1
|
Separability of Human Motor Memories during reaching adaptation with force cues. PLoS Comput Biol 2022; 18:e1009966. [DOI: 10.1371/journal.pcbi.1009966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 11/09/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Judging by the breadth of our motor repertoire during daily activities, it is clear that learning different tasks is a hallmark of the human motor system. However, for reaching adaptation to different force fields, the conditions under which this is possible in laboratory settings have remained a challenging question. Previous work has shown that independent movement representations or goals enabled dual adaptation. Considering the importance of force feedback during limb control, here we hypothesised that independent cues delivered by means of background loads could support simultaneous adaptation to various velocity-dependent force fields, for identical kinematic plan and movement goal. We demonstrate in a series of experiments that indeed healthy adults can adapt to opposite force fields, independently of the direction of the background force cue. However, when the cue and force field were in the same direction but differed by heir magnitude, the formation of different motor representations was still observed but the associated mechanism was subject to increased interference. Finally, we highlight that this paradigm allows dissociating trial-by-trial adaptation from online feedback adaptation, as these two mechanisms are associated with different time scales that can be identified reliably and reproduced in a computational model.
Collapse
|
2
|
Matsuda E, Misawa D, Yano S, Kondo T. Olfactory Cues to Reduce Retrograde Interference During the Simultaneous Learning of Conflicting Motor Tasks. JOURNAL OF ROBOTICS AND MECHATRONICS 2022. [DOI: 10.20965/jrm.2022.p0746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We investigated the ability of humans to adapt to a novel environment by kinematic transformation. This adaptation was studied via behavioural experiments using a robotic manipulandum – a system designed to arbitrarily generate virtual force fields against a human hand and subsequently record the hand’s trajectory. By repeating motor tasks, this study’s participants gradually learned to move correctly under a newly experienced force field, such as rotating in a clockwise direction. However, each participant’s motor memory was destroyed if he/she experienced an opposing force field (e.g., in a counterclockwise direction) immediately after learning the initial movement, which is known as retrograde interference. In some previous studies, it has been considered that by presenting sensory cues to highlight the difference in two opposing force fields, participants can learn both force fields independently without interference. In this study, we investigated the functionality of olfactory cues – specifically lemon and lavender odors – in reducing retrograde interference. Forty-five university students participated in an experiment using a robotic manipulandum. Our results have shown that the presence of lemon odor reduces the destruction of motor memory, while that of lavender did not, suggesting that odors can enhance simultaneous motor learning but the effect depends on the type of odor used.
Collapse
|
3
|
Visual guidance can help with the use of a robotic exoskeleton during human walking. Sci Rep 2022; 12:3881. [PMID: 35273244 PMCID: PMC8913727 DOI: 10.1038/s41598-022-07736-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/15/2022] [Indexed: 11/29/2022] Open
Abstract
Walking is an important activity that supports the health-related quality of life, and for those who need assistance, robotic devices are available to help. Recent progress in wearable robots has identified the importance of customizing the assistance provided by the robot to the individual, resulting in robot adaptation to the human. However, current implementations minimize the role of human adaptation to the robot, for example, by the users modifying their movements based on the provided robot assistance. This study investigated the effect of visual feedback to guide the users in adapting their movements in response to wearable robot assistance. The visual feedback helped the users reduce their metabolic cost of walking without any changes in robot assistance in a given time. In a case with the initially metabolic expensive (IMExp) exoskeleton condition, both training methods helped reduce the metabolic cost of walking. The results suggest that visual feedback training is helpful to use the exoskeleton for various conditions. Without feedback, the training is helpful only for the IMExp exoskeleton condition. This result suggests visual feedback training can be useful to facilitate the use of non-personalized, generic assistance, where the assistance is not tuned for each user, in a relatively short time.
Collapse
|
4
|
Mariscal DM, Vasudevan EVL, Malone LA, Torres-Oviedo G, Bastian AJ. Context-Specificity of Locomotor Learning Is Developed during Childhood. eNeuro 2022; 9:ENEURO.0369-21.2022. [PMID: 35346963 PMCID: PMC9036623 DOI: 10.1523/eneuro.0369-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/25/2021] [Accepted: 02/17/2022] [Indexed: 12/02/2022] Open
Abstract
Humans can perform complex movements with speed and agility in the face of constantly changing task demands. To accomplish this, motor plans are adapted to account for errors in our movements because of changes in our body (e.g., growth or injury) or in the environment (e.g., walking on sand vs ice). It has been suggested that adaptation that occurs in response to changes in the state of our body will generalize across different movement contexts and environments, whereas adaptation that occurs with alterations in the external environment will be context-specific. Here, we asked whether the ability to form generalizable versus context-specific motor memories develops during childhood. We performed a cross-sectional study of context-specific locomotor adaptation in 35 children (3-18 years old) and 7 adults (19-31 years old). Subjects first adapted their gait and learned a new walking pattern on a split-belt treadmill, which has two belts that move each leg at a different speed. Then, subjects walked overground to assess the generalization of the adapted walking pattern across different environments. Our results show that the generalization of treadmill after-effects to overground walking decreases as subjects' age increases, indicating that age and experience are critical factors regulating the specificity of motor learning. Our results suggest that although basic locomotor patterns are established by two years of age, brain networks required for context-specific locomotor learning are still being developed throughout youth.
Collapse
Affiliation(s)
- Dulce M Mariscal
- Bioengineering Department, University of Pittsburgh, Pittsburgh, PA 15260
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213
| | - Erin V L Vasudevan
- Kennedy Krieger Institute, Baltimore, MD, 21205
- School of Health Technology and Management, Stony Brook University, Stony Brook, NY, 11794
| | - Laura A Malone
- Neurology Department, Johns Hopkins University, Baltimore, MD, 21205
- Physical Medicine, and Rehabilitation Department, Johns Hopkins University, Baltimore, MD, 21205
- Kennedy Krieger Institute, Baltimore, MD, 21205
| | - Gelsy Torres-Oviedo
- Bioengineering Department, University of Pittsburgh, Pittsburgh, PA 15260
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213
| | - Amy J Bastian
- Neuroscience Department, Johns Hopkins University, Baltimore, MD, 21205
- Kennedy Krieger Institute, Baltimore, MD, 21205
| |
Collapse
|
5
|
Cesanek E, Zhang Z, Ingram JN, Wolpert DM, Flanagan JR. Motor memories of object dynamics are categorically organized. eLife 2021; 10:71627. [PMID: 34796873 PMCID: PMC8635978 DOI: 10.7554/elife.71627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
The ability to predict the dynamics of objects, linking applied force to motion, underlies our capacity to perform many of the tasks we carry out on a daily basis. Thus, a fundamental question is how the dynamics of the myriad objects we interact with are organized in memory. Using a custom-built three-dimensional robotic interface that allowed us to simulate objects of varying appearance and weight, we examined how participants learned the weights of sets of objects that they repeatedly lifted. We find strong support for the novel hypothesis that motor memories of object dynamics are organized categorically, in terms of families, based on covariation in their visual and mechanical properties. A striking prediction of this hypothesis, supported by our findings and not predicted by standard associative map models, is that outlier objects with weights that deviate from the family-predicted weight will never be learned despite causing repeated lifting errors.
Collapse
Affiliation(s)
- Evan Cesanek
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States.,Department of Neuroscience, Columbia University, New York, NY, United States
| | - Zhaoran Zhang
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States.,Department of Neuroscience, Columbia University, New York, NY, United States
| | - James N Ingram
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States.,Department of Neuroscience, Columbia University, New York, NY, United States
| | - Daniel M Wolpert
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States.,Department of Neuroscience, Columbia University, New York, NY, United States
| | - J Randall Flanagan
- Department of Psychology and Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| |
Collapse
|
6
|
Forano M, Schween R, Taylor JA, Hegele M, Franklin DW. Direct and indirect cues can enable dual adaptation, but through different learning processes. J Neurophysiol 2021; 126:1490-1506. [PMID: 34550024 DOI: 10.1152/jn.00166.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Switching between motor tasks requires accurate adjustments for changes in dynamics (grasping a cup) or sensorimotor transformations (moving a computer mouse). Dual-adaptation studies have investigated how learning of context-dependent dynamics or transformations is enabled by sensory cues. However, certain cues, such as color, have shown mixed results. We propose that these mixed results may arise from two major classes of cues: "direct" cues, which are part of the dynamic state and "indirect" cues, which are not. We hypothesized that explicit strategies would primarily account for the adaptation of an indirect color cue but would be limited to simple tasks, whereas a direct visual separation cue would allow implicit adaptation regardless of task complexity. To test this idea, we investigated the relative contribution of implicit and explicit learning in relation to contextual cue type (colored or visually shifted workspace) and task complexity (1 or 8 targets) in a dual-adaptation task. We found that the visual workspace location cue enabled adaptation across conditions primarily through implicit adaptation. In contrast, we found that the color cue was largely ineffective for dual adaptation, except in a small subset of participants who appeared to use explicit strategies. Our study suggests that the previously inconclusive role of color cues in dual adaptation may be explained by differential contribution of explicit strategies across conditions.NEW & NOTEWORTHY We present evidence that learning of context-dependent dynamics proceeds via different processes depending on the type of sensory cue used to signal the context. Visual workspace location enabled learning different dynamics implicitly, presumably because it directly enters the dynamic state estimate. In contrast, a color cue was only successful where learners were apparently able to leverage explicit strategies to account for changed dynamics. This suggests a unification for the previously inconclusive role of color cues.
