1
|
Bogard AT, Hemmerle MR, Smith AC, Tan AQ. Enhanced motor learning and motor savings after acute intermittent hypoxia are associated with a reduction in metabolic cost. J Physiol 2024; 602:5879-5899. [PMID: 37983629 PMCID: PMC11102937 DOI: 10.1113/jp285425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
Breathing mild bouts of low oxygen air (i.e. acute intermittent hypoxia, AIH) has been shown to improve locomotor function in humans after a spinal cord injury. How AIH-induced gains in motor performance are achieved remains unclear. We examined the hypothesis that AIH augments motor learning and motor retention during a locomotor adaptation task. We further hypothesized that gains in motor learning and retention will be associated with reductions in net metabolic power, consistent with the acquisition of energetically favourable mechanics. Thirty healthy individuals were randomly allocated into either a control group or an AIH group. We utilized a split-belt treadmill to characterize adaptations to an unexpected belt speed perturbation of equal magnitude during an initial exposure and a second exposure. Adaptation was characterized by changes in spatiotemporal step asymmetry, anterior-posterior force asymmetry, and net metabolic power. While both groups adapted by reducing spatial asymmetry, only the AIH group achieved significant reductions in double support time asymmetry and propulsive force asymmetry during both the initial and the second exposures to the belt speed perturbation. Net metabolic power was also significantly lower in the AIH group, with significant reductions from the initial perturbation exposure to the second. These results provide the first evidence that AIH mediates improvements in both motor learning and retention. Further, our results suggest that reductions in net metabolic power continue to be optimized upon subsequent learning and are driven by more energetically favourable temporal coordination strategies. Our observation that AIH facilitates motor learning and retention can be leveraged to design rehabilitation interventions that promote functional recovery. KEY POINTS: Brief exposures to low oxygen air, known as acute intermittent hypoxia (AIH), improves locomotor function in humans after a spinal cord injury, but it remains unclear how gains in motor performance are achieved. In this study, we tested the hypothesis that AIH induces enhancements in motor learning and retention by quantifying changes in interlimb coordination, anterior-posterior force symmetry and metabolic cost during a locomotor adaptation task. We show the first evidence that AIH improves both motor learning and savings of newly learned temporal interlimb coordination strategies and force asymmetry compared to untreated individuals. We further demonstrate that AIH elicits greater reductions in metabolic cost during motor learning that continues to be optimized upon subsequent learning. Our findings suggest that AIH-induced gains in locomotor performance are facilitated by enhancements in motor learning and retention of more energetically favourable coordination strategies.
Collapse
Affiliation(s)
- Alysha T Bogard
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, CO, USA
| | - Makenna R Hemmerle
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, CO, USA
| | - Andrew C Smith
- Dept. of Physical Medicine and Rehabilitation, University of Colorado School of Medicine, Aurora, CO, USA
| | - Andrew Q Tan
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, CO, USA
- Center for Neuroscience, University of Colorado, Boulder, CO, USA
| |
Collapse
|
2
|
Obata H, Ogawa T, Kaneko N, Ishikawa K, Nakazawa K. Distinct locomotor adaptation between conventional walking and walking with a walker. Exp Brain Res 2024; 242:1861-1870. [PMID: 38856929 DOI: 10.1007/s00221-024-06863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024]
Abstract
Rolling walkers are common walking aids for individuals with poor physical fitness or balance impairments. There is no doubt that rolling walkers are useful in assisting locomotion. On the other hand, it is arguable that walking with rolling walkers (WW) is effective for maintaining or restoring the nervous systems that are recruited during conventional walking (CW). This is because the differences and similarities of the neural control of these locomotion forms remain unknown. The purpose of the present study was to compare the neural control of WW and CW from the perspective of a split-belt adaptation paradigm and reveal how the adaptations that take place in WW and CW would affect each other. The anterior component of the ground reaction (braking) forces was measured during and after walking on a split-belt treadmill by 10 healthy subjects, and differences in the peak braking forces between the left and right sides were calculated as the index of the split-belt adaptation (the degree of asymmetry). The results demonstrated that (1) WW enabled subjects to respond to the split-belt condition immediately after its start as compared to CW; (2) the asymmetry movement pattern acquired by the split-belt adaptation in one gait mode (i.e., CW or WW) was less transferable to the other gait mode; (3) the asymmetry movement pattern acquired by the split-belt adaptation in CW was not completely washed out by subsequent execution in WW and vice versa. The results suggest unique control of WW and the specificity of neural control between WW and CW; use of the walkers is not necessarily appropriate as training for CW from the perspective of neural control.
Collapse
Affiliation(s)
- Hiroki Obata
- Department of Humanities and Social Sciences, Institute of Liberal Arts, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu-shi, Fukuoka, 804-8550, Japan.
| | - Tetsuya Ogawa
- Department of Clothing, Faculty of Human Sciences and Design, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-0015, Japan
| | - Naotsugu Kaneko
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Keiichi Ishikawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
3
|
Honda K, Sekiguchi Y, Owaki D, Okamoto R, Inuzuka S, Morimoto N, Izumi SI. Effects of ankle-foot orthosis with dorsiflexion resistance on the quasi-joint stiffness of the ankle joint and spatial asymmetry during gait in patients with hemiparesis. Clin Biomech (Bristol, Avon) 2024; 115:106263. [PMID: 38744222 DOI: 10.1016/j.clinbiomech.2024.106263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Reduced ankle quasi-joint stiffness affects propulsion in the paretic side of patients with hemiparesis, contributing to gait asymmetry. We investigated whether the use of an ankle-foot orthosis with dorsiflexion resistance to compensate for reduced stiffness would increase quasi-joint stiffness and spatiotemporal symmetry in patients with hemiparesis. METHODS Seventeen patients walked along a 7-m walkway in both ankle-foot orthosis with dorsiflexion resistance and control (i.e., ankle-foot orthosis) conditions. Dorsiflexion resistance by spring and cam was set to increase linearly from zero-degree ankle dorsiflexion. Gait data were analyzed using a three-dimensional motion analysis system. FINDINGS Ankle-foot orthosis with dorsiflexion resistance significantly increased the quasi-joint stiffness in the early and middle stance phase (P = 0.028 and 0.040). Furthermore, although ankle power generation in the ankle-foot orthosis with dorsiflexion resistance condition was significantly lower than in the control condition (P = 0.003), step length symmetry significantly increased in the ankle-foot orthosis with dorsiflexion resistance condition (P = 0.016). There was no significant difference in swing time ratio between conditions. INTERPRETATION Applying dorsiflexion resistance in the paretic stance phase increased quasi-joint stiffness but did not lead to an increase in ankle power generation. On the other hand, applying dorsiflexion resistance also resulted in a more symmetrical step length, even though the ankle joint power generation on the paretic side did not increase as expected. Future research should explore whether modifying the magnitude and timing of dorsiflexion resistance, considering the biomechanical characteristics of each patients' ankle joint during gait, enhances ankle joint power generation.
Collapse
Affiliation(s)
- Keita Honda
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Yusuke Sekiguchi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Dai Owaki
- Department of Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Ryusuke Okamoto
- Life Science Development Center, Sekisui Chemical Co., Ltd., 2-1 Hyakuyama, Shimamoto-cho, Mishima-gun, Osaka 618-0021, Japan
| | - Shino Inuzuka
- Life Science Development Center, Sekisui Chemical Co., Ltd., 2-1 Hyakuyama, Shimamoto-cho, Mishima-gun, Osaka 618-0021, Japan
| | - Norihiro Morimoto
- Development Department, Sekisui Techno Molding Co., Ltd., 31 Hiraide Kogyodanchi, Utsunomiya-City, Tochigi 321-0905, Japan
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; Graduate School of Biomedical Engineering, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
4
|
Abdikadirova B, Price M, Jaramillo JM, Hoogkamer W, Huber ME. Gait adaptation to asymmetric hip stiffness applied by a robotic exoskeleton. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561679. [PMID: 37873204 PMCID: PMC10592753 DOI: 10.1101/2023.10.10.561679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Wearable exoskeletons show significant potential for improving gait impairments, such as interlimb asymmetry. However, a more profound understanding of whether exoskeletons are capable of eliciting neural adaptation is needed. This study aimed to characterize how individuals adapt to bilateral asymmetric joint stiffness applied by a hip exoskeleton, similar to split-belt treadmill training. Thirteen unimpaired individuals performed a walking trial on the treadmill while wearing the exoskeleton. The right side of the exoskeleton acted as a positive stiffness torsional spring, pulling the thigh towards the neutral standing position, while the left acted as a negative stiffness spring pulling the thigh away from the neutral standing position. The results showed that this intervention applied by a hip exoskeleton elicited adaptation in spatiotemporal and kinetic gait measures similar to split-belt treadmill training. These results demonstrate the potential of the proposed intervention for retraining symmetric gait.
Collapse
Affiliation(s)
- Banu Abdikadirova
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA 01003 USA
| | - Mark Price
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA 01003 USA
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA 01003 USA
| | | | - Wouter Hoogkamer
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA 01003 USA
| | - Meghan E Huber
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA 01003 USA
| |
Collapse
|
5
|
Johnson K, Liang H. Effect of unilateral ankle loading on gait symmetry in young adults. Gait Posture 2023; 104:120-125. [PMID: 37393845 DOI: 10.1016/j.gaitpost.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Walking requires constant adjustments to the changing environment. An asymmetrical perturbation can affect the gait symmetry, cause gait adaptations, and potentially induce retention of the adapted gait after removal of the perturbation. A unilateral ankle load has the potential to create asymmetry and facilitate the emergence of new gait patterns. However, few studies have examined the effect of unilateral loading on muscular adjustments during walking. The purpose of this study was to investigate gait adaptations and muscular adjustments after unilaterally loading or unloading the ankle. RESEARCH QUESTION What are the effects of unilateral loading and unloading on gait spatiotemporal parameters and muscle activation in young adults? METHODS Twenty young adults (10 M/10 F) walked on a treadmill at their preferred walking speeds in 3 conditions: 1) a 2-minute baseline trial; 2) three 5-minute trials with a load (3 % of bodyweight) on the dominant ankle (Loading); and 3) one 5-minute trial with the load removed (Unloading). Inertial measurement units (IMUs) and electromyography sensors (EMGs) were used for data collection. Early and late adaptation and post-adaptation were assessed using the first 5 strides and the last 30 strides of loading and unloading conditions. Outcome measures included symmetry index (SI) of spatiotemporal parameters, range-of-motion (ROM) of the lower body joints, and EMG integrals of leg muscles. Repeated measures ANOVA was conducted for statistical analysis (α = 0.05). RESULTS SI of swing phase percentage demonstrated rapid adaptation after unilateral loading or unloading. Stride length demonstrated an aftereffect following unloading. Young adults reduced ankle ROMs bilaterally in early adaptation and increased loaded-side knee and hip ROMs in late adaptation. Additionally, they increased the tibialis anterior activity bilaterally immediately after unilateral loading. SIGNIFICANCE Young adults showed an aftereffect in some variables after unilateral unloading, signifying that unilateral ankle loading can induce short term learning of a new gait pattern.
