1
|
Costalunga G, Vallentin D, Benichov JI. A neuroethological view of the multifaceted sensory influences on birdsong. Curr Opin Neurobiol 2024; 86:102867. [PMID: 38520789 DOI: 10.1016/j.conb.2024.102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/13/2024] [Accepted: 03/07/2024] [Indexed: 03/25/2024]
Abstract
Learning and execution of complex motor skills are often modulated by sensory feedback and contextual cues arriving across multiple sensory modalities. Vocal motor behaviors, in particular, are primarily influenced by auditory inputs, both during learning and mature vocal production. The importance of auditory input in shaping vocal output has been investigated in several songbird species that acquire their adult song based on auditory exposure to a tutor during development. Recent studies have highlighted the influences of stimuli arriving through other sensory channels in juvenile song learning and in adult song production. Here, we review changes induced by diverse sensory stimuli during the song learning process and the production of adult song, considering the neuroethological significance of sensory channels in different species of songbirds. Additionally, we highlight advances, open questions, and possible future approaches for understanding the neural circuits that enable the multimodal shaping of singing behavior.
Collapse
Affiliation(s)
- Giacomo Costalunga
- Max Planck Institute for Biological Intelligence, 82319, Seewiesen, Germany
| | - Daniela Vallentin
- Max Planck Institute for Biological Intelligence, 82319, Seewiesen, Germany.
| | | |
Collapse
|
2
|
Roeser A, Gadagkar V, Das A, Puzerey PA, Kardon B, Goldberg JH. Dopaminergic error signals retune to social feedback during courtship. Nature 2023; 623:375-380. [PMID: 37758948 PMCID: PMC11171440 DOI: 10.1038/s41586-023-06580-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Hunger, thirst, loneliness and ambition determine the reward value of food, water, social interaction and performance outcome1. Dopamine neurons respond to rewards meeting these diverse needs2-8, but it remains unclear how behaviour and dopamine signals change as priorities change with new opportunities in the environment. One possibility is that dopamine signals for distinct drives are routed to distinct dopamine pathways9,10. Another possibility is that dopamine signals in a given pathway are dynamically tuned to rewards set by the current priority. Here we used electrophysiology and fibre photometry to test how dopamine signals associated with quenching thirst, singing a good song and courting a mate change as male zebra finches (Taeniopygia guttata) were provided with opportunities to retrieve water, evaluate song performance or court a female. When alone, water reward signals were observed in two mesostriatal pathways but singing-related performance error signals were routed to Area X, a striatal nucleus specialized for singing. When courting a female, water seeking was reduced and dopamine responses to both water and song performance outcomes diminished. Instead, dopamine signals in Area X were driven by female calls timed with the courtship song. Thus the dopamine system handled coexisting drives by routing vocal performance and social feedback signals to a striatal area for communication and by flexibly re-tuning to rewards set by the prioritized drive.
Collapse
Affiliation(s)
- Andrea Roeser
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Vikram Gadagkar
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| | - Anindita Das
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Pavel A Puzerey
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Brian Kardon
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Jesse H Goldberg
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
3
|
Haakenson CM, Balthazart J, Madison FN, Ball GF. The neural distribution of the avian homologue of oxytocin, mesotocin, in two songbird species, the zebra finch and the canary: A potential role in song perception and production. J Comp Neurol 2022; 530:2402-2414. [PMID: 35599378 PMCID: PMC9283256 DOI: 10.1002/cne.25338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/10/2022]
Abstract
The avian homologue of oxytocin (OT), formerly called mesotocin, influences social behaviors in songbirds and potentially song production. We sought to characterize the distribution of OT peptide in the brain of two songbird species: canaries (Serinus canaria) and zebra finches (Taeniopygia guttata). To visualize OT, we performed immunocytochemistry using an antibody previously shown to identify OT in avian species. In both canaries and zebra finches, dense OT-ir perikarya were located in the paraventricular nucleus (PVN), preoptic area (POA), supraoptic nucleus (SON), and medial bed nucleus of the stria terminalis (BNSTm). We also observed morphologically distinct OT-ir cells scattered throughout the mesopallium. OT-ir fibers were observed in the PVN, ventral medial hypothalamus (VMH), periaqueductal gray (PAG), intercollicular nucleus (ICo), and ventral tegmental area (VTA). We also observed punctate OT-ir fibers in the song control nucleus HVC. In both male and female canaries, OT-ir fibers were present in the lateral septum (LS), but innervation was greater in males. We did not observe this sex difference in zebra finches. Much of the OT staining observed is consistent with general distributions within the vertebrate hypothalamus, indicating a possible conserved function. However, some extra-hypothalamic distributions, such as perikarya in the mesopallium, may be specific to songbirds and play a role in song perception and production. The presence of OT-ir fibers in HVC and song control nuclei projecting dopaminergic regions provides anatomical evidence in support of the idea that OT can influence singing behavior-either directly via HVC or indirectly via the PAG, VTA, or POA.
