1
|
Chauhan G, Kumar G, Roy K, Kumari P, Thondala B, Kishore K, Panjwani U, Ray K. Hypobaric Hypoxia Induces Deficits in Adult Neurogenesis and Social Interaction via Cyclooxygenase-1/ EP1 Receptor Pathway Activating NLRP3 Inflammasome. Mol Neurobiol 2022; 59:2497-2519. [PMID: 35089581 DOI: 10.1007/s12035-022-02750-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/11/2022] [Indexed: 12/17/2022]
Abstract
Low oxygen environments, like hypobaric hypoxia (HH), are common nodes in a number of diseases characterized by neuroinflammation, which is detrimental to the structural and functional aspects of hippocampal circuitry. Hypoxic conditions lead to elevation of inflammasome-mediated inflammation that may contribute to cognitive deficits. However, a systematic investigation of the impact of inflammasome-mediated neuroinflammation on the components of neurogenic niche during HH remains to be elusive. Cerebral hypoxia was induced in adult male Sprague Dawley rats via decreasing partial pressure of oxygen. The effect of HH (1, 3, and 7 days at 25,000 ft) on social memory, anxiety, adult neurogenesis, and NLRP3- (NLR family pyrin domain containing 3) mediated neuroinflammation in the dentate gyrus (DG) was explored in detail. Furthermore, we explored the therapeutic efficacy of cyclooxygenase-1 inhibitor (valeryl salicylate, 5 mg/kg/day, i.p.) and EP1 receptor (EP1R) antagonist (SC19220, 1 mg/kg/day, i.p.) on HH-induced deficits. Seven days of HH exposure induced alteration in social and anxiety-like behavior along with perturbation in adult neurogenesis. Elevation in NLRP3, caspase-1, and IL-1β levels was observed during HH from day 1. A notable increase in the COX-1/EP1R pathway in activated glial cells in DG was evident during HH. COX-1 inhibitor and EP1R antagonist mitigated the detrimental effects of HH on social memory, adult neurogenesis via blunting NLRP3-mediated inflammation. Our data showed induction of the COX-1/EP1R pathway in the glial cells, which is detrimental to neurogenesis and social memory, opening up the possibility that the COX-1/EP1R pathway is a plausible target for inflammasome-related neurogenesis impairments.
Collapse
Affiliation(s)
- Garima Chauhan
- Neurophysiology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Gaurav Kumar
- Neurophysiology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Koustav Roy
- Neurophysiology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Punita Kumari
- Neurophysiology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Bhanuteja Thondala
- Neurophysiology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Krishna Kishore
- Neurophysiology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Usha Panjwani
- Neurophysiology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Koushik Ray
- Neurophysiology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
2
|
Distinct influence of COX-1 and COX-2 on neuroinflammatory response and associated cognitive deficits during high altitude hypoxia. Neuropharmacology 2019; 146:138-148. [DOI: 10.1016/j.neuropharm.2018.11.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/26/2018] [Accepted: 11/16/2018] [Indexed: 02/08/2023]
|
3
|
Liu C, Liu B, Liu L, Zhang EL, Sun BD, Xu G, Chen J, Gao YQ. Arachidonic Acid Metabolism Pathway Is Not Only Dominant in Metabolic Modulation but Associated With Phenotypic Variation After Acute Hypoxia Exposure. Front Physiol 2018; 9:236. [PMID: 29615930 PMCID: PMC5864929 DOI: 10.3389/fphys.2018.00236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/02/2018] [Indexed: 12/22/2022] Open
Abstract
Background: The modulation of arachidonic acid (AA) metabolism pathway is identified in metabolic alterations after hypoxia exposure, but its biological function is controversial. We aimed at integrating plasma metabolomic and transcriptomic approaches to systematically explore the roles of the AA metabolism pathway in response to acute hypoxia using an acute mountain sickness (AMS) model. Methods: Blood samples were obtained from 53 enrolled subjects before and after exposure to high altitude. Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry and RNA sequencing were separately performed for metabolomic and transcriptomic profiling, respectively. Influential modules comprising essential metabolites and genes were identified by weighted gene co-expression network analysis (WGCNA) after integrating metabolic information with phenotypic and transcriptomic datasets, respectively. Results: Enrolled subjects exhibited diverse response manners to hypoxia. Combined with obviously altered heart rate, oxygen saturation, hemoglobin, and Lake Louise Score (LLS), metabolomic profiling detected that 36 metabolites were highly related to clinical features in hypoxia responses, out of which 27 were upregulated and nine were downregulated, and could be mapped to AA metabolism pathway significantly. Integrated analysis of metabolomic and transcriptomic data revealed that these dominant molecules showed