Collapse
Affiliation(s)
- Kaylan Johnson
- School of Physical Therapy, Marshall University, Huntington, WV, USA
| | - Huaqing Liang
- School of Physical Therapy, Marshall University, Huntington, WV, USA.
| |
Collapse
|
6
|
Mahon CE, Hendershot BD, Gaskins C, Hatfield BD, Shaw EP, Gentili RJ. A mental workload and biomechanical assessment during split-belt locomotor adaptation with and without optic flow. Exp Brain Res 2023:10.1007/s00221-023-06609-6. [PMID: 37358569 DOI: 10.1007/s00221-023-06609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 03/27/2023] [Indexed: 06/27/2023]
Abstract
Adaptive human performance relies on the central nervous system to regulate the engagement of cognitive-motor resources as task demands vary. Despite numerous studies which employed a split-belt induced perturbation to examine biomechanical outcomes during locomotor adaptation, none concurrently examined the cerebral cortical dynamics to assess changes in mental workload. Additionally, while prior work suggests that optic flow provides critical information for walking regulation, a few studies have manipulated visual inputs during adaption to split-belt walking. This study aimed to examine the concurrent modulation of gait and Electroencephalography (EEG) cortical dynamics underlying mental workload during split-belt locomotor adaptation, with and without optic flow. Thirteen uninjured participants with minimal inherent walking asymmetries at baseline underwent adaptation, while temporal-spatial gait and EEG spectral metrics were recorded. The results revealed a reduction in step length and time asymmetry from early to late adaptation, accompanied by an elevated frontal and temporal theta power; the former being well corelated to biomechanical changes. While the absence of optic flow during adaptation did not affect temporal-spatial gait metrics, it led to an increase of theta and low-alpha power. Thus, as individuals adapt their locomotor patterns, the cognitive-motor resources underlying the encoding and consolidation processes of the procedural memory were recruited to acquire a new internal model of the perturbation. Also, when adaption occurs without optic flow, a further reduction of arousal is accompanied with an elevation of attentional engagement due to enhanced neurocognitive resources likely to maintain adaptive walking patterns.
Collapse
Affiliation(s)
- Caitlin E Mahon
- Research and Surveillance Section, Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Falls Church, VA, USA
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Brad D Hendershot
- Research and Surveillance Section, Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Falls Church, VA, USA
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Christopher Gaskins
- Cognitive Motor Neuroscience Laboratory, Department of Kinesiology, School of Public Health (Bldg #255), University of Maryland, room #2138, College Park, MD, 20742, USA
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA
| | - Bradley D Hatfield
- Cognitive Motor Neuroscience Laboratory, Department of Kinesiology, School of Public Health (Bldg #255), University of Maryland, room #2138, College Park, MD, 20742, USA
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA
| | - Emma P Shaw
- Cognitive Motor Neuroscience Laboratory, Department of Kinesiology, School of Public Health (Bldg #255), University of Maryland, room #2138, College Park, MD, 20742, USA.
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA.
| | - Rodolphe J Gentili
- Cognitive Motor Neuroscience Laboratory, Department of Kinesiology, School of Public Health (Bldg #255), University of Maryland, room #2138, College Park, MD, 20742, USA.
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA.
- Maryland Robotics Center, University of Maryland, College Park, MD, USA.
| |
Collapse
|
7
|
Kwak ST, Chang YH. Fascicle dynamics of the tibialis anterior muscle reflect whole-body walking economy. Sci Rep 2023; 13:4660. [PMID: 36949112 PMCID: PMC10033896 DOI: 10.1038/s41598-023-31501-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
Humans can inherently adapt their gait pattern in a way that minimizes the metabolic cost of transport, or walking economy, within a few steps, which is faster than any known direct physiological sensor of metabolic energy. Instead, walking economy may be indirectly sensed through mechanoreceptors that correlate with the metabolic cost per step to make such gait adaptations. We tested whether velocity feedback from tibialis anterior (TA) muscle fascicles during the early stance phase of walking could potentially act to indirectly sense walking economy. As participants walked within a range of steady-state speeds and step frequencies, we observed that TA fascicles lengthen on almost every step. Moreover, the average peak fascicle velocity experienced during lengthening reflected the metabolic cost of transport of the given walking condition. We observed that the peak TA muscle activation occurred earlier than could be explained by a short latency reflex response. The activation of the TA muscle just prior to heel strike may serve as a prediction of the magnitude of the ground collision and the associated energy exchange. In this scenario, any unexpected length change experienced by the TA fascicle would serve as an error signal to the nervous system and provide additional information about energy lost per step. Our work helps provide a biomechanical framework to understand the possible neural mechanisms underlying the rapid optimization of walking economy.
Collapse
Affiliation(s)
- Samuel T Kwak
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Young-Hui Chang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
8
|
Abdikadirova B, Price M, Jaramillo JM, Hoogkamer W, Huber ME. Bilateral asymmetric hip stiffness applied by a robotic hip exoskeleton elicits kinematic and kinetic adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527337. [PMID: 36798340 PMCID: PMC9934530 DOI: 10.1101/2023.02.06.527337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Wearable robotic exoskeletons hold great promise for gait rehabilitation as portable, accessible tools. However, a better understanding of the potential for exoskeletons to elicit neural adaptation-a critical component of neurological gait rehabilitation-is needed. In this study, we investigated whether humans adapt to bilateral asymmetric stiffness perturbations applied by a hip exoskeleton, taking inspiration from asymmetry augmentation strategies used in split-belt treadmill training. During walking, we applied torques about the hip joints to repel the thigh away from a neutral position on the left side and attract the thigh toward a neutral position on the right side. Six participants performed an adaptation walking trial on a treadmill while wearing the exoskeleton. The exoskeleton elicited time-varying changes and aftereffects in step length and propulsive/braking ground reaction forces, indicating behavioral signatures of neural adaptation. These responses resemble typical responses to split-belt treadmill training, suggesting that the proposed intervention with a robotic hip exoskeleton may be an effective approach to (re)training symmetric gait.
Collapse
|
9
|
Different functional networks underlying human walking with pulling force fields acting in forward or backward directions. Sci Rep 2023; 13:1909. [PMID: 36732556 PMCID: PMC9894902 DOI: 10.1038/s41598-023-29231-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
Walking with pulling force fields acting at the body center of mass (in the forward or backward directions) is compatible with inclined walking and is used in clinical practice for gait training. From the perspective of known differences in the motor strategies that underlie walking with the respective force fields, the present study elucidated whether the adaptation acquired by walking on a split-belt treadmill with either one of the force fields affects subsequent walking in a force field in the opposite directions. Walking with the force field induced an adaptive and de-adaptive behavior of the subjects, with the aspect evident in the braking and propulsive impulses of the ground reaction force (difference in the peak value between the left and right sides for each stride cycle) as parameters. In the parameters, the adaptation acquired during walking with a force field acting in one direction was transferred to that in the opposite direction only partially. Furthermore, the adaptation that occurred while walking in a force field in one direction was rarely washed out by subsequent walking in a force field in the opposite direction and thus was maintained independently of the other. These results demonstrated possible independence in the neural functional networks capable of controlling walking in each movement task with an opposing force field.
Collapse
|
10
|
Yokoyama H, Kaneko N, Sasaki A, Saito A, Nakazawa K. Firing behavior of single motor units of the tibialis anterior in human walking as non-invasively revealed by HDsEMG decomposition. J Neural Eng 2022; 19. [PMID: 36541453 DOI: 10.1088/1741-2552/aca71b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022]
Abstract
Objective.Investigation of the firing behavior of motor units (MUs) provides essential neuromuscular control information because MUs are the smallest organizational component of the neuromuscular system. The MUs activated during human infants' leg movements and rodent locomotion, mainly controlled by the spinal central pattern generator (CPG), show highly synchronous firing. In addition to spinal CPGs, the cerebral cortex is involved in neuromuscular control during walking in human adults. Based on the difference in the neural control mechanisms of locomotion between rodent, human infants and adults, MU firing behavior during adult walking probably has some different features from the other populations. However, so far, the firing activity of MUs in human adult walking has been largely unknown due to technical issues.Approach.Recent technical advances allow noninvasive investigation of MU firing by high-density surface electromyogram (HDsEMG) decomposition. We investigated the MU firing behavior of the tibialis anterior (TA) muscle during walking at a slow speed by HDsEMG decomposition.Main results.We found recruitment threshold modulation of MU between walking and steady isometric contractions. Doublet firings, and gait phase-specific firings were also observed during walking. We also found high MU synchronization during walking over a wide range of frequencies, probably including cortical and spinal CPG-related components. The amount of MU synchronization was modulated between the gait phases and motor tasks. These results suggest that the central nervous system flexibly controls MU firing to generate appropriate force of TA during human walking.Significance.This study revealed the MU behavior during walking at a slow speed and demonstrated the feasibility of noninvasive investigation of MUs during dynamic locomotor tasks, which will open new frontiers for the study of neuromuscular systems in the fields of neuroscience and biomedical engineering.