Collapse
Affiliation(s)
- Chelsea M. Haakenson
- Program in Neuroscience and Cognitive Science, Department of PsychologyUniversity of MarylandCollege ParkMarylandUSA
| | - Jacques Balthazart
- Laboratory of Behavioral Neuroendocrinology, GIGA NeurosciencesUniversity of LiegeLiegeBelgium
| | - Farrah N. Madison
- Program in Neuroscience and Cognitive Science, Department of PsychologyUniversity of MarylandCollege ParkMarylandUSA
- Department of BiologyHope CollegeHollandMichiganUSA
| | - Gregory F. Ball
- Program in Neuroscience and Cognitive Science, Department of PsychologyUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
4
|
Isola GR, Vochin A, Sakata JT. Manipulations of inhibition in cortical circuitry differentially affect spectral and temporal features of Bengalese finch song. J Neurophysiol 2020; 123:815-830. [PMID: 31967928 DOI: 10.1152/jn.00142.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The interplay between inhibition and excitation can regulate behavioral expression and control, including the expression of communicative behaviors like birdsong. Computational models postulate varying degrees to which inhibition within vocal motor circuitry influences birdsong, but few studies have tested these models by manipulating inhibition. Here we enhanced and attenuated inhibition in the cortical nucleus HVC (used as proper name) of Bengalese finches (Lonchura striata var. domestica). Enhancement of inhibition (with muscimol) in HVC dose-dependently reduced the amount of song produced. Infusions of higher concentrations of muscimol caused some birds to produce spectrally degraded songs, whereas infusions of lower doses of muscimol led to the production of relatively normal (nondegraded) songs. However, the spectral and temporal structures of these nondegraded songs were significantly different from songs produced under control conditions. In particular, muscimol infusions decreased the frequency and amplitude of syllables, increased various measures of acoustic entropy, and increased the variability of syllable structure. Muscimol also increased sequence durations and the variability of syllable timing and syllable sequencing. Attenuation of inhibition (with bicuculline) in HVC led to changes to song distinct from and often opposite to enhancing inhibition. For example, in contrast to muscimol, bicuculline infusions increased syllable amplitude, frequency, and duration and decreased the variability of acoustic features. However, like muscimol, bicuculline increased the variability of syllable sequencing. These data highlight the importance of inhibition to the production of stereotyped vocalizations and demonstrate that changes to neural dynamics within cortical circuitry can differentially affect spectral and temporal features of song.NEW & NOTEWORTHY We reveal that manipulations of inhibition in the cortical nucleus HVC affect the structure, timing, and sequencing of syllables in Bengalese finch song. Enhancing and blocking inhibition led to opposite changes to the acoustic structure and timing of vocalizations, but both caused similar changes to vocal sequencing. These data provide support for computational models of song control but also motivate refinement of existing models to account for differential effects on syllable structure, timing, and sequencing.
Collapse
Affiliation(s)
- Gaurav R Isola
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Anca Vochin
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Centre for Research on Brain, Language, and Music, Montreal, Quebec, Canada.,Center for Studies in Behavioral Neurobiology, Montreal, Quebec, Canada
| |
Collapse
|
5
|
James LS, Sakata JT. Developmental modulation and predictability of age-dependent vocal plasticity in adult zebra finches. Brain Res 2019; 1721:146336. [PMID: 31310739 DOI: 10.1016/j.brainres.2019.146336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023]
Abstract
Predicting the nature of behavioral plasticity can provide insight into mechanisms of behavioral expression and control. Songbirds like the zebra finch rely on vocal signals for communication, and the performance of these signals demonstrate considerable plasticity over development. Traditionally, these signals were thought to be fixed in adulthood, but recent studies have revealed significant age-dependent changes to spectral and temporal features of song in adult songbirds. A number of age-dependent changes to song resemble acute changes to adult song performance across social contexts (e.g., when an adult male sings to a female relative to when he sings in isolation). The ability of variation in social context-dependent changes to predict variation in age-dependent plasticity would suggest shared mechanisms, but little is known about this predictability. In addition, although developmental experiences can shape adult plasticity, little is known about the extent to which social interactions during development affect age-dependent change to adult song. To this end, we systematically analyzed age- and context-dependent changes to adult zebra finch song, and then examined the degree to which age-dependent changes varied across birds that were social or non-socially tutored birds and to which social context-dependent changes predicted age-dependent changes. Non-socially tutored birds showed more dramatic changes to the broad structure of their motif over time than socially tutored birds, but non-socially and socially tutored birds did not differ in the extent of changes to various spectral and temporal features of song. Overall, we found that adult zebra finches produced longer and more spectrally stereotyped songs when they were older than when they were younger. Moreover, regardless of developmental tutoring, individual variation in age-dependent changes to song bout duration and syllable repetition were predicted by variation in social context-dependent changes to these features. These data indicate that social experiences during development can shape some aspects of adult plasticity and that acute context-dependent and long-term age-dependent changes to some song features could be mediated by modifications within similar neural substrates.
Collapse
Affiliation(s)
- Logan S James
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada; Centre for Research for Brain, Language, and Music, Montreal, QC H3G 2A8, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada; Centre for Research for Brain, Language, and Music, Montreal, QC H3G 2A8, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
6
|
Troyer TW, Brainard MS, Bouchard KE. Timing during transitions in Bengalese finch song: implications for motor sequencing. J Neurophysiol 2017. [PMID: 28637816 DOI: 10.1152/jn.00296.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To investigate mechanisms of action sequencing, we examined the relationship between timing and sequencing of syllables in Bengalese finch song. An individual's song comprises acoustically distinct syllables organized into probabilistic sequences: a given syllable potentially can transition to several different syllables (divergence points), and several different syllables can transition to a given syllable (convergence points). In agreement with previous studies, we found that more probable transitions at divergence points occur with shorter intersyllable gaps. One intuition for this relationship is that selection between syllables reflects a competitive branching process, in which stronger links to one syllable lead to both higher probabilities and shorter latencies for transitions to that syllable vs. competing alternatives. However, we found that simulations of competitive race models result in overlapping winning-time distributions for competing outcomes and fail to replicate the strong negative correlation between probability and gap duration found in song data. Further investigation of song structure revealed strong positive correlation between gap durations for transitions that share a common convergent point. Such transitions are not related by a common competitive process, but instead reflect a common terminal syllable. In contrast to gap durations, transition probabilities were not correlated at convergence points. Together, our data suggest that syllable selection happens early during the gap, with gap timing determined chiefly by the latency to syllable initiation. This may result from a process in which probabilistic sequencing is first stabilized, followed by a shortening of the latency to syllables that are sung more often.NEW & NOTEWORTHY Bengalese finch songs consist of probabilistic sequences of syllables. Previous studies revealed a strong negative correlation between transition probability and the duration of intersyllable gaps. We show here that the negative correlation is inconsistent with previous suggestions that timing at syllable transitions is governed by a race between competing alternatives. Rather, the data suggest that syllable selection happens early during the gap, with gap timing determined chiefly by the latency to syllable initiation.
