1
|
Marcelli V, Giannoni B, Volpe G, Faralli M, Fetoni AR, Pettorossi VE. Downbeat nystagmus: a clinical and pathophysiological review. Front Neurol 2024; 15:1394859. [PMID: 38854962 PMCID: PMC11157062 DOI: 10.3389/fneur.2024.1394859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024] Open
Abstract
Downbeat nystagmus (DBN) is a neuro-otological finding frequently encountered by clinicians dealing with patients with vertigo. Since DBN is a finding that should be understood because of central vestibular dysfunction, it is necessary to know how to frame it promptly to suggest the correct diagnostic-therapeutic pathway to the patient. As knowledge of its pathophysiology has progressed, the importance of this clinical sign has been increasingly understood. At the same time, clinical diagnostic knowledge has increased, and it has been recognized that this sign may occur sporadically or in association with others within defined clinical syndromes. Thus, in many cases, different therapeutic solutions have become possible. In our work, we have attempted to systematize current knowledge about the origin of this finding, the clinical presentation and current treatment options, to provide an overview that can be used at different levels, from the general practitioner to the specialist neurologist or neurotologist.
Collapse
Affiliation(s)
- Vincenzo Marcelli
- Audiology and Vestibology Unit, Department of ENT, Ospedale del Mare, ASL Napoli 1 Centro, Napoli, Italy
- Department of Neuroscience, Reproductive Science and Dentistry, Section of Audiology, University of Naples ‘’Federico II’’, Napoli, Italy
| | - Beatrice Giannoni
- Department of Neuroscience, Psychology, Drug’s Area and Child’s Health, University of Florence, Florence, Italy
| | - Giampiero Volpe
- Department of Neurology, Ospedale San Luca di Vallo della Lucania, ASL Salerno, Salerno, Italy
| | - Mario Faralli
- Department of ENT, University of Perugia, Perugia, Italy
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Anna Rita Fetoni
- Department of Neuroscience, Reproductive Science and Dentistry, Section of Audiology, University of Naples ‘’Federico II’’, Napoli, Italy
| | - Vito E. Pettorossi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
2
|
Hölzel MB, Kamermans W, Winkelman BHJ, Howlett MHC, De Zeeuw CI, Kamermans M. A common cause for nystagmus in different congenital stationary night blindness mouse models. J Physiol 2023; 601:5317-5340. [PMID: 37864560 DOI: 10.1113/jp284965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/22/2023] [Indexed: 10/23/2023] Open
Abstract
In Nyxnob mice, a model for congenital nystagmus associated with congenital stationary night blindness (CSNB), synchronous oscillating retinal ganglion cells (RGCs) lead to oscillatory eye movements, i.e. nystagmus. Given the specific expression of mGluR6 and Cav 1.4 in the photoreceptor to bipolar cell synapses, as well as their clinical association with CSNB, we hypothesize that Grm6nob3 and Cav 1.4-KO mutants show, like the Nyxnob mouse, oscillations in both their RGC activity and eye movements. Using multi-electrode array recordings of RGCs and measurements of the eye movements, we demonstrate that Grm6nob3 and Cav 1.4-KO mice also show oscillations of their RGCs as well as a nystagmus. Interestingly, the preferred frequencies of RGC activity as well as the eye movement oscillations of the Grm6nob3 , Cav 1.4-KO and Nyxnob mice differ among mutants, but the neuronal activity and eye movement behaviour within a strain remain aligned in the same frequency domain. Model simulations indicate that mutations affecting the photoreceptor-bipolar cell synapse can form a common cause of the nystagmus of CSNB by driving oscillations in RGCs via AII amacrine cells. KEY POINTS: In Nyxnob mice, a model for congenital nystagmus associated with congenital stationary night blindness (CSNB), their oscillatory eye movements (i.e. nystagmus) are caused by synchronous oscillating retinal ganglion cells. Here we show that the same mechanism applies for two other CSNB mouse models - Grm6nob3 and Cav 1.4-KO mice. We propose that the retinal ganglion cell oscillations originate in the AII amacrine cells. Model simulations show that by only changing the input to ON-bipolar cells, all phenotypical differences between the various genetic mouse models can be reproduced.
Collapse
Affiliation(s)
- Maj-Britt Hölzel
- Netherlands Institute for Neuroscience Amsterdam, Amsterdam, the Netherlands
| | - Wouter Kamermans
- Netherlands Institute for Neuroscience Amsterdam, Amsterdam, the Netherlands
| | - Beerend H J Winkelman
- Netherlands Institute for Neuroscience Amsterdam, Amsterdam, the Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Marcus H C Howlett
- Netherlands Institute for Neuroscience Amsterdam, Amsterdam, the Netherlands
| | - Chris I De Zeeuw
- Netherlands Institute for Neuroscience Amsterdam, Amsterdam, the Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Maarten Kamermans
- Netherlands Institute for Neuroscience Amsterdam, Amsterdam, the Netherlands
- Department of Biomedical Physics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Huang H, Shakkottai VG. Targeting Ion Channels and Purkinje Neuron Intrinsic Membrane Excitability as a Therapeutic Strategy for Cerebellar Ataxia. Life (Basel) 2023; 13:1350. [PMID: 37374132 DOI: 10.3390/life13061350] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In degenerative neurological disorders such as Parkinson's disease, a convergence of widely varying insults results in a loss of dopaminergic neurons and, thus, the motor symptoms of the disease. Dopamine replacement therapy with agents such as levodopa is a mainstay of therapy. Cerebellar ataxias, a heterogeneous group of currently untreatable conditions, have not been identified to have a shared physiology that is a target of therapy. In this review, we propose that perturbations in cerebellar Purkinje neuron intrinsic membrane excitability, a result of ion channel dysregulation, is a common pathophysiologic mechanism that drives motor impairment and vulnerability to degeneration in cerebellar ataxias of widely differing genetic etiologies. We further propose that treatments aimed at restoring Purkinje neuron intrinsic membrane excitability have the potential to be a shared therapy in cerebellar ataxia akin to levodopa for Parkinson's disease.
Collapse
Affiliation(s)
- Haoran Huang
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Vikram G Shakkottai
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
4
|
Martín R, Suárez-Pinilla AS, García-Font N, Laguna-Luque ML, López-Ramos JC, Oset-Gasque MJ, Gruart A, Delgado-García JM, Torres M, Sánchez-Prieto J. The activation of mGluR4 rescues parallel fiber synaptic transmission and LTP, motor learning and social behavior in a mouse model of Fragile X Syndrome. Mol Autism 2023; 14:14. [PMID: 37029391 PMCID: PMC10082511 DOI: 10.1186/s13229-023-00547-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Fragile X syndrome (FXS), the most common inherited intellectual disability, is caused by the loss of expression of the Fragile X Messenger Ribonucleoprotein (FMRP). FMRP is an RNA-binding protein that negatively regulates the expression of many postsynaptic as well as presynaptic proteins involved in action potential properties, calcium homeostasis and neurotransmitter release. FXS patients and mice lacking FMRP suffer from multiple behavioral alterations, including deficits in motor learning for which there is currently no specific treatment. METHODS We performed electron microscopy, whole-cell patch-clamp electrophysiology and behavioral experiments to characterise the synaptic mechanisms underlying the motor learning deficits observed in Fmr1KO mice and the therapeutic potential of positive allosteric modulator of mGluR4. RESULTS We found that enhanced synaptic vesicle docking of cerebellar parallel fiber to Purkinje cell Fmr1KO synapses was associated with enhanced asynchronous release, which not only prevents further potentiation, but it also compromises presynaptic parallel fiber long-term potentiation (PF-LTP) mediated by β adrenergic receptors. A reduction in extracellular Ca2+ concentration restored the readily releasable pool (RRP) size, basal synaptic transmission, β adrenergic receptor-mediated potentiation, and PF-LTP. Interestingly, VU 0155041, a selective positive allosteric modulator of mGluR4, also restored both the RRP size and PF-LTP in mice of either sex. Moreover, when injected into Fmr1KO male mice, VU 0155041 improved motor learning in skilled reaching, classical eyeblink conditioning and vestibuloocular reflex (VOR) tests, as well as the social behavior alterations of these mice. LIMITATIONS We cannot rule out that the activation of mGluR4s via systemic administration of VU0155041 can also affect other brain regions. Further studies are needed to stablish the effect of a specific activation of mGluR4 in cerebellar granule cells. CONCLUSIONS Our study shows that an increase in synaptic vesicles, SV, docking may cause the loss of PF-LTP and motor learning and social deficits of Fmr1KO mice and that the reversal of these changes by pharmacological activation of mGluR4 may offer therapeutic relief for motor learning and social deficits in FXS.
Collapse
Affiliation(s)
- Ricardo Martín
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Instituto Universitario de Investigación en Neuroquímica, 28040, Madrid, Spain.
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain.
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, 28040, Madrid, Spain.
| | - Alberto Samuel Suárez-Pinilla
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Instituto Universitario de Investigación en Neuroquímica, 28040, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Nuria García-Font
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Instituto Universitario de Investigación en Neuroquímica, 28040, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain
- Centre for Discovery Brain Sciences and Simon Initiative for Developing Brain, University of Edinburgh, Edinburgh, EH89JZ, UK
| | | | - Juan C López-Ramos
- Division de Neurociencias, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - María Jesús Oset-Gasque
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain
- Departamento de Bioquímica, Facultad de Farmacia, Universidad Complutense, Instituto Universitario Investigación en Neuroquímica, 28040, Madrid, Spain
| | - Agnes Gruart
- Division de Neurociencias, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | | | - Magdalena Torres
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Instituto Universitario de Investigación en Neuroquímica, 28040, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - José Sánchez-Prieto
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Instituto Universitario de Investigación en Neuroquímica, 28040, Madrid, Spain.