Collapse
Affiliation(s)
- Hikaru Yokoyama
- Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Naotsugu Kaneko
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.,Japan Society for the Promotion of Science, Tokyo 102-0083, Japan.,Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.,Japan Society for the Promotion of Science, Tokyo 102-0083, Japan.,Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Osaka 560-8531, Japan
| | - Akira Saito
- Center for Health and Sports Science, Kyushu Sangyo University, Fukuoka 813-8503, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
11
|
Ito T, Kamiue M, Hosokawa T, Kimura D, Tsubahara A. Individual differences in processing ability to transform visual stimuli during the mental rotation task are closely related to individual motor adaptation ability. Front Neurosci 2022; 16:941942. [DOI: 10.3389/fnins.2022.941942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Mental rotation (MR) is a well-established experimental paradigm for exploring human spatial ability. Although MR tasks are assumed to be involved in several cognitive processes, it remains unclear which cognitive processes are related to the individual ability of motor adaptation. Therefore, we aimed to elucidate the relationship between the response time (RT) of MR using body parts and the adaptive motor learning capability of gait. In the MR task, dorsal hand, palmar plane, dorsal foot, and plantar plane images rotated in 45° increments were utilized to measure the RTs required for judging hand/foot laterality. A split-belt treadmill paradigm was applied, and the number of strides until the value of the asymmetrical ground reaction force reached a steady state was calculated to evaluate the individual motor adaptation ability. No significant relationship was found between the mean RT of the egocentric perspectives (0°, 45°, and 315°) or allocentric perspectives (135°, 180°, and 225°) and adaptive learning ability of gait, irrespective of body parts or image planes. Contrarily, the change rate of RTs obtained by subtracting the RT of the egocentric perspective from that of the allocentric perspective in dorsal hand/foot images that reflect the time to mentally transform a rotated visual stimulus correlated only with adaptive learning ability. Interestingly, the change rate of RTs calculated using the palmar and plantar images, assumed to reflect the three-dimensional transformation process, was not correlated. These findings suggest that individual differences in the processing capability of visual stimuli during the transformation process involved in the pure motor simulation of MR tasks are precisely related to individual motor adaptation ability.
Collapse
|
12
|
Ishikawa S, Ikemoto Y. Effects of the Mechanical Closed-Loop Between the Body and the Ground on the Postural Balance of Gaits. JOURNAL OF ROBOTICS AND MECHATRONICS 2022. [DOI: 10.20965/jrm.2022.p0808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
People and animals adapt their gait to the environment as they perform activities in a variety of environments. However, there are cases where the parts of the body necessary for walking are damaged in some way, resulting in walking difficulties. An example is paralysis caused by a stroke. A split-belt treadmill is occasionally used for the investigation to analyze how the stroke effects on the motion. However, the mechanical properties of the split-belt treadmill on the body have not been clarified. It is also unknown how the mechanical closed-loop between the body and the environment, generated by synchronizing the movements of the two belts, affects the gait. In this study, we investigated that the effect of the mechanical closed-loop structure between the body and the environment on walking using the robot and the mechanical effect of the floor reaction force on the body. Further, we conducted walking experiments using the developed robot, obtained body and environmental information, and analyzed the results. As the result, it was observed that the motion data differed based on the coupling of the treadmill. In other words, it was suggested that the mechanical closed-loop structure certainly influenced the physical balances on walking motion. Furthermore, it is confirmed that the coupling of treadmills increases the body’s sway. Although our results are given from a robotic experiment, it is expected that these measures would be one of the important index in human rehabilitations.
Collapse
|
13
|
Oshima A, Nakamura Y, Kamibayashi K. Modulation of Muscle Synergies in Lower-Limb Muscles Associated With Split-Belt Locomotor Adaptation. Front Hum Neurosci 2022; 16:852530. [PMID: 35845245 PMCID: PMC9279664 DOI: 10.3389/fnhum.2022.852530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Humans have great locomotor adaptability to environmental demands, which has been investigated using a split-belt treadmill with belts on both the left and right sides. Thus far, neuromuscular control in split-belt locomotor adaptation has been evaluated by analyzing muscle activities at the individual muscle level. Meanwhile, in the motor control field, the muscle synergy concept has been proposed. Muscle synergies are considered the fundamental building blocks of movement and are groups of coactive muscles and time-varying activation patterns, thereby, reflecting the neurophysiological characteristics of movement. To date, it remains unclear how such muscle synergies change during the adaptation and de-adaptation processes on the split-belt treadmill. Hence, we chronologically extracted muscle synergies while walking on the split-belt treadmill and examined changes in the number, muscle weightings, and temporal activation patterns of muscle synergies. Twelve healthy young males participated, and surface electromyography (EMG) signals were recorded bilaterally from 13 lower-limb muscles. Muscle synergies were extracted by applying non-negative matrix factorization to the EMG data of each leg. We found that during split-belt walking, the number of synergies in the slow leg increased while an extra synergy appeared and disappeared in the fast leg. Additionally, the areas under the temporal activation patterns in several synergies in both legs decreased. When both belts returned to the same speed, a decrease in the number of synergies and an increase in the areas under the temporal activation patterns of several synergies were temporally shown in each leg. Subsequently, the number of synergies and the areas under the temporal activation patterns returned to those of normal walking before split-belt walking. Thus, changes in the number, muscle weightings, and temporal activation patterns of synergies were noted in the split-belt locomotor adaptation, suggesting that the adaptation and de-adaptation occurred at the muscle synergy level.
Collapse
Affiliation(s)
- Atsushi Oshima
- Graduate School of Health and Sports Science, Doshisha University, Kyoto, Japan
- Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yasuo Nakamura
- Faculty of Health and Sports Science, Doshisha University, Kyoto, Japan
| | - Kiyotaka Kamibayashi
- Faculty of Health and Sports Science, Doshisha University, Kyoto, Japan
- *Correspondence: Kiyotaka Kamibayashi,
| |
Collapse
|
14
|
Fettrow T, Hupfeld K, Reimann H, Choi J, Hass C, Seidler R. Age differences in adaptation of medial-lateral gait parameters during split-belt treadmill walking. Sci Rep 2021; 11:21148. [PMID: 34707122 PMCID: PMC8551204 DOI: 10.1038/s41598-021-00515-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
The split-belt treadmill has been used to examine the adaptation of spatial and temporal gait parameters. Historically, similar studies have focused on anterior-posterior (AP) spatiotemporal gait parameters because this paradigm is primarily a perturbation in the AP direction, but it is important to understand whether and how medial-lateral (ML) control adapts in this scenario. The ML control of balance must be actively controlled and adapted in different walking environments. Furthermore, it is well established that older adults have balance difficulties. Therefore, we seek to determine whether ML balance adaptation differs in older age. We analyzed split belt induced changes in gait parameters including variables which inform us about ML balance control in younger and older adults. Our primary finding is that younger adults showed sustained asymmetric changes in these ML balance parameters during the split condition. Specifically, younger adults sustained a greater displacement between their fast stance foot and their upper body, relative to the slow stance foot, in the ML direction. This finding suggests that younger adults may be exploiting passive dynamics in the ML direction, which may be more metabolically efficient. Older adults did not display the same degree of asymmetry, suggesting older adults may be more concerned about maintaining a stable gait.
Collapse
Affiliation(s)
- Tyler Fettrow
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32605, USA.
| | - Kathleen Hupfeld
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32605, USA
| | - Hendrik Reimann
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, 19713, USA
| | - Julia Choi
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32605, USA
| | - Chris Hass
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32605, USA
| | - Rachael Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32605, USA
| |
Collapse
|
15
|
Forward and backward walking share the same motor modules and locomotor adaptation strategies. Heliyon 2021; 7:e07864. [PMID: 34485742 PMCID: PMC8405989 DOI: 10.1016/j.heliyon.2021.e07864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/03/2021] [Accepted: 08/19/2021] [Indexed: 11/22/2022] Open
Abstract
Forward and backward walking are remarkably similar motor behaviors to the extent that backward walking has been described as a time-reversed version of forward walking. However, because they display different muscle activity patterns, it has been questioned if forward and backward walking share common control strategies. To investigate this point, we used a split-belt treadmill experimental paradigm designed to elicit healthy individuals' motor adaptation by changing the speed of one of the treadmill belts, while keeping the speed of the other belt constant. We applied this experimental paradigm to both forward and backward walking. We analyzed several adaptation parameters including step symmetry, stability, and energy expenditure as well as the characteristics of the synergies of lower-limb muscles. We found that forward and backward walking share the same muscle synergy modules. We showed that these modules are marked by similar patterns of adaptation driven by stability and energy consumption minimization criteria, both relying on modulating the temporal activation of the muscle synergies. Our results provide evidence that forward and backward walking are governed by the same control and adaptation mechanisms.
Collapse
|
16
|
Aoi S, Amano T, Fujiki S, Senda K, Tsuchiya K. Fast and Slow Adaptations of Interlimb Coordination via Reflex and Learning During Split-Belt Treadmill Walking of a Quadruped Robot. Front Robot AI 2021; 8:697612. [PMID: 34422913 PMCID: PMC8378330 DOI: 10.3389/frobt.2021.697612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
Interlimb coordination plays an important role in adaptive locomotion of humans and animals. This has been investigated using a split-belt treadmill, which imposes different speeds on the two sides of the body. Two types of adaptation have been identified, namely fast and slow adaptations. Fast adaptation induces asymmetric interlimb coordination soon after a change of the treadmill speed condition from same speed for both belts to different speeds. In contrast, slow adaptation slowly reduces the asymmetry after fast adaptation. It has been suggested that these adaptations are primarily achieved by the spinal reflex and cerebellar learning. However, these adaptation mechanisms remain unclear due to the complicated dynamics of locomotion. In our previous work, we developed a locomotion control system for a biped robot based on the spinal reflex and cerebellar learning. We reproduced the fast and slow adaptations observed in humans during split-belt treadmill walking of the biped robot and clarified the adaptation mechanisms from a dynamic viewpoint by focusing on the changes in the relative positions between the center of mass and foot stance induced by reflex and learning. In this study, we modified the control system for application to a quadruped robot. We demonstrate that even though the basic gait pattern of our robot is different from that of general quadrupeds (due to limitations of the robot experiment), fast and slow adaptations that are similar to those of quadrupeds appear during split-belt treadmill walking of the quadruped robot. Furthermore, we clarify these adaptation mechanisms from a dynamic viewpoint, as done in our previous work. These results will increase the understanding of how fast and slow adaptations are generated in quadrupedal locomotion on a split-belt treadmill through body dynamics and sensorimotor integration via the spinal reflex and cerebellar learning and help the development of control strategies for adaptive locomotion of quadruped robots.
