smart’ memory phenotype, as well as the increased stress resiliency, were observed in the second generation of ‘transformed’ B-strain at both the juvenile and adult stages. This suggests that a change in rearing environment can contribute to the memory-forming ability of lab-bred Lymnaea.
Collapse
Affiliation(s)
- Cailin M. Rothwell
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| |
Collapse
|
9
|
Getz AM, Wijdenes P, Riaz S, Syed NI. Uncovering the Cellular and Molecular Mechanisms of Synapse Formation and Functional Specificity Using Central Neurons of Lymnaea stagnalis. ACS Chem Neurosci 2018. [PMID: 29528213 DOI: 10.1021/acschemneuro.7b00448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
All functions of the nervous system are contingent upon the precise organization of neuronal connections that are initially patterned during development, and then continually modified throughout life. Determining the mechanisms that specify the formation and functional modulation of synaptic circuitry are critical to advancing both our fundamental understanding of the nervous system as well as the various neurodevelopmental, neurological, neuropsychiatric, and neurodegenerative disorders that are met in clinical practice when these processes go awry. Defining the cellular and molecular mechanisms underlying nervous system development, function, and pathology has proven challenging, due mainly to the complexity of the vertebrate brain. Simple model system approaches with invertebrate preparations, on the other hand, have played pivotal roles in elucidating the fundamental mechanisms underlying the formation and plasticity of individual synapses, and the contributions of individual neurons and their synaptic connections that underlie a variety of behaviors, and learning and memory. In this Review, we discuss the experimental utility of the invertebrate mollusc Lymnaea stagnalis, with a particular emphasis on in vitro cell culture, semi-intact and in vivo preparations, which enable molecular and electrophysiological identification of the cellular and molecular mechanisms governing the formation, plasticity, and specificity of individual synapses at a single-neuron or single-synapse resolution.
Collapse
Affiliation(s)
- Angela M. Getz
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Pierre Wijdenes
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Saba Riaz
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Naweed I. Syed
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
10
|
Dong N, Feng ZP. Inverse Relationship between Basal Pacemaker Neuron Activity and Aversive Long-Term Memory Formation in Lymnaea stagnalis. Front Cell Neurosci 2017; 10:297. [PMID: 28101006 PMCID: PMC5209385 DOI: 10.3389/fncel.2016.00297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 12/15/2016] [Indexed: 11/18/2022] Open
Abstract
Learning and memory formation are essential physiological functions. While quiescent neurons have long been the focus of investigations into the mechanisms of memory formation, there is increasing evidence that spontaneously active neurons also play key roles in this process and possess distinct rules of activity-dependent plasticity. In this study, we used a well-defined aversive learning model of aerial respiration in the mollusk Lymnaea stagnalis (L. stagnalis) to study the role of basal firing activity of the respiratory pacemaker neuron Right Pedal Dorsal 1 (RPeD1) as a determinant of aversive long-term memory (LTM) formation. We investigated the relationship between basal aerial respiration behavior and RPeD1 firing activity, and examined aversive LTM formation and neuronal plasticity in animals exhibiting different basal aerial respiration behavior. We report that animals with higher basal aerial respiration behavior exhibited early responses to operant conditioning and better aversive LTM formation. Early behavioral response to the conditioning procedure was associated with biphasic enhancements in the membrane potential, spontaneous firing activity and gain of firing response, with an early phase spanning the first 2 h after conditioning and a late phase that is observed at 24 h. Taken together, we provide the first evidence suggesting that lower neuronal activity at the time of learning may be correlated with better memory formation in spontaneously active neurons. Our findings provide new insights into the diversity of cellular rules of plasticity underlying memory formation.
Collapse
Affiliation(s)
- Nancy Dong
- Department of Physiology, University of Toronto Toronto, ON, Canada
| | - Zhong-Ping Feng
- Department of Physiology, University of Toronto Toronto, ON, Canada
| |
Collapse
|
11
|
Lu TZ, Kostelecki W, Sun CLF, Dong N, Pérez Velázquez JL, Feng ZP. High sensitivity of spontaneous spike frequency to sodium leak current in a Lymnaea pacemaker neuron. Eur J Neurosci 2016; 44:3011-3022. [PMID: 27711993 DOI: 10.1111/ejn.13426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/25/2016] [Accepted: 09/30/2016] [Indexed: 11/28/2022]
Abstract
The spontaneous rhythmic firing of action potentials in pacemaker neurons depends on the biophysical properties of voltage-gated ion channels and background leak currents. The background leak current includes a large K+ and a small Na+ component. We previously reported that a Na+ -leak current via U-type channels is required to generate spontaneous action potential firing in the identified respiratory pacemaker neuron, RPeD1, in the freshwater pond snail Lymnaea stagnalis. We further investigated the functional significance of the background Na+ current in rhythmic spiking of RPeD1 neurons. Whole-cell patch-clamp recording and computational modeling approaches were carried out in isolated RPeD1 neurons. The whole-cell current of the major ion channel components in RPeD1 neurons were characterized, and a conductance-based computational model of the rhythmic pacemaker activity was simulated with the experimental measurements. We found that the spiking rate is more sensitive to changes in the Na+ leak current as compared to the K+ leak current, suggesting a robust function of Na+ leak current in regulating spontaneous neuronal firing activity. Our study provides new insight into our current understanding of the role of Na+ leak current in intrinsic properties of pacemaker neurons.
