1
|
Rock CG, Kwak ST, Luo A, Yang X, Yun K, Chang YH. Realizing the gravity of the simulation: adaptation to simulated hypogravity leads to altered predictive control. Front Physiol 2024; 15:1397016. [PMID: 38854629 PMCID: PMC11157081 DOI: 10.3389/fphys.2024.1397016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
Accurate predictive abilities are important for a wide variety of animal behaviors. Inherent to many of these predictions is an understanding of the physics that underlie the behavior. Humans are specifically attuned to the physics on Earth but can learn to move in other environments (e.g., the surface of the Moon). However, the adjustments made to their physics-based predictions in the face of altered gravity are not fully understood. The current study aimed to characterize the locomotor adaptation to a novel paradigm for simulated reduced gravity. We hypothesized that exposure to simulated hypogravity would result in updated predictions of gravity-based movement. Twenty participants took part in a protocol that had them perform vertically targeted countermovement jumps before (PRE), during, and after (POST) a physical simulation of hypogravity. Jumping in simulated hypogravity had different neuromechanics from the PRE condition, with reduced ground impulses (p ≤ .009) and muscle activity prior to the time of landing (i.e., preactivation; p ≤ .016). In the 1 g POST condition, muscle preactivation remained reduced (p ≤ .033) and was delayed (p ≤ .008) by up to 33% for most muscles of the triceps surae, reflecting an expectation of hypogravity. The aftereffects in muscle preactivation, along with little-to-no change in muscle dynamics during ground contact, point to a neuromechanical adaptation that affects predictive, feed-forward systems over feedback systems. As such, we conclude that the neural representation, or internal model, of gravity is updated after exposure to simulated hypogravity.
Collapse
Affiliation(s)
- Chase G. Rock
- Comparative Neuromechanics Laboratory, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | | | | | | | | | - Young-Hui Chang
- Comparative Neuromechanics Laboratory, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
2
|
Prudencio CB, Nunes SK, Pinheiro FA, Sartorão Filho CI, Nava GTDA, Salomoni SE, Pedroni CR, Rudge MVC, Barbosa AMP. Gestational diabetes is associated with alteration on pelvic floor muscle activation pattern during pregnancy and postpartum: Prospective cohort using electromyography assessment. Front Endocrinol (Lausanne) 2022; 13:958909. [PMID: 36277705 PMCID: PMC9582526 DOI: 10.3389/fendo.2022.958909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background and objective Gestational diabetes mellitus (GDM) is a comorbidity which may cause acute and lifelong disorders to mother and child. Alterations in muscular and connective tissues have been associated with GDM in translation studies, characterizing gestational diabetic myopathy. Pregnancy-specific urinary incontinence and sexual disabilities, disorders that depend on the pelvic floor muscle (PFM) integrity, are also associated with GDM both during and after pregnancy. The aim was to compare PFM activation patterns between GDM and non-GDM women from 24-30 gestational weeks to 18-24 months postpartum during a standard clinical test during gestation and postpartum. Methods We conducted a prospective three-time-point cohort study from gestation (24-30 weeks-T1, and 36-38 weeks-T2) to 18-24 months postpartum (T3). PFM electromyography was recorded in primigravida or primiparous women with one previous elective c-section with or without the diagnosis of GDM according to the American Diabetes Association criteria. A careful explanation of the muscle anatomy and functionality of the PFM was given to participants before EMG assessment. The outcome measures were PFM activation patterns assessed during pregnancy and postpartum, comparing intra and between groups. PFM activation patterns were assessed by normalized electromyography signal at rest and during 1-second (sec) phasic, 10-sec hold, and 60-sec sustained contractions. Results Demographic and obstetric data showed homogeneity between groups. The GDM group achieved peak PFM EMG amplitudes similarly to the non-GDM group, but they took longer to return to baseline levels during the ~1-sec contraction (flicks). During 10-sec hold contractions, the GDM group sustained lower levels of PFM activation than the non-GDM group at both 36-38 weeks of gestation and 18-24 months postpartum when compared to the non-GDM group. Conclusion The results suggest that GDM impaired PFM control mainly on 1-sec flicks and 10-sec hold contraction, which appears to develop during late pregnancy and extends long-term postpartum. This motor behavior may play a role on pelvic floor dysfunctions.