remarkable association with genes in gas transport incapacitation and disorders of hemoglobin metabolism pathways, such as ALAS2, HEMGN. After detailed description of AA metabolism pathway, we found that the molecules of 15-d-PGJ2, PGA2, PGE2, 12-O-3-OH-LTB4, LTD4, LTE4 were significantly up-regulated after hypoxia stimuli, and increased in those with poor response manner to hypoxia particularly. Further analysis in another cohort showed that genes in AA metabolism pathway such as PTGES, PTGS1, GGT1, TBAS1 et al. were excessively elevated in subjects in maladaptation to hypoxia. Conclusion: This is the first study to construct the map of AA metabolism pathway in response to hypoxia and reveal the crosstalk between phenotypic variation under hypoxia and the AA metabolism pathway. These findings may improve our understanding of the advanced pathophysiological mechanisms in acute hypoxic diseases and provide new insights into critical roles of the AA metabolism pathway in the development and prevention of these diseases.
Collapse
Affiliation(s)
- Chang Liu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Third Military Medical University, Chongqing, China.,Key Laboratory of High Altitude Environmental Medicine, Army Medical University, Third Military Medical University, Ministry of Education, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Bao Liu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Third Military Medical University, Chongqing, China.,Key Laboratory of High Altitude Environmental Medicine, Army Medical University, Third Military Medical University, Ministry of Education, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.,The 12th Hospital of Chinese People's Liberation Army, Kashi, China
| | - Lu Liu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Third Military Medical University, Chongqing, China.,Key Laboratory of High Altitude Environmental Medicine, Army Medical University, Third Military Medical University, Ministry of Education, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Er-Long Zhang
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Third Military Medical University, Chongqing, China.,Key Laboratory of High Altitude Environmental Medicine, Army Medical University, Third Military Medical University, Ministry of Education, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Bind-da Sun
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Third Military Medical University, Chongqing, China.,Key Laboratory of High Altitude Environmental Medicine, Army Medical University, Third Military Medical University, Ministry of Education, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Gang Xu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Third Military Medical University, Chongqing, China.,Key Laboratory of High Altitude Environmental Medicine, Army Medical University, Third Military Medical University, Ministry of Education, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Jian Chen
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Third Military Medical University, Chongqing, China.,Key Laboratory of High Altitude Environmental Medicine, Army Medical University, Third Military Medical University, Ministry of Education, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Yu-Qi Gao
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Third Military Medical University, Chongqing, China.,Key Laboratory of High Altitude Environmental Medicine, Army Medical University, Third Military Medical University, Ministry of Education, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| |
Collapse
|
4
|
Baghel M, Rajput SJ. Stress degradation of edaravone: Separation, isolation and characterization of major degradation products. Biomed Chromatogr 2017; 32. [PMID: 29171029 DOI: 10.1002/bmc.4146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/01/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022]
Abstract
In the present study the International Conference on Harmonization-prescribed stress degradation was carried out to study the degradation profile of edaravone. To establish a Quality by Design (QbD)-assisted stability-indicating assay, the reaction solutions in which different degradation products were formed were mixed. Plackett Burman and central composite design were used to screen and optimize experimental variables to resolve edaravone and its impurities with good peak symmetry using an RP C18 column. The method was validated according to International Conference on Harmonization guidelines. Seven unknown and two known degradation products were identified and characterized by LC-MS/MS. Two major degradation products formed under thermal degradation were isolated and characterized as 4-(4,5-dihydro-3-methyl-5-oxo-1-phenyl-1H-pyrazol-4-yl-4-(4,5-dihydro-5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one and 3-hydroxy-dihydro-thiazolo[1-(2-methyl-buta-1,3dienyl)-1-phenylhydrazine]5-one. The degradation pathways of degradants were proposed based on m/z values.