Collapse
Affiliation(s)
- T Z Lu
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - W Kostelecki
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - C L F Sun
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - N Dong
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - J L Pérez Velázquez
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Z-P Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
12
|
Forest J, Sunada H, Dodd S, Lukowiak K. Training Lymnaea in the presence of a predator scent results in a long-lasting ability to form enhanced long-term memory. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:399-409. [PMID: 27138222 DOI: 10.1007/s00359-016-1086-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 04/17/2016] [Accepted: 04/19/2016] [Indexed: 12/25/2022]
Abstract
Lymnaea exposed to crayfish effluent (CE) gain an enhanced ability to form long-term memory (LTM). We test the hypothesis that a single CE exposure and operant conditioning training leads to long lasting changes in the capability of snails to form LTM when tested in pond water four weeks later. We trained both juvenile and adult snails with a single 0.5 h training session in CE and show that LTM was present 24 h later. Snails trained in a similar manner in just pond water show no LTM. We then asked if such training in CE conferred enhanced memory forming capabilities on these snails four weeks later. That is, would LTM be formed in these snails four weeks later following a single 0.5 h training session in pond water? We found that both adult and juvenile snails previously trained in CE one month previously had enhanced LTM formation abilities. The injection of a DNA methylation blocker, 5-AZA, prior to training in adult snails blocked enhanced LTM formation four weeks later. Finally, this enhanced LTM forming ability was not passed on to the next generation of snails.
Collapse
Affiliation(s)
- Jeremy Forest
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,University Claude Bernard, Lyon, France
| | - Hiroshi Sunada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Shawn Dodd
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
13
|
Shymansky T, Protheroe A, Hughes E, Swinton C, Swinton E, Lukowiak KS, Phillips I, Lukowiak K. Juveniles of Lymnaea smart snails do not perseverate and have the capacity to form LTM. J Exp Biol 2016; 220:408-413. [DOI: 10.1242/jeb.147884] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/11/2016] [Indexed: 01/18/2023]
Abstract
Previously, it was concluded that the nervous systems of the juvenile snails were not capable of mediating LTM. However, exposure and training of those juvenile snails in the presence of a predator cue significantly altered their ability to learn and form LTM. In addition, there are some strains of Lymnaea which have been identified as ‘smart’. These snails form LTM significantly better than the lab-bred strain. Here we show that juveniles of two smart snail strains are not only capable of associative learning, but also have the capacity to form LTM following a single 0.5h training session. We also show that freshly collected ‘wild’ ‘average’ juveniles are also not able to form LTM. Thus, the smart snail phenotype in these strains is expressed in juveniles.
Collapse
Affiliation(s)
- Tamila Shymansky
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary AB T2N 4N1, Canada
| | - Amy Protheroe
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary AB T2N 4N1, Canada
| | - Emily Hughes
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary AB T2N 4N1, Canada
| | - Cayley Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary AB T2N 4N1, Canada
| | - Erin Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary AB T2N 4N1, Canada
| | - Kai S. Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary AB T2N 4N1, Canada
| | - Iain Phillips
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary AB T2N 4N1, Canada
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary AB T2N 4N1, Canada
| |
Collapse
|
14
|
Combining stressors that individually impede long-term memory blocks all memory processes. PLoS One 2013; 8:e79561. [PMID: 24223180 PMCID: PMC3819272 DOI: 10.1371/journal.pone.0079561] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 09/24/2013] [Indexed: 12/25/2022] Open
Abstract
The effects of stress on memory are typically assessed individually; however, in reality different stressors are often experienced simultaneously. Here we determined the effect that two environmentally relevant stressors, crowding and low calcium availability, have on memory and neural activity following operant conditioning of aerial respiration in the pond snail, Lymnaea stagnalis. We measured aerial breathing behaviour and activity of a neuron necessary for memory formation, right pedal dorsal 1 (RPeD1), in the central pattern generator (CPG) that drives aerial respiration in untrained animals, and assessed how these traits changed following training. In naïve animals both crowding and combined stressors significantly depressed burst activity in RPeD1 which correlated with a depression in aerial breathing behaviour, whereas low calcium availability had no effect on RPeD1 activity. Following training, changes in burst activity in RPeD1 correlated with behavioural changes, decreasing relative to their naïve state at 3 h and 24 h in control conditions when both intermediate-term memory (ITM: 3 h) and long-term memory (LTM: 24 h) are formed, at 3 h but not 24 h when exposed to individual stressors when only ITM is formed, and did not change in combined stressors (i.e. when no memory is formed). Additionally, we also found that Lymnaea formed short-term memory (STM: 10 min) in the presence of individual stressors or under control conditions, but failed to do so in the presence of combined stressors. Our data demonstrate that by combining stressors that individually block LTM only we can block all memory processes. Therefore the effects of two stressors with similar individual affects on memory phenotype may be additive when experienced in combination.