Collapse
Affiliation(s)
- Caroline Baldini Prudencio
- São Paulo State University (Unesp), Postgraduate Program on Tocogynecology, Botucatu Medical School, Botucatu, Brazil
| | - Sthefanie Kenickel Nunes
- São Paulo State University (Unesp), Postgraduate Program on Tocogynecology, Botucatu Medical School, Botucatu, Brazil
| | - Fabiane Affonso Pinheiro
- São Paulo State University (Unesp), Postgraduate Program on Tocogynecology, Botucatu Medical School, Botucatu, Brazil
| | - Carlos Izaias Sartorão Filho
- São Paulo State University (Unesp), Postgraduate Program on Tocogynecology, Botucatu Medical School, Botucatu, Brazil
| | | | | | | | - Marilza Vieira Cunha Rudge
- São Paulo State University (Unesp), Postgraduate Program on Tocogynecology, Botucatu Medical School, Botucatu, Brazil
| | - Angélica Mércia Pascon Barbosa
- São Paulo State University (Unesp), Postgraduate Program on Tocogynecology, Botucatu Medical School, Botucatu, Brazil
- São Paulo State University (Unesp), School of Philosophy and Sciences, Marilia, Brazil
| |
Collapse
|
3
|
Embleton J, Knight MI, Ombao H. Wavelet testing for a replicate-effect within an ordered multiple-trial experiment. Comput Stat Data Anal 2022. [DOI: 10.1016/j.csda.2022.107456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Santana AC, Barbosa AV, Yehia HC, Laboissière R. A dimension reduction technique applied to regression on high dimension, low sample size neurophysiological data sets. BMC Neurosci 2021; 22:1. [PMID: 33397293 PMCID: PMC7780417 DOI: 10.1186/s12868-020-00605-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/27/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A common problem in neurophysiological signal processing is the extraction of meaningful information from high dimension, low sample size data (HDLSS). We present RoLDSIS (regression on low-dimension spanned input space), a regression technique based on dimensionality reduction that constrains the solution to the subspace spanned by the available observations. This avoids regularization parameters in the regression procedure, as needed in shrinkage regression methods. RESULTS We applied RoLDSIS to the EEG data collected in a phonemic identification experiment. In the experiment, morphed syllables in the continuum /da/-/ta/ were presented as acoustic stimuli to the participants and the event-related potentials (ERP) were recorded and then represented as a set of features in the time-frequency domain via the discrete wavelet transform. Each set of stimuli was chosen from a preliminary identification task executed by the participant. Physical and psychophysical attributes were associated to each stimulus. RoLDSIS was then used to infer the neurophysiological axes, in the feature space, associated with each attribute. We show that these axes can be reliably estimated and that their separation is correlated with the individual strength of phonemic categorization. The results provided by RoLDSIS are interpretable in the time-frequency domain and may be used to infer the neurophysiological correlates of phonemic categorization. A comparison with commonly used regularized regression techniques was carried out by cross-validation. CONCLUSION The prediction errors obtained by RoLDSIS are comparable to those obtained with Ridge Regression and smaller than those obtained with LASSO and SPLS. However, RoLDSIS achieves this without the need for cross-validation, a procedure that requires the extraction of a large amount of observations from the data and, consequently, a decreased signal-to-noise ratio when averaging trials. We show that, even though RoLDSIS is a simple technique, it is suitable for the processing and interpretation of neurophysiological signals.
Collapse
Affiliation(s)
- Adrielle C Santana
- Graduate Program in Electrical Engineering, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, 31270-901, Belo Horizonte, Brazil. .,Univ. Grenoble Alpes, CNRS, LPNC UMR 5105, 38000, Grenoble, France. .,Department of Control and Automation Engineering, School of Mines, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, 35400-000, Ouro Preto, Brazil.
| | - Adriano V Barbosa
- Graduate Program in Electrical Engineering, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, 31270-901, Belo Horizonte, Brazil.,Department of Electronic Engineering, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, 31270-901, Belo Horizonte, Brazil
| | - Hani C Yehia
- Graduate Program in Electrical Engineering, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, 31270-901, Belo Horizonte, Brazil.,Department of Electronic Engineering, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, 31270-901, Belo Horizonte, Brazil
| | | |
Collapse
|
5
|
Ghosn NJ, Palmer JA, Borich MR, Ting LH, Payne AM. Cortical Beta Oscillatory Activity Evoked during Reactive Balance Recovery Scales with Perturbation Difficulty and Individual Balance Ability. Brain Sci 2020; 10:E860. [PMID: 33207570 PMCID: PMC7697848 DOI: 10.3390/brainsci10110860] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 11/16/2022] Open
Abstract
Cortical beta oscillations (13-30 Hz) reflect sensorimotor processing, but are not well understood in balance recovery. We hypothesized that sensorimotor cortical activity would increase under challenging balance conditions. We predicted greater beta power when balance was challenged, either by more difficult perturbations or by lower balance ability. In 19 young adults, we measured beta power over motor cortical areas (electroencephalography, Cz electrode) during three magnitudes of backward support -surface translations. Peak beta power was measured during early (50-150 ms), late (150-250 ms), and overall (0-400 ms) time bins, and wavelet-based analyses quantified the time course of evoked beta power. An ANOVA was used to compare peak beta power across perturbation magnitudes in each time bin. We further tested the association between perturbation-evoked beta power and individual balance ability measured in a challenging beam walking task. Beta power increased ~50 ms after perturbation, and to a greater extent in larger perturbations. Lower individual balance ability was associated with greater beta power in only the late (150-250 ms) time bin. These findings demonstrate greater sensorimotor cortical engagement under more challenging balance conditions, which may provide a biomarker for reduced automaticity in balance control that could be used in populations with neurological impairments.