Collapse
Affiliation(s)
- Marion Forano
- Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Raphael Schween
- Department of Psychology and Sport Science, Justus Liebig University, Giessen, Germany.,Department of Psychology, Philipps-University, Marburg, Germany
| | - Jordan A Taylor
- Department of Psychology, Princeton University, Princeton, New Jersey
| | - Mathias Hegele
- Department of Psychology and Sport Science, Justus Liebig University, Giessen, Germany.,Center for Mind, Brain and Behavior, Universities of Marburg and Giessen, Marburg and Giessen, Germany
| | - David W Franklin
- Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany.,Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Munich, Germany.,Munich Data Science Institute, Technical University of Munich, Munich, Germany
| |
Collapse
|
7
|
Poitras I, Martinie O, Robert MT, Campeau-Lecours A, Mercier C. Impact of Sensory Deficits on Upper Limb Motor Performance in Individuals with Cerebral Palsy: A Systematic Review. Brain Sci 2021; 11:brainsci11060744. [PMID: 34205153 PMCID: PMC8227331 DOI: 10.3390/brainsci11060744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/28/2022] Open
Abstract
People living with cerebral palsy (CP) exhibit motor and sensory impairments that affect unimanual and bimanual functions. The importance of sensory functions for motor control is well known, but the association between motor and sensory functions remains unclear in people living with CP. The objective of this systematic review was to characterize the relationship between sensory deficits and upper limb motor function in individuals living with CP. METHODS Five databases were screened. The inclusion criteria were: (1) including people living with CP, (2) reporting measurements of upper limb motor and sensory functions. A qualitative analysis of the studies' level of evidence was done. RESULTS Thirty-three articles were included. Twenty-five articles evaluated tactile functions, 10 proprioceptive functions and 7 visual functions; 31 of the articles reported on unimanual functions and 17 of them reported on bimanual functions. Tactile functions showed a moderate to high association; it was not possible to reach definitive conclusions for proprioceptive and visual functions. CONCLUSIONS The heterogeneity of the results limits the ability to draw definitive conclusions. Further studies should aim to perform more comprehensive assessments of motor and sensory functions, to determine the relative contribution of various sensory modalities to simple and more complex motor functions.
Collapse
Affiliation(s)
- Isabelle Poitras
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, QC G1M 2S8, Canada; (I.P.); (O.M.); (M.T.R.); (A.C.-L.)
- Department of Rehabilitation, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Ophélie Martinie
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, QC G1M 2S8, Canada; (I.P.); (O.M.); (M.T.R.); (A.C.-L.)
- Department of Rehabilitation, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Maxime T. Robert
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, QC G1M 2S8, Canada; (I.P.); (O.M.); (M.T.R.); (A.C.-L.)
- Department of Rehabilitation, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Alexandre Campeau-Lecours
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, QC G1M 2S8, Canada; (I.P.); (O.M.); (M.T.R.); (A.C.-L.)
- Department of Mechanical Engineering, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Catherine Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, QC G1M 2S8, Canada; (I.P.); (O.M.); (M.T.R.); (A.C.-L.)
- Department of Rehabilitation, Laval University, Quebec City, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
8
|
Howard IS, Franklin S, Franklin DW. Asymmetry in kinematic generalization between visual and passive lead-in movements are consistent with a forward model in the sensorimotor system. PLoS One 2020; 15:e0228083. [PMID: 31995588 PMCID: PMC6988934 DOI: 10.1371/journal.pone.0228083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 01/07/2020] [Indexed: 11/18/2022] Open
Abstract
In our daily life we often make complex actions comprised of linked movements, such as reaching for a cup of coffee and bringing it to our mouth to drink. Recent work has highlighted the role of such linked movements in the formation of independent motor memories, affecting the learning rate and ability to learn opposing force fields. In these studies, distinct prior movements (lead-in movements) allow adaptation of opposing dynamics on the following movement. Purely visual or purely passive lead-in movements exhibit different angular generalization functions of this motor memory as the lead-in movements are modified, suggesting different neural representations. However, we currently have no understanding of how different movement kinematics (distance, speed or duration) affect this recall process and the formation of independent motor memories. Here we investigate such kinematic generalization for both passive and visual lead-in movements to probe their individual characteristics. After participants adapted to opposing force fields using training lead-in movements, the lead-in kinematics were modified on random trials to test generalization. For both visual and passive modalities, recalled compensation was sensitive to lead-in duration and peak speed, falling off away from the training condition. However, little reduction in force was found with increasing lead-in distance. Interestingly, asymmetric transfer between lead-in movement modalities was also observed, with partial transfer from passive to visual, but very little vice versa. Overall these tuning effects were stronger for passive compared to visual lead-ins demonstrating the difference in these sensory inputs in regulating motor memories. Our results suggest these effects are a consequence of state estimation, with differences across modalities reflecting their different levels of sensory uncertainty arising as a consequence of dissimilar feedback delays.
Collapse
Affiliation(s)
- Ian S. Howard
- Centre for Robotics and Neural Systems, School of Computing, Electronics and Mathematics, University of Plymouth, Plymouth, England, United Kingdom
| | - Sae Franklin
- Department of Electrical and Computer Engineering, Institute for Cognitive Systems, Technical University of Munich, Munich, Germany
| | - David W. Franklin
- Neuromuscular Diagnostics, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| |
Collapse
|
9
|
|
10
|
Remington ED, Egger SW, Narain D, Wang J, Jazayeri M. A Dynamical Systems Perspective on Flexible Motor Timing. Trends Cogn Sci 2018; 22:938-952. [PMID: 30266152 PMCID: PMC6166486 DOI: 10.1016/j.tics.2018.07.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 12/22/2022]
Abstract
A hallmark of higher brain function is the ability to rapidly and flexibly adjust behavioral responses based on internal and external cues. Here, we examine the computational principles that allow decisions and actions to unfold flexibly in time. We adopt a dynamical systems perspective and outline how temporal flexibility in such a system can be achieved through manipulations of inputs and initial conditions. We then review evidence from experiments in nonhuman primates that support this interpretation. Finally, we explore the broader utility and limitations of the dynamical systems perspective as a general framework for addressing open questions related to the temporal control of movements, as well as in the domains of learning and sequence generation.
Collapse
Affiliation(s)
- Evan D Remington
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; These authors contributed equally to this work
| | - Seth W Egger
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; These authors contributed equally to this work
| | - Devika Narain
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Netherlands Institute for Neuroscience, Amsterdam, BA 1105, The Netherlands; Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jing Wang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Bioengineering, University of Missouri, Columbia, MO 65201, USA
| | - Mehrdad Jazayeri
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
11
|
Kumar N, Kumar A, Sonane B, Mutha PK. Interference between competing motor memories developed through learning with different limbs. J Neurophysiol 2018; 120:1061-1073. [PMID: 29790834 DOI: 10.1152/jn.00905.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Learning from motor errors that occur across different limbs is essential for effective tool use, sports training, and rehabilitation. To probe the neural organization of error-driven learning across limbs, we asked whether learning opposing visuomotor mappings with the two arms would interfere. Young right-handers first adapted to opposite visuomotor rotations A and B with different arms and were then reexposed to A 24 h later. We observed that relearning of A was never faster nor were initial errors smaller than prior A learning, which would be expected if there was no interference from B. Rather, errors were greater than or similar to, and learning rate was slower than or comparable to, previous A learning depending on the order in which the arms learned. This indicated robust interference between the motor memories of A and B when they were learned with different arms in close succession. We then proceeded to uncover that the order-dependent asymmetry in performance upon reexposure resulted from asymmetric transfer of learning from the left arm to the right but not vice versa and that the observed interference was retrograde in nature. Such retrograde interference likely occurs because the two arms require the same neural resources for learning, a suggestion consistent with that of our past work showing impaired learning following left inferior parietal damage regardless of the arm used. These results thus point to a common neural basis for formation of new motor memories with different limbs and hold significant implications for how newly formed motor memories interact. NEW & NOTEWORTHY In a series of experiments, we demonstrate robust retrograde interference between competing motor memories developed through error-based learning with different arms. These results provide evidence for shared neural resources for the acquisition of motor memories across different limbs and also suggest that practice with two effectors in close succession may not be a sound approach in either sports or rehabilitation. Such training may not allow newly acquired motor memories to be stabilized.