Collapse
|
15
|
Braun MH, Lukowiak K, Karnik V, Lukowiak K. Differences in neuronal activity explain differences in memory forming abilities of different populations of Lymnaea stagnalis. Neurobiol Learn Mem 2011; 97:173-82. [PMID: 22146779 DOI: 10.1016/j.nlm.2011.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 11/16/2011] [Accepted: 11/17/2011] [Indexed: 12/20/2022]
Abstract
The ability to learn and form long-term memory (LTM) can enhance an animal's fitness, for example, by allowing them to remember predators, food sources or conspecific interactions. Here we use the pond snail, Lymnaea stagnalis, to assess whether variability between natural populations (i.e., strains) in memory forming capabilities correlates with electrophysiological properties at the level of a single neuron, RPeD1. RPeD1 is a necessary site of LTM formation of aerial respiratory behaviour following operant conditioning. We used strains from two small, separate permanent ponds (TC1 and TC2). A comparison of the two populations showed that the TC1 strain had enhanced memory forming capabilities. Further, the behavioural phenotype of enhanced memory strain was explained, in part, by differences in the electrophysiology of RPeD1. Compared to RPeD1 from the naive TC2 strain, RPeD1 from the TC1 strain has both a decreased resistance and decreased excitability. Moreover, 24h after a single 0.5h training session, those membrane properties, as well as the firing and bursting rate, decrease further in the TC1 strain but not in the TC2 strain. The initial differences in RPeD1 properties in the TC1 strain coupled with their ability to further change these properties with a single training session suggests that RPeD1 neurons from the TC1 strain are "primed" to rapidly form memory.
Collapse
Affiliation(s)
- Marvin H Braun
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1.
| | | | | | | |
Collapse
|
16
|
Dalesman S, Karnik V, Lukowiak K. Sensory mediation of memory blocking stressors in the pond snail Lymnaea stagnalis. J Exp Biol 2011; 214:2528-33. [DOI: 10.1242/jeb.058024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
SUMMARY
The great pond snail, Lymnaea stagnalis, is commonly used as a model species to study how stress affects the ability to form long-term memory (LTM); however, we still have little information about how the snail senses stressful stimuli. The osphradium is an external sensory organ that demonstrates electrophysiological responses to a variety of external chemical stimuli. We examined the role, if any, played by the osphradium in sensing two environmental stressors, crowding and low environmental calcium, both known to block LTM in intact animals. We severed the osphradial nerve, blocking external sensory input from this organ to the central nervous system, and then exposed the snails to low environmental calcium or crowding stress to assess whether these stressors continued to block LTM formation. When exposed to low environmental calcium, snails with their osphradial nerve severed responded as if they were maintained in our standard calcium environment. That is, they did not respond to low calcium as a stressor blocking LTM; therefore, the osphradium plays a crucial role in mediating how snails respond to this stressor. However, following crowding, LTM formation was blocked in both control groups and snails that had the osphradial nerve severed, indicating that sensory information from the osphradium is not required to sense crowded conditions. Together these data show that two stressors that result in the same behavioural phenotype, blocking LTM formation, do so via two distinct sensory pathways.
Collapse
Affiliation(s)
- Sarah Dalesman
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Vikram Karnik
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
17
|
Braun MH, Lukowiak K. Intermediate and long-term memory are different at the neuronal level in Lymnaea stagnalis (L.). Neurobiol Learn Mem 2011; 96:403-16. [PMID: 21757019 DOI: 10.1016/j.nlm.2011.06.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 06/26/2011] [Accepted: 06/29/2011] [Indexed: 12/25/2022]
Abstract
Both intermediate-term memory (ITM) and long-term memory (LTM) require novel protein synthesis; however, LTM also requires gene transcription. This suggests that the behavioural output of the two processes may be produced differently at the neuronal level. The fresh-water snail, Lymnaea stagnalis, can be operantly conditioned to decrease its rate of aerial respiration and, depending on the training procedure, the memory can last 3h (ITM) or >24h (LTM). RPeD1, one of the 3 interneurons that form the respiratory central pattern generator (CPG) that drives aerial respiration, is necessary for memory formation. By comparing RPeD1's electrophysiological properties in naïve, 'ITM-trained', 'LTM-trained' and yoked control snails we discovered that while the behavioural phenotype of memory at 3 and 24h is identical, the situation at the neuronal level is different. When examined 3h after either the 'ITM' or 'LTM' training procedure RPeD1 activity is significantly depressed. That is, the firing rate, input resistance, excitability and the number of action potential bursts are all significantly decreased. In snails receiving the ITM-training, these changes return to normal 24h post-training. However, in snails receiving the 'LTM-training', measured RPeD1 properties (firing rate, excitability, membrane resistance, and the number of action potential bursts fired) are significantly different at 24h than they were at 3h. Additionally, 24h following LTM training RPeD1 appears to be functionally "uncoupled" from its control of the pneumostome as the link between RPeD1 excitation and pneumostome opening is weakened. These data suggest that the behavioural changes occurring during LTM are due to more widespread neuronal reorganization than similar behavioural changes occurring during ITM. Thus ITM and LTM are not just distinct in a chronological and transcriptional manner but are also distinct at the level of neuronal properties.