Collapse
Affiliation(s)
- Shinya Aoi
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Takashi Amano
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Soichiro Fujiki
- Department of Physiology, School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Kei Senda
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kazuo Tsuchiya
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Syrett ED, Peterson CL, Darter BJ. Assessing the effects of gait asymmetry: Using a split-belt treadmill walking protocol to change step length and peak knee joint contact force symmetry. J Biomech 2021; 125:110583. [PMID: 34198019 DOI: 10.1016/j.jbiomech.2021.110583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/11/2021] [Accepted: 06/20/2021] [Indexed: 11/18/2022]
Abstract
Asymmetrical gait may affect important outcomes such as knee joint contact force (KJCF). A split-belt treadmill (SBTM) can be used to provoke changes in step length symmetry (SLsym) and may produce a similar response in KJCF symmetry (KJCFsym) between limbs. The purpose of this study was to explore the utility of employing a SBTM walking paradigm to alter KJCF and KJCFsym and to determine if changes in SLsym coincided with changes in KJCFsym. Twenty healthy individuals performed a standardized SBTM protocol, where baseline and post-adaptation conditions had tied belt speeds of 0.5 m/s and the split-adaptation condition used a 3:1 belt speed ratio. OpenSim techniques were used to produce normalized, averaged stance phase peak KJCF during baseline walking, early- and late-adaptation, and post-adaptation. SLsym and KJCFsym values were determined. Comparisons were made for symmetry values between early- and late-adaptation and between baseline and post-adaptation. SLsym and KJCFsym did not respond in the same manner during the walking conditions. While step lengths (SL) were asymmetric during early adaptation but become more symmetric by late adaptation (p < 0.01), KJCF was symmetric throughout adaptation. Conversely, SL and KJCF exhibited similar responses during the baseline and post-adaptation conditions, with symmetry at baseline and asymmetry during post-adaptation (p < 0.01). In the post-adaptation condition, higher peak forces were demonstrated on the limb taking a shorter step. Results suggest a SBTM program may alter KJCF and KJCFsym between limbs. Furthermore, a comparison between baseline and post-adaptation may be more appropriate for evaluating the relationship between SL and KJCF.
Collapse
Affiliation(s)
- E Daniel Syrett
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Carrie L Peterson
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Benjamin J Darter
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Research, Hunter Holmes McGuire Veteran Affairs Medical Center, Richmond, VA 23249, USA.
| |
Collapse
|
18
|
Dynamic Asymmetries Do Not Match Spatiotemporal Step Asymmetries during Split-Belt Walking. Symmetry (Basel) 2021. [DOI: 10.3390/sym13061089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
While walking on split-belt treadmills (two belts running at different speeds), the slower limb shows longer anterior steps than the limb dragged by the faster belt. After returning to basal conditions, the step length asymmetry is transiently reversed (after-effect). The lower limb joint dynamics, however, were not thoroughly investigated. In this study, 12 healthy adults walked on a force-sensorised split-belt treadmill for 15 min. Belts rotated at 0.4 m s−1 on both sides, or 0.4 and 1.2 m s−1 under the non-dominant and dominant legs, respectively. Spatiotemporal step parameters, ankle power and work, and the actual mean velocity of the body’s centre of mass (CoM) were computed. On the faster side, ankle power and work increased, while step length and stance time decreased. The mean velocity of the CoM slightly decreased. As an after-effect, modest converse asymmetries developed, fading within 2–5 min. These results may help to decide which belt should be assigned to the paretic and the unaffected lower limb when split-belt walking is applied for rehabilitation research in hemiparesis.
Collapse
|
19
|
Oshima A, Wakahara T, Nakamura Y, Tsujiuchi N, Kamibayashi K. Time-series changes in intramuscular coherence associated with split-belt treadmill adaptation in humans. Exp Brain Res 2021; 239:2127-2139. [PMID: 33961075 DOI: 10.1007/s00221-021-06127-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/27/2021] [Indexed: 11/24/2022]
Abstract
Humans can flexibly modify their walking patterns. A split-belt treadmill has been widely used to study locomotor adaptation. Although previous studies have examined in detail the time-series changes in the spatiotemporal characteristics of walking during and after split-belt walking, it is not clear how intramuscular coherence changes during and after split-belt walking. We thus investigated the time-series changes of intramuscular coherence in the ankle dorsiflexor muscle associated with split-belt locomotor adaptation by coherence analysis using paired electromyography (EMG) signals. Twelve healthy males walked on a split-belt treadmill. Surface EMG signals were recorded from two parts of the tibialis anterior (TA) muscle in both legs to calculate intramuscular coherence. Each area of intramuscular coherence in the beta and gamma bands in the slow leg gradually decreased during split-belt walking. Significant differences in the area were observed from 7 min compared to the first minute after the start of split-belt walking. Meanwhile, the area of coherence in both beta and gamma bands in the fast leg for the first minute of normal walking following split-belt walking was significantly increased compared with normal walking before split-belt walking, and then immediately returned to the normal walking level. These results suggest that cortical involvement in TA muscle activity gradually weakens when adapting from a normal walking pattern to a new walking pattern. On the other hand, when re-adapting from the newly adapted walking pattern to the normal walking pattern, cortical involvement might strengthen temporally and then weaken quickly.
Collapse
Affiliation(s)
- Atsushi Oshima
- Graduate School of Health and Sports Science, Doshisha University, Kyoto, Japan
| | - Taku Wakahara
- Faculty of Health and Sports Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0394, Japan.,Human Performance Laboratory, Waseda University, Saitama, Japan
| | - Yasuo Nakamura
- Faculty of Health and Sports Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0394, Japan
| | - Nobutaka Tsujiuchi
- Department of Mechanical and Systems Engineering, Faculty of Science and Engineering, Doshisha University, Kyoto, Japan
| | - Kiyotaka Kamibayashi
- Faculty of Health and Sports Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0394, Japan.
| |
Collapse
|
20
|
Effect of ankle joint fixation on tibialis anterior muscle activity during split-belt treadmill walking in healthy subjects: A pilot study. Turk J Phys Med Rehabil 2021; 67:11-16. [PMID: 33948538 PMCID: PMC8088797 DOI: 10.5606/tftrd.2021.4980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/08/2019] [Indexed: 11/21/2022] Open
Abstract
Objectives
This study aims to examine the characteristics of muscle activity change of the tibialis anterior (TA) muscle in healthy adults while they walked on a split-belt treadmill with one fixed ankle.
Patients and methods
This randomized controlled trial was conducted between November 2017 and July 2018. Fourteen healthy male individuals (mean age 31.4 years; range, 23 to 50 years) were divided into two groups: right ankle joint fixed by ankle-foot orthosis (fixation group) and no orthosis (control group). Both groups were asked to walk on a treadmill with the same belt speed. After familiarizing with walking on both belts at 5.0 km/h, they walked for 6 min with the right belt slower (2.5 km/h) and the left faster (5.0 km/h). For analysis, the 6 min were divided equally among three time periods. The TA muscle activity was calculated at first and last time periods. We compared muscle activities in time periods (early and late phase) and in groups (fixation and control) using two-way mixed analysis of variance.
Results
The TA muscle activity decreased in the late phase regardless of ankle joint fixation, and also decreased in the fixation group regardless of the time periods. There was an interaction between these factors.
Conclusion
These data show that changes in the TA muscle activity were smaller in the fixation group, suggesting that the ankle joint fixation reduces the adaptation.
Collapse
|
21
|
Hinton DC, Conradsson DM, Paquette C. Understanding Human Neural Control of Short-term Gait Adaptation to the Split-belt Treadmill. Neuroscience 2020; 451:36-50. [DOI: 10.1016/j.neuroscience.2020.09.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 12/31/2022]
|
22
|
Rashid U, Kumari N, Signal N, Taylor D, Vandal AC. On Nonlinear Regression for Trends in Split-Belt Treadmill Training. Brain Sci 2020; 10:E737. [PMID: 33066492 PMCID: PMC7602156 DOI: 10.3390/brainsci10100737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 11/20/2022] Open
Abstract
Single and double exponential models fitted to step length symmetry series are used to evaluate the timecourse of adaptation and de-adaptation in instrumented split-belt treadmill tasks. Whilst the nonlinear regression literature has developed substantially over time, the split-belt treadmill training literature has not been fully utilising the fruits of these developments. In this research area, the current methods of model fitting and evaluation have three significant limitations: (i) optimisation algorithms that are used for model fitting require a good initial guess for regression parameters; (ii) the coefficient of determination (R2) is used for comparing and evaluating models, yet it is considered to be an inadequate measure of fit for nonlinear regression; and, (iii) inference is based on comparison of the confidence intervals for the regression parameters that are obtained under the untested assumption that the nonlinear model has a good linear approximation. In this research, we propose a transformed set of parameters with a common language interpretation that is relevant to split-belt treadmill training for both the single and double exponential models. We propose parameter bounds for the exponential models which allow the use of particle swarm optimisation for model fitting without an initial guess for the regression parameters. For model evaluation and comparison, we propose the use of residual plots and Akaike's information criterion (AIC). A method for obtaining confidence intervals that does not require the assumption of a good linear approximation is also suggested. A set of MATLAB (MathWorks, Inc., Natick, MA, USA) functions developed in order to apply these methods are also presented. Single and double exponential models are fitted to both the group-averaged and participant step length symmetry series in an experimental dataset generating new insights into split-belt treadmill training. The proposed methods may be useful for research involving analysis of gait symmetry with instrumented split-belt treadmills. Moreover, the demonstration of the suggested statistical methods on an experimental dataset may help the uptake of these methods by a wider community of researchers that are interested in timecourse of motor training.
Collapse
Affiliation(s)
- Usman Rashid
- Health & Rehabilitation Research Institute, Auckland University of Technology, Auckland 1010, New Zealand; (N.K.); (N.S.); (D.T.)
| | - Nitika Kumari
- Health & Rehabilitation Research Institute, Auckland University of Technology, Auckland 1010, New Zealand; (N.K.); (N.S.); (D.T.)