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain.
| |
Collapse
|
5
|
Chang HHV, Cook AA, Watt AJ, Cullen KE. Loss of Flocculus Purkinje Cell Firing Precision Leads to Impaired Gaze Stabilization in a Mouse Model of Spinocerebellar Ataxia Type 6 (SCA6). Cells 2022; 11:cells11172739. [PMID: 36078147 PMCID: PMC9454745 DOI: 10.3390/cells11172739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Spinocerebellar Ataxia Type 6 (SCA6) is a mid-life onset neurodegenerative disease characterized by progressive ataxia, dysarthria, and eye movement impairment. This autosomal dominant disease is caused by the expansion of a CAG repeat tract in the CACNA1A gene that encodes the α1A subunit of the P/Q type voltage-gated Ca2+ channel. Mouse models of SCA6 demonstrate impaired locomotive function and reduced firing precision of cerebellar Purkinje in the anterior vermis. Here, to further assess deficits in other cerebellar-dependent behaviors, we characterized the oculomotor phenotype of a knock-in mouse model with hyper-expanded polyQ repeats (SCA684Q). We found a reduction in the efficacy of the vestibulo-ocular reflex (VOR) and optokinetic reflex (OKR) in SCA6 mutant mice, without a change in phase, compared to their litter-matched controls. Additionally, VOR motor learning was significantly impaired in SCA684Q mice. Given that the floccular lobe of the cerebellum plays a vital role in the generation of OKR and VOR calibration and motor learning, we investigated the firing behavior and morphology of floccular cerebellar Purkinje cells. Overall, we found a reduction in the firing precision of floccular lobe Purkinje cells but no morphological difference between SCA684Q and wild-type mice. Taken together, our findings establish that gaze stabilization and motor learning are impaired in SCA684Q mice and suggest that altered cerebellar output contributes to these deficits.
Collapse
Affiliation(s)
| | - Anna A. Cook
- Department of Biology, McGill University, Montreal, QC H3G 0B1, Canada
| | - Alanna J. Watt
- Department of Biology, McGill University, Montreal, QC H3G 0B1, Canada
| | - Kathleen E. Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
- Correspondence:
| |
Collapse
|
6
|
Choi JH, Oh EH, Choi SY, Kim HJ, Lee SK, Choi JY, Kim JS, Choi KD. Vestibular impairments in episodic ataxia type 2. J Neurol 2021; 269:2687-2695. [PMID: 34709445 DOI: 10.1007/s00415-021-10856-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
Episodic ataxia type 2 (EA2) can present diverse ocular motor abnormalities, but few studies have systematically evaluated vestibular function during the interictal periods. This study aimed to determine vestibular impairments in patients with EA2 during the interictal periods. We recruited 17 patients with genetically confirmed EA2 (10 men, age range = 16-85 years, median = 32 years). We systematically evaluated the vestibular function by measuring the semicircular canals (SCCs) function with bithermal caloric tests, rotatory chair test, and video head impulse test (vHIT), and the otolith function with subjective visual vertical (SVV) tilt and variability, and cervical and ocular vestibular-evoked myogenic potentials (VEMPs). Patients with EA2 commonly showed abnormal VOR responses at least for one SCC with high-acceleration, high-frequency head impulses (14/16, 88%), and impaired visual-vestibular interaction (7/12, 58%). In response to low acceleration and frequency stimuli, the VOR gains were generally normal. The majority of EA2 patients had impairments in at least one of the otolith function tests (13/16, 81%): SVV tilt or variability (7/14, 50%), oVEMP (8/15, 53%), and cVEMP (4/16, 25%). Vestibular impairments are common in EA2 even during the interictal periods. Selective decrease in the VOR responses during higher acceleration stimuli along with impaired visual-vestibular interaction and otolith function suggests degeneration of the vestibulocerebellum or vestibular nuclei.
Collapse
Affiliation(s)
- Jae-Hwan Choi
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Eun Hye Oh
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Seo Young Choi
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, South Korea
| | - Hyo Jung Kim
- Research Administration Team, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Seon Kyung Lee
- Dizziness Center, Clinical Neuroscience Center, Department of Neurology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13620, South Korea
| | - Jeong Yoon Choi
- Dizziness Center, Clinical Neuroscience Center, Department of Neurology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13620, South Korea
| | - Ji-Soo Kim
- Dizziness Center, Clinical Neuroscience Center, Department of Neurology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13620, South Korea.
| | - Kwang-Dong Choi
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, South Korea. .,Department of Neurology, College of Medicine, Pusan National University Hospital, 1-10 Ami-dong, Seo-gu, Busan, 49241, South Korea.
| |
Collapse
|
7
|
Impact of Purkinje Cell Simple Spike Synchrony on Signal Transmission from Flocculus. THE CEREBELLUM 2021; 21:879-904. [PMID: 34665396 DOI: 10.1007/s12311-021-01332-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
Purkinje cells (PCs) in the cerebellar flocculus carry rate-coded information that ultimately drives eye movement. Floccular PCs lying nearby each other exhibit partial synchrony of their simple spikes (SS). Elsewhere in the cerebellum, PC SS synchrony has been demonstrated to influence activity of the PCs' synaptic targets, and some suggest it constitutes another vector for information transfer. We investigated in the cerebellar flocculus the extent to which the rate code and PC synchrony interact. One motivation for the study was to explain the cerebellar deficits in ataxic mice like tottering; we speculated that PC synchrony has a positive effect on rate code transmission that is lost in the mutants. Working in transgenic mice whose PCs express channelrhodopsin, we exploited a property of optogenetics to control PC synchrony: pulsed photostimulation engenders stimulus-locked spiking, whereas continuous photostimulation engenders spiking whose timing is unconstrained. We photoactivated flocculus PCs using pulsed stimuli with sinusoidally varying timing vs. continuous stimuli with sinusoidally varying intensity. Recordings of PC pairs confirmed that pulsed stimuli engendered greater PC synchrony. We quantified the efficiency of transmission of the evoked PC firing rate modulation from the amplitudes of firing rate modulation and eye movement. Rate code transmission was slightly poorer in the conditions that generated greater PC synchrony, arguing against our motivating speculation regarding the origin of ataxia in tottering. Floccular optogenetic stimulation prominently augmented a 250-300 Hz local field potential oscillation, and we demonstrate relationships between the oscillation power and the evoked PC synchrony.
Collapse
|
8
|
Sugita Y, Yamamoto H, Maeda Y, Furukawa T. Influence of Aging on the Retina and Visual Motion Processing for Optokinetic Responses in Mice. Front Neurosci 2020; 14:586013. [PMID: 33335469 PMCID: PMC7736246 DOI: 10.3389/fnins.2020.586013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/10/2020] [Indexed: 11/13/2022] Open
Abstract
The decline in visual function due to normal aging impacts various aspects of our daily lives. Previous reports suggest that the aging retina exhibits mislocalization of photoreceptor terminals and reduced amplitudes of scotopic and photopic electroretinogram (ERG) responses in mice. These abnormalities are thought to contribute to age-related visual impairment; however, the extent to which visual function is impaired by aging at the organismal level is unclear. In the present study, we focus on the age-related changes of the optokinetic responses (OKRs) in visual processing. Moreover, we investigated the initial and late phases of the OKRs in young adult (2-3 months old) and aging mice (21-24 months old). The initial phase was evaluated by measuring the open-loop eye velocity of OKRs using sinusoidal grating patterns of various spatial frequencies (SFs) and moving at various temporal frequencies (TFs) for 0.5 s. The aging mice exhibited initial OKRs with a spatiotemporal frequency tuning that was slightly different from those in young adult mice. The late-phase OKRs were investigated by measuring the slow-phase velocity of the optokinetic nystagmus evoked by sinusoidal gratings of various spatiotemporal frequencies moving for 30 s. We found that optimal SF and TF in the normal aging mice are both reduced compared with those in young adult mice. In addition, we measured the OKRs of 4.1G-null (4.1G -/-) mice, in which mislocalization of photoreceptor terminals is observed even at the young adult stage. We found that the late phase OKR was significantly impaired in 4.1G - / - mice, which exhibit significantly reduced SF and TF compared with control mice. These OKR abnormalities observed in 4.1G - / - mice resemble the abnormalities found in normal aging mice. This finding suggests that these mice can be useful mouse models for studying the aging of the retinal tissue and declining visual function. Taken together, the current study demonstrates that normal aging deteriorates to visual motion processing for both the initial and late phases of OKRs. Moreover, it implies that the abnormalities of the visual function in the normal aging mice are at least partly due to mislocalization of photoreceptor synapses.
Collapse
Affiliation(s)
- Yuko Sugita
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Haruka Yamamoto
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yamato Maeda
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| |
Collapse
|
9
|
de Oude NL, Hoebeek FE, Ten Brinke MM, de Zeeuw CI, Boele HJ. Pavlovian eyeblink conditioning is severely impaired in tottering mice. J Neurophysiol 2020; 125:398-407. [PMID: 33326350 DOI: 10.1152/jn.00578.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cacna1a encodes the pore-forming α1A subunit of CaV2.1 voltage-dependent calcium channels, which regulate neuronal excitability and synaptic transmission. Purkinje cells in the cortex of cerebellum abundantly express these CaV2.1 channels. Here, we show that homozygous tottering (tg) mice, which carry a loss-of-function Cacna1a mutation, exhibit severely impaired learning in Pavlovian eyeblink conditioning, which is a cerebellar-dependent learning task. Performance of reflexive eyeblinks is unaffected in tg mice. Transient seizure activity in tg mice further corrupted the amplitude of eyeblink conditioned responses. Our results indicate that normal calcium homeostasis is imperative for cerebellar learning and that the oscillatory state of the brain can affect the expression thereof.NEW & NOTEWORTHY In this study, we confirm the importance of normal calcium homeostasis in neurons for learning and memory formation. In a mouse model with a mutation in an essential calcium channel that is abundantly expressed in the cerebellum, we found severely impaired learning in eyeblink conditioning. Eyeblink conditioning is a cerebellar-dependent learning task. During brief periods of brain-wide oscillatory activity, as a result of the mutation, the expression of conditioned eyeblinks was even further disrupted.
Collapse
Affiliation(s)
- Nina L de Oude
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands.,Department for Developmental Origins of Disease, Wilhelmina Children's Hospital, Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Chris I de Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Henk-Jan Boele
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands.,Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| |
Collapse
|
10
|
Meyer AF, O'Keefe J, Poort J. Two Distinct Types of Eye-Head Coupling in Freely Moving Mice. Curr Biol 2020; 30:2116-2130.e6. [PMID: 32413309 PMCID: PMC7284311 DOI: 10.1016/j.cub.2020.04.042] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 11/17/2022]
Abstract
Animals actively interact with their environment to gather sensory information. There is conflicting evidence about how mice use vision to sample their environment. During head restraint, mice make rapid eye movements coupled between the eyes, similar to conjugate saccadic eye movements in humans. However, when mice are free to move their heads, eye movements are more complex and often non-conjugate, with the eyes moving in opposite directions. We combined head and eye tracking in freely moving mice and found both observations are explained by two eye-head coupling types, associated with vestibular mechanisms. The first type comprised non-conjugate eye movements, which compensate for head tilt changes to maintain a similar visual field relative to the horizontal ground plane. The second type of eye movements was conjugate and coupled to head yaw rotation to produce a "saccade and fixate" gaze pattern. During head-initiated saccades, the eyes moved together in the head direction but during subsequent fixation moved in the opposite direction to the head to compensate for head rotation. This saccade and fixate pattern is similar to humans who use eye movements (with or without head movement) to rapidly shift gaze but in mice relies on combined head and eye movements. Both couplings were maintained during social interactions and visually guided object tracking. Even in head-restrained mice, eye movements were invariably associated with attempted head motion. Our results reveal that mice combine head and eye movements to sample their environment and highlight similarities and differences between eye movements in mice and humans.