Collapse
Affiliation(s)
- Nina J. Ghosn
- Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | | | - Michael R. Borich
- Emory University, Atlanta, GA 30332, USA; (J.A.P.); (M.R.B.); (L.H.T.)
| | - Lena H. Ting
- Emory University, Atlanta, GA 30332, USA; (J.A.P.); (M.R.B.); (L.H.T.)
| | - Aiden M. Payne
- Emory University, Atlanta, GA 30332, USA; (J.A.P.); (M.R.B.); (L.H.T.)
| |
Collapse
|
6
|
Joshi S, Bayat A, Jones A, Xiao X, Koubeissi MZ. The effects of ammonia stimulation on kainate-induced status epilepticus and anterior piriform cortex electrophysiology. Epilepsy Behav 2020; 104:106885. [PMID: 31935647 DOI: 10.1016/j.yebeh.2019.106885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Strong olfactory stimulation (OS) with such substances as toluene or ammonia has been reported to suppress seizures. We aimed to investigate the role of ammonia stimulation on acute kainic acid (KA)-induced seizures. We also investigated any possible effects of ammonia stimulation on the electrophysiology of the anterior piriform cortex (APC). METHODS Adult male Sprague-Dawley rats were implanted with bilateral hippocampal electrodes and an electrode in the left APC. Animals were exposed to either distilled water (control) or ammonia stimulation for 20 s every 5 min during KA induction of status epilepticus (SE). The electroencephalogram (EEG) was analyzed for seizure frequency, duration, severity, and total KA doses given prior to reaching SE. Seizure-free EEG epochs that coincided with OS were chosen and analyzed via wavelet analysis for any spectral changes. RESULTS We found no significant differences in seizure frequency, duration, severity, or administered KA doses before SE between the groups. In the experimental group, a wavelet analysis of variance (WANOVA) revealed a significant stimulation-induced increase of power in the delta and alpha bands prior to the first KA injection and higher power in the delta and theta bands after KA injection. CONCLUSIONS Whereas the spectral analysis of the APC revealed specific OS-induced changes, our findings suggest that OS with ammonia does not result in altering the threshold of attaining KA-induced SE. This does not rule out a potential role for OS in reducing recurrent seizures in the KA or other epilepsy models.
Collapse
Affiliation(s)
- Sweta Joshi
- Department of Neurology, George Washington University, 2150 Pennsylvania Ave, NW, Washington, DC 20037, USA
| | - Arezou Bayat
- Department of Neurology, George Washington University, 2150 Pennsylvania Ave, NW, Washington, DC 20037, USA
| | - Andrew Jones
- Translational Health Sciences, George Washington University, 2100 Pennsylvania Ave, NW, Washington, DC 20037, USA
| | - Xiao Xiao
- School of Engineering and Applied Science, George Washington University, 800 22nd St NW, Washington, DC 20052, USA
| | - Mohamad Z Koubeissi
- Department of Neurology, George Washington University, 2150 Pennsylvania Ave, NW, Washington, DC 20037, USA.
| |
Collapse
|
7
|
Diamond LE, van den Hoorn W, Bennell KL, Wrigley TV, Hinman RS, O'Donnell J, Hodges PW. Deep hip muscle activation during squatting in femoroacetabular impingement syndrome. Clin Biomech (Bristol, Avon) 2019; 69:141-147. [PMID: 31351343 DOI: 10.1016/j.clinbiomech.2019.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/31/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Deep hip muscle retraining is a common objective of non-operative management for femoroacetabular impingement (FAI) syndrome. These muscles are considered to have an important role in hip joint stabilization, however, it is unclear whether their function is altered in the presence of hip pathology. This exploratory study aimed to investigate activation patterns of the hip muscles during two squatting tasks in individuals with and without FAI syndrome. METHODS Fifteen individuals with FAI syndrome (symptoms, clinical examination and imaging) and 14 age- and sex-comparable healthy controls underwent testing. Intramuscular fine-wire and surface electrodes recorded electromyographic activity of selected deep and superficial hip muscles during the squatting tasks. Activation patterns from individual muscles were compared between-groups using a wavelet-based linear mixed effects model (P < 0.05). FINDINGS There were no between-group differences for squat depth or speed during descent or ascent for either task. Participants with FAI syndrome exhibited patterns of activation that differed significantly to controls across all muscles (P < 0.05) when squatting using their preferred strategy. Unlike controls, participants with FAI syndrome exhibited a pattern of activation for obturator internus during descent that was similar in amplitude to ascent, despite the contrasting contraction type (i.e. eccentric vs concentric). INTERPRETATION Individuals with FAI syndrome appear to implement a protective strategy as the hip descends towards the impingement position. Future studies should examine patients prospectively to establish whether these strategies are counterproductive for pathology and warrant rehabilitation.