Collapse
Affiliation(s)
- Madhuri Baghel
- Centre of Relevance and Excellence in Novel Drug Delivery Systems, Faculty of Pharmacy, G.H. Patel Building, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Sadhana J Rajput
- Centre of Relevance and Excellence in Novel Drug Delivery Systems, Faculty of Pharmacy, G.H. Patel Building, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
5
|
Edaravone, a Synthetic Free Radical Scavenger, Enhances Alteplase-Mediated Thrombolysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6873281. [PMID: 29259732 PMCID: PMC5702421 DOI: 10.1155/2017/6873281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/07/2017] [Indexed: 12/12/2022]
Abstract
The combination of alteplase, a recombinant tissue plasminogen activator, and edaravone, an antioxidant, reportedly enhances recanalization after acute ischemic stroke. We examined the influence of edaravone on the thrombolytic efficacy of alteplase by measuring thrombolysis using a newly developed microchip-based flow-chamber assay. Rat models of embolic cerebral ischemia were treated with either alteplase or alteplase-edaravone combination therapy. The combination therapy significantly reduced the infarct volume and improved neurological deficits. Human blood samples from healthy volunteers were exposed to edaravone, alteplase, or a combination of alteplase and edaravone or hydrogen peroxide. Whole blood was perfused over a collagen- and thromboplastin-coated microchip; capillary occlusion was monitored with a video microscope and flow-pressure sensor. The area under the curve (extent of thrombogenesis or thrombolysis) at 30 minutes was 69.9% lower in the edaravone-alteplase- than alteplase-treated group. The thrombolytic effect of alteplase was significantly attenuated in the presence of hydrogen peroxide, suggesting that oxidative stress might hinder thrombolysis. D-dimers were measured to evaluate these effects in human platelet-poor plasma samples. Although hydrogen peroxide significantly decreased the elevation of D-dimers by alteplase, edaravone significantly inhibited the decrease. Edaravone enhances alteplase-mediated thrombolysis, likely by preventing oxidative stress, which inhibits fibrinolysis by alteplase in thrombi.
Collapse
|
6
|
Kikuta S, Murai Y, Tanaka E. Activation of cathepsin L contributes to the irreversible depolarization induced by oxygen and glucose deprivation in rat hippocampal CA1 neurons. Neurosci Lett 2016; 636:120-126. [PMID: 27818353 DOI: 10.1016/j.neulet.2016.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/17/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
Abstract
Oxygen and glucose deprivation (OGD) elicits a rapid and irreversible depolarization with a latency of ∼5min in intracellular recordings of hippocampal CA1 neurons in rat slice preparations. In the present study, we examined the role of cathepsin L in the OGD-induced depolarization. OGD-induced depolarizations were irreversible as no recovery of membrane potential was observed. The membrane potential reached 0mV when oxygen and glucose were reintroduced immediately after the onset of the OGD-induced rapid depolarization. The OGD-induced depolarizations became reversible when the slice preparations were pre-incubated with cathepsin L inhibitors (types I and IV at 0.3-2nM and 0.3-30nM, respectively). Moreover, pre-incubation with these cathepsin inhibitors prevented the morphological changes, including swelling of the cell soma and fragmentation of dendrites, observed in control neurons after OGD. These findings suggest that the activation of cathepsin L contributes to the irreversible depolarization produced by OGD.
Collapse
Affiliation(s)
- Shogo Kikuta
- Department of Physiology, Kurume University School of Medicine, Kurume, Japan; Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan.
| | - Yoshinaka Murai
- Department of Physiology, Kurume University School of Medicine, Kurume, Japan.