Collapse
Affiliation(s)
- Arne F Meyer
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525, the Netherlands; Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London (UCL), London W1T 4JG, UK.
| | - John O'Keefe
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London (UCL), London W1T 4JG, UK; Department of Cell and Developmental Biology, UCL, London WC1E 6BT, UK
| | - Jasper Poort
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London (UCL), London W1T 4JG, UK; Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK.
| |
Collapse
|
11
|
Holland PJ, Sibindi TM, Ginzburg M, Das S, Arkesteijn K, Frens MA, Donchin O. A Neuroanatomically Grounded Optimal Control Model of the Compensatory Eye Movement System in Mice. Front Syst Neurosci 2020; 14:13. [PMID: 32269516 PMCID: PMC7109542 DOI: 10.3389/fnsys.2020.00013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/28/2020] [Indexed: 11/13/2022] Open
Abstract
We present a working model of the compensatory eye movement system in mice. We challenge the model with a data set of eye movements in mice (n =34) recorded in 4 different sinusoidal stimulus conditions with 36 different combinations of frequency (0.1-3.2 Hz) and amplitude (0.5-8°) in each condition. The conditions included vestibular stimulation in the dark (vestibular-ocular reflex, VOR), optokinetic stimulation (optokinetic reflex, OKR), and two combined visual/vestibular conditions (the visual-vestibular ocular reflex, vVOR, and visual suppression of the VOR, sVOR). The model successfully reproduced the eye movements in all conditions, except for minor failures to predict phase when gain was very low. Most importantly, it could explain the interaction of VOR and OKR when the two reflexes are activated simultaneously during vVOR stimulation. In addition to our own data, we also reproduced the behavior of the compensatory eye movement system found in the existing literature. These include its response to sum-of-sines stimuli, its response after lesions of the nucleus prepositus hypoglossi or the flocculus, characteristics of VOR adaptation, and characteristics of drift in the dark. Our model is based on ideas of state prediction and forward modeling that have been widely used in the study of motor control. However, it represents one of the first quantitative efforts to simulate the full range of behaviors of a specific system. The model has two separate processing loops, one for vestibular stimulation and one for visual stimulation. Importantly, state prediction in the visual processing loop depends on a forward model of residual retinal slip after vestibular processing. In addition, we hypothesize that adaptation in the system is primarily adaptation of this model. In other words, VOR adaptation happens primarily in the OKR loop.
Collapse
Affiliation(s)
- Peter J. Holland
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Department of Biomedical Engineering, Zlotowski Centre for Neuroscience, Ben Gurion University, Beer-Sheva, Israel
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Tafadzwa M. Sibindi
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Department of Biomedical Engineering, Zlotowski Centre for Neuroscience, Ben Gurion University, Beer-Sheva, Israel
- Singapore Institute for Neurotechnology, Singapore, Singapore
| | - Marik Ginzburg
- Department of Biomedical Engineering, Zlotowski Centre for Neuroscience, Ben Gurion University, Beer-Sheva, Israel
| | - Suman Das
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Department of Biomedical Engineering, Zlotowski Centre for Neuroscience, Ben Gurion University, Beer-Sheva, Israel
| | - Kiki Arkesteijn
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Opher Donchin
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Department of Biomedical Engineering, Zlotowski Centre for Neuroscience, Ben Gurion University, Beer-Sheva, Israel
- ABC Centre for Robotics, Ben Gurion University, Beer-Sheva, Israel
| |
Collapse
|
12
|
Prestori F, Moccia F, D’Angelo E. Disrupted Calcium Signaling in Animal Models of Human Spinocerebellar Ataxia (SCA). Int J Mol Sci 2019; 21:ijms21010216. [PMID: 31892274 PMCID: PMC6981692 DOI: 10.3390/ijms21010216] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
Spinocerebellar ataxias (SCAs) constitute a heterogeneous group of more than 40 autosomal-dominant genetic and neurodegenerative diseases characterized by loss of balance and motor coordination due to dysfunction of the cerebellum and its efferent connections. Despite a well-described clinical and pathological phenotype, the molecular and cellular events that underlie neurodegeneration are still poorly undaerstood. Emerging research suggests that mutations in SCA genes cause disruptions in multiple cellular pathways but the characteristic SCA pathogenesis does not begin until calcium signaling pathways are disrupted in cerebellar Purkinje cells. Ca2+ signaling in Purkinje cells is important for normal cellular function as these neurons express a variety of Ca2+ channels, Ca2+-dependent kinases and phosphatases, and Ca2+-binding proteins to tightly maintain Ca2+ homeostasis and regulate physiological Ca2+-dependent processes. Abnormal Ca2+ levels can activate toxic cascades leading to characteristic death of Purkinje cells, cerebellar atrophy, and ataxia that occur in many SCAs. The output of the cerebellar cortex is conveyed to the deep cerebellar nuclei (DCN) by Purkinje cells via inhibitory signals; thus, Purkinje cell dysfunction or degeneration would partially or completely impair the cerebellar output in SCAs. In the absence of the inhibitory signal emanating from Purkinje cells, DCN will become more excitable, thereby affecting the motor areas receiving DCN input and resulting in uncoordinated movements. An outstanding advantage in studying the pathogenesis of SCAs is represented by the availability of a large number of animal models which mimic the phenotype observed in humans. By mainly focusing on mouse models displaying mutations or deletions in genes which encode for Ca2+ signaling-related proteins, in this review we will discuss the several pathogenic mechanisms related to deranged Ca2+ homeostasis that leads to significant Purkinje cell degeneration and dysfunction.
Collapse
Affiliation(s)
- Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- Correspondence:
| | - Francesco Moccia
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy;
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| |
Collapse
|
13
|
Winkelman BHJ, Howlett MHC, Hölzel MB, Joling C, Fransen KH, Pangeni G, Kamermans S, Sakuta H, Noda M, Simonsz HJ, McCall MA, De Zeeuw CI, Kamermans M. Nystagmus in patients with congenital stationary night blindness (CSNB) originates from synchronously firing retinal ganglion cells. PLoS Biol 2019; 17:e3000174. [PMID: 31513577 PMCID: PMC6741852 DOI: 10.1371/journal.pbio.3000174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/12/2019] [Indexed: 11/19/2022] Open
Abstract
Congenital nystagmus, involuntary oscillating small eye movements, is commonly thought to originate from aberrant interactions between brainstem nuclei and foveal cortical pathways. Here, we investigated whether nystagmus associated with congenital stationary night blindness (CSNB) results from primary deficits in the retina. We found that CSNB patients as well as an animal model (nob mice), both of which lacked functional nyctalopin protein (NYX, nyx) in ON bipolar cells (BCs) at their synapse with photoreceptors, showed oscillating eye movements at a frequency of 4-7 Hz. nob ON direction-selective ganglion cells (DSGCs), which detect global motion and project to the accessory optic system (AOS), oscillated with the same frequency as their eyes. In the dark, individual ganglion cells (GCs) oscillated asynchronously, but their oscillations became synchronized by light stimulation. Likewise, both patient and nob mice oscillating eye movements were only present in the light when contrast was present. Retinal pharmacological and genetic manipulations that blocked nob GC oscillations also eliminated their oscillating eye movements, and retinal pharmacological manipulations that reduced the oscillation frequency of nob GCs also reduced the oscillation frequency of their eye movements. We conclude that, in nob mice, synchronized oscillations of retinal GCs, most likely the ON-DCGCs, cause nystagmus with properties similar to those associated with CSNB in humans. These results show that the nob mouse is the first animal model for a form of congenital nystagmus, paving the way for development of therapeutic strategies.
Collapse
Affiliation(s)
- Beerend H. J. Winkelman
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Maj-Britt Hölzel
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Coen Joling
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Kathryn H. Fransen
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, United States of America
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Gobinda Pangeni
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, United States of America
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, United States of America
| | | | - Hiraki Sakuta
- National Institute for Basic Biology, Okazaki, Japan
| | - Masaharu Noda
- National Institute for Basic Biology, Okazaki, Japan
| | - Huibert J. Simonsz
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
- Department of Ophthalmology, Erasmus MC, Rotterdam, the Netherlands
| | - Maureen A. McCall
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, United States of America
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Maarten Kamermans
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
- Department of Biomedical Physics, Academic Medical Center, University of Amsterdam, the Netherlands
- * E-mail:
| |
Collapse
|
14
|
Vijayakumar S, Jones SM, Jones TA, Tian C, Johnson KR. Spontaneous mutations of the Zpld1 gene in mice cause semicircular canal dysfunction but do not impair gravity receptor or hearing functions. Sci Rep 2019; 9:12430. [PMID: 31455802 PMCID: PMC6711997 DOI: 10.1038/s41598-019-48835-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/13/2019] [Indexed: 11/23/2022] Open
Abstract
The cupula is a gelatinous membrane overlying the crista ampullaris of the semicircular canal, important for sensing rotation of the head and critical for normal balance. Recently the zona pellucida like domain containing 1 protein (ZPLD1, also known as cupulin) was identified in the cupula of fish. Here, we describe two new spontaneous mutations in the mouse Zpld1 gene, which were discovered by the circling behavior of mutant mice, an indicator of balance dysfunction. The Zpld1 mutant mice exhibited normal hearing function as assessed by auditory brainstem response (ABR) measurements, and their otolithic organs appeared normal. In the inner ear, Zpld1 mRNA expression was detected only in the hair cells and supporting cells of the crista ampullaris. Normal vestibular sensory evoked potential (VsEP) responses and abnormal vestibulo-ocular reflex (VOR) responses demonstrated that the vestibular dysfunction of the Zpld1 mutant mice is caused by loss of sensory input for rotary head movements (detected by cristae ampullaris) and not by loss of input for linear head translations (detected by maculae of the utricle and saccule). Taken together, these results are consistent with ZPLD1 being an important functional component of the cupula, but not tectorial or otoconial membranes.