Collapse
Affiliation(s)
- Todd W Troyer
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio, San Antonio, Texas;
| | - Michael S Brainard
- Department of Physiology, University of California, San Francisco, California.,Howard Hughes Medical Institute, San Francisco, California; and
| | - Kristofer E Bouchard
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California
| |
Collapse
|
7
|
Murphy K, James LS, Sakata JT, Prather JF. Advantages of comparative studies in songbirds to understand the neural basis of sensorimotor integration. J Neurophysiol 2017; 118:800-816. [PMID: 28331007 DOI: 10.1152/jn.00623.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 11/22/2022] Open
Abstract
Sensorimotor integration is the process through which the nervous system creates a link between motor commands and associated sensory feedback. This process allows for the acquisition and refinement of many behaviors, including learned communication behaviors such as speech and birdsong. Consequently, it is important to understand fundamental mechanisms of sensorimotor integration, and comparative analyses of this process can provide vital insight. Songbirds offer a powerful comparative model system to study how the nervous system links motor and sensory information for learning and control. This is because the acquisition, maintenance, and control of birdsong critically depend on sensory feedback. Furthermore, there is an incredible diversity of song organizations across songbird species, ranging from songs with simple, stereotyped sequences to songs with complex sequencing of vocal gestures, as well as a wide diversity of song repertoire sizes. Despite this diversity, the neural circuitry for song learning, control, and maintenance remains highly similar across species. Here, we highlight the utility of songbirds for the analysis of sensorimotor integration and the insights about mechanisms of sensorimotor integration gained by comparing different songbird species. Key conclusions from this comparative analysis are that variation in song sequence complexity seems to covary with the strength of feedback signals in sensorimotor circuits and that sensorimotor circuits contain distinct representations of elements in the vocal repertoire, possibly enabling evolutionary variation in repertoire sizes. We conclude our review by highlighting important areas of research that could benefit from increased comparative focus, with particular emphasis on the integration of new technologies.
Collapse
Affiliation(s)
- Karagh Murphy
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming; and
| | - Logan S James
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Jonathan F Prather
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming; and
| |
Collapse
|
8
|
Zhang YS, Wittenbach JD, Jin DZ, Kozhevnikov AA. Temperature Manipulation in Songbird Brain Implicates the Premotor Nucleus HVC in Birdsong Syntax. J Neurosci 2017; 37:2600-2611. [PMID: 28159910 PMCID: PMC6596640 DOI: 10.1523/jneurosci.1827-16.2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 01/03/2017] [Accepted: 01/17/2017] [Indexed: 01/04/2023] Open
Abstract
Variable motor sequences of animals are often structured and can be described by probabilistic transition rules between action elements. Examples include the songs of many songbird species such as the Bengalese finch, which consist of stereotypical syllables sequenced according to probabilistic rules (song syntax). The neural mechanisms behind such rules are poorly understood. Here, we investigate where the song syntax is encoded in the brain of the Bengalese finch by rapidly and reversibly manipulating the temperature in the song production pathway. Cooling the premotor nucleus HVC (proper name) slows down the song tempo, consistent with the idea that HVC controls moment-to-moment timings of acoustic features in the syllables. More importantly, cooling HVC alters the transition probabilities between syllables. Cooling HVC reduces the number of repetitions of long-repeated syllables and increases the randomness of syllable sequences. In contrast, cooling the downstream motor area RA (robust nucleus of the acropallium), which is critical for singing, does not affect the song syntax. Unilateral cooling of HVC shows that control of syllables is mostly lateralized to the left HVC, whereas transition probabilities between the syllables can be affected by cooling HVC in either hemisphere to varying degrees. These results show that HVC is a key site for encoding song syntax in the Bengalese finch. HVC is thus involved both in encoding timings within syllables and in sequencing probabilistic transitions between syllables. Our finding suggests that probabilistic selections and fine-grained timings of action elements can be integrated within the same neural circuits.SIGNIFICANCE STATEMENT Many animal behaviors such as birdsong consist of variable sequences of discrete actions. Where and how the probabilistic rules of such sequences are encoded in the brain is poorly understood. We locally and reversibly cooled brain areas in songbirds during singing. Mild cooling of area HVC in the Bengalese finch brain-a premotor area homologous to the mammalian premotor cortex-alters the statistics of the syllable sequences, suggesting that HVC is critical for birdsong sequences. HVC is also known for controlling moment-to-moment timings within syllables. Our results show that timing and probabilistic sequencing of actions can share the same neural circuits in local brain areas.
Collapse
Affiliation(s)
| | | | - Dezhe Z Jin
- Department of Physics,
- Center for Neural Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
| | | |
Collapse
|
9
|
Zengin-Toktas Y, Woolley SC. Singing modulates parvalbumin interneurons throughout songbird forebrain vocal control circuitry. PLoS One 2017; 12:e0172944. [PMID: 28235074 PMCID: PMC5325550 DOI: 10.1371/journal.pone.0172944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 02/13/2017] [Indexed: 11/19/2022] Open
Abstract
Across species, the performance of vocal signals can be modulated by the social environment. Zebra finches, for example, adjust their song performance when singing to females ('female-directed' or FD song) compared to when singing in isolation ('undirected' or UD song). These changes are salient, as females prefer the FD song over the UD song. Despite the importance of these performance changes, the neural mechanisms underlying this social modulation remain poorly understood. Previous work in finches has established that expression of the immediate early gene EGR1 is increased during singing and modulated by social context within the vocal control circuitry. Here, we examined whether particular neural subpopulations within those vocal control regions exhibit similar modulations of EGR1 expression. We compared EGR1 expression in neurons expressing parvalbumin (PV), a calcium buffer that modulates network plasticity and homeostasis, among males that performed FD song, males that produced UD song, or males that did not sing. We found that, overall, singing but not social context significantly affected EGR1 expression in PV neurons throughout the vocal control nuclei. We observed differences in EGR1 expression between two classes of PV interneurons in the basal ganglia nucleus Area X. Additionally, we found that singing altered the amount of PV expression in neurons in HVC and Area X and that distinct PV interneuron types in Area X exhibited different patterns of modulation by singing. These data indicate that throughout the vocal control circuitry the singing-related regulation of EGR1 expression in PV neurons may be less influenced by social context than in other neuron types and raise the possibility of cell-type specific differences in plasticity and calcium buffering.