Collapse
Affiliation(s)
- Marvin H Braun
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.
| | | |
Collapse
|
18
|
Martina M, Luk C, Py C, Martinez D, Comas T, Monette R, Denhoff M, Syed N, Mealing GAR. Recordings of cultured neurons and synaptic activity using patch-clamp chips. J Neural Eng 2011; 8:034002. [PMID: 21540486 DOI: 10.1088/1741-2560/8/3/034002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Planar patch-clamp chip technology has been developed to enhance the assessment of novel compounds for therapeutic efficacy and safety. However, this technology has been limited to recording ion channels expressed in isolated suspended cells, making the study of ion channel function in synaptic transmission impractical. Recently, we developed single- and dual-recording site planar patch-clamp chips and demonstrated their capacity to record ion channel activity from neurons established in culture. Such capacity provides the opportunity to record from synaptically connected neurons cultured on-chip. In this study we reconstructed, on-chip, a simple synaptic circuit between cultured pre-synaptic visceral dorsal 4 neurons and post-synaptic left pedal dorsal 1 neurons isolated from the mollusk Lymnaea stagnalis. Here we report the first planar patch-clamp chip recordings of synaptic phenomena from these paired neurons and pharmacologically demonstrate the cholinergic nature of this synapse. We also report simultaneous dual-site recordings from paired neurons, and demonstrate dedicated cytoplasmic perfusion of individual neurons via on-chip subterranean microfluidics. This is the first application of planar patch-clamp technology to examine synaptic communication.
Collapse
Affiliation(s)
- Marzia Martina
- Institute for Biological Sciences, National Research Council of Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dalesman S, Braun MH, Lukowiak K. Low environmental calcium blocks long-term memory formation in a freshwater pulmonate snail. Neurobiol Learn Mem 2010; 95:393-403. [PMID: 21130174 DOI: 10.1016/j.nlm.2010.11.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 11/17/2010] [Accepted: 11/28/2010] [Indexed: 01/24/2023]
Abstract
The freshwater snail Lymnaea stagnalis (L.) is considered a calciphile and exhibits reduced growth and survival in environments containing less than 20 mg/l environmental calcium. Although it has no apparent effect on survival at 20 mg/l, reducing environmental calcium increases metabolic demand, and as such we consider that this level of calcium acts as a stressor on the snail. We exposed snails to acute periods of low environmental calcium and tested their ability to form intermediate-term memory (ITM) and long-term memory (LTM) following one trial operant conditioning (1TT) to reduce aerial respiratory activity in hypoxic conditions. We also assessed whether there were changes in the electrophysiological properties of a single neuron, right pedal dorsal 1 (RPeD1), which has been demonstrated to be necessary for LTM formation. Following training in high (80 mg/l) environmental calcium, L. stagnalis formed ITM and LTM lasting 24 h and demonstrated a significant reduction in all activity measured from RPeD1; however when snails were exposed to low (20 mg/l) environmental calcium they were able to form ITM but not LTM. Although no behavioral LTM was formed, a partial reduction in RPeD1 activtiy measured 24 h after training was observed, indicating a residual effect of training. The strong effect that environmental calcium concentration had on physiology and behavior in response to training to reduce aerial respiration in L. stagnalis suggests that it is an element of gastropod husbandry that needs to be carefully considered when studying other traits. This study also indicates that L. stagnalis found naturally in low calcium environments may be less able to adapt to novel stressors than populations found in harder waters.
Collapse
Affiliation(s)
- Sarah Dalesman
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N4N1, Canada.
| | | | | |
Collapse
|
20
|
Sunada H, Horikoshi T, Lukowiak K, Sakakibara M. Increase in excitability of RPeD11 results in memory enhancement of juvenile and adult Lymnaea stagnalis by predator-induced stress. Neurobiol Learn Mem 2010; 94:269-77. [PMID: 20601028 DOI: 10.1016/j.nlm.2010.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 06/05/2010] [Accepted: 06/17/2010] [Indexed: 12/13/2022]
Abstract
Memory consolidation following learning is a dynamic process. Thus, long-term memory (LTM) formation can be modulated by many factors, including stress. We examined how predator-induced stress enhances LTM formation in the pond snail Lymnaea stagnalis at both the behavioral and electrophysiological levels. Training snails in crayfish effluent (CE; i.e., water from an aquarium containing crayfish) significantly enhanced LTM. That is, while memory persists for only 3h in adult control experiments following a single 0.5-h training session in pond water in which the pneumostome receives a contingent tactile stimulus to the pneumostome; when the snails are trained in CE, the memory persists for at least 24h. In juveniles, the data are more dramatic. Juveniles are unable to form LTM in pond water, but form LTM when trained in CE. Here we examined whether juvenile snails form LTM following a one-trial training procedure (1TT). Following the 1TT procedure (a single-trial aversive operant conditioning training procedure), juveniles do not form LTM, unless trained in CE. Concomitantly, we observe changes in the excitability of RPeD11, a key neuron mediating the whole snail withdrawal response, which may be a neural correlate of enhanced memory formation.
Collapse
Affiliation(s)
- Hiroshi Sunada
- Graduate School of Bioscience, Tokai University, Numazu 410-0321, Japan
| | | | | | | |
Collapse
|
21
|
Orr MV, Hittel K, Lukowiak K. Predator detection enables juvenile Lymnaea to form long-term memory. ACTA ACUST UNITED AC 2010; 213:301-7. [PMID: 20038665 DOI: 10.1242/jeb.032110] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Learning and memory provide the flexibility an organism requires to respond to changing social and ecological conditions. Juvenile Lymnaea have previously been shown to have a diminished capacity to form long-term memory (LTM) following operant conditioning of aerial respiratory behavior. Juvenile Lymnaea, however, can form LTM following classical conditioning of appetitive behaviors. Here, we demonstrate that laboratory-reared juvenile Lymnaea have the ability to detect the presence of a sympatric predator (i.e. crayfish) and respond to the predator by altering their aerial respiratory behavior. In addition to increasing their total breathing time, predator detection confers on juvenile Lymnaea an enhanced capability to form LTM following operant conditioning of aerial respiratory behavior. That is, these juveniles now have the ability to form long-lasting memory. These data support the hypothesis that biologically relevant levels of stress associated with predator detection induce behavioral phenotypic alterations (i.e. enhanced LTM formation) in juveniles, which may increase their fitness. These data also support the notion that learning and memory formation in conjunction with predator detection is a form of inducible defense.