Collapse
Affiliation(s)
- Laura E Diamond
- Griffith University, School of Allied Health Sciences, Gold Coast, QLD 4222, Australia; Griffith University, Gold Coast Orthopaedics Research, Engineering & Education Alliance (GCORE), Menzies Health Institute Queensland, Gold Coast, QLD 4222, Australia; The University of Queensland, Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, Brisbane, QLD 4072, Australia.
| | - Wolbert van den Hoorn
- The University of Queensland, Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, Brisbane, QLD 4072, Australia
| | - Kim L Bennell
- The University of Melbourne, Centre for Health, Exercise and Sports Medicine, Department of Physiotherapy, School of Health Sciences, 161 Barry Street, Parkville, VIC 3010, Australia
| | - Tim V Wrigley
- The University of Melbourne, Centre for Health, Exercise and Sports Medicine, Department of Physiotherapy, School of Health Sciences, 161 Barry Street, Parkville, VIC 3010, Australia
| | - Rana S Hinman
- The University of Melbourne, Centre for Health, Exercise and Sports Medicine, Department of Physiotherapy, School of Health Sciences, 161 Barry Street, Parkville, VIC 3010, Australia
| | | | - Paul W Hodges
- The University of Queensland, Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, Brisbane, QLD 4072, Australia
| |
Collapse
|
8
|
Hargreaves JK, Knight MI, Pitchford JW, Oakenfull RJ, Chawla S, Munns J, Davis SJ. Wavelet spectral testing: Application to nonstationary circadian rhythms. Ann Appl Stat 2019. [DOI: 10.1214/19-aoas1246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
SALOMONI SAUROE, MARINOVIC WELBER, CARROLL TIMOTHYJ, HODGES PAULW. Motor Strategies Learned during Pain Are Sustained upon Pain-free Reexposure to Task. Med Sci Sports Exerc 2019; 51:2334-2343. [DOI: 10.1249/mss.0000000000002059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Jarrell JR, Farrell BJ, Kistenberg RS, Dalton JF, Pitkin M, Prilutsky BI. Kinetics of individual limbs during level and slope walking with a unilateral transtibial bone-anchored prosthesis in the cat. J Biomech 2018; 76:74-83. [PMID: 29861094 PMCID: PMC6062466 DOI: 10.1016/j.jbiomech.2018.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/21/2018] [Accepted: 05/13/2018] [Indexed: 12/29/2022]
Abstract
Ongoing animal preclinical studies on transcutaneous bone-anchored prostheses have aimed to improve biomechanics of prosthetic locomotion in people with limb loss. It is much less common to translate successful developments in human biomechanics and prosthetic research to veterinary medicine to treat animals with limb loss. Current standard of care in veterinary medicine is amputation of the whole limb if a distal segment cannot be salvaged. Bone-anchored transcutaneous prostheses, developed for people with limb loss, could be beneficial for veterinary practice. The aim of this study was to examined if and how cats utilize the limb with a bone-anchored passive transtibial prosthesis during level and slope walking. Four cats were implanted with a porous titanium implant into the right distal tibia. Ground reaction forces and full-body kinematics were recorded during level and slope (±50%) walking before and 4-6 months after implantation and prosthesis attachment. The duty factor of the prosthetic limb exceeded zero in all cats and slope conditions (p < 0.05) and was in the range of 45.0-60.6%. Thus, cats utilized the prosthetic leg for locomotion instead of walking on three legs. Ground reaction forces, power and work of the prosthetic limb were reduced compared to intact locomotion, whereas those of the contralateral hind- and forelimbs increased (p < 0.05). This asymmetry was likely caused by insufficient energy generation for propulsion by the prosthetic leg, as no signs of pain or discomfort were observed in the animals. We concluded that cats could utilize a unilateral bone-anchored transtibial prosthesis for quadrupedal level and slope locomotion.