Collapse
|
10
|
Toccalino DC, Sun H, Sakata JT. Social Memory Formation Rapidly and Differentially Affects the Motivation and Performance of Vocal Communication Signals in the Bengalese Finch (Lonchura striata var. domestica). Front Behav Neurosci 2016; 10:113. [PMID: 27378868 PMCID: PMC4906024 DOI: 10.3389/fnbeh.2016.00113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/24/2016] [Indexed: 01/24/2023] Open
Abstract
Cognitive processes like the formation of social memories can shape the nature of social interactions between conspecifics. Male songbirds use vocal signals during courtship interactions with females, but the degree to which social memory and familiarity influences the likelihood and structure of male courtship song remains largely unknown. Using a habituation-dishabituation paradigm, we found that a single, brief (<30 s) exposure to a female led to the formation of a short-term memory for that female: adult male Bengalese finches were significantly less likely to produce courtship song to an individual female when re-exposed to her 5 min later (i.e., habituation). Familiarity also rapidly decreased the duration of courtship songs but did not affect other measures of song performance (e.g., song tempo and the stereotypy of syllable structure and sequencing). Consistent with a contribution of social memory to the decrease in courtship song with repeated exposures to the same female, the likelihood that male Bengalese finches produced courtship song increased when they were exposed to a different female (i.e., dishabituation). Three consecutive exposures to individual females also led to the formation of a longer-term memory that persisted over days. Specifically, when courtship song production was assessed 2 days after initial exposures to females, males produced fewer and shorter courtship songs to familiar females than to unfamiliar females. Measures of song performance, however, were not different between courtship songs produced to familiar and unfamiliar females. The formation of a longer-term memory for individual females seemed to require at least three exposures because males did not differentially produce courtship song to unfamiliar females and females that they had been exposed to only once or twice. Taken together, these data indicate that brief exposures to individual females led to the rapid formation and persistence of social memories and support the existence of distinct mechanisms underlying the motivation to produce and the performance of courtship song.
Collapse
Affiliation(s)
| | - Herie Sun
- Department of Biology, McGill University Montreal, QC, Canada
| | - Jon T Sakata
- Integrated Program in Neuroscience, McGill UniversityMontreal, QC, Canada; Department of Biology, McGill UniversityMontreal, QC, Canada; Center for Research in Behavioral NeurobiologyMontreal, QC, Canada
| |
Collapse
|
11
|
Complexity, Predictability and Time Homogeneity of Syntax in the Songs of Cassin's Vireo (Vireo cassinii). PLoS One 2016; 11:e0150822. [PMID: 27050537 PMCID: PMC4822860 DOI: 10.1371/journal.pone.0150822] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/20/2016] [Indexed: 11/19/2022] Open
Abstract
Many species of animals deliver vocalizations in sequences presumed to be governed by internal rules, though the nature and complexity of these syntactical rules have been investigated in relatively few species. Here I present an investigation into the song syntax of fourteen male Cassin's Vireos (Vireo cassinii), a species whose song sequences are highly temporally structured. I compare their song sequences to three candidate models of varying levels of complexity-zero-order, first-order and second-order Markov models-and employ novel methods to interpolate between these three models. A variety of analyses, including sequence simulations, Fisher's exact tests, and model likelihood analyses, showed that the songs of this species are too complex to be described by a zero-order or first-order Markov model. The model that best fit the data was intermediate in complexity between a first- and second-order model, though I also present evidence that some transition probabilities are conditioned on up to three preceding phrases. In addition, sequences were shown to be predictable with more than 54% accuracy overall, and predictability was positively correlated with the rate of song delivery. An assessment of the time homogeneity of syntax showed that transition probabilities between phrase types are largely stable over time, but that there was some evidence for modest changes in syntax within and between breeding seasons, a finding that I interpret to represent changes in breeding stage and social context rather than irreversible, secular shifts in syntax over time. These findings constitute a valuable addition to our understanding of bird song syntax in free-living birds, and will contribute to future attempts to understand the evolutionary importance of bird song syntax in avian communication.
Collapse
|
12
|
Matheson AMM, Sakata JT. Relationship between the Sequencing and Timing of Vocal Motor Elements in Birdsong. PLoS One 2015; 10:e0143203. [PMID: 26650933 PMCID: PMC4674110 DOI: 10.1371/journal.pone.0143203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 11/02/2015] [Indexed: 11/29/2022] Open
Abstract
Accurate coordination of the sequencing and timing of motor gestures is important for the performance of complex and evolutionarily relevant behaviors. However, the degree to which motor sequencing and timing are related remains largely unknown. Birdsong is a communicative behavior that consists of discrete vocal motor elements (‘syllables’) that are sequenced and timed in a precise manner. To reveal the relationship between syllable sequencing and timing, we analyzed how variation in the probability of syllable transitions at branch points, nodes in song with variable sequencing across renditions, correlated with variation in the duration of silent gaps between syllable transitions (‘gap durations’) for adult Bengalese finch song. We observed a significant negative relationship between transition probability and gap duration: more prevalent transitions were produced with shorter gap durations. We then assessed the degree to which long-term age-dependent changes and acute context-dependent changes to syllable sequencing and timing followed this inverse relationship. Age- but not context-dependent changes to syllable sequencing and timing were inversely related. On average, gap durations at branch points decreased with age, and the magnitude of this decrease was greater for transitions that increased in prevalence than for transitions that decreased in prevalence. In contrast, there was no systematic relationship between acute context-dependent changes to syllable sequencing and timing. Gap durations at branch points decreased when birds produced female-directed courtship song compared to when they produced undirected song, and the magnitude of this decrease was not related to the direction and magnitude of changes to transition probabilities. These analyses suggest that neural mechanisms that regulate syllable sequencing could similarly control syllable timing but also highlight mechanisms that can independently regulate syllable sequencing and timing.
