1
|
Warburton M, Campagnoli C, Mon-Williams M, Mushtaq F, Morehead JR. Input device matters for measures of behaviour in online experiments. PSYCHOLOGICAL RESEARCH 2024; 89:29. [PMID: 39607544 PMCID: PMC11604694 DOI: 10.1007/s00426-024-02065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Studies of perception, cognition, and action increasingly rely on measures derived from the movements of a cursor to investigate how psychological processes unfold over time. This method is one of the most sensitive measures available for remote experiments conducted online, but experimenters have little control over the input device used by participants, typically a mouse or trackpad. These two devices require biomechanically distinct movements to operate, so measures extracted from cursor tracking data may differ between input devices. We investigated this in two online experiments requiring participants to execute goal-directed movements. We identify several measures that are critically influenced by the choice of input device using a kinematic decomposition of the recorded cursor trajectories. Those using a trackpad were slower to acquire targets, mainly attributable to greater times required to initiate movements and click on targets, despite showing greater peak speeds and lower variability in their movements. We believe there is a substantial risk that behavioural disparities caused by the input device used could be misidentified as differences in psychological processes. We urge researchers to collect data on input devices in online experiments and carefully consider and account for the effect they may have on their experimental data.
Collapse
Affiliation(s)
| | | | - Mark Mon-Williams
- School of Psychology, University of Leeds, Leeds, UK
- Bradford Institute for Health Research, Bradford Hospitals National Health Service Trust, Bradford, UK
- National Centre for Optics, Vision and Eye Care, University of South-Eastern Norway, Kongsberg, Norway
- NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - Faisal Mushtaq
- School of Psychology, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds, UK
- Centre for Immersive Technologies, University of Leeds, Leeds, UK
| | - J Ryan Morehead
- School of Psychology, University of Leeds, Leeds, UK
- Centre for Immersive Technologies, University of Leeds, Leeds, UK
| |
Collapse
|
2
|
Tsay JS, Kim HE, McDougle SD, Taylor JA, Haith A, Avraham G, Krakauer JW, Collins AGE, Ivry RB. Fundamental processes in sensorimotor learning: Reasoning, refinement, and retrieval. eLife 2024; 13:e91839. [PMID: 39087986 PMCID: PMC11293869 DOI: 10.7554/elife.91839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Motor learning is often viewed as a unitary process that operates outside of conscious awareness. This perspective has led to the development of sophisticated models designed to elucidate the mechanisms of implicit sensorimotor learning. In this review, we argue for a broader perspective, emphasizing the contribution of explicit strategies to sensorimotor learning tasks. Furthermore, we propose a theoretical framework for motor learning that consists of three fundamental processes: reasoning, the process of understanding action-outcome relationships; refinement, the process of optimizing sensorimotor and cognitive parameters to achieve motor goals; and retrieval, the process of inferring the context and recalling a control policy. We anticipate that this '3R' framework for understanding how complex movements are learned will open exciting avenues for future research at the intersection between cognition and action.
Collapse
Affiliation(s)
- Jonathan S Tsay
- Department of Psychology, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburgUnited States
| | - Hyosub E Kim
- School of Kinesiology, University of British ColumbiaVancouverCanada
| | | | - Jordan A Taylor
- Department of Psychology, Princeton UniversityPrincetonUnited States
| | - Adrian Haith
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
| | - Guy Avraham
- Department of Psychology, University of California BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California BerkeleyBerkeleyUnited States
| | - John W Krakauer
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
- Santa Fe InstituteSanta FeUnited States
| | - Anne GE Collins
- Department of Psychology, University of California BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California BerkeleyBerkeleyUnited States
| | - Richard B Ivry
- Department of Psychology, University of California BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California BerkeleyBerkeleyUnited States
| |
Collapse
|
3
|
Zhang S, Wilmut K, Zhang K, Wang S. Age-related changes in motor planning for prior intentions: a mouse tracking reach-to-click task. Front Psychol 2024; 15:1323798. [PMID: 38562237 PMCID: PMC10983849 DOI: 10.3389/fpsyg.2024.1323798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
When we complete sequential movements with different intentions, we plan our movements and adjust ahead. Such a phenomenon is called anticipatory planning for prior intentions and is known to decline with age. In daily life activities, we often need to consider and plan for multiple demands in one movement sequence. However, previous studies only considered one dimension of prior intentions, either different types of onward actions or different precisions of fit or placement. Therefore, in this study, we investigated anticipatory planning for both extrinsic (movement direction) and intrinsic (fit precision) target-related properties in a computer-based movement task and analyzed the computer cursor movement kinematics of both young and older adults. We found that older people consider and adjust for different properties step-by-step, with movement direction being considered as a prior intention during reach movement and fit precision as a motor constraint during drop movement. The age-related changes in the completion of onward actions are constrained by one's general cognitive ability, sensorimotor performance and effective motor planning for prior intentions. Age-related decline in motor planning can manifest as counterproductive movement profiles, resulting in suboptimal performance of intended actions.