Collapse
Affiliation(s)
- Neeraj Kumar
- Centre for Cognitive Science, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Adarsh Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Bhoomika Sonane
- Centre for Cognitive Science, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Pratik K Mutha
- Centre for Cognitive Science, Indian Institute of Technology Gandhinagar, Gujarat, India.,Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| |
Collapse
|
12
|
van Vugt FT, Ostry DJ. From known to unknown: moving to unvisited locations in a novel sensorimotor map. Ann N Y Acad Sci 2018; 1423:10.1111/nyas.13608. [PMID: 29500930 PMCID: PMC6120807 DOI: 10.1111/nyas.13608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sensorimotor learning requires knowledge of the relationship between movements and sensory effects: a sensorimotor map. Generally, these mappings are not innate but have to be learned. During learning, the challenge is to build a continuous map from a set of discrete observations, that is, predict locations of novel targets. One hypothesis is that the learner linearly interpolates among discrete observations that are already in the map. Here, this hypothesis is tested by exposing human subjects to a novel mapping between arm movements and sounds. Participants were passively moved to the edges of the workspace receiving the corresponding sounds and then were presented intermediate sounds and asked to make movements to locations they thought corresponded to those sounds. It is observed that average movements roughly match linear interpolation of the space. However, the actual distribution of participants' movements is best described by a bimodal reaching strategy in which they move to one of two locations near the workspace edge where they had prior exposure to the sound-movement pairing. These results suggest that interpolation happens to a limited extent only and that the acquisition of sensorimotor maps may not be driven by interpolation but instead relies on a flexible recombination of instance-based learning.
Collapse
Affiliation(s)
| | - David J. Ostry
- Psychology Department, McGill University, Montreal, Canada
- Haskins Laboratories, New Haven, Connecticut, United States of America
| |
Collapse
|
13
|
Howard IS, Ford C, Cangelosi A, Franklin DW. Active lead-in variability affects motor memory formation and slows motor learning. Sci Rep 2017; 7:7806. [PMID: 28798355 PMCID: PMC5552870 DOI: 10.1038/s41598-017-05697-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 06/19/2017] [Indexed: 11/09/2022] Open
Abstract
Rapid learning can be critical to ensure elite performance in a changing world or to recover basic movement after neural injuries. Recently it was shown that the variability of follow-through movements affects the rate of motor memory formation. Here we investigate if lead-in movement has a similar effect on learning rate. We hypothesized that both modality and variability of lead-in movement would play critical roles, with simulations suggesting that only changes in active lead-in variability would exhibit slower learning. We tested this experimentally using a two-movement paradigm, with either visual or active initial lead-in movements preceeding a second movement performed in a force field. As predicted, increasing active lead-in variability reduced the rate of motor adaptation, whereas changes in visual lead-in variability had little effect. This demonstrates that distinct neural tuning activity is induced by different lead-in modalities, subsequently influencing the access to, and switching between, distinct motor memories.
Collapse
Affiliation(s)
- Ian S Howard
- Centre for Robotics and Neural Systems, School of Computing, Electronics and Mathematics, University of Plymouth, Plymouth, United Kingdom.
| | - Christopher Ford
- Centre for Robotics and Neural Systems, School of Computing, Electronics and Mathematics, University of Plymouth, Plymouth, United Kingdom
| | - Angelo Cangelosi
- Centre for Robotics and Neural Systems, School of Computing, Electronics and Mathematics, University of Plymouth, Plymouth, United Kingdom
| | - David W Franklin
- Neuromuscular Diagnostics, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| |
Collapse
|
14
|
Stockinger C, Thürer B, Stein T. Consecutive learning of opposing unimanual motor tasks using the right arm followed by the left arm causes intermanual interference. PLoS One 2017; 12:e0176594. [PMID: 28459833 PMCID: PMC5411075 DOI: 10.1371/journal.pone.0176594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/13/2017] [Indexed: 12/02/2022] Open
Abstract
Intermanual transfer (motor memory generalization across arms) and motor memory interference (impairment of retest performance in consecutive motor learning) are well-investigated motor learning phenomena. However, the interplay of these phenomena remains elusive, i.e., whether intermanual interference occurs when two unimanual tasks are consecutively learned using different arms. Here, we examine intermanual interference when subjects consecutively adapt their right and left arm movements to novel dynamics. We considered two force field tasks A and B which were of the same structure but mirrored orientation (B = -A). The first test group (ABA-group) consecutively learned task A using their right arm and task B using their left arm before being retested for task A with their right arm. Another test group (AAA-group) learned only task A in the same right-left-right arm schedule. Control subjects learned task A using their right arm without intermediate left arm learning. All groups were able to adapt their right arm movements to force field A and both test groups showed significant intermanual transfer of this initial learning to the contralateral left arm of 21.9% (ABA-group) and 27.6% (AAA-group). Consecutively, both test groups adapted their left arm movements to force field B (ABA-group) or force field A (AAA-group). For the ABA-group, left arm learning caused significant intermanual interference of the initially learned right arm task (68.3% performance decrease). The performance decrease of the AAA-group (10.2%) did not differ from controls (15.5%). These findings suggest that motor control and learning of right and left arm movements involve partly similar neural networks or underlie a vital interhemispheric connectivity. Moreover, our results suggest a preferred internal task representation in extrinsic Cartesian-based coordinates rather than in intrinsic joint-based coordinates because interference was absent when learning was performed in extrinsically equivalent fashion (AAA-group) but interference occurred when learning was performed in intrinsically equivalent fashion (ABA-group).
Collapse
Affiliation(s)
- Christian Stockinger
- BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
- HEiKA–Heidelberg Karlsruhe Research Partnership, Heidelberg University, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Neuromuscular Diagnostics, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
- * E-mail:
| | - Benjamin Thürer
- BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Thorsten Stein
- BioMotion Center, Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
- HEiKA–Heidelberg Karlsruhe Research Partnership, Heidelberg University, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
15
|
Motor Planning, Not Execution, Separates Motor Memories. Neuron 2016; 92:773-779. [PMID: 27817979 PMCID: PMC5167294 DOI: 10.1016/j.neuron.2016.10.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/07/2016] [Accepted: 10/06/2016] [Indexed: 11/22/2022]
Abstract
Recent theories of limb control emphasize motor cortex as a dynamical system, with planning setting the initial neural state, and execution arising from the self-limiting evolution of the intrinsic neural dynamics. Therefore, movements that share an initial trajectory but then diverge might have different neural states during the execution of the identical initial trajectories. We hypothesized that motor adaptation maps neural states to changes in motor command. This predicts that two opposing perturbations, which interfere when experienced over the same movement, could be learned if each is associated with a different plan even if not executed. We show that planning, but not executing, different follow-through movements allow opposing perturbations to be learned simultaneously over the same movement. However, no learning occurs if different follow throughs are executed, but not planned prior to movement initiation. Our results suggest neural, rather than physical states, are the critical factor associated with motor adaptation.