Collapse
Affiliation(s)
| | - Jon T. Sakata
- Department of Biology, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
13
|
James LS, Sakata JT. Predicting plasticity: acute context-dependent changes to vocal performance predict long-term age-dependent changes. J Neurophysiol 2015; 114:2328-39. [PMID: 26311186 DOI: 10.1152/jn.00688.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/24/2015] [Indexed: 12/12/2022] Open
Abstract
Understanding the factors that predict and guide variation in behavioral change can lend insight into mechanisms of motor plasticity and individual differences in behavior. The performance of adult birdsong changes with age in a manner that is similar to rapid context-dependent changes to song. To reveal mechanisms of vocal plasticity, we analyzed the degree to which variation in the direction and magnitude of age-dependent changes to Bengalese finch song could be predicted by variation in context-dependent changes. Using a repeated-measures design, we found that variation in age-dependent changes to the timing, sequencing, and structure of vocal elements ("syllables") was significantly predicted by variation in context-dependent changes. In particular, the degree to which the duration of intersyllable gaps, syllable sequencing at branch points, and fundamental frequency of syllables within spontaneous [undirected (UD)] songs changed over time was correlated with the degree to which these features changed from UD song to female-directed (FD) song in young-adult finches (FDyoung). As such, the structure of some temporal features of UD songs converged over time onto the structure of FDyoung songs. This convergence suggested that the FDyoung song could serve as a stable target for vocal motor plasticity. Consequently, we analyzed the stability of FD song and found that the temporal structure of FD song changed significantly over time in a manner similar to UD song. Because FD song is considered a state of heightened performance, these data suggest that age-dependent changes could reflect practice-related improvements in vocal motor performance.
Collapse
Affiliation(s)
- Logan S James
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Matheson LE, Sun H, Sakata JT. Forebrain circuits underlying the social modulation of vocal communication signals. Dev Neurobiol 2015; 76:47-63. [PMID: 25959605 DOI: 10.1002/dneu.22298] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/01/2015] [Accepted: 05/01/2015] [Indexed: 12/27/2022]
Abstract
Across vertebrate species, signalers alter the structure of their communication signals based on the social context. For example, male Bengalese finches produce faster and more stereotyped songs when directing song to females (female-directed [FD] song) than when singing in isolation (undirected [UD] song), and such changes have been found to increase the attractiveness of a male's song. Despite the importance of such social influences, little is known about the mechanisms underlying the social modulation of communication signals. To this end, we analyzed differences in immediate early gene (EGR-1) expression when Bengalese finches produced FD or UD song. Relative to silent birds, EGR-1 expression was elevated in birds producing either FD or UD song throughout vocal control circuitry, including the interface nucleus of the nidopallium (NIf), HVC, the robust nucleus of the arcopallium (RA), Area X, and the lateral magnocellular nucleus of the anterior nidopallium (LMAN). Moreover, EGR-1 expression was higher in HVC, RA, Area X, and LMAN in males producing UD song than in males producing FD song, indicating that social context modulated EGR-1 expression in these areas. However, EGR-1 expression was not significantly different between males producing FD or UD song in NIf, the primary vocal motor input into HVC, suggesting that context-dependent changes could arise de novo in HVC. The pattern of context-dependent differences in EGR-1 expression in the Bengalese finch was highly similar to that in the zebra finch and suggests that social context affects song structure by modulating activity throughout vocal control nuclei.
Collapse
Affiliation(s)
| | - Herie Sun
- Department of Biology, McGill University
| | | |
Collapse
|
15
|
Woolley S, Kao M. Variability in action: Contributions of a songbird cortical-basal ganglia circuit to vocal motor learning and control. Neuroscience 2015; 296:39-47. [DOI: 10.1016/j.neuroscience.2014.10.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
|
16
|
Matheson LE, Sakata JT. Catecholaminergic contributions to vocal communication signals. Eur J Neurosci 2015; 41:1180-94. [DOI: 10.1111/ejn.12885] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 02/25/2015] [Accepted: 03/01/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Laura E. Matheson
- Department of Biology; McGill University; Montreal QC H3A 1B1 Canada
| | - Jon T. Sakata
- Department of Biology; McGill University; Montreal QC H3A 1B1 Canada
| |
Collapse
|
17
|
James LS, Sakata JT. Vocal motor changes beyond the sensitive period for song plasticity. J Neurophysiol 2014; 112:2040-52. [PMID: 25057147 DOI: 10.1152/jn.00217.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Behavior is critically shaped during sensitive periods in development. Birdsong is a learned vocal behavior that undergoes dramatic plasticity during a sensitive period of sensorimotor learning. During this period, juvenile songbirds engage in vocal practice to shape their vocalizations into relatively stereotyped songs. By the time songbirds reach adulthood, their songs are relatively stable and thought to be "crystallized." Recent studies, however, highlight the potential for adult song plasticity and suggest that adult song could naturally change over time. As such, we investigated the degree to which temporal and spectral features of song changed over time in adult Bengalese finches. We observed that the sequencing and timing of song syllables became more stereotyped over time. Increases in the stereotypy of syllable sequencing were due to the pruning of infrequently produced transitions and, to a lesser extent, increases in the prevalence of frequently produced transitions. Changes in song tempo were driven by decreases in the duration and variability of intersyllable gaps. In contrast to significant changes to temporal song features, we found little evidence that the spectral structure of adult song syllables changed over time. These data highlight differences in the degree to which temporal and spectral features of adult song change over time and support evidence for distinct mechanisms underlying the control of syllable sequencing, timing, and structure. Furthermore, the observed changes to temporal song features are consistent with a Hebbian framework of behavioral plasticity and support the notion that adult song should be considered a form of vocal practice.