Collapse
Affiliation(s)
- Sarath Vijayakumar
- Department of Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA.,Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Sherri M Jones
- Department of Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA
| | - Timothy A Jones
- Department of Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA.
| | - Cong Tian
- The Jackson Laboratory, Bar Harbor, ME, USA
| | | |
Collapse
|
15
|
Kretschmer F, Tariq M, Chatila W, Wu B, Badea TC. Comparison of optomotor and optokinetic reflexes in mice. J Neurophysiol 2017; 118:300-316. [PMID: 28424291 DOI: 10.1152/jn.00055.2017] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/12/2017] [Accepted: 04/12/2017] [Indexed: 12/16/2022] Open
Abstract
During animal locomotion or position adjustments, the visual system uses image stabilization reflexes to compensate for global shifts in the visual scene. These reflexes elicit compensatory head movements (optomotor response, OMR) in unrestrained animals or compensatory eye movements (optokinetic response, OKR) in head-fixed or unrestrained animals exposed to globally rotating striped patterns. In mice, OMR are relatively easy to observe and find broad use in the rapid evaluation of visual function. OKR determinations are more involved experimentally but yield more stereotypical, easily quantifiable results. The relative contributions of head and eye movements to image stabilization in mice have not been investigated. We are using newly developed software and apparatus to accurately quantitate mouse head movements during OMR, quantitate eye movements during OKR, and determine eye movements in freely behaving mice. We provide the first direct comparison of OMR and OKR gains (head or eye velocity/stimulus velocity) and find that the two reflexes have comparable dependencies on stimulus luminance, contrast, spatial frequency, and velocity. OMR and OKR are similarly affected in genetically modified mice with defects in retinal ganglion cells (RGC) compared with wild-type, suggesting they are driven by the same sensory input (RGC type). OKR eye movements have much higher gains than the OMR head movements, but neither can fully compensate global visual shifts. However, combined eye and head movements can be detected in unrestrained mice performing OMR, suggesting they can cooperate to achieve image stabilization, as previously described for other species.NEW & NOTEWORTHY We provide the first quantitation of head gain during optomotor response in mice and show that optomotor and optokinetic responses have similar psychometric curves. Head gains are far smaller than eye gains. Unrestrained mice combine head and eye movements to respond to visual stimuli, and both monocular and binocular fields are used during optokinetic responses. Mouse OMR and OKR movements are heterogeneous under optimal and suboptimal stimulation and are affected in mice lacking ON direction-selective retinal ganglion cells.
Collapse
Affiliation(s)
- Friedrich Kretschmer
- Retinal Circuit Development & Genetics Unit, Neurobiology Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Momina Tariq
- Retinal Circuit Development & Genetics Unit, Neurobiology Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Walid Chatila
- Retinal Circuit Development & Genetics Unit, Neurobiology Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Beverly Wu
- Retinal Circuit Development & Genetics Unit, Neurobiology Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Tudor Constantin Badea
- Retinal Circuit Development & Genetics Unit, Neurobiology Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
16
|
Liu P, Gupta N, Jing Y, Collie ND, Zhang H, Smith PF. Further studies of the effects of aging on arginine metabolites in the rat vestibular nucleus and cerebellum. Neuroscience 2017; 348:273-287. [PMID: 28238850 DOI: 10.1016/j.neuroscience.2017.02.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 12/21/2022]
Abstract
Some studies have demonstrated that aging is associated with impaired vestibular reflexes, especially otolithic reflexes, resulting in postural instability. However, the neurochemical basis of these age-related changes is still poorly understood. The l-arginine metabolic system has been implicated in changes in the brain associated with aging. In the current study, we examined the levels of l-arginine and its metabolizing enzymes and downstream metabolites in the vestibular nucleus complex (VNC) and cerebellum (CE) of rats with and without behavioral testing which were young (4months old), middle-aged (12months old) or aged (24months old). We found that aging was associated with lower nitric oxide synthase activity in the CE of animals with testing and increased arginase in the VNC and CE of animals with testing. l-citrulline and l-ornithine were lower in the VNC of aged animals irrespective of testing, while l-arginine and l-citrulline were lower in the CE with and without testing, respectively. In the VNC and CE, aging was associated with lower levels of glutamate in the VNC, irrespective of testing. In the VNC it was associated with higher levels of agmatine and putrescine, irrespective of testing. In the CE, aging was associated with higher levels of putrescine in animals without testing and with higher levels of spermine in animals with testing, and spermidine, irrespective of testing. Multivariate analyses indicated significant predictive relationships between the different variables, and there were correlations between some of the neurochemical variables and behavioral measurements. Cluster analyses revealed that aging altered the relationships between l-arginine and its metabolites. The results of this study demonstrate that there are major changes occurring in l-arginine metabolism in the VNC and CE as a result of age, as well as behavioral activity.
Collapse
Affiliation(s)
- P Liu
- Dept. of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand; The Brain Research New Zealand Centre of Research Excellence, New Zealand.
| | - N Gupta
- Dept. of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Y Jing
- Dept. of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - N D Collie
- Dept. of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - H Zhang
- School of Pharmacy, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - P F Smith
- Dept. of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand; The Brain Research New Zealand Centre of Research Excellence, New Zealand; The Eisdell Moore Centre, University of Auckland, New Zealand
| |
Collapse
|
17
|
Vestibular Performance During High-Acceleration Stimuli Correlates with Clinical Decline in SCA6. THE CEREBELLUM 2016; 14:284-91. [PMID: 25624155 DOI: 10.1007/s12311-015-0650-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In spinocerebellar ataxia type 6 (SCA6), the vestibular dysfunction and its correlation with other clinical parameters require further exploration. We determined vestibular responses over a broad range of stimulus acceleration in 11 patients with SCA6 (six men, age range=33-72 years, mean age±SD=59±12 years) using bithermal caloric irrigations, rotary chair, and head impulse tests. Correlations were also pursued among disability scores, as measured using the International Cooperative Ataxia Rating Scale, disease duration, age at onset, cytosine-adenine-guanine (CAG) repeat length, and the gain of the vestibulo-ocular reflex (VOR). In response to relatively low-acceleration, low-frequency rotational and bithermal caloric stimuli, the VOR gains were normal or increased regardless of the severity of disease. On the other hand, with relatively high-acceleration, high-frequency head impulses, there was a relative increase in gain in the mildly affected patients and a decrease in gain in the more severely affected patients and gains were negatively correlated with the severity of disease (Spearman correlation, R=-0.927, p<0.001). Selective decrease of the vestibular responses during high-acceleration, high-frequency stimuli may be ascribed to degeneration of either the flocculus or vestibular nuclei. The performance of the VOR during high-acceleration, high-frequency head impulses may be a quantitative indicator of clinical decline in SCA6.
Collapse
|
18
|
Straka H, Zwergal A, Cullen KE. Vestibular animal models: contributions to understanding physiology and disease. J Neurol 2016; 263 Suppl 1:S10-23. [PMID: 27083880 PMCID: PMC4833800 DOI: 10.1007/s00415-015-7909-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/11/2015] [Accepted: 09/12/2015] [Indexed: 12/20/2022]
Abstract
Our knowledge of the vestibular sensory system, its functional significance for gaze and posture stabilization, and its capability to ensure accurate spatial orientation perception and spatial navigation has greatly benefitted from experimental approaches using a variety of vertebrate species. This review summarizes the attempts to establish the roles of semicircular canal and otolith endorgans in these functions followed by an overview of the most relevant fields of vestibular research including major findings that have advanced our understanding of how this system exerts its influence on reflexive and cognitive challenges encountered during daily life. In particular, we highlight the contributions of different animal models and the advantage of using a comparative research approach. Cross-species comparisons have established that the morpho-physiological properties underlying vestibular signal processing are evolutionarily inherent, thereby disclosing general principles. Based on the documented success of this approach, we suggest that future research employing a balanced spectrum of standard animal models such as fish/frog, mouse and primate will optimize our progress in understanding vestibular processing in health and disease. Moreover, we propose that this should be further supplemented by research employing more “exotic” species that offer unique experimental access and/or have specific vestibular adaptations due to unusual locomotor capabilities or lifestyles. Taken together this strategy will expedite our understanding of the basic principles underlying vestibular computations to reveal relevant translational aspects. Accordingly, studies employing animal models are indispensible and even mandatory for the development of new treatments, medication and technical aids (implants) for patients with vestibular pathologies.
Collapse
Affiliation(s)
- Hans Straka
- Department Biology II, Ludwig-Maximilians-University Munich, Grosshaderner Str. 2, 82152, Planegg, Germany. .,German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University of Munich, Munich, Germany.
| | - Andreas Zwergal
- German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University of Munich, Munich, Germany.,Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Kathleen E Cullen
- Department of Physiology, McGill University, Montreal, QC, H3A 0G4, Canada
| |
Collapse
|
19
|
Shimizu N, Wood S, Kushiro K, Perachio A, Makishima T. The role of GABAB receptors in the vestibular oculomotor system in mice. Behav Brain Res 2016; 302:152-9. [PMID: 26778789 DOI: 10.1016/j.bbr.2016.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/21/2015] [Accepted: 01/05/2016] [Indexed: 11/28/2022]
Abstract
Systemic administration of a gamma-amino butyric acid type B (GABAB) receptor agonist, baclofen, affects various physiological and psychological processes. To date, the effects on oculomotor system have been well characterized in primates, however those in mice have not been explored. In this study, we investigated the effects of baclofen focusing on vestibular-related eye movements. Two rotational paradigms, i.e. sinusoidal rotation and counter rotation were employed to stimulate semicircular canals and otolith organs in the inner ear. Experimental conditions (dosage, routes and onset of recording) were determined based on the prior studies exploring the behavioral effects of baclofen in mice. With an increase in dosage, both canal and otolith induced ocular responses were gradually affected. There was a clear distinction in the drug sensitivity showing that eye movements derived from direct vestibulo-ocular reflex pathways were relatively unaltered, while the responses through higher-order neural networks in the vestibular system were substantially decreased. These findings were consistent with those observed in primates suggesting a well-conserved role of GABAB receptors in the oculomotor system across frontal-eyed and lateral-eyed animals. We showed here a previously unrecognized effect of baclofen on the vestibular oculomotor function in mice. When interpreting general animal performance under the drug, the potential contribution of altered balance system should be taken into consideration.
Collapse
Affiliation(s)
- Naoki Shimizu
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas, USA.
| | - Scott Wood
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas, USA; Department of Psychology, Azusa Pacific University, Azusa California, USA
| | - Keisuke Kushiro
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Adrian Perachio
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tomoko Makishima
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
20
|
Abstract
The relative simplicity of the neural circuits that mediate vestibular reflexes is well suited for linking systems and cellular levels of analyses. Notably, a distinctive feature of the vestibular system is that neurons at the first central stage of sensory processing in the vestibular nuclei are premotor neurons; the same neurons that receive vestibular-nerve input also send direct projections to motor pathways. For example, the simplicity of the three-neuron pathway that mediates the vestibulo-ocular reflex leads to the generation of compensatory eye movements within ~5ms of a head movement. Similarly, relatively direct pathways between the labyrinth and spinal cord control vestibulospinal reflexes. A second distinctive feature of the vestibular system is that the first stage of central processing is strongly multimodal. This is because the vestibular nuclei receive inputs from a wide range of cortical, cerebellar, and other brainstem structures in addition to direct inputs from the vestibular nerve. Recent studies in alert animals have established how extravestibular signals shape these "simple" reflexes to meet the needs of current behavioral goal. Moreover, multimodal interactions at higher levels, such as the vestibular cerebellum, thalamus, and cortex, play a vital role in ensuring accurate self-motion and spatial orientation perception.