Collapse
|
16
|
Nozaki D, Yokoi A, Kimura T, Hirashima M, Orban de Xivry JJ. Tagging motor memories with transcranial direct current stimulation allows later artificially-controlled retrieval. eLife 2016; 5. [PMID: 27472899 PMCID: PMC5010385 DOI: 10.7554/elife.15378] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/28/2016] [Indexed: 11/30/2022] Open
Abstract
We demonstrate that human motor memories can be artificially tagged and later retrieved by noninvasive transcranial direct current stimulation (tDCS). Participants learned to adapt reaching movements to two conflicting dynamical environments that were each associated with a different tDCS polarity (anodal or cathodal tDCS) on the sensorimotor cortex. That is, we sought to determine whether divergent background activity levels within the sensorimotor cortex (anodal: higher activity; cathodal: lower activity) give rise to distinct motor memories. After a training session, application of each tDCS polarity automatically resulted in the retrieval of the motor memory corresponding to that polarity. These results reveal that artificial modulation of neural activity in the sensorimotor cortex through tDCS can act as a context for the formation and recollection of motor memories. DOI:http://dx.doi.org/10.7554/eLife.15378.001 Memory is strongly affected by the context in which a particular memory is formed and remembered. For example, visiting a familiar place can often trigger memories associated or “tagged” with that place. Such tagging also exists for memories related to movement: for instance, distinct motor memories for a limb movement are formed depending on whether the other limb is stationary or moving. However, little is known about how the tagging of such motor memories takes place. Nozaki et al. have now used a technique known as transcranial direct current stimulation to generate artificial “tags” for motor memories. In the experiments, volunteers tried to move a robotic arm towards a goal while the robot pushed their hand off-course. Sometimes the robot pushed the participant’s hand to the left, and sometimes to the right. This makes the task difficult to learn, even when the cue for the direction is provided, as the motor memories that are made to counteract each push overwrite each other. Nozaki et al. used transcranial stimulation to alter the background electrical activity in the sensorimotor regions of the participants’ brains as they performed the robotic arm task. Artificially generating a different pattern of background brain electrical activity for each push direction caused the motor memories associated with leftward and rightward pushes to be tagged differently. Once this association had been learnt, applying the artificial brain stimulation pattern associated with one of the pushes resulted in the participants unconsciously compensating for a push in that direction, even when it was not there. Overall, the results presented by Nozaki et al. suggest that the background electrical activity seen in the brain can influence how a motor memory is created and later recalled. A future challenge is to investigate whether this technique could be used to help athletes improve their performance or to treat people with movement disorders. Further experiments are also needed to test whether the same approach can influence the formation and recollection of other kinds of memories, such as those related to fear. DOI:http://dx.doi.org/10.7554/eLife.15378.002
Collapse
Affiliation(s)
- Daichi Nozaki
- Division of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Atsushi Yokoi
- The Brain and Mind Institute, University of Western Ontario, London, Canada.,Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Takahiro Kimura
- Research Institute, Kochi University of Technology, Kami City, Japan
| | - Masaya Hirashima
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, and Osaka University, Suita, Japan
| | - Jean-Jacques Orban de Xivry
- Institute of Information and Communication Technologies, Electronics, and Applied Mathematics, Université catholique de Louvain, Louvain-La-Neuve, Belgium.,Institute of Neuroscience, Université catholique de Louvain, Louvain-La-Neuve, Belgium.,Department of Kinesiology, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Howard IS, Franklin DW. Adaptive tuning functions arise from visual observation of past movement. Sci Rep 2016; 6:28416. [PMID: 27341163 PMCID: PMC4920033 DOI: 10.1038/srep28416] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/31/2016] [Indexed: 12/03/2022] Open
Abstract
Visual observation of movement plays a key role in action. For example, tennis players have little time to react to the ball, but still need to prepare the appropriate stroke. Therefore, it might be useful to use visual information about the ball trajectory to recall a specific motor memory. Past visual observation of movement (as well as passive and active arm movement) affects the learning and recall of motor memories. Moreover, when passive or active, these past contextual movements exhibit generalization (or tuning) across movement directions. Here we extend this work, examining whether visual motion also exhibits similar generalization across movement directions and whether such generalization functions can explain patterns of interference. Both the adaptation movement and contextual movement exhibited generalization beyond the training direction, with the visual contextual motion exhibiting much broader tuning. A second experiment demonstrated that this pattern was consistent with the results of an interference experiment where opposing force fields were associated with two separate visual movements. Overall, our study shows that visual contextual motion exhibits much broader (and shallower) tuning functions than previously seen for either passive or active movements, demonstrating that the tuning characteristics of past motion are highly dependent on their sensory modality.
Collapse
Affiliation(s)
- Ian S Howard
- Centre for Robotics and Neural Systems, School of Computing, Electronics and Mathematics, University of Plymouth, Plymouth, United Kingdom
| | - David W Franklin
- Neuromuscular Diagnostics, Department of Sport and Health Science, Technical University of Munich, Munich, Germany
| |
Collapse
|
18
|
Farshchiansadegh A, Melendez-Calderon A, Ranganathan R, Murphey TD, Mussa-Ivaldi FA. Sensory Agreement Guides Kinetic Energy Optimization of Arm Movements during Object Manipulation. PLoS Comput Biol 2016; 12:e1004861. [PMID: 27035587 PMCID: PMC4818082 DOI: 10.1371/journal.pcbi.1004861] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 03/10/2016] [Indexed: 11/25/2022] Open
Abstract
The laws of physics establish the energetic efficiency of our movements. In some cases, like locomotion, the mechanics of the body dominate in determining the energetically optimal course of action. In other tasks, such as manipulation, energetic costs depend critically upon the variable properties of objects in the environment. Can the brain identify and follow energy-optimal motions when these motions require moving along unfamiliar trajectories? What feedback information is required for such optimal behavior to occur? To answer these questions, we asked participants to move their dominant hand between different positions while holding a virtual mechanical system with complex dynamics (a planar double pendulum). In this task, trajectories of minimum kinetic energy were along curvilinear paths. Our findings demonstrate that participants were capable of finding the energy-optimal paths, but only when provided with veridical visual and haptic information pertaining to the object, lacking which the trajectories were executed along rectilinear paths. Recent studies have shown that when learning novel dynamics in the context of reaching movements, people often ignore energetic optimality in favor of Euclidean geometric optimality, preferring rectilinear paths over mechanically optimal trajectories. Although an explanation could be that sensory-motor coordination ignores energetic cost, another possibility is that different sensing modalities need to be in agreement before the brain will optimize energetic cost during motion. We provide evidence for this latter perspective, by showing that when provided congruency and consistency of visual and haptic feedback, participants take into account both geometric and mechanical properties of a manipulation task. However, when visual and haptic feedback are inconsistent, participants revert to the rectilinear paths seen in previous studies. We conclude from these observations, that when transporting an external object, sensory agreement between vision and touch guides the optimization of the kinetic energy exchanged during movement between the arm and the object.
Collapse
Affiliation(s)
- Ali Farshchiansadegh
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois, United States of America
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| | - Alejandro Melendez-Calderon
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois, United States of America
- Department of Physical Medicine & Rehabilitation, Northwestern University, Chicago, Illinois, United States of America
| | - Rajiv Ranganathan
- Department of Kinesiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Todd D. Murphey
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Ferdinando A. Mussa-Ivaldi
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois, United States of America
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Physical Medicine & Rehabilitation, Northwestern University, Chicago, Illinois, United States of America
- Department of Physiology, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
19
|
Concurrent adaptation to opposing visuomotor rotations by varying hand and body postures. Exp Brain Res 2015; 233:3433-45. [PMID: 26289481 DOI: 10.1007/s00221-015-4411-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 08/08/2015] [Indexed: 10/23/2022]
Abstract
When reaching towards objects, the human central nervous system (CNS) can actively compensate for two different perturbations simultaneously (dual adaptation), though this does not simply occur upon presentation. Dual adaptation is made more difficult when the desired trajectories and targets are identical and hence do not cue the impending perturbation. In cases like these, the CNS requires contextual cues in order to predict the dynamics of the environment. Not all cues are effective at facilitating dual adaptation. In two experiments, we investigated the efficacy of two contextual cues that are intrinsic to the CNS, namely hand as well as body posture in concurrently adapting to two opposing visuomotor rotations. For the hand posture experiment, we also look at the role of extended training. Participants reached manually to visual targets with their unseen hand represented by a cursor that was rotated either 30° clockwise or counterclockwise, determined randomly on each reach. Each rotation was associated with a distinct hand posture (a precision or power grip, respectively) in one experiment and a distinct body rotation (10° leftward or rightward turn of the seat, respectively, while fixating straight) in the second experiment. Critically, the targets (and thus, the required cursor trajectories) were identical in both rotations. We found that how people held the tool or oriented their body while reaching is sufficient for concurrently adapting separate visuomotor mappings such that over time, reach errors significantly decrease. Extended practice did not lead to further benefits though. These findings suggest that when the required cursor movements are identical for different visuomotor mappings, dual adaptation is still possible given sufficient intrinsic contextual cues.