Collapse
Affiliation(s)
- Logan S James
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Woolley SC, Rajan R, Joshua M, Doupe AJ. Emergence of context-dependent variability across a basal ganglia network. Neuron 2014; 82:208-23. [PMID: 24698276 DOI: 10.1016/j.neuron.2014.01.039] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
Context dependence is a key feature of cortical-basal ganglia circuit activity, and in songbirds the cortical outflow of a basal ganglia circuit specialized for song, LMAN, shows striking increases in trial-by-trial variability and bursting when birds sing alone rather than to females. To reveal where this variability and its social regulation emerge, we recorded stepwise from corticostriatal (HVC) neurons and their target spiny and pallidal neurons in Area X. We find that corticostriatal and spiny neurons both show precise singing-related firing across both social settings. Pallidal neurons, in contrast, exhibit markedly increased trial-by-trial variation when birds sing alone, created by highly variable pauses in firing. This variability persists even when recurrent inputs from LMAN are ablated. These data indicate that variability and its context sensitivity emerge within the basal ganglia network, suggest a network mechanism for this emergence, and highlight variability generation and regulation as basal ganglia functions.
Collapse
Affiliation(s)
- Sarah C Woolley
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada.
| | - Raghav Rajan
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Indian Institute of Science Education and Research, Pashan Road, Pune 411008, Maharashra, India
| | - Mati Joshua
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Allison J Doupe
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
19
|
Brainard MS, Doupe AJ. Translating birdsong: songbirds as a model for basic and applied medical research. Annu Rev Neurosci 2013; 36:489-517. [PMID: 23750515 DOI: 10.1146/annurev-neuro-060909-152826] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Songbirds, long of interest to basic neuroscience, have great potential as a model system for translational neuroscience. Songbirds learn their complex vocal behavior in a manner that exemplifies general processes of perceptual and motor skill learning and, more specifically, resembles human speech learning. Song is subserved by circuitry that is specialized for vocal learning and production but that has strong similarities to mammalian brain pathways. The combination of highly quantifiable behavior and discrete neural substrates facilitates understanding links between brain and behavior, both in normal states and in disease. Here we highlight (a) behavioral and mechanistic parallels between birdsong and aspects of speech and social communication, including insights into mirror neurons, the function of auditory feedback, and genes underlying social communication disorders, and (b) contributions of songbirds to understanding cortical-basal ganglia circuit function and dysfunction, including the possibility of harnessing adult neurogenesis for brain repair.
Collapse
Affiliation(s)
- Michael S Brainard
- Center for Integrative Neuroscience and Departments of Physiology and Psychiatry, University of California-San Francisco, CA 94143-0444, USA.
| | | |
Collapse
|
20
|
Prather JF. Auditory signal processing in communication: perception and performance of vocal sounds. Hear Res 2013; 305:144-55. [PMID: 23827717 DOI: 10.1016/j.heares.2013.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 06/13/2013] [Accepted: 06/20/2013] [Indexed: 01/21/2023]
Abstract
Learning and maintaining the sounds we use in vocal communication require accurate perception of the sounds we hear performed by others and feedback-dependent imitation of those sounds to produce our own vocalizations. Understanding how the central nervous system integrates auditory and vocal-motor information to enable communication is a fundamental goal of systems neuroscience, and insights into the mechanisms of those processes will profoundly enhance clinical therapies for communication disorders. Gaining the high-resolution insight necessary to define the circuits and cellular mechanisms underlying human vocal communication is presently impractical. Songbirds are the best animal model of human speech, and this review highlights recent insights into the neural basis of auditory perception and feedback-dependent imitation in those animals. Neural correlates of song perception are present in auditory areas, and those correlates are preserved in the auditory responses of downstream neurons that are also active when the bird sings. Initial tests indicate that singing-related activity in those downstream neurons is associated with vocal-motor performance as opposed to the bird simply hearing itself sing. Therefore, action potentials related to auditory perception and action potentials related to vocal performance are co-localized in individual neurons. Conceptual models of song learning involve comparison of vocal commands and the associated auditory feedback to compute an error signal that is used to guide refinement of subsequent song performances, yet the sites of that comparison remain unknown. Convergence of sensory and motor activity onto individual neurons points to a possible mechanism through which auditory and vocal-motor signals may be linked to enable learning and maintenance of the sounds used in vocal communication. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives".
Collapse
Affiliation(s)
- Jonathan F Prather
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, 1000 E. University Avenue - Dept. 3166, Laramie, WY 82071, USA.
| |
Collapse
|
21
|
Glaze CM, Troyer TW. Development of temporal structure in zebra finch song. J Neurophysiol 2012; 109:1025-35. [PMID: 23175805 DOI: 10.1152/jn.00578.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Zebra finch song has provided an excellent case study in the neural basis of sequence learning, with a high degree of temporal precision and tight links with precisely timed bursting in forebrain neurons. To examine the development of song timing, we measured the following four aspects of song temporal structure at four age ranges between 65 and 375 days posthatch: the mean durations of song syllables and the silent gaps between them, timing variability linked to song tempo, timing variability expressed independently across syllables and gaps, and transition probabilities between consecutive syllable pairs. We found substantial increases in song tempo between 65 and 85 days posthatch, due almost entirely to a shortening of gaps. We also found a decrease in tempo variability, also specific to gaps. Both the magnitude of the increase in tempo and the decrease in tempo variability were correlated on gap-by-gap basis with increases in the reliability of corresponding syllable transitions. Syllables had no systematic increase in tempo or decrease in tempo variability. In contrast to tempo parameters, both syllables and gaps showed an early sharp reduction in independent variability followed by continued reductions over the first year. The data suggest that links between syllable-based representations are strengthened during the later parts of the traditional period of song learning and that song rhythm continues to become more regular throughout the first year of life. Similar learning patterns have been identified in human sequence learning, suggesting a potentially rich area of comparative research.