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand
| | - Nada Signal
- Health & Rehabilitation Research Institute, Auckland University of Technology, Auckland 1010, New Zealand; (N.K.); (N.S.); (D.T.)
| | - Denise Taylor
- Health & Rehabilitation Research Institute, Auckland University of Technology, Auckland 1010, New Zealand; (N.K.); (N.S.); (D.T.)
| | - Alain C. Vandal
- Department of Statistics, The University of Auckland, Auckland 1010, New Zealand;
| |
Collapse
|
23
|
Sombric CJ, Torres-Oviedo G. Augmenting propulsion demands during split-belt walking increases locomotor adaptation of asymmetric step lengths. J Neuroeng Rehabil 2020; 17:69. [PMID: 32493440 PMCID: PMC7268294 DOI: 10.1186/s12984-020-00698-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/21/2020] [Indexed: 11/30/2022] Open
Abstract
Background Promising studies have shown that the gait symmetry of individuals with hemiparesis due to brain lesions, such as stroke, can improve through motor adaptation protocols forcing patients to use their affected limb more. However, little is known about how to facilitate this process. Here we asked if increasing propulsion demands during split-belt walking (i.e., legs moving at different speeds) leads to more motor adaptation and more symmetric gait in survivors of a stroke, as we previously observed in subjects without neurological disorders. Methods We investigated the effect of propulsion forces on locomotor adaptation during and after split-belt walking in the asymmetric motor system post-stroke. To test this, 12 subjects in the chronic phase post-stroke experienced a split-belt protocol in a flat and incline session so as to contrast the effects of two different propulsion demands. Step length asymmetry and propulsion forces were used to compare the motor behavior between the two sessions because these are clinically relevant measures that are altered by split-belt walking. Results The incline session resulted in more symmetric step lengths during late split-belt walking and larger after-effects following split-belt walking. In both testing sessions, subjects who have had a stroke adapted to regain speed and slope-specific leg orientations similarly to young, intact adults. Importantly, leg orientations, which were set by kinetic demands, during baseline walking were predictive of those achieved during split-belt walking, which in turn predicted each individual’s post-adaptation behavior. These results are relevant because they provide evidence that survivors of a stroke can generate the leg-specific forces to walk more symmetrically, but also because we provide insight into factors underlying the therapeutic effect of split-belt walking. Conclusions Individuals post-stroke at a chronic stage can adapt more during split-belt walking and have greater after-effects when propulsion demands are augmented by inclining the treadmill surface. Our results are promising since they suggest that increasing propulsion demands during paradigms that force patients to use their paretic side more could correct gait asymmetries post-stroke more effectively.
Collapse
Affiliation(s)
- Carly J Sombric
- Department of Bioengineering, University of Pittsburgh, 4420 Bayard Street, Suite 110, Pitt, Pittsburgh, PA, USA
| | - Gelsy Torres-Oviedo
- Department of Bioengineering, University of Pittsburgh, 4420 Bayard Street, Suite 110, Pitt, Pittsburgh, PA, USA.
| |
Collapse
|
24
|
Cop CP, Durandau G, Esteban AM, van 't Veld RC, Schouten AC, Sartori M. Model-Based Estimation of Ankle Joint Stiffness During Dynamic Tasks: a Validation-Based Approach. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:4104-4107. [PMID: 31946773 DOI: 10.1109/embc.2019.8857391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Joint stiffness estimation under dynamic conditions still remains a challenge. Current stiffness estimation methods often rely on the external perturbation of the joint. In this study, a novel 'perturbation-free' stiffness estimation method via electromyography (EMG)-driven musculoskeletal modeling was validated for the first time against system identification techniques. EMG signals, motion capture, and dynamic data of the ankle joint were collected in an experimental setup to study the ankle joint stiffness in a controlled way, i.e. at a movement frequency of 0.6 Hz as well as in the presence and absence of external perturbations. The model-based joint stiffness estimates were comparable to system identification techniques. The ability to estimate joint stiffness at any instant of time, with no need to apply joint perturbations, might help to fill the gap of knowledge between the neural and the muscular systems and enable the subsequent development of tailored neurorehabilitation therapies and biomimetic prostheses and orthoses.
Collapse
|
25
|
Adaptive changes in foot placement for split-belt treadmill walking in individuals with stroke. J Electromyogr Kinesiol 2019; 48:112-120. [DOI: 10.1016/j.jelekin.2019.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/17/2019] [Accepted: 07/06/2019] [Indexed: 11/17/2022] Open
|
26
|
Sato S, Choi JT. Increased intramuscular coherence is associated with temporal gait symmetry during split-belt locomotor adaptation. J Neurophysiol 2019; 122:1097-1109. [DOI: 10.1152/jn.00865.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When walking on a split-belt treadmill where one belt moves faster than the other, the nervous system consistently attempts to maintain symmetry between legs, quantified as deviation from double support time or step length symmetry. It is known that the cerebellum plays a critical role in locomotor adaptation. Less is known about the role of corticospinal drive in maintaining this type of proprioceptive-driven locomotor adaptation. The objective of this study was to examine the functional role of oscillatory drive in relation to changes in spatiotemporal gait parameters during split-belt walking adaptation. Eighteen healthy participants adapted and deadapted on a split-belt treadmill; 13 out of 18 participants repeated the paradigm two more times to examine the effects of reexposure. Coherence analysis was used to quantify the coupling between electromyography (EMG) from the proximal (TAprox) and distal tibialis anterior (TAdist) muscle during the swing phase of walking. EMG-EMG coherence was examined within the alpha (8–15 Hz), beta (15–30 Hz), and gamma (30–45 Hz) frequencies. Our results showed that 1) beta- and gamma-band coherence (markers of corticospinal drive) increased during early split-belt walking compared with baseline walking in the slow leg, 2) beta-band coherence decreased from early to late split-belt adaptation in the fast leg, 3) alpha-, beta-, and gamma-band coherence decreased from first to third split-belt exposure in the fast leg, and 4) there was a relationship between higher beta coherence in the slow leg TA and smaller double support asymmetry. Our results suggest that corticospinal drive may play a functional role in the temporal control of split-belt walking adaptation. NEW & NOTEWORTHY This is the first study to examine the functional role of intramuscular coherence in relation to changes in spatiotemporal gait parameters during split-belt walking adaptation. We found that the corticospinal drive measured by intramuscular coherence in tibialis anterior changes with adaptation and that the corticospinal drive is related to temporal but not spatial parameters. This study may give insight as to the specific role of the motor cortex during gait.
Collapse
Affiliation(s)
- Sumire Sato
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, Massachusetts
| | - Julia T. Choi
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, Massachusetts
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| |
Collapse
|
27
|
Corrective Muscle Activity Reveals Subject-Specific Sensorimotor Recalibration. eNeuro 2019; 6:ENEURO.0358-18.2019. [PMID: 31043463 PMCID: PMC6497908 DOI: 10.1523/eneuro.0358-18.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/05/2019] [Accepted: 03/22/2019] [Indexed: 12/04/2022] Open
Abstract
Recent studies suggest that planned and corrective actions are recalibrated during some forms of motor adaptation. However, corrective (also known as reactive) movements in human locomotion are thought to simply reflect sudden environmental changes independently from sensorimotor recalibration. Thus, we asked whether corrective responses can indicate the motor system’s adapted state following prolonged exposure to a novel walking situation inducing sensorimotor adaptation. We recorded electromyographic (EMG) signals bilaterally on 15 leg muscles before, during, and after split-belts walking (i.e., novel walking situation), in which the legs move at different speeds. We exploited the rapid temporal dynamics of corrective responses upon unexpected speed transitions to isolate them from the overall motor output. We found that corrective muscle activity was structurally different following short versus long exposures to split-belts walking. Only after a long exposure, removal of the novel environment elicited corrective muscle patterns that matched those expected in response to a perturbation opposite to the one originally experienced. This indicated that individuals who recalibrated their motor system adopted split-belts environment as their new “normal” and transitioning back to the original walking environment causes subjects to react as if it was novel to them. Interestingly, this learning declined with age, but steady state modulation of muscle activity during split-belts walking did not, suggesting potentially different neural mechanisms underlying these motor patterns. Taken together, our results show that corrective motor commands reflect the adapted state of the motor system, which is less flexible as we age.
Collapse
|
28
|
Obata H, Ogawa T, Nakazawa K. Unique controlling mechanisms underlying walking with two handheld poles in contrast to those of conventional walking as revealed by split-belt locomotor adaptation. Exp Brain Res 2019; 237:1699-1707. [PMID: 30997538 DOI: 10.1007/s00221-019-05541-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/15/2019] [Indexed: 11/25/2022]
Abstract
Pole walking (PW), a form of locomotion in which a person holds a pole in each hand, enhances the involvement of alternating upper-limb movement. While this quadruped-like walking increases postural stability for bipedal conventional walking (CW), in terms of the neural controlling mechanisms underlying the two locomotion forms (PW and CW), the similarities and differences remain unknown. The purpose of this study was to compare the neural control of PW and CW from the perspective of locomotor adaptation to a novel environment on a split-belt treadmill. We measured the anterior component of the ground reaction (braking) force during and after split-belt treadmill walking in 12 healthy subjects. The results demonstrated that (1) PW delayed locomotor adaptation when compared with CW; (2) the degrees of transfer of the acquired movement pattern to CW and PW were not different, regardless of whether the novel movement pattern was learned in CW or PW; and (3) the movement pattern learned in CW was washed out by subsequent execution in PW, whereas the movement pattern learned in PW was not completely washed out by subsequent execution in CW. These results suggest that the neural control mechanisms of PW and CW are not independent, and it is possible that PW could be a locomotor behavior built upon a basic locomotor pattern of CW.
Collapse
Affiliation(s)
- Hiroki Obata
- Department of Humanities and Social Sciences, Institute of Liberal Arts, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu, Fukuoka, 804-8550, Japan.
| | - Tetsuya Ogawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, Japan
| |
Collapse
|
29
|
Sombric CJ, Calvert JS, Torres-Oviedo G. Large Propulsion Demands Increase Locomotor Adaptation at the Expense of Step Length Symmetry. Front Physiol 2019; 10:60. [PMID: 30800072 PMCID: PMC6376174 DOI: 10.3389/fphys.2019.00060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/18/2019] [Indexed: 11/23/2022] Open
Abstract
There is an interest to identify factors facilitating locomotor adaptation induced by split-belt walking (i.e., legs moving at different speeds) because of its clinical potential. We hypothesized that augmenting braking forces, rather than propulsion forces, experienced at the feet would increase locomotor adaptation during and after split-belt walking. To test this, forces were modulated during split-belt walking with distinct slopes: incline (larger propulsion than braking), decline (larger braking than propulsion), and flat (similar propulsion and braking). Step length asymmetry was compared between groups because it is a clinically relevant measure robustly adapted on split-belt treadmills. Unexpectedly, the group with larger propulsion demands (i.e., the incline group) changed their gait the most during adaptation, reached their final adapted state more quickly, and had larger after-effects when the split-belt perturbation was removed. We also found that subjects who experienced larger disruptions of propulsion forces in early adaptation exhibited greater after-effects, which further highlights the catalytic role of propulsion forces on locomotor adaptation. The relevance of mechanical demands on shaping our movements was also indicated by the steady state split-belt behavior, during which each group recovered their baseline leg orientation to meet leg-specific force demands at the expense of step length symmetry. Notably, the flat group was nearly symmetric, whereas the incline and decline group overshot and undershot step length symmetry, respectively. Taken together, our results indicate that forces propelling the body facilitate gait changes during and after split-belt walking. Therefore, the particular propulsion demands to walk on a split-belt treadmill might explain the gait symmetry improvements in hemiparetic gait following split-belt training.