Collapse
Affiliation(s)
- Joshua R Jarrell
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brad J Farrell
- Department of Physical Therapy, Georgia State University, Atlanta, GA, USA
| | - Robert S Kistenberg
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Mark Pitkin
- Tufts University School of Medicine, Boston, MA, USA; Poly-Orth International, Sharon, MA, USA
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
11
|
Sawers A, Bhatt T. Neuromuscular determinants of slip-induced falls and recoveries in older adults. J Neurophysiol 2018; 120:1534-1546. [PMID: 29995607 DOI: 10.1152/jn.00286.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Is there a neuromuscular basis for falls? If so, it may provide new insight into falls and their assessment and treatment. We hypothesized that falls and recoveries from a laboratory-induced slip would be characterized by differences in multimuscle coordination patterns. Using muscle synergy analysis, we identified different multimuscle coordination patterns between older adults who fell and those who recovered from a laboratory-induced "feet-forward" slip. Participants who fell recruited fewer muscle synergies than participants who recovered. This suggests that a fall may result from recruitment of an inadequate number of muscle synergies to produce the necessary mechanical functions required to maintain balance. Participants who fell also recruited different muscle synergies, including one with high levels of coactivity consistent with a startle-like response. These differences in multimuscle coordination between slip outcomes were not accompanied by differences in slip difficulty or gait kinematics before or during the slip response. The differences in neuromuscular control may therefore reflect differences in sensorimotor control rather than kinematic constraints imposed by the slip, or the musculoskeletal system. Further research is required to test the robustness of these results and their interpretation with respect to additional mechanical variables (e.g., joint torques, ground reaction forces), responses to other fall types (e.g., trips), and within rather than between individuals. NEW & NOTEWORTHY Do falls and recoveries possess distinct neuromuscular features? We identified differences in neuromuscular control between older adults who fell and those who recovered from a "feet-forward" slip. Differences in neuromuscular control were not accompanied by differences in gait or slip kinematics before or during the slip response, suggesting differences in sensorimotor control rather than kinematics dictated the observed differences in neuromuscular control. An analysis of additional mechanical variables is required to confirm this interpretation.
Collapse
Affiliation(s)
- Andrew Sawers
- Department of Kinesiology, University of Illinois at Chicago , Chicago, Illinois
| | - Tanvi Bhatt
- Department of Physical Therapy, University of Illinois at Chicago , Chicago, Illinois
| |
Collapse
|
12
|
Ma L, Soriano J. Efficient Functional ANOVA Through Wavelet-Domain Markov Groves. J Am Stat Assoc 2018. [DOI: 10.1080/01621459.2017.1286241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Li Ma
- Department of Statistical Science, Duke University, Durham, NC
| | | |
Collapse
|
13
|
van den Hoorn W, Kerr GK, van Dieën JH, Hodges PW. Center of Pressure Motion After Calf Vibration Is More Random in Fallers Than Non-fallers: Prospective Study of Older Individuals. Front Physiol 2018; 9:273. [PMID: 29632494 PMCID: PMC5879095 DOI: 10.3389/fphys.2018.00273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/08/2018] [Indexed: 11/25/2022] Open
Abstract
Aging is associated with changes in balance control and elderly take longer to adapt to changing sensory conditions, which may increase falls risk. Low amplitude calf muscle vibration stimulates local sensory afferents/receptors and affects sense of upright when applied in stance. It has been used to assess the extent the nervous system relies on calf muscle somatosensory information and to rapidly change/perturb part of the somatosensory information causing balance unsteadiness by addition and removal of the vibratory stimulus. This study assessed the effect of addition and removal of calf vibration on balance control (in the absence of vision) in elderly individuals (>65 years, n = 99) who did (n = 41) or did not prospectively report falls (n = 58), and in a group of young individuals (18-25 years, n = 23). Participants stood barefoot and blindfolded on a force plate for 135 s. Vibrators (60 Hz, 1 mm) attached bilaterally over the triceps surae muscles were activated twice for 15 s; after 15 and 75 s (45 s for recovery). Balance measures were applied in a windowed (15 s epoch) manner to compare center-of-pressure (CoP) motion before, during and after removal of calf vibration between groups. In each epoch, CoP motion was quantified using linear measures, and non-linear measures to assess temporal structure of CoP motion [using recurrence quantification analysis (RQA) and detrended fluctuation analysis]. Mean CoP displacement during and after vibration did not differ between groups, which suggests that calf proprioception and/or weighting assigned by the nervous system to calf proprioception was similar for the young and both groups of older individuals. Overall, compared to the elderly, CoP motion of young was more predictable and persistent. Balance measures were not different between fallers and non-fallers before and during vibration. However, non-linear aspects of CoP motion of fallers and non-fallers differed after removal of vibration, when dynamic re-weighting is required. During this period fallers exhibited more random CoP motion, which could result from a reduced ability to control balance and/or a reduced ability to dynamically reweight proprioceptive information. These results show that non-linear measures of balance provide evidence for deficits in balance control in people who go on to fall in the following 12 months.