Collapse
|
20
|
Neural Tuning Functions Underlie Both Generalization and Interference. PLoS One 2015; 10:e0131268. [PMID: 26110871 PMCID: PMC4482423 DOI: 10.1371/journal.pone.0131268] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/01/2015] [Indexed: 11/19/2022] Open
Abstract
In sports, the role of backswing is considered critical for generating a good shot, even though it plays no direct role in hitting the ball. We recently demonstrated the scientific basis of this phenomenon by showing that immediate past movement affects the learning and recall of motor memories. This effect occurred regardless of whether the past contextual movement was performed actively, passively, or shown visually. In force field studies, it has been shown that motor memories generalize locally and that the level of compensation decays as a function of movement angle away from the trained movement. Here we examine if the contextual effect of past movement exhibits similar patterns of generalization and whether it can explain behavior seen in interference studies. Using a single force-field learning task, the directional tuning curves of both the prior contextual movement and the subsequent force field adaptive movements were measured. The adaptation movement direction showed strong directional tuning, decaying to zero by 90° relative to the training direction. The contextual movement direction exhibited a similar directional tuning, although the effect was always above 60%. We then investigated the directional tuning of the passive contextual movement using interference tasks, where the contextual movements that uniquely specified the force field direction were separated by ±15° or ±45°. Both groups showed a pronounced tuning effect, which could be well explained by the directional tuning functions for single force fields. Our results show that contextual effect of past movement influences predictive force compensation, even when adaptation does not require contextual information. However, when such past movement contextual information is crucial to the task, such as in an interference study, it plays a strong role in motor memory learning and recall. This work demonstrates that similar tuning responses underlie both generalization of movement direction during dynamic learning and contextual movements in both single force field and interference tasks.
Collapse
|
21
|
Yeo SH, Wolpert DM, Franklin DW. Coordinate Representations for Interference Reduction in Motor Learning. PLoS One 2015; 10:e0129388. [PMID: 26067480 PMCID: PMC4466349 DOI: 10.1371/journal.pone.0129388] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/07/2015] [Indexed: 11/18/2022] Open
Abstract
When opposing force fields are presented alternately or randomly across trials for identical reaching movements, subjects learn neither force field, a behavior termed ‘interference’. Studies have shown that a small difference in the endpoint posture of the limb reduces this interference. However, any difference in the limb’s endpoint location typically changes the hand position, joint angles and the hand orientation making it ambiguous as to which of these changes underlies the ability to learn dynamics that normally interfere. Here we examine the extent to which each of these three possible coordinate systems—Cartesian hand position, shoulder and elbow joint angles, or hand orientation—underlies the reduction in interference. Subjects performed goal-directed reaching movements in five different limb configurations designed so that different pairs of these configurations involved a change in only one coordinate system. By specifically assigning clockwise and counter-clockwise force fields to the configurations we could create three different conditions in which the direction of the force field could only be uniquely distinguished in one of the three coordinate systems. We examined the ability to learn the two fields based on each of the coordinate systems. The largest reduction of interference was observed when the field direction was linked to the hand orientation with smaller reductions in the other two conditions. This result demonstrates that the strongest reduction in interference occurred with changes in the hand orientation, suggesting that hand orientation may have a privileged role in reducing motor interference for changes in the endpoint posture of the limb.
Collapse
Affiliation(s)
- Sang-Hoon Yeo
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail:
| | - Daniel M. Wolpert
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - David W. Franklin
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
22
|
Berning K, Cohick S, Johnson R, Miller LA, Sensinger JW. Comparison of body-powered voluntary opening and voluntary closing prehensor for activities of daily life. ACTA ACUST UNITED AC 2015; 51:253-61. [PMID: 24933723 DOI: 10.1682/jrrd.2013.05.0123] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Persons with an upper-limb amputation who use a body-powered prosthesis typically control the prehensor through contralateral shoulder movement, which is transmitted through a Bowden cable. Increased cable tension either opens or closes the prehensor; when tension is released, some passive element, such as a spring, returns the prehensor to the default state (closed or open). In this study, we used the Southampton Hand Assessment Procedure to examine functional differences between these two types of prehensors in 29 nondisabled subjects (who used a body-powered bypass prosthesis) and 2 persons with unilateral transradial amputations (who used a conventional body-powered device). We also administered a survey to determine whether subjects preferred one prehensor or the other for specific tasks, with a long-term goal of assessing whether a prehensor that could switch between both modes would be advantageous. We found that using the voluntary closing prehensor was 1.3 s faster (p = 0.02) than using the voluntary opening prehensor, across tasks, and that there was consensus among subjects on which types of tasks they preferred to do with each prehensor type. Twenty-five subjects wanted a device that could switch between the two modes in order to perform particular tasks.
Collapse
Affiliation(s)
- Kelsey Berning
- Department of Biomedical Engineering, Northwestern University, Evanston, IL
| | | | | | | | | |
Collapse
|
23
|
Orban de Xivry JJ, Lefèvre P. Formation of model-free motor memories during motor adaptation depends on perturbation schedule. J Neurophysiol 2015; 113:2733-41. [PMID: 25673736 DOI: 10.1152/jn.00673.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/06/2015] [Indexed: 11/22/2022] Open
Abstract
Motor adaptation to an external perturbation relies on several mechanisms such as model-based, model-free, strategic, or repetition-dependent learning. Depending on the experimental conditions, each of these mechanisms has more or less weight in the final adaptation state. Here we focused on the conditions that lead to the formation of a model-free motor memory (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787-801, 2011), i.e., a memory that does not depend on an internal model or on the size or direction of the errors experienced during the learning. The formation of such model-free motor memory was hypothesized to depend on the schedule of the perturbation (Orban de Xivry JJ, Ahmadi-Pajouh MA, Harran MD, Salimpour Y, Shadmehr R. J Neurophysiol 109: 124-136, 2013). Here we built on this observation by directly testing the nature of the motor memory after abrupt or gradual introduction of a visuomotor rotation, in an experimental paradigm where the presence of model-free motor memory can be identified (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787-801, 2011). We found that relearning was faster after abrupt than gradual perturbation, which suggests that model-free learning is reduced during gradual adaptation to a visuomotor rotation. In addition, the presence of savings after abrupt introduction of the perturbation but gradual extinction of the motor memory suggests that unexpected errors are necessary to induce a model-free motor memory. Overall, these data support the hypothesis that different perturbation schedules do not lead to a more or less stabilized motor memory but to distinct motor memories with different attributes and neural representations.
Collapse
Affiliation(s)
- Jean-Jacques Orban de Xivry
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics and Institute of Neuroscience, Université catholique de Louvain, Louvain-La-Neuve, Belgium; and KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Kinesiology, Leuven, Belgium
| | - Philippe Lefèvre
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics and Institute of Neuroscience, Université catholique de Louvain, Louvain-La-Neuve, Belgium; and
| |
Collapse
|
24
|
Howard IS, Wolpert DM, Franklin DW. The value of the follow-through derives from motor learning depending on future actions. Curr Biol 2015; 25:397-401. [PMID: 25578907 PMCID: PMC4320013 DOI: 10.1016/j.cub.2014.12.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/28/2014] [Accepted: 12/15/2014] [Indexed: 11/16/2022]
Abstract
In ball sports, we are taught to follow through, despite the inability of events after contact or release to influence the outcome [1, 2]. Here we show that the specific motor memory active at any given moment critically depends on the movement that will be made in the near future. We demonstrate that associating a different follow-through movement with two motor skills that normally interfere [3–7] allows them to be learned simultaneously, suggesting that distinct future actions activate separate motor memories. This implies that when learning a skill, a variable follow-through would activate multiple motor memories across practice, whereas a consistent follow-through would activate a single motor memory, resulting in faster learning. We confirm this prediction and show that such follow-through effects influence adaptation over time periods associated with real-world skill learning. Overall, our results indicate that movements made in the immediate future influence the current active motor memory. This suggests that there is a critical time period both before [8] and after the current movement that determines motor memory activation and controls learning. Future movements determine which motor memory is currently active and modifiable Skills that otherwise interfere can be learned if each has a unique follow-through A single skill is learned faster if its follow-through is consistent Selection of motor memories depends on both lead-in and follow-through movements
Collapse
Affiliation(s)
- Ian S Howard
- Centre for Robotics and Neural Systems, University of Plymouth, Portland Square, Plymouth PL4 8AA UK.
| | - Daniel M Wolpert
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
| | - David W Franklin
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.
| |
Collapse
|
25
|
Functional modulation of corticospinal excitability with adaptation of wrist movements to novel dynamical environments. J Neurosci 2015; 34:12415-24. [PMID: 25209281 DOI: 10.1523/jneurosci.2565-13.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Adaptation of reaching movements to a novel dynamic environment is associated with changes in neuronal activity in the primary motor cortex (M1), suggesting that M1 neurons are part of the internal model. Here, we investigated whether such changes in neuronal activity, resulting from motor adaptation, were also accompanied by changes in human corticospinal excitability, which reflects M1 activity at a macroscopic level. Participants moved a cursor on a display using the right wrist joint from the starting position toward one of eight equally spaced peripheral targets. Motor-evoked potentials (MEPs) were elicited from the wrist muscles by transcranial magnetic stimulation delivered over the left M1 before and after adaptation to a clockwise velocity-dependent force field. We found that the MEP elicited even during the preparatory period exhibited a directional tuning property, and that the preferred direction shifted clockwise after adaptation to the force field. In a subsequent experiment, participants simultaneously adapted an identical wrist movement to two opposing force fields, each of which was associated with unimanual or bimanual contexts, and the MEP during the preparatory period was flexibly modulated, depending on the context. In contrast, such modulation of the MEP was not observed when participants tried to adapt to two opposing force fields that were each associated with a target color. These results suggest that the internal model formed in the M1 is retrieved flexibly even during the preparatory period, and that the MEP could be a very useful probe for evaluating the formation and retrieval of motor memory.