Collapse
Affiliation(s)
- Shujing Zhang
- Global Health Research Center, Duke Kunshan University, Kunshan, China
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, China
| | - Kate Wilmut
- Department of Psychology, Health and Professional Development, Oxford Brookes University, Oxford, United Kingdom
| | - Kaiyu Zhang
- Department of Geriatrics, The First People's Hospital of Kunshan, Kunshan, China
| | - Shan Wang
- Global Health Research Center, Duke Kunshan University, Kunshan, China
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, China
- Department of Psychology, Health and Professional Development, Oxford Brookes University, Oxford, United Kingdom
- Department of Psychology, University of Bath, Bath, United Kingdom
| |
Collapse
|
4
|
Vouras I, Chatzinikolaou K, Sotirakis C, Metaxas T, Hatzitaki V. Goalkeepers' plasticity during learning of a whole-body visuomotor rotation in a stable or variable environment. Eur J Sport Sci 2023; 23:2148-2156. [PMID: 37150600 DOI: 10.1080/17461391.2023.2212292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Postural adjustments performed in anticipation of uncertain visual events is a common sensorimotor control problem in open sport skills. In this study, we examined how expert soccer goalkeepers and non-athletes learn a whole body visuomotor rotation during postural tracking of constant and variable visual target motions. Twenty-one (21) soccer goalkeepers (18 ± 15 years, 75 ± 12 kg) and 25 age-matched non-athletes (18 ± 12 years, 75 ± 15 kg) practiced lateral weight shifting on a dual force platform while tracking the motion of a constant (11 goalkeepers and 12 non-athletes) or a variable (10 goalkeepers and 13 non-athletes) visual target with provision of online visual feedback (VF). After 40s of tracking (baseline), the visual presentation of the VF signal reversed direction relative to the participant's motion (180° visuo-motor rotation) for 60s (adaptation) and then returned to its veridical direction for another 20s (washout). During adaptation, goalkeepers reduced the spatiotemporal error to baseline levels at an earlier time block (3rd block) compared to non-athletes (6th block), but this difference was significant only for groups tracking of the constant and not the variable target motion. Only the groups tracking the constant target increased the spatiotemporal error during the 1st washout block demonstrating a significant aftereffect. It is concluded that goalkeepers adapt faster to the feedback rotation due to their prior field knowledge of relevant visuomotor transformations in anticipation of deceptive visual cues. This expertise advantage however is present only in a stable visual environment possibly because learning is compromised when tracking uncertain motion cues requiring closed loop control.HighlightsWe examined how expert goalkeepers and non-athletes adopt to a novel whole body visuomotor rotation when tracking a constantly or variably moving targetGoalkeepers adopted faster to the visuomotor rotation than non-athletesExpertise related differences were evident only for groups tracking the constant target motionGroups tracking the variable target motion did not learn the visuomotor rotation.
Collapse
Affiliation(s)
- Ilias Vouras
- Laboratory of Motor Behavior and Adapted Phys. Activity. Dept. of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Chatzinikolaou
- Laboratory of Motor Behavior and Adapted Phys. Activity. Dept. of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Charalampos Sotirakis
- Laboratory of Motor Behavior and Adapted Phys. Activity. Dept. of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Thomas Metaxas
- Laboratory of Evaluation of Human Biological Performance, Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vassilia Hatzitaki
- Laboratory of Motor Behavior and Adapted Phys. Activity. Dept. of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
5
|
Zhu T, Gallivan JP, Wolpert DM, Flanagan JR. Interaction between decision-making and motor learning when selecting reach targets in the presence of bias and noise. PLoS Comput Biol 2023; 19:e1011596. [PMID: 37917718 PMCID: PMC10703408 DOI: 10.1371/journal.pcbi.1011596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/07/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023] Open
Abstract
Motor errors can have both bias and noise components. Bias can be compensated for by adaptation and, in tasks in which the magnitude of noise varies across the environment, noise can be reduced by identifying and then acting in less noisy regions of the environment. Here we examine how these two processes interact when participants reach under a combination of an externally imposed visuomotor bias and noise. In a center-out reaching task, participants experienced noise (zero-mean random visuomotor rotations) that was target-direction dependent with a standard deviation that increased linearly from a least-noisy direction. They also experienced a constant bias, a visuomotor rotation that varied (across groups) from 0 to 40 degrees. Critically, on each trial, participants could select one of three targets to reach to, thereby allowing them to potentially select targets close to the least-noisy direction. The group who experienced no bias (0 degrees) quickly learned to select targets close to the least-noisy direction. However, groups who experienced a bias often failed to identify the least-noisy direction, even though they did partially adapt to the bias. When noise was introduced after participants experienced and adapted to a 40 degrees bias (without noise) in all directions, they exhibited an improved ability to find the least-noisy direction. We developed two models-one for reach adaptation and one for target selection-that could explain participants' adaptation and target-selection behavior. Our data and simulations indicate that there is a trade-off between adaptation and selection. Specifically, because bias learning is local, participants can improve performance, through adaptation, by always selecting targets that are closest to a chosen direction. However, this comes at the expense of improving performance, through selection, by reaching toward targets in different directions to find the least-noisy direction.