Collapse
Affiliation(s)
- Wolbert van den Hoorn
- Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health & Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Graham K. Kerr
- Movement Neuroscience Program, Institute of Health and Biomechanical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jaap H. van Dieën
- Amsterdam Movement Sciences, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Paul W. Hodges
- Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health & Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Allison K, Salomoni SE, Bennell KL, Wrigley TV, Hug F, Vicenzino B, Grimaldi A, Hodges PW. Hip abductor muscle activity during walking in individuals with gluteal tendinopathy. Scand J Med Sci Sports 2017; 28:686-695. [DOI: 10.1111/sms.12942] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2017] [Indexed: 01/02/2023]
Affiliation(s)
- K. Allison
- Centre for HealthExercise and Sports Medicine; Department of Physiotherapy; The University of Melbourne; Parkville Victoria Australia
| | - S. E. Salomoni
- School of Health and Rehabilitation Sciences; The University of Queensland; Brisbane QLD Australia
| | - K. L. Bennell
- Centre for HealthExercise and Sports Medicine; Department of Physiotherapy; The University of Melbourne; Parkville Victoria Australia
| | - T. V. Wrigley
- Centre for HealthExercise and Sports Medicine; Department of Physiotherapy; The University of Melbourne; Parkville Victoria Australia
| | - F. Hug
- School of Health and Rehabilitation Sciences; The University of Queensland; Brisbane QLD Australia
- Laboratory of Movement, Interaction, Performance (EA 4334); University of Nantes; Nantes France
- Institut Universitaire de France; Paris France
| | - B. Vicenzino
- School of Health and Rehabilitation Sciences; The University of Queensland; Brisbane QLD Australia
| | - A. Grimaldi
- Physiotec Physiotherapy; Tarragindi Qld Australia
| | - P. W. Hodges
- School of Health and Rehabilitation Sciences; The University of Queensland; Brisbane QLD Australia
| |
Collapse
|
15
|
Prins MR, Griffioen M, Veeger TTJ, Kiers H, Meijer OG, van der Wurff P, Bruijn SM, van Dieën JH. Evidence of splinting in low back pain? A systematic review of perturbation studies. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2017; 27:40-59. [PMID: 28900711 DOI: 10.1007/s00586-017-5287-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/26/2017] [Accepted: 08/19/2017] [Indexed: 01/08/2023]
Abstract
PURPOSE The purpose of this systematic review was to assess whether LBP patients demonstrate signs of splinting by evaluating the reactions to unexpected mechanical perturbations in terms of (1) trunk muscle activity, (2) kinetic and (3) kinematic trunk responses and (4) estimated mechanical properties of the trunk. METHODS The literature was systematically reviewed to identify studies that compared responses to mechanical trunk perturbations between LBP patients and healthy controls in terms of muscle activation, kinematics, kinetics, and/or mechanical properties. If more than four studies reported an outcome, the results of these studies were pooled. RESULTS Nineteen studies were included, of which sixteen reported muscle activation, five kinematic responses, two kinetic responses, and two estimated mechanical trunk properties. We found evidence of a longer response time of muscle activation, which would be in line with splinting behaviour in LBP. No signs of splinting behaviour were found in any of the other outcome measures. CONCLUSIONS We conclude that there is currently no convincing evidence for the presence of splinting behaviour in LBP patients, because we found no indications for splinting in terms of kinetic and kinematic responses to perturbation and derived mechanical properties of the trunk. Consistent evidence on delayed onsets of muscle activation in response to perturbations was found, but this may have other causes than splinting behaviour.
Collapse
Affiliation(s)
- Maarten R Prins
- Research and Development, Military Rehabilitation Centre 'Aardenburg', Doorn, The Netherlands. .,Amsterdam Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. .,Institute for Human Movement Studies, HU University of Applied Sciences Utrecht, Utrecht, The Netherlands.