Collapse
Affiliation(s)
- M V Orr
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada, T2N 4N1
| | | | | |
Collapse
|
22
|
Orr M, Hittel K, Lukowiak KS, Han J, Lukowiak K. Differences in LTM-forming capability between geographically different strains of Alberta Lymnaea stagnalis are maintained whether they are trained in the lab or in the wild. ACTA ACUST UNITED AC 2010; 212:3911-8. [PMID: 19915134 DOI: 10.1242/jeb.024281] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We found strain differences in the ability of wild Alberta Lymnaea stagnalis to form long-term memory (LTM) following operant conditioning when L. stagnalis were collected from the wild and trained in the laboratory. Lymnaea stagnalis obtained from the Belly River watershed had an enhanced ability to form LTM compared with those from an isolated pond (referred to as Jackson snails). We therefore asked whether the differences in cognitive ability were an epiphenomenon as a result of training in the laboratory. To answer this question we trained each specific strain (Belly and Jackson) in both the laboratory and the field (i.e. in their home pond and in the pond where the other strain resided - referred to as the visitor pond). We found that within each strain there was no difference in the LTM phenotype whether they were trained in the lab or in either their home or visitor pond. That is, the strain differences in the ability to form LTM were still present. Interestingly, we found no strain differences in the ability to learn or the ability to form intermediate-term memory (ITM).
Collapse
Affiliation(s)
- M Orr
- Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, 3330 Hospital Drive North West, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
23
|
Orr MV, Hittel K, Lukowiak K. 'Different strokes for different folks': geographically isolated strains of Lymnaea stagnalis only respond to sympatric predators and have different memory forming capabilities. ACTA ACUST UNITED AC 2009; 212:2237-47. [PMID: 19561213 DOI: 10.1242/jeb.031575] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gaining insight into how natural trait variation is manifest in populations shaped by differential environmental factors is crucial to understanding the evolution, ecology and sensory biology of natural populations. We have demonstrated that lab-reared Lymnaea detect and respond to the scent of a crayfish predator with specific, appropriate anti-predator behavioral responses, including enhanced long-term memory (LTM) formation, and that such predator detection significantly alters the electrophysiological activity of RPeD1, a neuron that is a necessary site for LTM formation. Here we ask: (1) do distinct populations of wild Lymnaea stagnalis respond only to sympatric predators and if so, can these traits be quantified at both the behavioral and neurophysiological levels, and (2) does the presence of a non-sympatric predator elicit anti-predator behaviors including augmentation of LTM? We tested three different populations of wild (i.e. not lab-reared) snails freshly collected from their natural habitat: (1) polders near Utrecht in The Netherlands, (2) six seasonally isolated ponds in the Belly River drainage in southern Alberta, Canada and (3) a 20-year-old human-made dugout pond in southern Alberta. We found strain-specific variations in the ability to form LTM and that only a sympatric predator evoked anti-predatory behaviors, including enhanced LTM formation and changes in RPeD1 activity.
Collapse
Affiliation(s)
- Michael V Orr
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | |
Collapse
|
24
|
Moccia F, Di Cristo C, Winlow W, Di Cosmo A. GABA(A)- and AMPA-like receptors modulate the activity of an identified neuron within the central pattern generator of the pond snail Lymnaea stagnalis. INVERTEBRATE NEUROSCIENCE 2009; 9:29-41. [PMID: 19214610 DOI: 10.1007/s10158-009-0086-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 01/06/2009] [Indexed: 11/28/2022]
Abstract
To examine the neurochemistry underlying the firing of the RPeD1 neuron in the respiratory central pattern generator of the pond snail, Lymnaea stagnalis, we examined electrophysiologically and pharmacologically either "active" or "silent" preparations by intracellular recording and pharmacology. GABA inhibited electrical firing by hyperpolarizing RPeD1, while picrotoxin, an antagonist of GABA(A) receptors, excited silent cells and reversed GABA-induced inhibition. Action potential activity was terminated by 1 mM glutamate (Glu) while silent cells were depolarized by the GluR agonists, AMPA, and NMDA. Kainate exerted a complex triphasic effect on membrane potential. However, only bath application of AMPA desensitized the firing. These data indicate that GABA inhibits RPeD1 via activation of GABA(A) receptors, while Glu stimulates the neuron by activating AMPA-sensitive GluRs.