Collapse
Affiliation(s)
- Tianyao Zhu
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
| | - Jason P. Gallivan
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
- Department of Psychology, Queen’s University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Daniel M. Wolpert
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York
- Department of Neuroscience, Columbia University, New York, New York
| | - J. Randall Flanagan
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
- Department of Psychology, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
6
|
Weightman M, Lalji N, Lin CHS, Galea JM, Jenkinson N, Miall RC. Short duration event related cerebellar TDCS enhances visuomotor adaptation. Brain Stimul 2023; 16:431-441. [PMID: 36720304 DOI: 10.1016/j.brs.2023.01.1673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation (TDCS) is typically applied before or during a task, for periods ranging from 5 to 30 min. HYPOTHESIS We hypothesise that briefer stimulation epochs synchronous with individual task actions may be more effective. METHODS In two separate experiments, we applied brief bursts of event-related anodal stimulation (erTDCS) to the cerebellum during a visuomotor adaptation task. RESULTS The first study demonstrated that 1 s duration erTDCS time-locked to the participants' reaching actions enhanced adaptation significantly better than sham. A close replication in the second study demonstrated 0.5 s erTDCS synchronous with the reaching actions again resulted in better adaptation than standard TDCS, significantly better than sham. Stimulation either during the inter-trial intervals between movements or after movement, during assessment of visual feedback, had no significant effect. Because short duration stimulation with rapid onset and offset is more readily perceived by the participants, we additionally show that a non-electrical vibrotactile stimulation of the scalp, presented with the same timing as the erTDCS, had no significant effect. CONCLUSIONS We conclude that short duration, event related, anodal TDCS targeting the cerebellum enhances motor adaptation compared to the standard model. We discuss possible mechanisms of action and speculate on neural learning processes that may be involved.
Collapse
Affiliation(s)
- Matthew Weightman
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK; School of Psychology, University of Birmingham, UK
| | - Neeraj Lalji
- School of Psychology, University of Birmingham, UK
| | - Chin-Hsuan Sophie Lin
- Cognitive Neuroscience and Computational Psychiatry Lab, University of Melbourne, Australia
| | | | - Ned Jenkinson
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK
| | | |
Collapse
|
7
|
Kitchen NM, Kim KS, Wang PZ, Hermosillo RJ, Max L. Individual sensorimotor adaptation characteristics are independent across orofacial speech movements and limb reaching movements. J Neurophysiol 2022; 128:696-710. [PMID: 35946809 PMCID: PMC9484989 DOI: 10.1152/jn.00167.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Sensorimotor adaptation is critical for human motor control but shows considerable interindividual variability. Efforts are underway to identify factors accounting for individual differences in specific adaptation tasks. However, a fundamental question has remained unaddressed: Is an individual's capability for adaptation effector system specific or does it reflect a generalized adaptation ability? We therefore tested the same participants in analogous adaptation paradigms focusing on distinct sensorimotor systems: speaking with perturbed auditory feedback and reaching with perturbed visual feedback. Each task was completed once with the perturbation introduced gradually (ramped up over 60 trials) and, on a different day, once with the perturbation introduced suddenly. Consistent with studies of each system separately, visuomotor reach adaptation was more complete than auditory-motor speech adaptation (80% vs. 29% of the perturbation). Adaptation was not significantly correlated between the speech and reach tasks. Moreover, considered within tasks, 1) adaptation extent was correlated between the gradual and sudden conditions for reaching but not for speaking, 2) adaptation extent was correlated with additional measures of performance (e.g., trial duration, within-trial corrections) only for reaching and not for speaking, and 3) fitting individual participant adaptation profiles with exponential rather than linear functions offered a larger benefit [lower root mean square error (RMSE)] for the reach task than for the speech task. Combined, results suggest that the ability for sensorimotor adaptation relies on neural plasticity mechanisms that are effector system specific rather than generalized. This finding has important implications for ongoing efforts seeking to identify cognitive, behavioral, and neurochemical predictors of individual sensorimotor adaptation.NEW & NOTEWORTHY This study provides the first detailed demonstration that individual sensorimotor adaptation characteristics are independent across articulatory speech movements and limb reaching movements. Thus, individual sensorimotor learning abilities are effector system specific rather than generalized. Findings regarding one effector system do not necessarily apply to other systems, different underlying mechanisms may be involved, and implications for clinical rehabilitation or performance training also cannot be generalized.
Collapse
Affiliation(s)
- Nick M Kitchen
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington
| | - Kwang S Kim
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington
| | - Prince Z Wang
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington
| | - Robert J Hermosillo
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington
| | - Ludo Max
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington
- Haskins Laboratories, New Haven, Connecticut
| |
Collapse
|