Collapse
Affiliation(s)
- K E Cullen
- Department of Physiology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
21
|
Hübner PP, Khan SI, Migliaccio AA. The mammalian efferent vestibular system plays a crucial role in the high-frequency response and short-term adaptation of the vestibuloocular reflex. J Neurophysiol 2015; 114:3154-65. [PMID: 26424577 DOI: 10.1152/jn.00307.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/28/2015] [Indexed: 11/22/2022] Open
Abstract
Although anatomically well described, the functional role of the mammalian efferent vestibular system (EVS) remains unclear. Unlike in fish and reptiles, the mammalian EVS does not seem to play a role in modulation of primary afferent activity in anticipation of active head movements. However, it could play a role in modulating long-term mechanisms requiring plasticity such as vestibular adaptation. We measured the efficacy of vestibuloocular reflex (VOR) adaptation in α9-knockout mice. These mice carry a missense mutation of the gene encoding the α9 nicotinic acetylcholine receptor (nAChR) subunit. The α9 nAChR subunit is expressed in the vestibular and auditory periphery, and its loss of function could compromise peripheral input from the predominantly cholinergic EVS. We measured the VOR gain (eye velocity/head velocity) in 26 α9-knockout mice and 27 cba129 control mice. Mice were randomly assigned to one of three groups: gain-increase adaptation (1.5×), gain-decrease adaptation (0.5×), or no adaptation (baseline, 1×). After adaptation training (horizontal rotations at 0.5 Hz with peak velocity 20°/s), we measured the sinusoidal (0.2-10 Hz, 20-100°/s) and transient (1,500-6,000°/s(2)) VOR in complete darkness. α9-Knockout mice had significantly lower baseline gains compared with control mice. This difference increased with stimulus frequency (∼ 5% <1 Hz to ∼ 25% >1 Hz). Moreover, vestibular adaptation (difference in VOR gain of gain-increase and gain-decrease adaptation groups as % of gain increase) was significantly reduced in α9-knockout mice (17%) compared with control mice (53%), a reduction of ∼ 70%. Our results show that the loss of α9 nAChRs moderately affects the VOR but severely affects VOR adaptation, suggesting that the EVS plays a crucial role in vestibular plasticity.
Collapse
Affiliation(s)
- Patrick P Hübner
- Balance and Vision Laboratory, Neuroscience Research Australia, Sydney, New South Wales, Australia; University of New South Wales, Sydney, New South Wales, Australia; and
| | - Serajul I Khan
- Balance and Vision Laboratory, Neuroscience Research Australia, Sydney, New South Wales, Australia; University of New South Wales, Sydney, New South Wales, Australia; and
| | - Americo A Migliaccio
- Balance and Vision Laboratory, Neuroscience Research Australia, Sydney, New South Wales, Australia; University of New South Wales, Sydney, New South Wales, Australia; and Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
22
|
Stahl JS, Thumser ZC, May PJ, Andrade FH, Anderson SR, Dean P. Mechanics of mouse ocular motor plant quantified by optogenetic techniques. J Neurophysiol 2015; 114:1455-67. [PMID: 26108953 DOI: 10.1152/jn.00328.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/22/2015] [Indexed: 12/22/2022] Open
Abstract
Rigorous descriptions of ocular motor mechanics are often needed for models of ocular motor circuits. The mouse has become an important tool for ocular motor studies, yet most mechanical data come from larger species. Recordings of mouse abducens neurons indicate the mouse mechanics share basic viscoelastic properties with larger species but have considerably longer time constants. Time constants can also be extracted from the rate at which the eye re-centers when released from an eccentric position. The displacement can be accomplished by electrically stimulating ocular motor nuclei, but electrical stimulation may also activate nearby ocular motor circuitry. We achieved specific activation of abducens motoneurons through photostimulation in transgenic mice expressing channelrhodopsin in cholinergic neurons. Histology confirmed strong channelrhodopsin expression in the abducens nucleus with relatively little expression in nearby ocular motor structures. Stimulation was delivered as 20- to 1,000-ms pulses and 40-Hz trains. Relaxations were modeled best by a two-element viscoelastic system. Time constants were sensitive to stimulus duration. Analysis of isometric relaxation of isolated mouse extraocular muscles suggest the dependence is attributable to noninstantaneous decay of active forces in non-twitch fibers following stimulus offset. Time constants were several times longer than those obtained in primates, confirming that the mouse ocular motor mechanics are relatively sluggish. Finally, we explored the effects of 0.1- to 20-Hz sinusoidal photostimuli and demonstrated their potential usefulness in characterizing ocular motor mechanics, although this application will require further data on the temporal relationship between photostimulation and neuronal firing in extraocular motoneurons.
Collapse
Affiliation(s)
- John S Stahl
- Neurology Division, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio; Department of Neurology, Case Western Reserve University, Cleveland, Ohio;
| | - Zachary C Thumser
- Neurology Division, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
| | - Paul J May
- Department of Neurobiology and Anatomical Sciences, University of Mississippi, Jackson, Mississippi
| | | | - Sean R Anderson
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom; and
| | - Paul Dean
- Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
23
|
Shimizu N, Wood S, Kushiro K, Yanai S, Perachio A, Makishima T. Dynamic characteristics of otolith ocular response during counter rotation about dual yaw axes in mice. Neuroscience 2015; 285:204-14. [PMID: 25446357 DOI: 10.1016/j.neuroscience.2014.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/05/2014] [Accepted: 11/13/2014] [Indexed: 11/17/2022]
Abstract
The central vestibular system plays an important role in higher neural functions such as self-motion perception and spatial orientation. Its ability to store head angular velocity is called velocity storage mechanism (VSM), which has been thoroughly investigated across a wide range of species. However, little is known about the mouse VSM, because the mouse lacks typical ocular responses such as optokinetic after nystagmus or a dominant time constant of vestibulo-ocular reflex for which the VSM is critical. Experiments were conducted to examine the otolith-driven eye movements related to the VSM and verify its characteristics in mice. We used a novel approach to generate a similar rotating vector as a traditional off-vertical axis rotation (OVAR) but with a larger resultant gravito-inertial force (>1g) by using counter rotation centrifugation. Similar to results previously described in other animals during OVAR, two components of eye movements were induced, i.e. a sinusoidal modulatory eye movement (modulation component) on which a unidirectional nystagmus (bias component) was superimposed. Each response is considered to derive from different mechanisms; modulations arise predominantly through linear vestibulo-ocular reflex, whereas for the bias, the VSM is responsible. Data indicate that the mouse also has a well-developed vestibular system through otoliths inputs, showing its highly conserved nature across mammalian species. On the other hand, to reach a plateau state of bias, a higher frequency rotation or a larger gravito-inertial force was considered to be necessary than other larger animals. Compared with modulation, the bias had a more variable profile, suggesting an inherent complexity of higher-order neural processes in the brain. Our data provide the basis for further study of the central vestibular system in mice, however, the underlying individual variability should be taken into consideration.
Collapse
Affiliation(s)
- N Shimizu
- Department of Otolaryngology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA.
| | - S Wood
- Department of Otolaryngology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA; Department of Psychology, Azusa Pacific University, Azusa, CA, USA
| | - K Kushiro
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - S Yanai
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - A Perachio
- Department of Otolaryngology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA
| | - T Makishima
- Department of Otolaryngology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA.
| |
Collapse
|
24
|
|
25
|
Stahl JS, Thumser ZC. Flocculus Purkinje cell signals in mouse Cacna1a calcium channel mutants of escalating severity: an investigation of the role of firing irregularity in ataxia. J Neurophysiol 2014; 112:2647-63. [PMID: 25143538 DOI: 10.1152/jn.00129.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutation of the Cacna1a gene for the P/Q (CaV2.1) calcium channel invariably leads to cerebellar dysfunction. The dysfunction has been attributed to disrupted rhythmicity of cerebellar Purkinje cells, but the hypothesis remains unproven. If irregular firing rates cause cerebellar dysfunction, then the irregularity and behavioral deficits should covary in a series of mutant strains of escalating severity. We compared firing irregularity in floccular and anterior vermis Purkinje cells in the mildly affected rocker and moderately affected tottering Cacna1a mutants and normal C57BL/6 mice. We also measured the amplitude and timing of modulations of floccular Purkinje cell firing rate during the horizontal vestibuloocular reflex (VOR, 0.25-1 Hz) and the horizontal and vertical optokinetic reflex (OKR, 0.125-1 Hz). We recorded Purkinje cells selective for rotational stimulation about the vertical axis (VAPCs) and a horizontal axis (HAPCs). Irregularity scaled with behavioral deficit severity in the flocculus but failed to do so in the vermis, challenging the irregularity hypothesis. Mutant VAPCs exhibited unusually strong modulation during VOR and OKR, the response augmentation scaling with phenotypic severity. HAPCs exhibited increased OKR modulation but in tottering only. The data contradict prior claims that modulation amplitude is unaffected in tottering but support the idea that attenuated compensatory eye movements in Cacna1a mutants arise from defective transfer of Purkinje cell signals to downstream circuitry, rather than attenuated synaptic transmission within the cerebellar cortex. Shifts in the relative sizes of the VAPC and HAPC populations raise the possibility that Cacna1a mutations influence the development of floccular zone architecture.