Collapse
|
26
|
Fu Q, Santello M. Retention and interference of learned dexterous manipulation: interaction between multiple sensorimotor processes. J Neurophysiol 2015; 113:144-55. [DOI: 10.1152/jn.00348.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An object can be used in multiple contexts, each requiring different hand actions. How the central nervous system builds and maintains memory of such dexterous manipulations remains unclear. We conducted experiments in which human subjects had to learn and recall manipulations performed in two contexts, A and B. Both contexts involved lifting the same L-shaped object whose geometry cued its asymmetrical mass distribution. Correct performance required producing a torque on the vertical handle at object lift onset to prevent it from tilting. The torque direction depended on the context, i.e., object orientation, which was changed by 180° object rotation about a vertical axis. With an A1B1A2 context switching paradigm, subjects learned A1 in the first block of eight trials as indicated by a torque approaching the required one. However, subjects made large errors in anticipating the required torque when switching to B1 immediately after A1 (negative transfer), as well as when they had to recall A1 when switching to A2 after learning B through another block of eight lifts (retrieval interference). Classic sensorimotor learning theories attribute such interferences to multi-rate, multi-state error-driven updates of internal models. However, by systematically changing the interblock break duration and within-block number of trials, our results suggest an alternative explanation underlying interference and retention of dexterous manipulation. Specifically, we identified and quantified through a novel computational model the nonlinear interaction between two sensorimotor mechanisms: a short-lived, context-independent, use-dependent sensorimotor memory and a context-sensitive, error-based learning process.
Collapse
Affiliation(s)
- Qiushi Fu
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona
| | - Marco Santello
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona
| |
Collapse
|
27
|
de Xivry J-J O. Trial-to-trial reoptimization of motor behavior due to changes in task demands is limited. PLoS One 2013; 8:e66013. [PMID: 23776593 PMCID: PMC3679014 DOI: 10.1371/journal.pone.0066013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/29/2013] [Indexed: 11/19/2022] Open
Abstract
Each task requires a specific motor behavior that is tuned to task demands. For instance, writing requires a lot of accuracy while clapping does not. It is known that the brain adjusts the motor behavior to different task demands as predicted by optimal control theory. In this study, the mechanism of this reoptimization process is investigated by varying the accuracy demands of a reaching task. In this task, the width of the reaching target (0.5 or 8 cm) was varied either on a trial-to-trial basis (random schedule) or in blocks (blocked schedule). On some trials, the hand of the subjects was clamped to a rectilinear trajectory that ended 2 cm on the left or right of the target center. The rejection of this perturbation largely varied with target width in the blocked schedule but not in the random schedule. That is, subjects exhibited different motor behavior in the different schedules despite identical accuracy demands. Therefore, while reoptimization has been considered immediate and automatic, the differences in motor behavior observed across schedules suggest that the reoptimization of the motor behavior is neither happening on a trial-by-trial basis nor obligatory. The absence of trial-to-trial mechanisms, the inability of the brain to adapt to two conflicting task demands and the existence of a switching cost are discussed as possible sources of the non-optimality of motor behavior during the random schedule.
Collapse
Affiliation(s)
- Orban de Xivry J-J
- ICTEAM and IoNS, Université catholique de Louvain, Louvain-La-Neuve, Belgium.
| |
Collapse
|
28
|
Howard IS, Wolpert DM, Franklin DW. The effect of contextual cues on the encoding of motor memories. J Neurophysiol 2013; 109:2632-44. [PMID: 23446696 PMCID: PMC3653044 DOI: 10.1152/jn.00773.2012] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Several studies have shown that sensory contextual cues can reduce the interference observed during learning of opposing force fields. However, because each study examined a small set of cues, often in a unique paradigm, the relative efficacy of different sensory contextual cues is unclear. In the present study we quantify how seven contextual cues, some investigated previously and some novel, affect the formation and recall of motor memories. Subjects made movements in a velocity-dependent curl field, with direction varying randomly from trial to trial but always associated with a unique contextual cue. Linking field direction to the cursor or background color, or to peripheral visual motion cues, did not reduce interference. In contrast, the orientation of a visual object attached to the hand cursor significantly reduced interference, albeit by a small amount. When the fields were associated with movement in different locations in the workspace, a substantial reduction in interference was observed. We tested whether this reduction in interference was due to the different locations of the visual feedback (targets and cursor) or the movements (proprioceptive). When the fields were associated only with changes in visual display location (movements always made centrally) or only with changes in the movement location (visual feedback always displayed centrally), a substantial reduction in interference was observed. These results show that although some visual cues can lead to the formation and recall of distinct representations in motor memory, changes in spatial visual and proprioceptive states of the movement are far more effective than changes in simple visual contextual cues.
Collapse
Affiliation(s)
- Ian S Howard
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom.
| | | | | |
Collapse
|
29
|
Gone in 0.6 seconds: the encoding of motor memories depends on recent sensorimotor states. J Neurosci 2012; 32:12756-68. [PMID: 22972999 DOI: 10.1523/jneurosci.5909-11.2012] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Real-world tasks often require movements that depend on a previous action or on changes in the state of the world. Here we investigate whether motor memories encode the current action in a manner that depends on previous sensorimotor states. Human subjects performed trials in which they made movements in a randomly selected clockwise or counterclockwise velocity-dependent curl force field. Movements during this adaptation phase were preceded by a contextual phase that determined which of the two fields would be experienced on any given trial. As expected from previous research, when static visual cues were presented in the contextual phase, strong interference (resulting in an inability to learn either field) was observed. In contrast, when the contextual phase involved subjects making a movement that was continuous with the adaptation-phase movement, a substantial reduction in interference was seen. As the time between the contextual and adaptation movement increased, so did the interference, reaching a level similar to that seen for static visual cues for delays >600 ms. This contextual effect generalized to purely visual motion, active movement without vision, passive movement, and isometric force generation. Our results show that sensorimotor states that differ in their recent temporal history can engage distinct representations in motor memory, but this effect decays progressively over time and is abolished by ∼600 ms. This suggests that motor memories are encoded not simply as a mapping from current state to motor command but are encoded in terms of the recent history of sensorimotor states.
Collapse
|
30
|
Rochet-Capellan A, Richer L, Ostry DJ. Nonhomogeneous transfer reveals specificity in speech motor learning. J Neurophysiol 2012; 107:1711-7. [PMID: 22190628 PMCID: PMC3311670 DOI: 10.1152/jn.00773.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 12/14/2011] [Indexed: 11/22/2022] Open
Abstract
Does motor learning generalize to new situations that are not experienced during training, or is motor learning essentially specific to the training situation? In the present experiments, we use speech production as a model to investigate generalization in motor learning. We tested for generalization from training to transfer utterances by varying the acoustical similarity between these two sets of utterances. During the training phase of the experiment, subjects received auditory feedback that was altered in real time as they repeated a single consonant-vowel-consonant utterance. Different groups of subjects were trained with different consonant-vowel-consonant utterances, which differed from a subsequent transfer utterance in terms of the initial consonant or vowel. During the adaptation phase of the experiment, we observed that subjects in all groups progressively changed their speech output to compensate for the perturbation (altered auditory feedback). After learning, we tested for generalization by having all subjects produce the same single transfer utterance while receiving unaltered auditory feedback. We observed limited transfer of learning, which depended on the acoustical similarity between the training and the transfer utterances. The gradients of generalization observed here are comparable to those observed in limb movement. The present findings are consistent with the conclusion that speech learning remains specific to individual instances of learning.