Collapse
Affiliation(s)
| | | | - Gelsy Torres-Oviedo
- Sensorimotor Learning Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
30
|
Fujiki S, Aoi S, Funato T, Sato Y, Tsuchiya K, Yanagihara D. Adaptive hindlimb split-belt treadmill walking in rats by controlling basic muscle activation patterns via phase resetting. Sci Rep 2018; 8:17341. [PMID: 30478405 PMCID: PMC6255885 DOI: 10.1038/s41598-018-35714-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/09/2018] [Indexed: 12/31/2022] Open
Abstract
To investigate the adaptive locomotion mechanism in animals, a split-belt treadmill has been used, which has two parallel belts to produce left–right symmetric and asymmetric environments for walking. Spinal cats walking on the treadmill have suggested the contribution of the spinal cord and associated peripheral nervous system to the adaptive locomotion. Physiological studies have shown that phase resetting of locomotor commands involving a phase shift occurs depending on the types of sensory nerves and stimulation timing, and that muscle activation patterns during walking are represented by a linear combination of a few numbers of basic temporal patterns despite the complexity of the activation patterns. Our working hypothesis was that resetting the onset timings of basic temporal patterns based on the sensory information from the leg, especially extension of hip flexors, contributes to adaptive locomotion on the split-belt treadmill. Our hypothesis was examined by conducting forward dynamic simulations using a neuromusculoskeletal model of a rat walking on a split-belt treadmill with its hindlimbs and by comparing the simulated motions with the measured motions of rats.
Collapse
Affiliation(s)
- Soichiro Fujiki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| | - Shinya Aoi
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Tetsuro Funato
- Department of Mechanical Engineering and Intelligent Systems, Graduate School of Informatics and Engineering, The University of Electro-communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo, 182-8585, Japan
| | - Yota Sato
- Department of Mechanical Engineering and Intelligent Systems, Graduate School of Informatics and Engineering, The University of Electro-communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo, 182-8585, Japan
| | - Kazuo Tsuchiya
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Dai Yanagihara
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
31
|
Contribution of Lower Limb Joint Movement in Adapting to Re-establish Step Length Symmetry During Split-Belt Treadmill Walking. J Med Biol Eng 2018. [DOI: 10.1007/s40846-018-0456-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Coordinative structuring of gait kinematics during adaptation to variable and asymmetric split-belt treadmill walking – A principal component analysis approach. Hum Mov Sci 2018; 59:178-192. [DOI: 10.1016/j.humov.2018.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 04/12/2018] [Accepted: 04/22/2018] [Indexed: 11/24/2022]
|
33
|
Yokoyama H, Sato K, Ogawa T, Yamamoto SI, Nakazawa K, Kawashima N. Characteristics of the gait adaptation process due to split-belt treadmill walking under a wide range of right-left speed ratios in humans. PLoS One 2018; 13:e0194875. [PMID: 29694404 PMCID: PMC5918641 DOI: 10.1371/journal.pone.0194875] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 03/12/2018] [Indexed: 11/18/2022] Open
Abstract
The adaptability of human bipedal locomotion has been studied using split-belt treadmill walking. Most of previous studies utilized experimental protocol under remarkably different split ratios (e.g. 1:2, 1:3, or 1:4). While, there is limited research with regard to adaptive process under the small speed ratios. It is important to know the nature of adaptive process under ratio smaller than 1:2, because systematic evaluation of the gait adaptation under small to moderate split ratios would enable us to examine relative contribution of two forms of adaptation (reactive feedback and predictive feedforward control) on gait adaptation. We therefore examined a gait behavior due to on split-belt treadmill adaptation under five belt speed difference conditions (from 1:1.2 to 1:2). Gait parameters related to reactive control (stance time) showed quick adjustments immediately after imposing the split-belt walking in all five speed ratios. Meanwhile, parameters related to predictive control (step length and anterior force) showed a clear pattern of adaptation and subsequent aftereffects except for the 1:1.2 adaptation. Additionally, the 1:1.2 ratio was distinguished from other ratios by cluster analysis based on the relationship between the size of adaptation and the aftereffect. Our findings indicate that the reactive feedback control was involved in all the speed ratios tested and that the extent of reaction was proportionally dependent on the speed ratio of the split-belt. On the contrary, predictive feedforward control was necessary when the ratio of the split-belt was greater. These results enable us to consider how a given split-belt training condition would affect the relative contribution of the two strategies on gait adaptation, which must be considered when developing rehabilitation interventions for stroke patients.
Collapse
Affiliation(s)
- Hikaru Yokoyama
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro, Tokyo, Japan.,Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan.,Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan
| | - Koji Sato
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan.,Department of Bioscience and Engineering, Graduate School of Engineering and Science, Shibaura Institute of Technology, Minuma, Saitama, Japan
| | - Tetsuya Ogawa
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro, Tokyo, Japan
| | - Shin-Ichiro Yamamoto
- Department of Bioscience and Engineering, Graduate School of Engineering and Science, Shibaura Institute of Technology, Minuma, Saitama, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro, Tokyo, Japan
| | - Noritaka Kawashima
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| |
Collapse
|
34
|
Velocity-dependent transfer of adaptation in human running as revealed by split-belt treadmill adaptation. Exp Brain Res 2018; 236:1019-1029. [PMID: 29411081 DOI: 10.1007/s00221-018-5195-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
Abstract
Animal studies demonstrate that the neural mechanisms underlying locomotion are specific to the modes and/or speeds of locomotion. In line with animal results, human locomotor adaptation studies, particularly those focusing on walking, have revealed limited transfers of adaptation among movement contexts including different locomotion speeds. Running is another common gait that humans utilize in their daily lives and is distinct from walking in terms of the underlying neural mechanisms. The present study employed an adaptation paradigm on a split-belt treadmill to examine the possible independence of neural mechanisms mediating different running speeds. The adaptations learned with split-belt running resulted in aftereffects with magnitudes that varied in a speed-dependent matter. In the two components of the ground reaction force investigated, the anterior braking and posterior propulsive components exhibited different trends. The anterior braking component tended to show larger aftereffect under speeds near the slower side speed of the previously experienced split-belt in contrast to the posterior propulsive component in which the aftereffect size tended to be the largest at a speed that corresponded to the faster side speed of the split-belt. These results show that the neural mechanisms underlying different running speeds in humans may be independent, just as in human walking and animal studies.
Collapse
|
35
|
Hinkel-Lipsker JW, Hahn ME. Contextual interference during adaptation to asymmetric split-belt treadmill walking results in transfer of unique gait mechanics. Biol Open 2017; 6:1919-1932. [PMID: 29175857 PMCID: PMC5769650 DOI: 10.1242/bio.028241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When humans make errors in stepping during walking due to a perturbation, they may adapt their gait as a way to correct for discrepancies between predicted and actual sensory feedback. This study sought to determine if increased contextual interference during acquisition of a novel asymmetric gait pattern would change lower-limb mechanical strategies generalized to different walking contexts. Such knowledge could help to clarify the role of contextual interference in locomotor adaptation, and demonstrate potential use in future gait rehabilitation paradigms. One belt on a split-belt treadmill was driven at a constant velocity while the other was driven at changing velocities according to one of three practice paradigms: serial, random blocked, or random training. Subjects returned to complete one of two different transfer tests. Results indicate that during acquisition, random practice requires unique gait mechanics to adapt to a challenging walking environment. Also, results from one transfer test close to that of the acquisition experience did not seem to demonstrate any contextual interference effect. Finally, random blocked practice resulted in highly unique changes in step length symmetry on a second, more challenging, transfer test. This perhaps indicates that a moderate level of contextual interference causes unique locomotor generalization strategies. Summary: Specific biomechanical gait adaptations occur as a result of variance of stepping errors during walking. Humans optimize a novel gait pattern based on different levels of error variance.
Collapse
Affiliation(s)
- Jacob W Hinkel-Lipsker
- Department of Kinesiology, California State University, Northridge, CA 91330, USA.,Department of Human Physiology, University of Oregon, Eugene, OR 97403, USA
| | - Michael E Hahn
- Department of Human Physiology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
36
|
Kannape OA, Herr HM. Split-belt adaptation and gait symmetry in transtibial amputees walking with a hybrid EMG controlled ankle-foot prosthesis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:5469-5472. [PMID: 28269495 DOI: 10.1109/embc.2016.7591964] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Our ability to automatically adapt our walking pattern to the demands of our environment is central to maintaining a steady gait. Accordingly, a large effort is being made to extend and integrate this adaptability to lower-limb prostheses. To date, the main focus of this research has been on short term adaptation, such as in response to a terrain transition or a sudden change in the environment. However, long term adaptation and underlying sensorimotor learning processes are critical to optimizing walking patterns and predictively changing our gait when faced with continued perturbations. Furthermore, investigating these processes in lower-limb amputees may provide a unique window into the interplay between sensory driven adaptation and top-down cerebellar modulation of locomotor reflexes and may potentially help alleviate gait asymmetries. In the current exploratory study, we therefore investigated adaptation, sensorimotor learning, and gait symmetry in a group of transtibial amputees walking with a hybrid-EMG controlled powered prosthesis and matched controls (both groups N=3). Participants were asked to perform a split-belt walking trial during which the belt on the affected side ran at twice the speed of the contralateral belt (1.0m/s and 0.5m/s respectively). Adaptation, sensorimotor learning, and symmetry are compared to two baseline conditions. Initial results illustrate that the amputees were readily able to use the hybrid controller, modulated their EMG depending on treadmill speed, and successfully adapted their gait during split-belt walking. However, the temporal gait parameters suggest that amputees used a different adaptation technique and showed reduced sensorimotor learning, while gait symmetry was improved, in the short term, post-adaptation.