| | - Mariëtte Griffioen
- Amsterdam Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Thom T J Veeger
- Amsterdam Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Henri Kiers
- Institute for Human Movement Studies, HU University of Applied Sciences Utrecht, Utrecht, The Netherlands
| | - Onno G Meijer
- Amsterdam Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Orthopaedic Biomechanics Laboratory, Fujian Medical University, Quanzhou, Fujian, People's Republic of China
| | - Peter van der Wurff
- Research and Development, Military Rehabilitation Centre 'Aardenburg', Doorn, The Netherlands.,Institute for Human Movement Studies, HU University of Applied Sciences Utrecht, Utrecht, The Netherlands
| | - Sjoerd M Bruijn
- Amsterdam Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Orthopaedic Biomechanics Laboratory, Fujian Medical University, Quanzhou, Fujian, People's Republic of China
| | - Jaap H van Dieën
- Amsterdam Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Abstract
A fundamental problem in neuroscience is understanding how sequences of action potentials ("spikes") encode information about sensory signals and motor outputs. Although traditional theories assume that this information is conveyed by the total number of spikes fired within a specified time interval (spike rate), recent studies have shown that additional information is carried by the millisecond-scale timing patterns of action potentials (spike timing). However, it is unknown whether or how subtle differences in spike timing drive differences in perception or behavior, leaving it unclear whether the information in spike timing actually plays a role in brain function. By examining the activity of individual motor units (the muscle fibers innervated by a single motor neuron) and manipulating patterns of activation of these neurons, we provide both correlative and causal evidence that the nervous system uses millisecond-scale variations in the timing of spikes within multispike patterns to control a vertebrate behavior-namely, respiration in the Bengalese finch, a songbird. These findings suggest that a fundamental assumption of current theories of motor coding requires revision.
Collapse
|
17
|
Abstract
Parents can effortlessly assist their child to walk, but the mechanism behind such physical coordination is still unknown. Studies have suggested that physical coordination is achieved by interacting humans who update their movement or motion plan in response to the partner's behaviour. Here, we tested rigidly coupled pairs in a joint reaching task to observe such changes in the partners' motion plans. However, the joint reaching movements were surprisingly consistent across different trials. A computational model that we developed demonstrated that the two partners had a distinct motion plan, which did not change with time. These results suggest that rigidly coupled pairs accomplish joint reaching movements by relying on a pre-programmed motion plan that is independent of the partner's behaviour.
Collapse
|
18
|
A prosthesis-specific multi-link segment model of lower-limb amputee sprinting. J Biomech 2016; 49:3185-3193. [PMID: 27544619 DOI: 10.1016/j.jbiomech.2016.07.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 11/21/2022]
Abstract
Lower-limb amputees commonly utilize non-articulating energy storage and return (ESAR) prostheses for high impact activities such as sprinting. Despite these prostheses lacking an articulating ankle joint, amputee gait analysis conventionally features a two-link segment model of the prosthetic foot. This paper investigated the effects of the selected link segment model׳s marker-set and geometry on a unilateral amputee sprinter׳s calculated lower-limb kinematics, kinetics and energetics. A total of five lower-limb models of the Ottobock® 1E90 Sprinter were developed, including two conventional shank-foot models that each used a different version of the Plug-in-Gait (PiG) marker-set to test the effect of prosthesis ankle marker location. Two Hybrid prosthesis-specific models were then developed, also using the PiG marker-sets, with the anatomical shank and foot replaced by prosthesis-specific geometry separated into two segments. Finally, a Multi-link segment (MLS) model was developed, consisting of six segments for the prosthesis as defined by a custom marker-set. All full-body musculoskeletal models were tested using four trials of experimental marker trajectories within OpenSim 3.2 (Stanford, California, USA) to find the affected and unaffected hip, knee and ankle kinematics, kinetics and energetics. The geometry of the selected lower-limb prosthesis model was found to significantly affect all variables on the affected leg (p < 0.05), and the marker-set also significantly affected all variables on the affected leg, and none of the unaffected leg variables. The results indicate that the omission of prosthesis-specific spatial, inertial and elastic properties from full-body models significantly affects the calculated amputee gait characteristics, and we therefore recommend the implementation of a MLS model.
Collapse
|
19
|
Potocanac Z, Pijnappels M, Verschueren S, van Dieën J, Duysens J. Two-stage muscle activity responses in decisions about leg movement adjustments during trip recovery. J Neurophysiol 2015; 115:143-56. [PMID: 26561597 DOI: 10.1152/jn.00263.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 10/27/2015] [Indexed: 12/13/2022] Open
Abstract
Studies on neural decision making mostly investigated fast corrective adjustments of arm movements. However, fast leg movement corrections deserve attention as well, since they are often required to avoid falling after balance perturbations. The present study aimed at elucidating the mechanisms behind fast corrections of tripping responses by analyzing the concomitant leg muscle activity changes. This was investigated in seven young adults who were tripped in between normal walking trials and took a recovery step by elevating the tripped leg over the obstacle. In some trials, a forbidden landing zone (FZ) was presented behind the obstacle, at the subjects' preferred foot landing position, forcing a step correction. Muscle activity of the tripped leg gastrocnemius medialis (iGM), tibialis anterior (iTA), rectus femoris (iRF), and biceps femoris (iBF) muscles was compared between normal trips presented before any FZ appearance, trips with a FZ, and normal trips presented in between trips with a FZ ("catch" trials). When faced with a real or expected (catch trials) FZ, subjects shortened their recovery steps. The underlying changes in muscle activity consisted of two stages. The first stage involved reduced iGM activity, occurring at a latency shorter than voluntary reaction, followed by reduced iTA and increased iBF and iGM activities occurring at longer latencies. The fast response was not related to step shortening, but longer latency responses clearly were functional. We suggest that the initial response possibly acts as a "pause," allowing the nervous system to integrate the necessary information and prepare the subsequent, functional movement adjustment.