Collapse
|
31
|
Gain field encoding of the kinematics of both arms in the internal model enables flexible bimanual action. J Neurosci 2012; 31:17058-68. [PMID: 22114275 DOI: 10.1523/jneurosci.2982-11.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bimanual action requires the neural controller (internal model) for each arm to predictively compensate for mechanical interactions resulting from movement of both that arm and its counterpart on the opposite side of the body. Here, we demonstrate that the brain may accomplish this by constructing the internal model with primitives multiplicatively encoding information from the kinematics of both arms. We had human participants adapt to a novel force field imposed on one arm while both arms were moving in particular directions and examined the generalization pattern of motor learning when changing the movement directions of both arms. The generalization pattern was consistent with the pattern predicted from the multiplicative encoding scheme. As proposed by previous theoretical studies, the strength of multiplicative encoding was manifested in the observation that participants could adapt reaching movements to complicated force fields depending nonlinearly on the movement directions of both arms. These results indicate that multiplicative neuronal influence of the kinematics of the opposing arm on the internal models enables the brain to control bimanual movement by providing great flexible ability to handle arbitrary dynamical environments resulting from the interactions of both arms.
Collapse
|
32
|
Abstract
The exploits of Martina Navratilova and Roger Federer represent the pinnacle of motor learning. However, when considering the range and complexity of the processes that are involved in motor learning, even the mere mortals among us exhibit abilities that are impressive. We exercise these abilities when taking up new activities - whether it is snowboarding or ballroom dancing - but also engage in substantial motor learning on a daily basis as we adapt to changes in our environment, manipulate new objects and refine existing skills. Here we review recent research in human motor learning with an emphasis on the computational mechanisms that are involved.
Collapse
|
33
|
Torres-Oviedo G, Bastian AJ. Natural error patterns enable transfer of motor learning to novel contexts. J Neurophysiol 2011; 107:346-56. [PMID: 21957223 DOI: 10.1152/jn.00570.2011] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Successful behavior demands motor learning to be transferable in some cases (e.g., adjusting walking patterns as we develop and age) and context specific in others (e.g., learning to walk in high heels). Here we investigated differences in motor learning transfer in people learning a new walking pattern on a split-belt treadmill, where the legs move at different speeds. We hypothesized that transfer of the newly acquired walking pattern on the treadmill to natural over ground walking might depend on the pattern of errors experienced during learning. Error patterns within a person's natural range might be experienced as endogenous (i.e., produced by the body), encouraging general adjustments that transfer across contexts. On the other hand, larger errors might be experienced as exogenous (i.e., produced by the environment), indicating unusual conditions requiring context-specific learning. To test this, we manipulated the distribution of errors experienced during learning to lie either within or outside the normal distribution of walking errors. We found that restriction of errors to the natural range produced transfer of the new walking pattern from the treadmill to natural walking off the treadmill, while larger errors prevented transfer. This result helps explain how transfer of motor learning is controlled, and it offers an important strategy for clinical rehabilitation, where transfer of motor learning to other contexts is essential.
Collapse
Affiliation(s)
- Gelsy Torres-Oviedo
- Kennedy Krieger Institute, Motion Analysis Laboratory, 707 N. Broadway, Baltimore, MD 21205, USA.
| | | |
Collapse
|
34
|
Wong JD, Wilson ET, Gribble PL. Spatially selective enhancement of proprioceptive acuity following motor learning. J Neurophysiol 2011; 105:2512-21. [PMID: 21368000 PMCID: PMC3094168 DOI: 10.1152/jn.00949.2010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 02/26/2011] [Indexed: 11/22/2022] Open
Abstract
It is well recognized that the brain uses sensory information to accurately produce motor commands. Indeed, most research into the relationship between sensory and motor systems has focused on how sensory information modulates motor function. In contrast, recent studies have begun to investigate the reverse: how sensory and perceptual systems are tuned based on motor function, and specifically motor learning. In the present study we investigated changes to human proprioceptive acuity following recent motor learning. Sensitivity to small displacements of the hand was measured before and after 10 min of motor learning, during which subjects grasped the handle of a robotic arm and guided a cursor to a series of visual targets randomly located within a small workspace region. We used a novel method of assessing proprioceptive acuity that avoids active movement, interhemispheric transfer, and intermodality coordinate transformations. We found that proprioceptive acuity improved following motor learning, but only in the region of the arm's workspace explored during learning. No proprioceptive improvement was observed when motor learning was performed in a different location or when subjects passively experienced limb trajectories matched to those of subjects who actively performed motor learning. Our findings support the idea that sensory changes occur in parallel with changes to motor commands during motor learning.
Collapse
Affiliation(s)
- Jeremy D Wong
- Department of Psychology, The University of Western Ontario, 1151 Richmond St., London, ON Canada
| | | | | |
Collapse
|
35
|
Lundbye-Jensen J, Petersen TH, Rothwell JC, Nielsen JB. Interference in ballistic motor learning: specificity and role of sensory error signals. PLoS One 2011; 6:e17451. [PMID: 21408054 PMCID: PMC3052297 DOI: 10.1371/journal.pone.0017451] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 02/03/2011] [Indexed: 11/22/2022] Open
Abstract
Humans are capable of learning numerous motor skills, but newly acquired skills may be abolished by subsequent learning. Here we ask what factors determine whether interference occurs in motor learning. We speculated that interference requires competing processes of synaptic plasticity in overlapping circuits and predicted specificity. To test this, subjects learned a ballistic motor task. Interference was observed following subsequent learning of an accuracy-tracking task, but only if the competing task involved the same muscles and movement direction. Interference was not observed from a non-learning task suggesting that interference requires competing learning. Subsequent learning of the competing task 4 h after initial learning did not cause interference suggesting disruption of early motor memory consolidation as one possible mechanism underlying interference. Repeated transcranial magnetic stimulation (rTMS) of corticospinal motor output at intensities below movement threshold did not cause interference, whereas suprathreshold rTMS evoking motor responses and (re)afferent activation did. Finally, the experiments revealed that suprathreshold repetitive electrical stimulation of the agonist (but not antagonist) peripheral nerve caused interference. The present study is, to our knowledge, the first to demonstrate that peripheral nerve stimulation may cause interference. The finding underscores the importance of sensory feedback as error signals in motor learning. We conclude that interference requires competing plasticity in overlapping circuits. Interference is remarkably specific for circuits involved in a specific movement and it may relate to sensory error signals.
Collapse
Affiliation(s)
- Jesper Lundbye-Jensen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
36
|
Seeing is believing: effects of visual contextual cues on learning and transfer of locomotor adaptation. J Neurosci 2011; 30:17015-22. [PMID: 21159971 DOI: 10.1523/jneurosci.4205-10.2010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Devices such as robots or treadmills are often used to drive motor learning because they can create novel physical environments. However, the learning (i.e., adaptation) acquired on these devices only partially generalizes to natural movements. What determines the specificity of motor learning, and can this be reliably made more general? Here we investigated the effect of visual cues on the specificity of split-belt walking adaptation. We systematically removed vision to eliminate the visual-proprioceptive mismatch that is a salient cue specific to treadmills: vision indicates that we are not moving while leg proprioception indicates that we are. We evaluated the adaptation of temporal and spatial features of gait (i.e., timing and location of foot landing), their transfer to walking over ground, and washout of adaptation when subjects returned to the treadmill. Removing vision during both training (i.e., on the treadmill) and testing (i.e., over ground) strongly improved the transfer of treadmill adaptation to natural walking. Removing vision only during training increased transfer of temporal adaptation, whereas removing vision only during testing increased the transfer of spatial adaptation. This dissociation reveals differences in adaptive mechanisms for temporal and spatial features of walking. Finally training without vision increased the amount that was learned and was linked to the variability in the behavior during adaptation. In conclusion, contextual cues can be manipulated to modulate the magnitude, transfer, and washout of device-induced learning in humans. These results bring us closer to our ultimate goal of developing rehabilitation strategies that improve movements beyond the clinical setting.
Collapse
|
37
|
Howard IS, Ingram JN, Wolpert DM. Separate representations of dynamics in rhythmic and discrete movements: evidence from motor learning. J Neurophysiol 2011; 105:1722-31. [PMID: 21273324 PMCID: PMC3075277 DOI: 10.1152/jn.00780.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Rhythmic and discrete arm movements occur ubiquitously in everyday life, and there is a debate as to whether these two classes of movements arise from the same or different underlying neural mechanisms. Here we examine interference in a motor-learning paradigm to test whether rhythmic and discrete movements employ at least partially separate neural representations. Subjects were required to make circular movements of their right hand while they were exposed to a velocity-dependent force field that perturbed the circularity of the movement path. The direction of the force-field perturbation reversed at the end of each block of 20 revolutions. When subjects made only rhythmic or only discrete circular movements, interference was observed when switching between the two opposing force fields. However, when subjects alternated between blocks of rhythmic and discrete movements, such that each was uniquely associated with one of the perturbation directions, interference was significantly reduced. Only in this case did subjects learn to corepresent the two opposing perturbations, suggesting that different neural resources were employed for the two movement types. Our results provide further evidence that rhythmic and discrete movements employ at least partially separate control mechanisms in the motor system.