Collapse
|
37
|
Darter BJ, Bastian AJ, Wolf EJ, Husson EM, Labrecque BA, Hendershot BD. Locomotor adaptability in persons with unilateral transtibial amputation. PLoS One 2017; 12:e0181120. [PMID: 28704467 PMCID: PMC5507533 DOI: 10.1371/journal.pone.0181120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/26/2017] [Indexed: 11/18/2022] Open
Abstract
Background Locomotor adaptation enables walkers to modify strategies when faced with challenging walking conditions. While a variety of neurological injuries can impair locomotor adaptability, the effect of a lower extremity amputation on adaptability is poorly understood. Objective Determine if locomotor adaptability is impaired in persons with unilateral transtibial amputation (TTA). Methods The locomotor adaptability of 10 persons with a TTA and 8 persons without an amputation was tested while walking on a split-belt treadmill with the parallel belts running at the same (tied) or different (split) speeds. In the split condition, participants walked for 15 minutes with the respective belts moving at 0.5 m/s and 1.5 m/s. Temporal spatial symmetry measures were used to evaluate reactive accommodations to the perturbation, and the adaptive/de-adaptive response. Results Persons with TTA and the reference group of persons without amputation both demonstrated highly symmetric walking at baseline. During the split adaptation and tied post-adaptation walking both groups responded with the expected reactive accommodations. Likewise, adaptive and de-adaptive responses were observed. The magnitude and rate of change in the adaptive and de-adaptive responses were similar for persons with TTA and those without an amputation. Furthermore, adaptability was no different based on belt assignment for the prosthetic limb during split adaptation walking. Conclusions Reactive changes and locomotor adaptation in response to a challenging and novel walking condition were similar in persons with TTA to those without an amputation. Results suggest persons with TTA have the capacity to modify locomotor strategies to meet the demands of most walking conditions despite challenges imposed by an amputation and use of a prosthetic limb.
Collapse
Affiliation(s)
- Benjamin J. Darter
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Research, Hunter Holmes McGuire Veteran Affairs Medical Center, Richmond, Virginia, United States of America
- * E-mail:
| | - Amy J. Bastian
- Kennedy Krieger Institute, Baltimore, Maryland, United States of America
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Erik J. Wolf
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
- DoD-VA Extremity Trauma and Amputation Center of Excellence (EACE), Bethesda, Maryland, United States of America
| | - Elizabeth M. Husson
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
- BADER Consortium, University of Delaware, Newark, Delaware, United States of America
| | - Bethany A. Labrecque
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Brad D. Hendershot
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
- DoD-VA Extremity Trauma and Amputation Center of Excellence (EACE), Bethesda, Maryland, United States of America
- Department of Rehabilitation Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| |
Collapse
|
38
|
Hinkel-Lipsker JW, Hahn ME. The effects of variable practice on locomotor adaptation to a novel asymmetric gait. Exp Brain Res 2017. [DOI: 10.1007/s00221-017-5015-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Selgrade BP, Thajchayapong M, Lee GE, Toney ME, Chang YH. Changes in mechanical work during neural adaptation to asymmetric locomotion. ACTA ACUST UNITED AC 2017; 220:2993-3000. [PMID: 28596214 DOI: 10.1242/jeb.149450] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 06/05/2017] [Indexed: 11/20/2022]
Abstract
Minimizing whole-body metabolic cost has been suggested to drive the neural processes of locomotor adaptation. Mechanical work performed by the legs should dictate the major changes in whole-body metabolic cost of walking while providing greater insight into temporal and spatial mechanisms of adaptation. We hypothesized that changes in mechanical work by the legs during an asymmetric split-belt walking adaptation task could explain previously observed changes in whole-body metabolic cost. We predicted that subjects would immediately increase mechanical work performed by the legs when first exposed to split-belt walking, followed by a gradual decrease throughout adaptation. Fourteen subjects walked on a dual-belt instrumented treadmill. Baseline trials were followed by a 10-min split-belt adaptation condition with one belt running three times faster than the other. A post-adaptation trial with both belts moving at 0.5 m s-1 demonstrated neural adaptation. As predicted, summed mechanical work from both legs initially increased abruptly and gradually decreased over the adaptation period. The initial increase in work was primarily due to increased positive work by the leg on the fast belt during the pendular phase of the gait cycle. Neural adaptation in asymmetric split-belt walking reflected the reduction of pendular phase work in favor of more economical step-to-step transition work. This may represent a generalizable framework for how humans initially and chronically learn new walking patterns.
Collapse
Affiliation(s)
- Brian P Selgrade
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0356, USA
| | - Montakan Thajchayapong
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0356, USA
| | - Gloria E Lee
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0356, USA
| | - Megan E Toney
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0356, USA
| | - Young-Hui Chang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0356, USA
| |
Collapse
|
40
|
Betschart M, Lauzière S, Miéville C, McFadyen BJ, Nadeau S. Changes in lower limb muscle activity after walking on a split-belt treadmill in individuals post-stroke. J Electromyogr Kinesiol 2017; 32:93-100. [DOI: 10.1016/j.jelekin.2016.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 11/27/2016] [Accepted: 12/22/2016] [Indexed: 11/16/2022] Open
|
41
|
Selgrade BP, Toney ME, Chang YH. Two biomechanical strategies for locomotor adaptation to split-belt treadmill walking in subjects with and without transtibial amputation. J Biomech 2017; 53:136-143. [PMID: 28126335 DOI: 10.1016/j.jbiomech.2017.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/19/2016] [Accepted: 01/09/2017] [Indexed: 11/28/2022]
Abstract
Locomotor adaptation is commonly studied using split-belt treadmill walking, in which each foot is placed on a belt moving at a different speed. As subjects adapt to split-belt walking, they reduce metabolic power, but the biomechanical mechanism behind this improved efficiency is unknown. Analyzing mechanical work performed by the legs and joints during split-belt adaptation could reveal this mechanism. Because ankle work in the step-to-step transition is more efficient than hip work, we hypothesized that control subjects would reduce hip work on the fast belt and increase ankle work during the step-to-step transition as they adapted. We further hypothesized that subjects with unilateral, trans-tibial amputation would instead increase propulsive work from their intact leg on the slow belt. Control subjects reduced hip work and shifted more ankle work to the step-to-step transition, supporting our hypothesis. Contrary to our second hypothesis, intact leg work, ankle work and hip work in amputees were unchanged during adaptation. Furthermore, all subjects increased collisional energy loss on the fast belt, but did not increase propulsive work. This was possible because subjects moved further backward during fast leg single support in late adaptation than in early adaptation, compensating by reducing backward movement in slow leg single support. In summary, subjects used two strategies to improve mechanical efficiency in split-belt walking adaptation: a CoM displacement strategy that allows for less forward propulsion on the fast belt; and, an ankle timing strategy that allows efficient ankle work in the step-to-step transition to increase while reducing inefficient hip work.
Collapse
Affiliation(s)
- Brian P Selgrade
- Comparative Neuromechanics Laboratory School of Applied Physiology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Megan E Toney
- Comparative Neuromechanics Laboratory School of Applied Physiology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Young-Hui Chang
- Comparative Neuromechanics Laboratory School of Applied Physiology, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
42
|
Abstract
Optimization of gait rehabilitation using split-belt treadmills critically depends on our understanding of the roles of somatosensory perception and sensorimotor recalibration in perceiving gait asymmetry and adapting to split-belt walking. Recent evidence justifies the hypothesis that perception of gait asymmetry is based mainly on detection of temporal mismatches between afferent inputs at the spinal level.
Collapse
Affiliation(s)
- Wouter Hoogkamer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| |
Collapse
|
43
|
Fujiki S, Aoi S, Funato T, Tomita N, Senda K, Tsuchiya K. Adaptation mechanism of interlimb coordination in human split-belt treadmill walking through learning of foot contact timing: a robotics study. J R Soc Interface 2016; 12:0542. [PMID: 26289658 PMCID: PMC4614464 DOI: 10.1098/rsif.2015.0542] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human walking behaviour adaptation strategies have previously been examined using split-belt treadmills, which have two parallel independently controlled belts. In such human split-belt treadmill walking, two types of adaptations have been identified: early and late. Early-type adaptations appear as rapid changes in interlimb and intralimb coordination activities when the belt speeds of the treadmill change between tied (same speed for both belts) and split-belt (different speeds for each belt) configurations. By contrast, late-type adaptations occur after the early-type adaptations as a gradual change and only involve interlimb coordination. Furthermore, interlimb coordination shows after-effects that are related to these adaptations. It has been suggested that these adaptations are governed primarily by the spinal cord and cerebellum, but the underlying mechanism remains unclear. Because various physiological findings suggest that foot contact timing is crucial to adaptive locomotion, this paper reports on the development of a two-layered control model for walking composed of spinal and cerebellar models, and on its use as the focus of our control model. The spinal model generates rhythmic motor commands using an oscillator network based on a central pattern generator and modulates the commands formulated in immediate response to foot contact, while the cerebellar model modifies motor commands through learning based on error information related to differences between the predicted and actual foot contact timings of each leg. We investigated adaptive behaviour and its mechanism by split-belt treadmill walking experiments using both computer simulations and an experimental bipedal robot. Our results showed that the robot exhibited rapid changes in interlimb and intralimb coordination that were similar to the early-type adaptations observed in humans. In addition, despite the lack of direct interlimb coordination control, gradual changes and after-effects in the interlimb coordination appeared in a manner that was similar to the late-type adaptations and after-effects observed in humans. The adaptation results of the robot were then evaluated in comparison with human split-belt treadmill walking, and the adaptation mechanism was clarified from a dynamic viewpoint.