Collapse
Affiliation(s)
- Francesco Moccia
- Department of Structural and Functional Biology, University of Naples "Federico II" Complesso Universitario, Monte S. Angelo, viale Cinthia, 80126 Naples, Italy
| | | | | | | |
Collapse
|
25
|
Lukowiak K, Martens K, Rosenegger D, Browning K, de Caigny P, Orr M. The perception of stress alters adaptive behaviours in Lymnaea stagnalis. ACTA ACUST UNITED AC 2008; 211:1747-56. [PMID: 18490390 DOI: 10.1242/jeb.014886] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Stress can alter adaptive behaviours, and as well either enhance or diminish learning, memory formation and/or memory recall. We show here that two different stressors have the ability to alter such behaviours in our model system, Lymnaea stagnalis. One, a naturally occurring stressor - the scent of a predator (crayfish) - and the other an artificially controlled one - 25 mmol l(-1) KCl - significantly alter adaptive behaviours. Both the KCl stressor and predator detection enhance long-term memory (LTM) formation; additionally predator detection alters vigilance behaviours. The predator-induced changes in behaviour are also accompanied by specific and significant alterations in the electrophysiological properties of RPeD1 - a key neuron in mediating both vigilance behaviours and memory formation. Naive lab-bred snails exposed to crayfish effluent (CE; i.e. the scent of the predator) prior to recording from RPeD1 demonstrated both a significantly reduced spontaneous firing rate and fewer bouts of bursting activity compared with non-exposed snails. Importantly, in the CE experiments we used laboratory-reared snails that have not been exposed to a naturally occurring predator for over 250 generations. These data open a new avenue of research, which may allow a direct investigation from the behavioral to the neuronal level as to how relevant stressful stimuli alter adaptive behaviours, including memory formation and recall.
Collapse
Affiliation(s)
- Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|
26
|
Orr MV, Hittel K, Lukowiak K. Comparing memory-forming capabilities between laboratory-reared and wildLymnaea: learning in the wild, a heritable component of snail memory. J Exp Biol 2008; 211:2807-16. [DOI: 10.1242/jeb.020172] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
SUMMARYWe set out to determine whether the ability to form long-term memory (LTM)is influenced by laboratory rearing. We investigated the ability of four populations of Lymnaea stagnalis to form LTM following operant conditioning both in the freely behaving animal and at the electrophysiological level in a neuron, RPeD1, which is a necessary site for LTM. We hypothesized that laboratory rearing results in a decreased ability to form LTM because rearing does not occur in an `enriched environment'. Of the four populations examined, two were collected in the wild and two were reared in the laboratory – specifically, (1) wild Dutch snails; (2) their laboratory-reared offspring; (3) wild Southern Alberta snails (Belly); and (4)their laboratory-reared offspring. We found that Belly snails had an enhanced capability of forming LTM compared with Dutch laboratory-reared snails. That is, the Belly snails, which are much darker in colour than laboratory-reared snails (i.e. blonds), were `smarter'. However, when we tested the offspring of Belly snails reared in the laboratory we found that these snails still had the enhanced ability to form LTM, even though they were now just as `blond' as their laboratory-reared Dutch cousins. Finally, we collected wild Dutch snails, which are also dark, and found that their ability to form LTM was not different to that of their laboratory-reared offspring. Thus, our hypothesis was not proved. Rather, we now hypothesize that there are strain differences between the Belly and Dutch snails, irrespective of whether they are reared in the wild or in the laboratory.
Collapse
Affiliation(s)
- Michael V. Orr
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary,Calgary, Alberta, Canada, T2N 4N1
| | - Karla Hittel
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary,Calgary, Alberta, Canada, T2N 4N1
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary,Calgary, Alberta, Canada, T2N 4N1
| |
Collapse
|
27
|
Electrophysiological and behavioral evidence demonstrating that predator detection alters adaptive behaviors in the snail Lymnaea. J Neurosci 2008; 28:2726-34. [PMID: 18337402 DOI: 10.1523/jneurosci.5132-07.2008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Stress has been shown to both impair and enhance learning, long-term memory (LTM) formation, and/or its recall. The pond snail, Lymnaea stagnalis, both detects and responds to the scent of a crayfish predator with multiple stress-related behavioral responses. Using both behavioral and electrophysiological evidence, this investigation is a first attempt to characterize how an environmentally relevant stressor (scent of a predator) enhances LTM formation in Lymnaea. Using a training procedure that, in "standard" pond water (PW), results in an intermediate-term memory that persists for only 3 h, we found that training snails in "crayfish effluent" (CE) induces a memory that persists for 48 h (i.e., its now an LTM). In addition, if we use a training procedure that in PW produces an LTM that persists for 1 d, we find that snails trained in CE have an LTM that persists for at least 8 d. Furthermore, we describe how a single neuron (RPeD1), which has been shown to be a necessary site for LTM formation, reflects the behavioral changes in its firing properties that persist for the duration of the LTM. Finally, Lymnaea exhibit context-specific memory, that is, when a memory is formed in a specific context (food odorant), it is only recalled in that context. Here, we found that snails trained in CE demonstrate context generalization, that is, memory is recalled in multiple contexts. All data are consistent with the hypothesis that learning in a stressful, yet biologically relevant, environment enhances LTM and prolongs its retention.