Collapse
Affiliation(s)
- Ian S Howard
- Computational and Biological Learning Laboratory, Department of Engineering, University of Cambridge, Trumpington St., Cambridge CB2 1PZ UK.
| | | | | |
Collapse
|
38
|
Shadmehr R, Smith MA, Krakauer JW. Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci 2011; 33:89-108. [PMID: 20367317 DOI: 10.1146/annurev-neuro-060909-153135] [Citation(s) in RCA: 1083] [Impact Index Per Article: 77.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Motor control is the study of how organisms make accurate goal-directed movements. Here we consider two problems that the motor system must solve in order to achieve such control. The first problem is that sensory feedback is noisy and delayed, which can make movements inaccurate and unstable. The second problem is that the relationship between a motor command and the movement it produces is variable, as the body and the environment can both change. A solution is to build adaptive internal models of the body and the world. The predictions of these internal models, called forward models because they transform motor commands into sensory consequences, can be used to both produce a lifetime of calibrated movements, and to improve the ability of the sensory system to estimate the state of the body and the world around it. Forward models are only useful if they produce unbiased predictions. Evidence shows that forward models remain calibrated through motor adaptation: learning driven by sensory prediction errors.
Collapse
Affiliation(s)
- Reza Shadmehr
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
39
|
Abstract
Human sensorimotor control has been predominantly studied using fixed tasks performed under laboratory conditions. This approach has greatly advanced our understanding of the mechanisms that integrate sensory information and generate motor commands during voluntary movement. However, experimental tasks necessarily restrict the range of behaviors that are studied. Moreover, the processes studied in the laboratory may not be the same processes that subjects call upon during their everyday lives. Naturalistic approaches thus provide an important adjunct to traditional laboratory-based studies. For example, wearable self-contained tracking systems can allow subjects to be monitored outside the laboratory, where they engage spontaneously in natural everyday behavior. Similarly, advances in virtual reality technology allow laboratory-based tasks to be made more naturalistic. Here, we review naturalistic approaches, including perspectives from psychology and visual neuroscience, as well as studies and technological advances in the field of sensorimotor control.
Collapse
Affiliation(s)
- James N Ingram
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom.
| | | |
Collapse
|
40
|
Abstract
Motor learning is an essential part of human behavior, but poorly understood in the context of walking control. Here, we discuss our recent work on locomotor adaptation, which is an error driven motor learning process used to alter spatiotemporal elements of walking. Locomotor adaptation can be induced using a split-belt treadmill that controls the speed of each leg independently. Practicing split-belt walking changes the coordination between the legs, resulting in storage of a new walking pattern. Here, we review findings from this experimental paradigm regarding the learning and generalization of locomotor adaptation. First, we discuss how split-belt walking adaptation develops slowly throughout childhood and adolescence. Second, we demonstrate that conscious effort to change the walking pattern during split-belt training can speed up adaptation but worsens retention. In contrast, distraction (i.e., performing a dual task) during training slows adaptation but improves retention. Finally, we show the walking pattern acquired on the split-belt treadmill generalizes to natural walking when vision is removed. This suggests that treadmill learning can be generalized to different contexts if visual cues specific to the treadmill are removed. These findings allow us to highlight the many future questions that will need to be answered in order to develop more rational methods of rehabilitation for walking deficits.
Collapse
|
41
|
Niu CM, Corcos DM, Shapiro MB. Temporal Shift From Velocity to Position Proprioceptive Feedback Control During Reaching Movements. J Neurophysiol 2010; 104:2512-22. [DOI: 10.1152/jn.00302.2010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reaching movements to a target usually have stereotypical kinematics. Although this suggests that the desired kinematics of a movement might be planned, does it also mean that deviations from the planned kinematics are corrected by proprioceptive feedback control? To answer this question, we designed a task in which the subjects made center-forward movements to a target while holding the handle of a robot. Subjects were instructed to make movements at a peak velocity of 1 m/s. No further instructions were given with respect to the movement trajectory or the velocity time profile. In randomly chosen trials the robot imposed servo-controlled deviations from the previously computed unperturbed velocity and position time profiles. The duration of the velocity deviations and the magnitude of accumulated position deviations were manipulated. The subjects were instructed to either “Attempt to correct” or “Do not correct” the movement. The responses to the imposed deviations in the surface electromyograms in the elbow and shoulder agonist muscles consisted of an initial burst followed by a sharp decrease in the “Do not correct” condition or by sustained activity in the “Attempt to correct” condition. The timing and magnitude of the initial response burst reflected those of the velocity deviations and were not affected by the instruction. The timing and magnitude of the late response activity reflected position feedback control and were strongly affected by the instruction. We suggest that proprioceptive feedback control is suppressed in the beginning of the movement, then velocity feedback control is activated in the middle of the movement to control a desired velocity, whereas position feedback control is facilitated late in the movement to acquire the final position.
Collapse
Affiliation(s)
| | - Daniel M. Corcos
- Department of Bioengineering and
- Department of Kinesiology and Nutrition, University of Illinois at Chicago
| | - Mark B. Shapiro
- Department of Physical Medicine and Rehabilitation, Northwestern University; and
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois
| |
Collapse
|
42
|
Mattar AAG, Ostry DJ. Generalization of Dynamics Learning Across Changes in Movement Amplitude. J Neurophysiol 2010; 104:426-38. [DOI: 10.1152/jn.00886.2009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Studies on generalization show the nature of how learning is encoded in the brain. Previous studies have shown rather limited generalization of dynamics learning across changes in movement direction, a finding that is consistent with the idea that learning is primarily local. In contrast, studies show a broader pattern of generalization across changes in movement amplitude, suggesting a more general form of learning. To understand this difference, we performed an experiment in which subjects held a robotic manipulandum and made movements to targets along the body midline. Subjects were trained in a velocity-dependent force field while moving to a 15 cm target. After training, subjects were tested for generalization using movements to a 30 cm target. We used force channels in conjunction with movements to the 30 cm target to assess the extent of generalization. Force channels restricted lateral movements and allowed us to measure force production during generalization. We compared actual lateral forces to the forces expected if dynamics learning generalized fully. We found that, during the test for generalization, subjects produced reliably less force than expected. Force production was appropriate for the portion of the transfer movement in which velocities corresponded to those experienced with the 15 cm target. Subjects failed to produce the expected forces when velocities exceeded those experienced in the training task. This suggests that dynamics learning generalizes little beyond the range of one's experience. Consistent with this result, subjects who trained on the 30 cm target showed full generalization to the 15 cm target. We performed two additional experiments that show that interleaved trials to the 30 cm target during training on the 15 cm target can resolve the difference between the current results and those reported previously.
Collapse
Affiliation(s)
| | - David J. Ostry
- Department of Psychology, McGill University, Montréal, Québec, Canada; and
- Haskins Laboratories, New Haven, Connecticut
| |
Collapse
|
43
|
Ingram JN, Howard IS, Flanagan JR, Wolpert DM. Multiple grasp-specific representations of tool dynamics mediate skillful manipulation. Curr Biol 2010; 20:618-23. [PMID: 20346672 PMCID: PMC3501566 DOI: 10.1016/j.cub.2010.01.054] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 01/22/2010] [Accepted: 01/22/2010] [Indexed: 11/19/2022]
Abstract
Skillful tool use requires knowledge of the dynamic properties of tools in order to specify the mapping between applied force and tool motion. Importantly, this mapping depends on the orientation of the tool in the hand. Here we investigate the representation of dynamics during skillful manipulation of a tool that can be grasped at different orientations. We ask whether the motor system uses a single general representation of dynamics for all grasp contexts or whether it uses multiple grasp-specific representations. Using a novel robotic interface, subjects rotated a virtual tool whose orientation relative to the hand could be varied. Subjects could immediately anticipate the force direction for each orientation of the tool based on its visual geometry, and, with experience, they learned to parameterize the force magnitude. Surprisingly, this parameterization of force magnitude showed limited generalization when the orientation of the tool changed. Had subjects parameterized a single general representation, full generalization would be expected. Thus, our results suggest that object dynamics are captured by multiple representations, each of which encodes the mapping associated with a specific grasp context. We suggest that the concept of grasp-specific representations may provide a unifying framework for interpreting previous results related to dynamics learning.
Collapse
Affiliation(s)
- James N Ingram
- Department of Engineering, University of Cambridge, Cambridge, UK.
| | | | | | | |
Collapse
|