Collapse
Affiliation(s)
- John S Stahl
- Neurology Division, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio; and Department of Neurology, Case Western Reserve University, Cleveland, Ohio
| | - Zachary C Thumser
- Neurology Division, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio; and
| |
Collapse
|
26
|
Jones SM, Jones TA. Genetics of peripheral vestibular dysfunction: lessons from mutant mouse strains. J Am Acad Audiol 2014; 25:289-301. [PMID: 25032973 PMCID: PMC4310552 DOI: 10.3766/jaaa.25.3.8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND A considerable amount of research has been published about genetic hearing impairment. Fifty to sixty percent of hearing loss is thought to have a genetic cause. Genes may also play a significant role in acquired hearing loss due to aging, noise exposure, or ototoxic medications. Between 1995 and 2012, over 100 causative genes have been identified for syndromic and nonsyndromic forms of hereditary hearing loss. Mouse models have been extremely valuable in facilitating the discovery of hearing loss genes and in understanding inner ear pathology due to genetic mutations or elucidating fundamental mechanisms of inner ear development. PURPOSE Whereas much is being learned about hereditary hearing loss and the genetics of cochlear disorders, relatively little is known about the role genes may play in peripheral vestibular impairment. Here we review the literature with regard to genetics of vestibular dysfunction and discuss what we have learned from studies using mutant mouse models and direct measures of peripheral vestibular neural function. RESULTS Several genes are considered that when mutated lead to varying degrees of inner ear vestibular dysfunction due to deficits in otoconia, stereocilia, hair cells, or neurons. Behavior often does not reveal the inner ear deficit. Many of the examples presented are also known to cause human disorders. CONCLUSIONS Knowledge regarding the roles of particular genes in the operation of the vestibular sensory apparatus is growing, and it is clear that gene products co-expressed in the cochlea and vestibule may play different roles in the respective end organs. The discovery of new genes mediating critical inner ear vestibular function carries the promise of new strategies in diagnosing, treating, and managing patients as well as predicting the course and level of morbidity in human vestibular disease.
Collapse
Affiliation(s)
- Sherri M Jones
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln
| | - Timothy A Jones
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln
| |
Collapse
|
27
|
Cullen KE. The neural encoding of self-generated and externally applied movement: implications for the perception of self-motion and spatial memory. Front Integr Neurosci 2014; 7:108. [PMID: 24454282 PMCID: PMC3888934 DOI: 10.3389/fnint.2013.00108] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/23/2013] [Indexed: 12/03/2022] Open
Abstract
The vestibular system is vital for maintaining an accurate representation of self-motion. As one moves (or is moved) toward a new place in the environment, signals from the vestibular sensors are relayed to higher-order centers. It is generally assumed the vestibular system provides a veridical representation of head motion to these centers for the perception of self-motion and spatial memory. In support of this idea, evidence from lesion studies suggests that vestibular inputs are required for the directional tuning of head direction cells in the limbic system as well as neurons in areas of multimodal association cortex. However, recent investigations in monkeys and mice challenge the notion that early vestibular pathways encode an absolute representation of head motion. Instead, processing at the first central stage is inherently multimodal. This minireview highlights recent progress that has been made towards understanding how the brain processes and interprets self-motion signals encoded by the vestibular otoliths and semicircular canals during everyday life. The following interrelated questions are considered. What information is available to the higher-order centers that contribute to self-motion perception? How do we distinguish between our own self-generated movements and those of the external world? And lastly, what are the implications of differences in the processing of these active vs. passive movements for spatial memory?
Collapse
Affiliation(s)
- Kathleen E Cullen
- Aerospace Medical Research Unit, Department of Physiology, McGill University Montreal, QC, Canada
| |
Collapse
|
28
|
Medrea I, Cullen KE. Multisensory integration in early vestibular processing in mice: the encoding of passive vs. active motion. J Neurophysiol 2013; 110:2704-17. [PMID: 24089394 DOI: 10.1152/jn.01037.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The mouse has become an important model system for studying the cellular basis of learning and coding of heading by the vestibular system. Here we recorded from single neurons in the vestibular nuclei to understand how vestibular pathways encode self-motion under natural conditions, during which proprioceptive and motor-related signals as well as vestibular inputs provide feedback about an animal's movement through the world. We recorded neuronal responses in alert behaving mice focusing on a group of neurons, termed vestibular-only cells, that are known to control posture and project to higher-order centers. We found that the majority (70%, n = 21/30) of neurons were bimodal, in that they responded robustly to passive stimulation of proprioceptors as well as passive stimulation of the vestibular system. Additionally, the linear summation of a given neuron's vestibular and neck sensitivities predicted well its responses when both stimuli were applied simultaneously. In contrast, neuronal responses were suppressed when the same motion was actively generated, with the one striking exception that the activity of bimodal neurons similarly and robustly encoded head on body position in all conditions. Our results show that proprioceptive and motor-related signals are combined with vestibular information at the first central stage of vestibular processing in mice. We suggest that these results have important implications for understanding the multisensory integration underlying accurate postural control and the neural representation of directional heading in the head direction cell network of mice.
Collapse
Affiliation(s)
- Ioana Medrea
- Aerospace Medical Research Unit, Department of Physiology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
29
|
Gutierrez-Castellanos N, Winkelman BHJ, Tolosa-Rodriguez L, De Gruijl JR, De Zeeuw CI. Impact of aging on long-term ocular reflex adaptation. Neurobiol Aging 2013; 34:2784-92. [PMID: 23880138 DOI: 10.1016/j.neurobiolaging.2013.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 01/05/2023]
Abstract
Compensatory eye movements (CEMs) stabilize the field of view enabling visual sharpness despite self-induced motion or environmental perturbations. The vestibulocerebellum makes it possible to adapt these reflex behaviors to perform optimally under novel circumstances that are sustained over time. Because of this and the fact that the eye is relatively insensitive to fatigue and musculoskeletal aging effects, CEMs form an ideal motor system to assess aging effects on cerebellar motor learning. In the present study, we performed an extensive behavioral examination of the impact of aging on both basic CEMs and oculomotor-based learning paradigms spanning multiple days. Our data show that healthy aging has little to no effect on basic CEM performance despite sensory deterioration, suggesting a central compensatory mechanism. Young mice are capable of adapting their oculomotor output to novel conditions rapidly and accurately, even to the point of reversing the direction of the reflex entirely. However, oculomotor learning and consolidation capabilities show a progressive decay as age increases.
Collapse
Affiliation(s)
- Nicolas Gutierrez-Castellanos
- Department of Cerebellar Coordination & Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
30
|
4-aminopyridine does not enhance flocculus function in tottering, a mouse model of vestibulocerebellar dysfunction and ataxia. PLoS One 2013; 8:e57895. [PMID: 23451282 PMCID: PMC3581497 DOI: 10.1371/journal.pone.0057895] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/27/2013] [Indexed: 01/06/2023] Open
Abstract
The potassium channel antagonist 4-aminopyridine (4-AP) improves a variety of motor abnormalities associated with disorders of the cerebellum. The most rigorous quantitative data relate to 4-AP's ability to improve eye movement deficits in humans referable to dysfunction of the cerebellar flocculus. Largely based on work in the ataxic mouse mutant tottering (which carries a mutation of the Cacna1a gene of the P/Q voltage-activated calcium channel), 4-AP is hypothesized to function by enhancing excitability or rhythmicity of floccular Purkinje cells. We tested this hypothesis by determining whether systemic or intrafloccular administration of 4-AP would ameliorate the eye movement deficits in tottering that are attributable to flocculus dysfunction, including the reductions in amplitude of the yaw-axis vestibulo-ocular reflex (VOR) and vision-enhanced vestibulo-ocular reflex (VVOR), and the optokinetic reflex (OKR) about yaw and roll axes. Because tottering's deficits increase with age, both young and elderly mutants were tested to detect any age-dependent 4-AP effects. 4-AP failed to improve VOR, VVOR, and OKR gains during sinusoidal stimuli, although it may have reduced the tendency of the mutants' responses to VOR and VVOR to decline over the course of a one-hour recording session. For constant-velocity optokinetic stimuli, 4-AP generated some enhancement of yaw OKR and upward-directed roll OKR, but the effects were also seen in normal C57BL/6 controls, and thus do not represent a specific reversal of the electrophysiological consequences of the tottering mutation. Data support a possible extra-floccular locus for the effects of 4-AP on habituation and roll OKR. Unilateral intrafloccular 4-AP injections did not affect ocular motility, except to generate mild eye elevations, consistent with reduced floccular output. Because 4-AP did not produce the effects expected if it normalized outputs of floccular Purkinje cells, there is a need for further studies to elucidate the drug's mechanism of action on cerebellar motor dysfunction.
Collapse
|
31
|
Stahl JS, Thumser ZC, Oommen BS. The ataxic mouse as a model for studying downbeat nystagmus. J Vestib Res 2013; 22:221-41. [PMID: 23302704 DOI: 10.3233/ves-120463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Downbeat nystagmus (DBN) is a common eye movement complication of cerebellar disease. Use of mice to study pathophysiology of vestibulocerebellar disease is increasing, but it is unclear if mice can be used to study DBN; it has not been reported in this species. We determined whether DBN occurs in the ataxic mutant tottering, which carries a mutation in the Cacna1a gene for P/Q calcium channels. Spontaneous DBN occurred only rarely, and its magnitude did not exhibit the relationship to head tilt seen in human patients. DBN during yaw rotation was more common and shares some properties with the tilt-independent, gaze-independent component of human DBN, but differs in its dependence on vision. Hyperactivity of otolith circuits responding to pitch tilts is hypothesized to contribute to the gaze-independent component of human DBN. Mutants exhibited hyperactivity of the tilt maculo-ocular reflex (tiltMOR) in pitch. The hyperactivity may serve as a surrogate for DBN in mouse studies. TiltMOR hyperactivity correlates with hyperdeviation of the eyes and upward deviation of the head during ambulation; these may be alternative surrogates. Muscimol inactivation of the cerebellar flocculus suggests a floccular role in the tiltMOR hyperactivity and provides insight into the rarity of frank DBN in ataxic mice.
Collapse
Affiliation(s)
- John S Stahl
- Neurology Division, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA.
| | | | | |
Collapse
|
32
|
Glycine receptor deficiency and its effect on the horizontal vestibulo-ocular reflex: a study on the SPD1J mouse. J Assoc Res Otolaryngol 2013; 14:249-59. [PMID: 23296843 DOI: 10.1007/s10162-012-0368-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 12/17/2012] [Indexed: 01/07/2023] Open
Abstract
Inhibition is critical in the pathways controlling the vestibulo-ocular reflex (VOR) and plays a central role in the precision, accuracy and speed of this important vestibular-mediated compensatory eye movement. While γ-aminobutyric acid is the common fast inhibitory neurotransmitter in most of the VOR microcircuits, glycine is also found in key elements. For example, the omnidirectional pause neurons (OPNs) and inhibitory burst neurons in the horizontal VOR both use glycine as their preferred inhibitory neurotransmitter. Determining the precise contribution of glycine to the VOR pathway has been difficult due to the lack of selective tools; however, we used spasmodic mice that have a naturally occurring defect in the glycine receptor (GlyR) that reduces glycinergic transmission. Using this animal model, we compared the horizontal VOR in affected animals with unaffected controls. Our data showed that initial latency and initial peak velocity as well as slow-phase eye movements were unaffected by reduced glycinergic transmission. Importantly however, there were significant effects on quick-phase activity, substantially reducing their number (30-70 %), amplitude (~55 %) and peak velocity (~38 %). We suggest that the OPNs were primarily responsible for the reduced quick-phase properties, since they are part of an unmodifiable, or more 'hard-wired', microcircuit. In contrast, the effects of reduced glycinergic transmission on slow-phases were likely ameliorated by the intrinsically modifiable nature of this pathway. Our results also suggested there is a 'threshold' in GlyR-affected animals, below which the effects of reduced glycinergic transmission were undetected.