Collapse
|
28
|
Orr MV, El-Bekai M, Lui M, Watson K, Lukowiak K. Predator detection in Lymnaea stagnalis. ACTA ACUST UNITED AC 2008; 210:4150-8. [PMID: 18025014 DOI: 10.1242/jeb.010173] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Laboratory-reared Lymnaea are capable of detecting and responding to the scent of a crayfish predator. The present investigation is a first attempt to characterize multiple stress-related behavioural responses resulting from predator detection and to depict the neurophysiological correlates of one of these illustrated behaviours. Snails respond to crayfish effluent (CE) by increasing the following behaviours: aerial respiration, exploratory/searching phase and sensitivity to the shadow-elicited full-body withdrawal response. In contrast, when snails detect CE they decrease both their righting response time when dislodged from the substratum and their basal cutaneous oxygen consumption. Interestingly, basal heart rate does not change in response to CE exposure. Finally, we directly measured the activity of the neuron that initiates aerial respiratory behaviour, RPeD1, in semi-intact preparations. Naïve snails exposed to CE prior to recording demonstrated both a significantly reduced spontaneous firing rate and fewer bouts of bursting activity compared with non-exposed snails. These data show that laboratory-reared Lymnaea that have never experienced a natural predator are still capable of detecting and responding to the presence of a historically sympatric predator. These data open a new avenue of research, which may allow a direct investigation from the behavioural to the neuronal level as to how an ecologically relevant stressful stimulus alters behaviour.
Collapse
Affiliation(s)
- Michael V Orr
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada, T2N 4N1
| | | | | | | | | |
Collapse
|
29
|
Lowe MR, Spencer GE. Perturbation of the activity of a single identified neuron affects long-term memory formation in a molluscan semi-intact preparation. J Exp Biol 2006; 209:711-21. [PMID: 16449565 DOI: 10.1242/jeb.02047] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe aim of this study was to investigate the neural basis of operant conditioning in a semi-intact preparation of the pond snail, Lymnaea stagnalis. Lymnaea learns, via operant conditioning, to reduce its aerial respiratory behaviour in response to an aversive tactile stimulus to its open pneumostome. Here we report the successful conditioning of naïve semi-intact preparations to show `learning in the dish' and long-term memory that persists for at least 18 h. The neurons that generate this behaviour are readily identifiable and, for the first time, we have recorded from a neuron during a training paradigm that leads to long-term memory formation in the same preparation. Specifically, we recorded from the respiratory neuron Right Pedal Dorsal 1 (RPeD1), which is part of the respiratory central pattern generator and initiates the aerial respiratory behaviour. Previous studies have shown that long-term memory of this behaviour results in reduced RPeD1 activity. In the present study, we demonstrate that preventing RPeD1 impulse activity between training sessions reduces the number of sessions needed to produce long-term memory in our semi-intact preparation.
Collapse
Affiliation(s)
- M R Lowe
- Department of Biological Sciences, Brock University, Ontario, Canada, L2S 3A1
| | | |
Collapse
|
30
|
McComb C, Rosenegger D, Varshney N, Kwok HY, Lukowiak K. Operant conditioning of an in vitro CNS-pneumostome preparation of Lymnaea. Neurobiol Learn Mem 2005; 84:9-24. [PMID: 15936679 DOI: 10.1016/j.nlm.2005.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 02/11/2005] [Accepted: 02/15/2005] [Indexed: 10/25/2022]
Abstract
Operant conditioning of aerial respiratory behaviour and its consolidation into long-term memory in Lymnaea has been previously studied in both intact, freely moving snails and in in vitro preparations made from previously trained snails. Here, we show in previously untrained semi-intact in vitro Lymnaea preparations that aerial respiratory behaviour can also be operantly conditioned. Neither yoked control nor 'run-down' control procedures in these in vitro preparations result in an alteration of aerial respiratory behaviour. Memory in the operantly trained semi-intact preparations persists for at least 1h after training. Intracellular recordings made from RPeD1, one of the 3-CPG neurons and the neuron that initiates CPG activity; show that there are specific changes in central excitatory input to this neuron concurrent with learning and its consolidation into memory. In addition following the acquisition of learning and its consolidation into memory the ability of RPeD1 and VI/J neurons when depolarized to cause a pneumostome opening is significantly decreased. Thus, previously untrained in vitro semi-intact preparations can be used to study changes in neuronal activity in a neuron known to be both necessary for the behaviour and for memory formation.
Collapse
Affiliation(s)
- Chloe McComb
- Department of Physiology and Biophysics, Neuroscience Research Group, University of Calgary, 3330 Hospital Drive NW, Calgary, Alta., Canada T2N 4N1
| | | | | | | | | |
Collapse
|
31
|
Sakakibara M, Okuda F, Nomura K, Watanabe K, Meng H, Horikoshi T, Lukowiak K. Potassium currents in isolated statocyst neurons and RPeD1 in the pond snail, Lymnaea stagnalis. J Neurophysiol 2005; 94:3884-92. [PMID: 16093326 DOI: 10.1152/jn.01163.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To begin to determine the underlying neural mechanisms of memory formation, we studied two different cell types that play important roles in different forms of associative learning in Lymnaea. Statocyst neurons (hair cells) mediate classical conditioning, whereas RPeD1 is a site of memory formation induced by operant conditioning of aerial respiration. Because potassium (K(+)) channels play a critical role in neuronal excitability, we initiated studies on these channels in the aforementioned neurons. Three distinct K(+) currents are expressed in the soma of both the hair cells and RPeD1. In hair cells and RPeD1, there is a fast activating and rapidly inactivating 4-aminopyridine (4-AP)-sensitive A current (I(A)), a tetraethyl ammonium (TEA)-sensitive delayed rectifying current, which exhibits slow inactivation kinetics (I(KV)), and a TEA- and 4-AP-insensitive Ca(2+)-dependent current (I(Ca-K)). In hair cells, the activation voltage of I(A); its half-maximal steady-state activation voltage and its half-maximal steady-state inactivation were at more depolarized levels than in RPeD1. The time constant of recovery from I(A) inactivation was slightly faster in hair cells. I(A) in hair cells is also smaller in amplitude than in RPeD1 and is activated at more depolarized potentials. In like manner, I(KV) is smaller in hair cells and is activated at more depolarized potentials than in RPeD1.