Collapse
Affiliation(s)
- Christopher M Glaze
- Program in Neuroscience and Cognitive Science, Department of Psychology, University of Maryland, College Park, Maryland, USA.
| | | |
Collapse
|
22
|
Sakata JT, Vehrencamp SL. Integrating perspectives on vocal performance and consistency. ACTA ACUST UNITED AC 2012; 215:201-9. [PMID: 22189763 DOI: 10.1242/jeb.056911] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent experiments in divergent fields of birdsong have revealed that vocal performance is important for reproductive success and under active control by distinct neural circuits. Vocal consistency, the degree to which the spectral properties (e.g. dominant or fundamental frequency) of song elements are produced consistently from rendition to rendition, has been highlighted as a biologically important aspect of vocal performance. Here, we synthesize functional, developmental and mechanistic (neurophysiological) perspectives to generate an integrated understanding of this facet of vocal performance. Behavioral studies in the field and laboratory have found that vocal consistency is affected by social context, season and development, and, moreover, positively correlated with reproductive success. Mechanistic investigations have revealed a contribution of forebrain and basal ganglia circuits and sex steroid hormones to the control of vocal consistency. Across behavioral, developmental and mechanistic studies, a convergent theme regarding the importance of vocal practice in juvenile and adult songbirds emerges, providing a basis for linking these levels of analysis. By understanding vocal consistency at these levels, we gain an appreciation for the various dimensions of song control and plasticity and argue that genes regulating the function of basal ganglia circuits and sex steroid hormones could be sculpted by sexual selection.
Collapse
Affiliation(s)
- Jon T Sakata
- Department of Biology, McGill University, Montreal, QC, Canada, H3A 1B1.
| | | |
Collapse
|
23
|
MacDonald EN, Johnson EK, Forsythe J, Plante P, Munhall KG. Children's development of self-regulation in speech production. Curr Biol 2011; 22:113-7. [PMID: 22197241 DOI: 10.1016/j.cub.2011.11.052] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/01/2011] [Accepted: 11/18/2011] [Indexed: 01/17/2023]
Abstract
Species-specific vocalizations fall into two broad categories: those that emerge during maturation, independent of experience, and those that depend on early life interactions with conspecifics. Human language and the communication systems of a small number of other species, including songbirds, fall into this latter class of vocal learning. Self-monitoring has been assumed to play an important role in the vocal learning of speech and studies demonstrate that perception of your own voice is crucial for both the development and lifelong maintenance of vocalizations in humans and songbirds. Experimental modifications of auditory feedback can also change vocalizations in both humans and songbirds. However, with the exception of large manipulations of timing, no study to date has ever directly examined the use of auditory feedback in speech production under the age of 4. Here we use a real-time formant perturbation task to compare the response of toddlers, children, and adults to altered feedback. Children and adults reacted to this manipulation by changing their vowels in a direction opposite to the perturbation. Surprisingly, toddlers' speech didn't change in response to altered feedback, suggesting that long-held assumptions regarding the role of self-perception in articulatory development need to be reconsidered.
Collapse
Affiliation(s)
- Ewen N MacDonald
- Centre for Applied Hearing Research, Department of Electrical Engineering, Technical University of Denmark, Ørsteds Plads, Building 352, DK-2800 Kgs. Lyngby, Denmark.
| | | | | | | | | |
Collapse
|
24
|
Tschida K, Mooney R. The role of auditory feedback in vocal learning and maintenance. Curr Opin Neurobiol 2011; 22:320-7. [PMID: 22137567 DOI: 10.1016/j.conb.2011.11.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/03/2011] [Accepted: 11/06/2011] [Indexed: 11/25/2022]
Abstract
Auditory experience is critical for the acquisition and maintenance of learned vocalizations in both humans and songbirds. Despite the central role of auditory feedback in vocal learning and maintenance, where and how auditory feedback affects neural circuits important to vocal control remain poorly understood. Recent studies of singing birds have uncovered neural mechanisms by which feedback perturbations affect vocal plasticity and also have identified feedback-sensitive neurons at or near sites of auditory and vocal motor interaction. Additionally, recent studies in marmosets have underscored that even in the absence of vocal learning, vocalization remains flexible in the face of changing acoustical environments, pointing to rapid interactions between auditory and vocal motor systems. Finally, recent studies show that a juvenile songbird's initial auditory experience of a song model has long-lasting effects on sensorimotor neurons important to vocalization, shedding light on how auditory memories and feedback interact to guide vocal learning.
Collapse
Affiliation(s)
- Katherine Tschida
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | | |
Collapse
|
25
|
Katahira K, Suzuki K, Okanoya K, Okada M. Complex sequencing rules of birdsong can be explained by simple hidden Markov processes. PLoS One 2011; 6:e24516. [PMID: 21915345 PMCID: PMC3168521 DOI: 10.1371/journal.pone.0024516] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 08/12/2011] [Indexed: 01/08/2023] Open
Abstract
Complex sequencing rules observed in birdsongs provide an opportunity to investigate the neural mechanism for generating complex sequential behaviors. To relate the findings from studying birdsongs to other sequential behaviors such as human speech and musical performance, it is crucial to characterize the statistical properties of the sequencing rules in birdsongs. However, the properties of the sequencing rules in birdsongs have not yet been fully addressed. In this study, we investigate the statistical properties of the complex birdsong of the Bengalese finch (Lonchura striata var. domestica). Based on manual-annotated syllable labeles, we first show that there are significant higher-order context dependencies in Bengalese finch songs, that is, which syllable appears next depends on more than one previous syllable. We then analyze acoustic features of the song and show that higher-order context dependencies can be explained using first-order hidden state transition dynamics with redundant hidden states. This model corresponds to hidden Markov models (HMMs), well known statistical models with a large range of application for time series modeling. The song annotation with these models with first-order hidden state dynamics agreed well with manual annotation, the score was comparable to that of a second-order HMM, and surpassed the zeroth-order model (the Gaussian mixture model; GMM), which does not use context information. Our results imply that the hierarchical representation with hidden state dynamics may underlie the neural implementation for generating complex behavioral sequences with higher-order dependencies.