Collapse
|
33
|
Gao Z, van Beugen BJ, De Zeeuw CI. Distributed synergistic plasticity and cerebellar learning. Nat Rev Neurosci 2012; 13:619-35. [PMID: 22895474 DOI: 10.1038/nrn3312] [Citation(s) in RCA: 354] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Studies on synaptic plasticity in the context of learning have been dominated by the view that a single, particular type of plasticity forms the underlying mechanism for a particular type of learning. However, emerging evidence shows that many forms of synaptic and intrinsic plasticity at different sites are induced conjunctively during procedural memory formation in the cerebellum. Here, we review the main forms of long-term plasticity in the cerebellar cortex that underlie motor learning. We propose that the different forms of plasticity in the granular layer and the molecular layer operate synergistically in a temporally and spatially distributed manner, so as to ultimately create optimal output for behaviour.
Collapse
Affiliation(s)
- Zhenyu Gao
- Department of Neuroscience, Erasmus Medical Center, 3000 DR Rotterdam, The Netherlands
| | | | | |
Collapse
|
34
|
Stahl JS, Thumser ZC. Dynamics of abducens nucleus neurons in the awake mouse. J Neurophysiol 2012; 108:2509-23. [PMID: 22896719 DOI: 10.1152/jn.00249.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The mechanics of the eyeball and orbital tissues (the "ocular motor plant") are a fundamental determinant of ocular motor signal processing. The mouse is used increasingly in ocular motor physiology, but little is known about its plant mechanics. One way to characterize the mechanics is to determine relationships between extraocular motoneuron firing and eye movement. We recorded abducens nucleus neurons in mice executing compensatory eye movements during 0.1- to 1.6-Hz oscillation in the light. We analyzed firing rates to extract eye position and eye velocity sensitivities, from which we determined time constants of a viscoelastic model of the plant. The majority of abducens neurons were already active with the eye in its central rest position, with only 6% recruited at more abducted positions. Firing rates exhibited largely linear relationships to eye movement, although there was a nonlinearity consisting of increasing modulation in proportion to eye movement as eye amplitudes became small (due to reduced stimulus amplitude or reduced alertness). Eye position and velocity sensitivities changed with stimulus frequency as expected for an ocular motor plant dominated by cascaded viscoelasticities. Transfer function poles lay at approximately 0.1 and 0.9 s. Compared with previously studied animal species, the mouse plant is stiffer than the rabbit but laxer than cat and rhesus. Differences between mouse and rabbit can be explained by scaling for eye size (allometry). Differences between the mouse and cat or rhesus can be explained by differing ocular motor repertoires of animals with and without a fovea or area centralis.
Collapse
Affiliation(s)
- John S Stahl
- Neurology Division, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA.
| | | |
Collapse
|
35
|
Abstract
Eye movements are very important in order to track an object or to stabilize an image on the retina during movement. Animals without a fovea, such as the mouse, have a limited capacity to lock their eyes onto a target. In contrast to these target directed eye movements, compensatory ocular eye movements are easily elicited in afoveate animals1,2,3,4. Compensatory ocular movements are generated by processing vestibular and optokinetic information into a command signal that will drive the eye muscles. The processing of the vestibular and optokinetic information can be investigated separately and together, allowing the specification of a deficit in the oculomotor system. The oculomotor system can be tested by evoking an optokinetic reflex (OKR), vestibulo-ocular reflex (VOR) or a visually-enhanced vestibulo-ocular reflex (VVOR). The OKR is a reflex movement that compensates for "full-field" image movements on the retina, whereas the VOR is a reflex eye movement that compensates head movements. The VVOR is a reflex eye movement that uses both vestibular as well as optokinetic information to make the appropriate compensation. The cerebellum monitors and is able to adjust these compensatory eye movements. Therefore, oculography is a very powerful tool to investigate brain-behavior relationship under normal as well as under pathological conditions (f.e. of vestibular, ocular and/or cerebellar origin). Testing the oculomotor system, as a behavioral paradigm, is interesting for several reasons. First, the oculomotor system is a well understood neural system5. Second, the oculomotor system is relative simple6; the amount of possible eye movement is limited by its ball-in-socket architecture ("single joint") and the three pairs of extra-ocular muscles7. Third, the behavioral output and sensory input can easily be measured, which makes this a highly accessible system for quantitative analysis8. Many behavioral tests lack this high level of quantitative power. And finally, both performance as well as plasticity of the oculomotor system can be tested, allowing research on learning and memory processes9. Genetically modified mice are nowadays widely available and they form an important source for the exploration of brain functions at various levels10. In addition, they can be used as models to mimic human diseases. Applying oculography on normal, pharmacologically-treated or genetically modified mice is a powerful research tool to explore the underlying physiology of motor behaviors under normal and pathological conditions. Here, we describe how to measure video-oculography in mice8.
Collapse
Affiliation(s)
- Marcel de Jeu
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.
| | | |
Collapse
|
36
|
Seja P, Schonewille M, Spitzmaul G, Badura A, Klein I, Rudhard Y, Wisden W, Hübner CA, De Zeeuw CI, Jentsch TJ. Raising cytosolic Cl- in cerebellar granule cells affects their excitability and vestibulo-ocular learning. EMBO J 2012; 31:1217-30. [PMID: 22252133 PMCID: PMC3297995 DOI: 10.1038/emboj.2011.488] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 12/06/2011] [Indexed: 11/09/2022] Open
Abstract
Cerebellar cortical throughput involved in motor control comprises granule cells (GCs) and Purkinje cells (PCs), both of which receive inhibitory GABAergic input from interneurons. The GABAergic input to PCs is essential for learning and consolidation of the vestibulo-ocular reflex, but the role of GC excitability remains unclear. We now disrupted the Kcc2 K-Cl cotransporter specifically in either cell type to manipulate their excitability and inhibition by GABA(A)-receptor Cl(-) channels. Although Kcc2 may have a morphogenic role in synapse development, Kcc2 disruption neither changed synapse density nor spine morphology. In both GCs and PCs, disruption of Kcc2, but not Kcc3, increased [Cl(-)](i) roughly two-fold. The reduced Cl(-) gradient nearly abolished GABA-induced hyperpolarization in PCs, but in GCs it merely affected excitability by membrane depolarization. Ablation of Kcc2 from GCs impaired consolidation of long-term phase learning of the vestibulo-ocular reflex, whereas baseline performance, short-term gain-decrease learning and gain consolidation remained intact. These functions, however, were affected by disruption of Kcc2 in PCs. GC excitability plays a previously unknown, but specific role in consolidation of phase learning.
Collapse
Affiliation(s)
- Patricia Seja
- Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | | | - Guillermo Spitzmaul
- Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | | | - Ilse Klein
- Zentrum für Molekulare Neurobiologie (ZMNH), Universität Hamburg, Hamburg, Germany
| | - York Rudhard
- Zentrum für Molekulare Neurobiologie (ZMNH), Universität Hamburg, Hamburg, Germany
| | | | - Christian A Hübner
- Zentrum für Molekulare Neurobiologie (ZMNH), Universität Hamburg, Hamburg, Germany
- Institut für Humangenetik, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Thomas J Jentsch
- Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
- Zentrum für Molekulare Neurobiologie (ZMNH), Universität Hamburg, Hamburg, Germany
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
37
|
Spoor M, Nagtegaal AP, Ridwan Y, Borgesius NZ, van Alphen B, van der Pluijm I, Hoeijmakers JH, Frens MA, Borst JGG. Accelerated loss of hearing and vision in the DNA-repair deficient Ercc1δ/− mouse. Mech Ageing Dev 2012; 133:59-67. [DOI: 10.1016/j.mad.2011.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 12/04/2011] [Accepted: 12/26/2011] [Indexed: 12/21/2022]
|
38
|
Characterization of the 3D angular vestibulo-ocular reflex in C57BL6 mice. Exp Brain Res 2010; 210:489-501. [PMID: 21190017 DOI: 10.1007/s00221-010-2521-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 12/07/2010] [Indexed: 01/07/2023]
Abstract
We characterized the three-dimensional angular vestibulo-ocular reflex (3D aVOR) of adult C57BL6 mice during static tilt testing, sinusoidal, and high-acceleration rotations and compared it with that of another lateral-eyed mammal with afoveate retinae (chinchilla) and two primate species with forward eye orientation and retinal foveae (human and squirrel monkey). Noting that visual acuity in mice is poor compared to chinchillas and even worse compared to primates, we hypothesized that the mouse 3D aVOR would be relatively low in gain (eye-velocity/head-velocity) compared to other species and would fall off for combinations of head rotation velocity and frequency for which peak-to-peak position changes fall below the minimum visual angle resolvable by mice. We also predicted that as in chinchilla, the mouse 3D aVOR would be more isotropic (eye/head velocity gain independent of head rotation axis) and better aligned with the axis of head rotation than the 3D aVOR of primates. In 12 adult C57BL6 mice, binocular 3D eye movements were measured in darkness during whole-body static tilts, 20-100°/s whole-body sinusoidal rotations (0.02-10 Hz) and acceleration steps of 3,000°/s² to a 150°/s plateau (dominant spectral content 8-12 Hz). Our results show that the mouse has a robust static tilt counter-roll response gain of ~0.35 (eye-position Δ/head-position Δ) and mid-frequency aVOR gain (~0.6-0.8), but relatively low aVOR gain for high-frequency sinusoidal head rotations and for steps of head rotation acceleration (~0.5). Due to comparatively poor static visual acuity in the mouse, a perfectly compensatory 3D aVOR would confer relatively little benefit during high-frequency, low-amplitude movements. Therefore, our data suggest that the adaptive drive for maintaining a compensatory 3D aVOR depends on the static visual acuity in different species. Like chinchillas, mice have a much more nearly isotropic 3D aVOR than do the primates for which comparable data are available. Relatively greater isotropy in lateral-eyed species without retinal foveae (e.g., mice and chinchillas in the present study) compared to forward-eyed species with retinal foveae (e.g., squirrel monkeys and humans) suggests that the parallel resting optic axes and/or radially symmetric retinal foveae of primates underlie their characteristically low 3D aVOR gain for roll head rotations.