Collapse
Affiliation(s)
- Soichiro Fujiki
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Shinya Aoi
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan JST, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Tetsuro Funato
- Department Mechanical Engineering and Intelligent Systems, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Choufugaoka, Choufu-shi, Tokyo 182-8585, Japan JST, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Nozomi Tomita
- Department of Mathematics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan JST, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Kei Senda
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Kazuo Tsuchiya
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan JST, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
44
|
Rabin E, Shi P, Werner W. Gait parameter control timing with dynamic manual contact or visual cues. J Neurophysiol 2016; 115:2880-92. [PMID: 26936979 DOI: 10.1152/jn.00670.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 02/25/2016] [Indexed: 11/22/2022] Open
Abstract
We investigated the timing of gait parameter changes (stride length, peak toe velocity, and double-, single-support, and complete step duration) to control gait speed. Eleven healthy participants adjusted their gait speed on a treadmill to maintain a constant distance between them and a fore-aft oscillating cue (a place on a conveyor belt surface). The experimental design balanced conditions of cue modality (vision: eyes-open; manual contact: eyes-closed while touching the cue); treadmill speed (0.2, 0.4, 0.85, and 1.3 m/s); and cue motion (none, ±10 cm at 0.09, 0.11, and 0.18 Hz). Correlation analyses revealed a number of temporal relationships between gait parameters and cue speed. The results suggest that neural control ranged from feedforward to feedback. Specifically, step length preceded cue velocity during double-support duration suggesting anticipatory control. Peak toe velocity nearly coincided with its most-correlated cue velocity during single-support duration. The toe-off concluding step and double-support durations followed their most-correlated cue velocity, suggesting feedback control. Cue-tracking accuracy and cue velocity correlations with timing parameters were higher with the manual contact cue than visual cue. The cue/gait timing relationships generalized across cue modalities, albeit with greater delays of step-cycle events relative to manual contact cue velocity. We conclude that individual kinematic parameters of gait are controlled to achieve a desired velocity at different specific times during the gait cycle. The overall timing pattern of instantaneous cue velocities associated with different gait parameters is conserved across cues that afford different performance accuracies. This timing pattern may be temporally shifted to optimize control. Different cue/gait parameter latencies in our nonadaptation paradigm provide general-case evidence of the independent control of gait parameters previously demonstrated in gait adaptation paradigms.
Collapse
Affiliation(s)
- Ely Rabin
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York;
| | - Peter Shi
- SUNY Downstate Medical Center, Brooklyn, New York; and
| | - William Werner
- New York Institute of Technology, Old Westbury, New York
| |
Collapse
|
45
|
Hinkel-Lipsker JW, Hahn ME. Novel Kinetic Strategies Adopted in Asymmetric Split-Belt Treadmill Walking. J Mot Behav 2015; 48:209-17. [PMID: 26359780 DOI: 10.1080/00222895.2015.1073137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The hip and ankle strategies that affect learning of a novel gait have not been fully determined, and could be of importance in design of clinical gait interventions. The authors' purpose was to determine the effects of asymmetric split-belt treadmill walking on ankle and hip work during propulsion. Participants were randomized into either a gradual training group or a sudden training group and later returned for a retention test. The gradual training group performed significantly more work at the hip joint of the slow limb during acquisition, and decreased the hip joint work performed during retention. These findings reveal the hip joint on the slow limb during initial swing as a possible site of adaptation to a novel locomotor pattern.
Collapse
Affiliation(s)
| | - Michael E Hahn
- a Department of Human Physiology , University of Oregon , Eugene
| |
Collapse
|
46
|
Sartori M, Maculan M, Pizzolato C, Reggiani M, Farina D. Modeling and simulating the neuromuscular mechanisms regulating ankle and knee joint stiffness during human locomotion. J Neurophysiol 2015; 114:2509-27. [PMID: 26245321 DOI: 10.1152/jn.00989.2014] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 07/30/2015] [Indexed: 11/22/2022] Open
Abstract
This work presents an electrophysiologically and dynamically consistent musculoskeletal model to predict stiffness in the human ankle and knee joints as derived from the joints constituent biological tissues (i.e., the spanning musculotendon units). The modeling method we propose uses electromyography (EMG) recordings from 13 muscle groups to drive forward dynamic simulations of the human leg in five healthy subjects during overground walking and running. The EMG-driven musculoskeletal model estimates musculotendon and resulting joint stiffness that is consistent with experimental EMG data as well as with the experimental joint moments. This provides a framework that allows for the first time observing 1) the elastic interplay between the knee and ankle joints, 2) the individual muscle contribution to joint stiffness, and 3) the underlying co-contraction strategies. It provides a theoretical description of how stiffness modulates as a function of muscle activation, fiber contraction, and interacting tendon dynamics. Furthermore, it describes how this differs from currently available stiffness definitions, including quasi-stiffness and short-range stiffness. This work offers a theoretical and computational basis for describing and investigating the neuromuscular mechanisms underlying human locomotion.
Collapse
Affiliation(s)
- Massimo Sartori
- University Medical Center Goettingen, Georg-August University, Goettingen, Germany;
| | - Marco Maculan
- Department of Management and Engineering, University of Padova, Padova, Italy; and
| | - Claudio Pizzolato
- Centre for Musculoskeletal Research, Griffith University, Queensland, Australia
| | - Monica Reggiani
- Department of Management and Engineering, University of Padova, Padova, Italy; and
| | - Dario Farina
- University Medical Center Goettingen, Georg-August University, Goettingen, Germany
| |
Collapse
|
47
|
Hoogkamer W, Bruijn SM, Potocanac Z, Van Calenbergh F, Swinnen SP, Duysens J. Gait asymmetry during early split-belt walking is related to perception of belt speed difference. J Neurophysiol 2015. [PMID: 26203114 DOI: 10.1152/jn.00937.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gait adaptation is essential for humans to walk according to the different demands of the environment. Although locomotor adaptation has been studied in different contexts and in various patient populations, the mechanisms behind locomotor adaptation are still not fully understood. The aim of the present study was to test two opposing hypotheses about the control of split-belt walking, one based on avoidance of limping and the other on avoiding limb excursion asymmetry. We assessed how well cerebellar patients with focal lesions and healthy control participants could sense differences between belt speeds during split-belt treadmill walking and correlated this to split-belt adaptation parameters. The ability to perceive differences between belt speeds was similar between the cerebellar patients and the healthy controls. After combining all participants, we observed a significant inverse correlation between stance time symmetry and limb excursion symmetry during the early phase of split-belt walking. Participants who were better able to perceive belt speed differences (e.g., they had a lower threshold and hence were able to detect a smaller speed difference) walked with the smallest asymmetry in stance time and the largest asymmetry in limb excursion. Our data support the hypothesis that humans aim to minimize (temporal) limping rather than (spatial) limb excursion asymmetry when using their perception of belt speed differences in the early phase of adaptation to split-belt walking.
Collapse
Affiliation(s)
- Wouter Hoogkamer
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium;
| | - Sjoerd M Bruijn
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium; Department of Orthopedics, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China; MOVE Research Institute, VU University Amsterdam, Amsterdam, The Netherlands
| | - Zrinka Potocanac
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium
| | | | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium
| | - Jacques Duysens
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium; Biomechatronics Lab, Mechatronics Department, Escola Politécnica, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
48
|
Ogawa T, Kawashima N, Obata H, Kanosue K, Nakazawa K. Distinct motor strategies underlying split-belt adaptation in human walking and running. PLoS One 2015; 10:e0121951. [PMID: 25775426 PMCID: PMC4361606 DOI: 10.1371/journal.pone.0121951] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/05/2015] [Indexed: 12/03/2022] Open
Abstract
The aim of the present study was to elucidate the adaptive and de-adaptive nature of human running on a split-belt treadmill. The degree of adaptation and de-adaptation was compared with those in walking by calculating the antero-posterior component of the ground reaction force (GRF). Adaptation to walking and running on a split-belt resulted in a prominent asymmetry in the movement pattern upon return to the normal belt condition, while the two components of the GRF showed different behaviors depending on the gaits. The anterior braking component showed prominent adaptive and de-adaptive behaviors in both gaits. The posterior propulsive component, on the other hand, exhibited such behavior only in running, while that in walking showed only short-term aftereffect (lasting less than 10 seconds) accompanied by largely reactive responses. These results demonstrate a possible difference in motor strategies (that is, the use of reactive feedback and adaptive feedforward control) by the central nervous system (CNS) for split-belt locomotor adaptation between walking and running. The present results provide basic knowledge on neural control of human walking and running as well as possible strategies for gait training in athletic and rehabilitation scenes.
Collapse
Affiliation(s)
- Tetsuya Ogawa
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, Japan
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda, Tokyo, Japan
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, 4-1, Namiki, Tokorozawa, Saitama, Japan
- * E-mail:
| | - Noritaka Kawashima
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, 4-1, Namiki, Tokorozawa, Saitama, Japan
| | - Hiroki Obata
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro, Tokyo, Japan
| | - Kazuyuki Kanosue
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, Japan
| | - Kimitaka Nakazawa
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro, Tokyo, Japan
| |
Collapse
|
49
|
Maclellan MJ, Ivanenko YP, Massaad F, Bruijn SM, Duysens J, Lacquaniti F. Muscle activation patterns are bilaterally linked during split-belt treadmill walking in humans. J Neurophysiol 2014; 111:1541-52. [PMID: 24478155 DOI: 10.1152/jn.00437.2013] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
There is growing evidence that human locomotion is controlled by flexibly combining a set of basic muscle activity patterns. To explore how these patterns are modified to cope with environmental constraints, 10 healthy young adults 1st walked on a split-belt treadmill at symmetric speeds of 4 and 6 km/h for 2 min. An asymmetric condition was then performed for 10 min in which treadmill speeds for the dominant (fast) and nondominant (slow) sides were 6 and 4 km/h, respectively. This was immediately followed by a symmetric speed condition of 4 km/h for 5 min. Gait kinematics and ground reaction forces were recorded. Electromyography (EMG) was collected from 12 lower limb muscles on each side of the body. Nonnegative matrix factorization was applied to the EMG signals bilaterally and unilaterally to obtain basic activation patterns. A cross-correlation analysis was then used to quantify temporal changes in the activation patterns. During the early (1st 10 strides) and late (final 10 strides) phases of the asymmetric condition, the patterns related to ankle plantar flexor (push-off) of the fast limb and quadriceps muscle (contralateral heel contact) of the slow limb occurred earlier in the gait cycle compared with the symmetric conditions. Moreover, a bilateral temporal alignment of basic patterns between limbs was still maintained in the split-belt condition since a similar shift was observed in the unilateral patterns. The results suggest that the temporal structure of these locomotor patterns is shaped by sensory feedback and that the patterns are bilaterally linked.
Collapse
Affiliation(s)
- M J Maclellan
- School of Kinesiology, Louisiana State University, Baton Rouge, Louisiana
| | | | | | | | | | | |
Collapse
|