Collapse
Affiliation(s)
- Manabu Sakakibara
- Laboratory of Neurobiological Engineering, Department of Biological Science and Technology, School of High-Technology for Human Welfare, Tokai University, Numazu, Shizuoka, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
McComb C, Varshney N, Lukowiak K. Juvenile Lymnaea ventilate, learn and remember differently than do adult Lymnaea. ACTA ACUST UNITED AC 2005; 208:1459-67. [PMID: 15802670 DOI: 10.1242/jeb.01544] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adult snails are capable of learning associatively not to perform aerial respiration and then to consolidate the acquired behaviour into long-term memory (LTM). Juvenile Lymnaea, however, perform aerial respiration significantly less often and the three-neuron circuit that drives this behaviour operates significantly differently than in it does in adults. We asked whether these ontogenic behavioural and neurophysiological differences are manifested as an altered ability of juveniles to learn and/or form LTM. We found that juvenile snails learn significantly less well than adults and are, as a group, incapable of forming LTM. To control for the possibility that the poor learning and inability to form memory were the result of juvenile's receiving on average fewer reinforcing stimuli because they perform aerial respiration less often than adults we subjected juveniles to an enforced period of hypoxia to "motivate" juveniles. Motivated juveniles perform aerial respiration as often as adults; yet these "motivated" juveniles continue to be poor learners and still cannot form LTM. Additionally, a small percentage of juveniles perform aerial respiration as often as adults (i.e. high responders). When these "high-responders" were trained they still exhibited poorer learning ability compared with adults and could not form LTM. We conclude that juvenile snails have a more difficult time learning and remembering to suppress aerial respiratory activity than do adults.
Collapse
Affiliation(s)
- Chloe McComb
- Calgary Brain Institute, Department of Physiology and Biophysics, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | | | | |
Collapse
|
33
|
Rosenegger D, Roth S, Lukowiak K. Learning and memory inLymnaeaare negatively altered by acute low-level concentrations of hydrogen sulphide. J Exp Biol 2004; 207:2621-30. [PMID: 15201294 DOI: 10.1242/jeb.01073] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYHydrogen sulphide (H2S) is a common industrial pollutant as well as an endogenous neural transmitter/neural modulator. Experiments were performed on the pond snail Lymnaea stagnalis to determine the acute effects of low-level exposure to H2S (50–100 μmol l–1) on aerial respiratory behaviour, associative learning,and its subsequent consolidation into long-term memory (LTM). A 3-neuron network whose sufficiency and necessity have been demonstrated drives aerial respiratory behaviour in Lymnaea. In the presence of 100 μmol l–1 H2S the number of bouts of aerial respiration and the total breathing time were significantly increased compared to the control hypoxic situation, but were equivalent to those observed in snails that had been subjected to a `more intense hypoxic challenge'. In addition, at a concentration of 100 μmol l–1 H2S neither associative learning nor long-term memory (LTM) were observed. However, snails subjected to a `more intense hypoxic challenge' still had the capacity to learn and form LTM. These snails, in fact, showed statistically the best learning and memory performance of any group. While learning and memory were observed at 50 and 75 μmol l–1 H2S,respectively, they were statistically poorer than the learning and memory exhibited by snails in the standard hypoxia condition. Hence the ability to learn and form memory was compromised by H2S. Thus an invertebrate model system with a well-defined neural network can be used to study of the effects of H2S on the processes of learning and memory.
Collapse
Affiliation(s)
- David Rosenegger
- Calgary Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | | | | |
Collapse
|
34
|
Sangha S, Varshney N, Fras M, Smyth K, Rosenegger D, Parvez K, Sadamoto H, Lukowiak K. Memory, Reconsolidation and Extinction in Lymnaea Require the Soma of RPeD1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 551:311-8. [PMID: 15602981 DOI: 10.1007/0-387-27023-x_47] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The central pattern generator (CPG) that drives aerial respiratory behaviour in Lymnaea consists of 3 neurons. One of these, RPeD1--the cell that initiates activity in the circuit, plays an absolutely necessary role as a site for memory formation, memory reconsolidation, and extinction. Using an operant conditioning training procedure that results in a long-term non-declarative memory (LTM), we decrease the occurrence of aerial respiratory behaviour. Since snails can still breathe cutaneously learning this procedure is not harmful. Concomitant with behavioural memory are changes in the spiking activity of RPeD1. Going beyond neural correlates of memory we directly show that RPeD1 is a necessary site for LTM formation. Expanding on this finding we show that this neuron is also a necessary site for memory reconsolidation and 'Pavlovian' extinction. As far as we can determine, this is the first time a single neuron has been shown to be a necessary site for these different aspects memory. RPeD1 is thus a key neuron mediating different hierarchical aspects of memory. We are now in a position to determine the necessary neuronal, molecular and proteomic events in this neuron that are causal to memory formation, reconsolidation and extinction.
Collapse
Affiliation(s)
- Susan Sangha
- Department of Physiology & Biophysics, Calgary Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | | | | | |
Collapse
|