Collapse
|
39
|
Stahl JS, Oommen BS. Eye hyperdeviation in mouse cerebellar mutants is comparable to the gravity-dependent component of human downbeat nystagmus. PROGRESS IN BRAIN RESEARCH 2009; 171:503-8. [PMID: 18718346 DOI: 10.1016/s0079-6123(08)00672-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Humans with cerebellar degeneration commonly exhibit downbeat nystagmus (DBN). DBN has gravity-independent and -dependent components, and the latter has been proposed to reflect hyperactive tilt maculo-ocular reflexes (tilt-MOR). Mice with genetically determined cerebellar ataxia do not exhibit DBN, but they do exhibit tonic hyperdeviation of the eyes, which we have proposed to be the DBN equivalent. As such, the tilt-MOR might be predicted to be hyperactive in these mutant mice. We measured the tilt-MOR in 10 normal C57BL/6 mice and in 6 tottering, a mutant exhibiting ataxia and ocular motor abnormalities due to mutation of the P/Q calcium channel. Awake mice were placed in body orientations spanning 360 degrees about the pitch axis. The absolute, equilibrium vertical angular deviations of one eye were measured using infrared videooculography. In both strains, eye elevation varied quasi-sinusoidally with tilt angle in the range of 90 degrees nose-up to 90 degrees nose-down. Beyond this range the eye returned to a neutral position. Deviation over +/-30 degrees of tilt was an approximately linear function of the projection of the gravity vector into the animal's horizontal plane, and can thus be summarized by its slope (sensitivity). Sensitivity measured 14.9 degrees/g for C57BL/6 and 20.3 degrees/g for tottering, a statistically significant difference. Thus the pitch otolithic reflex of the ataxic mutants is hyperactive relative to controls and could explain tonic hyperdeviation of the eyes, consistent with the idea that the tonic hyperdeviation is analogous to DBN.
Collapse
Affiliation(s)
- John S Stahl
- Department of Neurology, Case Western Reserve University School of Medicine, OH, USA.
| | | |
Collapse
|
40
|
Purkinje cell input to cerebellar nuclei in tottering: ultrastructure and physiology. THE CEREBELLUM 2008; 7:547-58. [PMID: 19082682 DOI: 10.1007/s12311-008-0086-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Accepted: 11/17/2008] [Indexed: 10/21/2022]
Abstract
Homozygous tottering mice are spontaneous ataxic mutants, which carry a mutation in the gene encoding the ion pore of the P/Q-type voltage-gated calcium channels. P/Q-type calcium channels are prominently expressed in Purkinje cell terminals, but it is unknown to what extent these inhibitory terminals in tottering mice are affected at the morphological and electrophysiological level. Here, we investigated the distribution and ultrastructure of their Purkinje cell terminals in the cerebellar nuclei as well as the activities of their target neurons. The densities of Purkinje cell terminals and their synapses were not significantly affected in the mutants. However, the Purkinje cell terminals were enlarged and had an increased number of vacuoles, whorled bodies, and mitochondria. These differences started to occur between 3 and 5 weeks of age and persisted throughout adulthood. Stimulation of Purkinje cells in adult tottering mice resulted in inhibition at normal latencies, but the activities of their postsynaptic neurons in the cerebellar nuclei were abnormal in that the frequency and irregularity of their spiking patterns were enhanced. Thus, although the number of their terminals and their synaptic contacts appear quantitatively intact, Purkinje cells in tottering mice show several signs of axonal damage that may contribute to altered postsynaptic activities in the cerebellar nuclei.
Collapse
|
41
|
Katoh A, Chapman PJ, Raymond JL. Disruption of learned timing in P/Q calcium channel mutants. PLoS One 2008; 3:e3635. [PMID: 18982062 PMCID: PMC2572847 DOI: 10.1371/journal.pone.0003635] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 10/02/2008] [Indexed: 11/27/2022] Open
Abstract
To optimize motor performance, both the amplitude and temporal properties of movements should be modifiable by motor learning. Here we report that the modification of movement timing is highly dependent on signaling through P/Q-type voltage-dependent calcium channels. Two lines of mutant mice heterozygous for P/Q-type voltage-dependent calcium channels exhibited impaired plasticity of eye movement timing, but relatively intact plasticity of movement amplitude during motor learning in the vestibulo-ocular reflex. The results thus demonstrate a distinction between the molecular signaling pathways regulating the timing versus amplitude of movements.
Collapse
Affiliation(s)
- Akira Katoh
- Department of Neurobiology, Stanford University, Stanford, California, United States of America
| | - Peter J. Chapman
- Department of Neurobiology, Stanford University, Stanford, California, United States of America
| | - Jennifer L. Raymond
- Department of Neurobiology, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
The optokinetic reflex as a tool for quantitative analyses of nervous system function in mice: application to genetic and drug-induced variation. PLoS One 2008; 3:e2055. [PMID: 18446207 PMCID: PMC2323102 DOI: 10.1371/journal.pone.0002055] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 02/27/2008] [Indexed: 11/19/2022] Open
Abstract
The optokinetic reflex (OKR), which serves to stabilize a moving image on the retina, is a behavioral response that has many favorable attributes as a test of CNS function. The OKR requires no training, assesses the function of diverse CNS circuits, can be induced repeatedly with minimal fatigue or adaptation, and produces an electronic record that is readily and objectively quantifiable. We describe a new type of OKR test apparatus in which computer-controlled visual stimuli and streamlined data analysis facilitate a relatively high throughput behavioral assay. We used this apparatus, in conjunction with infrared imaging, to quantify basic OKR stimulus-response characteristics for C57BL/6J and 129/SvEv mouse strains and for genetically engineered lines lacking one or more photoreceptor systems or with an alteration in cone spectral sensitivity. A second generation (F2) cross shows that the characteristic difference in OKR frequency between C57BL/6J and 129/SvEv is inherited as a polygenic trait. Finally, we demonstrate the sensitivity and high temporal resolution of the OKR for quantitative analysis of CNS drug action. These experiments show that the mouse OKR is well suited for neurologic testing in the context of drug discovery and large-scale phenotyping programs.
Collapse
|
43
|
Oommen BS, Stahl JS. Eye orientation during static tilts and its relationship to spontaneous head pitch in the laboratory mouse. Brain Res 2007; 1193:57-66. [PMID: 18178173 DOI: 10.1016/j.brainres.2007.11.053] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Revised: 11/20/2007] [Accepted: 11/20/2007] [Indexed: 10/22/2022]
Abstract
Both eye position and head orientation are influenced by the macular (otolith) organs, via the tilt maculo-ocular reflex (tiltMOR) and the vestibulo-collic reflexes, respectively. The mechanisms that control head position also influence the rest position of the eye because head orientation influences eye position through the tiltMOR. Despite the increasing popularity of mice for studies of vestibular and ocular motor functions, relatively little is known in this species about tiltMOR, spontaneous orientation of the head, and their interrelationship. We used 2D video oculography to determine in C57BL/6 mice the absolute horizontal and vertical positions of the eyes over body orientations spanning 360 degrees about the pitch and roll axes. We also determined head pitch during ambulation in the same animals. Eye elevation varied approximately sinusoidally as functions of pitch or roll angle. Over the central +/-30 degrees of pitch, sensitivity and gain in the light were 31.7 degrees/g and 0.53, respectively. The corresponding values for roll were 31.5 degrees/g and 0.52. Absolute positions adopted in light and darkness differed only slightly. During ambulation, mice carried the lambda-bregma plane at a downward pitch of 29 degrees , corresponding to a horizontal eye position of 64 degrees and a vertical eye position of 22 degrees . The vertical position is near the center of the range of eye movements produced by the pitch tiltMOR. The results indicate that the tiltMOR is robust in this species and favor standardizing pitch orientation across laboratories. The robust tiltMOR also has significant methodological implications for the practice of pupil-tracking video oculography in this species.
Collapse
Affiliation(s)
- Brian S Oommen
- Case Western Reserve University School of Medicine, Cleveland, OH 44106-5040, USA
| | | |
Collapse
|
44
|
Rett D. Gaze-evoked nystagmus: A case report and literature review. ACTA ACUST UNITED AC 2007; 78:460-4. [PMID: 17765857 DOI: 10.1016/j.optm.2007.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Revised: 11/27/2006] [Accepted: 02/12/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND A sustained gaze-evoked nystagmus (GEN) is an important ocular finding that may indicate serious neurologic pathology. It is also a finding that can be missed easily during routine extraocular muscle (EOM) testing. This report presents a case that should familiarize the reader with GEN and presents a novel approach to testing EOM function. CASE REPORT The mother of an otherwise healthy 4-year-old girl noted that her daughter's eyes crossed occasionally, the right lid drooped on one occasion, and she had been having strange headaches. An asymmetric, sustained, gaze-evoked nystagmus was detected using a different approach to EOM testing. Magnetic resonance imaging found a large, brainstem astrocytoma in the cerebellar-pontine angle. CONCLUSION EOM function often is overlooked or underperformed but is an important part of the battery of clinical tests to rule out neurologic problems. Most forms of EOM testing will check for muscle palsies but little else. If the time is taken to extend the patient's gaze to the extreme ends, to attempt to hold the gaze in all 9 positions, and to maintain an accurate speed, the clinician can stand to gain much more information regarding the neurologic system.
Collapse
Affiliation(s)
- Doug Rett
- Boston Veterans Affairs Medical Center, Boston, Massachusetts, USA.
| |
Collapse
|
45
|
Katoh A, Jindal JA, Raymond JL. Motor Deficits in Homozygous and Heterozygous P/Q-Type Calcium Channel Mutants. J Neurophysiol 2007; 97:1280-7. [PMID: 17005620 DOI: 10.1152/jn.00322.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
P/Q-type voltage-dependent Ca2+channels (VDCCs) are highly expressed in the cerebellum, and mutations of these channels are associated with disrupted motor function. Several allelic variants of the α1A pore-forming subunit of P/Q-type VDCCs have been described, and mice homozygous for these mutations exhibit gait ataxia, as do α1A knockout mice. Here we report that heterozygous α1A mutants also have a motor phenotype. Mice heterozygous for the leaner and α1A knockout mutations exhibit impaired motor learning in the vestibulo-ocular reflex (VOR), suggesting that subtle disruption of P/Q Ca2+currents is sufficient to disrupt motor function. Basal VOR and optokinetic reflex performance were normal in the heterozygotes but severely impaired in the leaner and α1A knockout homozygotes.
Collapse
Affiliation(s)
- Akira Katoh
- Department of Neurobiology, Stanford University, 299 W. Campus Drive, Stanford, CA 94305-5125, USA
| | | | | |
Collapse
|