Collapse
Affiliation(s)
| | - Mirjam Pijnappels
- Department of Human Movement Sciences, MOVE Research Institute Amsterdam, Vrije Universiteit Amsterdam, the Netherlands; and
| | | | - Jaap van Dieën
- Department of Human Movement Sciences, MOVE Research Institute Amsterdam, Vrije Universiteit Amsterdam, the Netherlands; and
| | | |
Collapse
|
20
|
Bruijn SM, Van Dieën JH, Daffertshofer A. Beta activity in the premotor cortex is increased during stabilized as compared to normal walking. Front Hum Neurosci 2015; 9:593. [PMID: 26578937 PMCID: PMC4621867 DOI: 10.3389/fnhum.2015.00593] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/12/2015] [Indexed: 11/29/2022] Open
Abstract
Walking on two legs is inherently unstable. Still, we humans perform remarkable well at it, mostly without falling. To gain more understanding of the role of the brain in controlling gait stability we measured brain activity using electro-encephalography (EEG) during stabilized and normal walking. Subjects walked on a treadmill in two conditions, each lasting 10 min; normal, and while being laterally stabilized by elastic cords. Kinematics of trunk and feet, electro-myography (EMG) of neck muscles, as well as 64-channel EEG were recorded. To assess gait stability the local divergence exponent, step width, and trunk range of motion were calculated from the kinematic data. We used independent component (IC) analysis to remove movement, EMG, and eyeblink artifacts from the EEG, after which dynamic imaging of coherent sources beamformers were determined to identify cortical sources that showed a significant difference between conditions. Stabilized walking led to a significant increase in gait stability, i.e., lower local divergence exponents. Beamforming analysis of the beta band activity revealed significant sources in bilateral pre-motor cortices. Projection of sensor data on these sources showed a significant difference only in the left premotor area, with higher beta power during stabilized walking, specifically around push-off, although only significant around contralateral push-off. It appears that even during steady gait the cortex is involved in the control of stability.
Collapse
Affiliation(s)
- Sjoerd M Bruijn
- Department of Human Movement Sciences, MOVE Research Institute Amsterdam, VU University Amsterdam Amsterdam, Netherlands ; Department of Orthopaedic Surgery, First Affiliated Hospital, Fujian Medical University Fuzhou, China
| | - Jaap H Van Dieën
- Department of Human Movement Sciences, MOVE Research Institute Amsterdam, VU University Amsterdam Amsterdam, Netherlands
| | - Andreas Daffertshofer
- Department of Human Movement Sciences, MOVE Research Institute Amsterdam, VU University Amsterdam Amsterdam, Netherlands
| |
Collapse
|
21
|
Sawers A, Allen JL, Ting LH. Long-term training modifies the modular structure and organization of walking balance control. J Neurophysiol 2015; 114:3359-73. [PMID: 26467521 DOI: 10.1152/jn.00758.2015] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/13/2015] [Indexed: 01/08/2023] Open
Abstract
How does long-term training affect the neural control of movements? Here we tested the hypothesis that long-term training leading to skilled motor performance alters muscle coordination during challenging, as well as nominal everyday motor behaviors. Using motor module (a.k.a., muscle synergy) analyses, we identified differences in muscle coordination patterns between professionally trained ballet dancers (experts) and untrained novices that accompanied differences in walking balance proficiency assessed using a challenging beam-walking test. During beam walking, we found that experts recruited more motor modules than novices, suggesting an increase in motor repertoire size. Motor modules in experts had less muscle coactivity and were more consistent than in novices, reflecting greater efficiency in muscle output. Moreover, the pool of motor modules shared between beam and overground walking was larger in experts compared with novices, suggesting greater generalization of motor module function across multiple behaviors. These differences in motor output between experts and novices could not be explained by differences in kinematics, suggesting that they likely reflect differences in the neural control of movement following years of training rather than biomechanical constraints imposed by the activity or musculoskeletal structure and function. Our results suggest that to learn challenging new behaviors, we may take advantage of existing motor modules used for related behaviors and sculpt them to meet the demands of a new behavior.
Collapse
Affiliation(s)
- Andrew Sawers
- Department of Kinesiology, University of Illinois at Chicago, Chicago, Illinois; and
| | - Jessica L Allen
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia
| | - Lena H Ting
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|