Collapse
Affiliation(s)
- Kentaro Katahira
- ERATO, Okanoya Emotional Information Project, Japan Science Technology Agency, Wako, Saitama, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
- RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Kenta Suzuki
- ERATO, Okanoya Emotional Information Project, Japan Science Technology Agency, Wako, Saitama, Japan
- RIKEN Brain Science Institute, Wako, Saitama, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Kazuo Okanoya
- ERATO, Okanoya Emotional Information Project, Japan Science Technology Agency, Wako, Saitama, Japan
- RIKEN Brain Science Institute, Wako, Saitama, Japan
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
| | - Masato Okada
- ERATO, Okanoya Emotional Information Project, Japan Science Technology Agency, Wako, Saitama, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
- RIKEN Brain Science Institute, Wako, Saitama, Japan
- * E-mail:
| |
Collapse
|
26
|
Yamashita Y, Okumura T, Okanoya K, Tani J. Cooperation of deterministic dynamics and random noise in production of complex syntactical avian song sequences: a neural network model. Front Comput Neurosci 2011; 5:18. [PMID: 21559065 PMCID: PMC3082214 DOI: 10.3389/fncom.2011.00018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 03/30/2011] [Indexed: 11/13/2022] Open
Abstract
How the brain learns and generates temporal sequences is a fundamental issue in neuroscience. The production of birdsongs, a process which involves complex learned sequences, provides researchers with an excellent biological model for this topic. The Bengalese finch in particular learns a highly complex song with syntactical structure. The nucleus HVC (HVC), a premotor nucleus within the avian song system, plays a key role in generating the temporal structures of their songs. From lesion studies, the nucleus interfacialis (NIf) projecting to the HVC is considered one of the essential regions that contribute to the complexity of their songs. However, the types of interaction between the HVC and the NIf that can produce complex syntactical songs remain unclear. In order to investigate the function of interactions between the HVC and NIf, we have proposed a neural network model based on previous biological evidence. The HVC is modeled by a recurrent neural network (RNN) that learns to generate temporal patterns of songs. The NIf is modeled as a mechanism that provides auditory feedback to the HVC and generates random noise that feeds into the HVC. The model showed that complex syntactical songs can be replicated by simple interactions between deterministic dynamics of the RNN and random noise. In the current study, the plausibility of the model is tested by the comparison between the changes in the songs of actual birds induced by pharmacological inhibition of the NIf and the changes in the songs produced by the model resulting from modification of parameters representing NIf functions. The efficacy of the model demonstrates that the changes of songs induced by pharmacological inhibition of the NIf can be interpreted as a trade-off between the effects of noise and the effects of feedback on the dynamics of the RNN of the HVC. These facts suggest that the current model provides a convincing hypothesis for the functional role of NIf-HVC interaction.
Collapse
Affiliation(s)
- Yuichi Yamashita
- Laboratory for Behavior and Dynamic Cognition, RIKEN Brain Science InstituteSaitama, Japan
| | - Tetsu Okumura
- Laboratory for Behavior and Dynamic Cognition, RIKEN Brain Science InstituteSaitama, Japan
| | - Kazuo Okanoya
- Laboratory for Biolinguistics, RIKEN Brain Science InstituteSaitama, Japan
- Department of Cognitive and Behavioral Sciences, Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
| | - Jun Tani
- Laboratory for Behavior and Dynamic Cognition, RIKEN Brain Science InstituteSaitama, Japan
| |
Collapse
|
27
|
Miller JE, Hilliard AT, White SA. Song practice promotes acute vocal variability at a key stage of sensorimotor learning. PLoS One 2010; 5:e8592. [PMID: 20066039 PMCID: PMC2797613 DOI: 10.1371/journal.pone.0008592] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 12/03/2009] [Indexed: 11/24/2022] Open
Abstract
Background Trial by trial variability during motor learning is a feature encoded by the basal ganglia of both humans and songbirds, and is important for reinforcement of optimal motor patterns, including those that produce speech and birdsong. Given the many parallels between these behaviors, songbirds provide a useful model to investigate neural mechanisms underlying vocal learning. In juvenile and adult male zebra finches, endogenous levels of FoxP2, a molecule critical for language, decrease two hours after morning song onset within area X, part of the basal ganglia-forebrain pathway dedicated to song. In juveniles, experimental ‘knockdown’ of area X FoxP2 results in abnormally variable song in adulthood. These findings motivated our hypothesis that low FoxP2 levels increase vocal variability, enabling vocal motor exploration in normal birds. Methodology/Principal Findings After two hours in either singing or non-singing conditions (previously shown to produce differential area X FoxP2 levels), phonological and sequential features of the subsequent songs were compared across conditions in the same bird. In line with our prediction, analysis of songs sung by 75 day (75d) birds revealed that syllable structure was more variable and sequence stereotypy was reduced following two hours of continuous practice compared to these features following two hours of non-singing. Similar trends in song were observed in these birds at 65d, despite higher overall within-condition variability at this age. Conclusions/Significance Together with previous work, these findings point to the importance of behaviorally-driven acute periods during song learning that allow for both refinement and reinforcement of motor patterns. Future work is aimed at testing the observation that not only does vocal practice influence expression of molecular networks, but that these networks then influence subsequent variability in these skills.
Collapse
Affiliation(s)
- Julie E. Miller
- Department of Physiological Science, University of California Los Angeles, Los Angeles, California, United States of America
| | - Austin T. Hilliard
- Department of Physiological Science, University of California Los Angeles, Los Angeles, California, United States of America
- Interdepartmental Program in Neuroscience, University of California Los Angeles, Los Angeles, California, United States of America
| | - Stephanie A. White
- Department of Physiological Science, University of California Los Angeles, Los Angeles, California, United States of America
- Interdepartmental Program in Neuroscience, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|