| | - Eiichiro Tanaka
- Department of Physiology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
7
|
Abstract
Acute ischemic stroke (AIS) is a major cause of mortality and disability and remains a serious and significant global health problem. The development of neurovascular protectants to treat AIS successfully has been beset by disappointments and setbacks. Many promising candidates have lacked significant pleiotropic protective activity for brain tissue and cerebral blood vessels in clinical trials, while those with protective activity have had poor bioavailability or high toxicity. Moreover, the majority of agents did not confer significant neurovascular protection or clinical efficacy, as measured by standard behavioral endpoints in clinical trials of heterogeneous populations of patients with AIS. The recombinant tissue plasminogen activator alteplase is approved in many countries for the treatment of AIS in the first 3 h after symptom onset. Many drug candidates have been subject to clinical trials, including those with anti-excitotoxic, anti-inflammatory, antioxidant, antiapoptotic/regenerative, calcium/adrenergic-modulating/antihypertensive, thrombolytic, nootropic/stimulant, fluid regulatory, or oxygen-delivering mechanisms of action. Some agents, such as tenecteplase, edaravone and minocycline, may be approved for global use in the future. This review evaluates almost all neurovascular protectants subject to clinical trial evaluation for the treatment of AIS, and includes 241 studies conducted between 1978 and 2014. The development of agents that reduce brain injury after AIS will require new and different approaches based on a deeper understanding of the pathophysiology of AIS. Moreover, the future treatment for AIS is likely to lie in combination therapy rather than monotherapy. Additional approaches to the testing and use of neurovascular protectants should be considered.
Collapse
|
8
|
Kikuchi K, Tancharoen S, Takeshige N, Yoshitomi M, Morioka M, Murai Y, Tanaka E. The efficacy of edaravone (radicut), a free radical scavenger, for cardiovascular disease. Int J Mol Sci 2013; 14:13909-30. [PMID: 23880849 PMCID: PMC3742225 DOI: 10.3390/ijms140713909] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 02/07/2023] Open
Abstract
Edaravone was originally developed as a potent free radical scavenger, and has been widely used to treat acute ischemic stroke in Japan since 2001. Free radicals play an important role in the pathogenesis of a variety of diseases, such as cardiovascular diseases and stroke. Therefore, free radicals may be targets for therapeutic intervention in these diseases. Edaravone shows protective effects on ischemic insults and inflammation in the heart, vessel, and brain in experimental studies. As well as scavenging free radicals, edaravone has anti-apoptotic, anti-necrotic, and anti-cytokine effects in cardiovascular diseases and stroke. Edaravone has preventive effects on myocardial injury following ischemia and reperfusion in patients with acute myocardial infarction. Edaravone may represent a new therapeutic intervention for endothelial dysfunction in the setting of atherosclerosis, heart failure, diabetes, or hypertension, because these diseases result from oxidative stress and/or cytokine-induced apoptosis. This review evaluates the potential of edaravone for treatment of cardiovascular disease, and covers clinical and experimental studies conducted between 1984 and 2013. We propose that edaravone, which scavenges free radicals, may offer a novel option for treatment of cardiovascular diseases. However, additional clinical studies are necessary to verify the efficacy of edaravone.
Collapse
Affiliation(s)
- Kiyoshi Kikuchi
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, 6 Yothe Road, Rajthevee, Bangkok 10400, Thailand; E-Mails: (K.K.); (S.T.)
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mail:
- Department of Neurosurgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mails: (N.T.); (M.Y.); (M.M.)
| | - Salunya Tancharoen
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, 6 Yothe Road, Rajthevee, Bangkok 10400, Thailand; E-Mails: (K.K.); (S.T.)
| | - Nobuyuki Takeshige
- Department of Neurosurgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mails: (N.T.); (M.Y.); (M.M.)
| | - Munetake Yoshitomi
- Department of Neurosurgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mails: (N.T.); (M.Y.); (M.M.)
| | - Motohiro Morioka
- Department of Neurosurgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mails: (N.T.); (M.Y.); (M.M.)
| | - Yoshinaka Murai
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mail:
| | - Eiichiro Tanaka
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mail:
- Author to whom correspondence should be addressed. E-Mail: ; Tel.: +81-942-31-7542; Fax: +81-942-31-7695
| |
Collapse
|
9
|
The hypoxic testicle: physiology and pathophysiology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:929285. [PMID: 23056665 PMCID: PMC3465913 DOI: 10.1155/2012/929285] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 08/07/2012] [Accepted: 08/09/2012] [Indexed: 12/15/2022]
Abstract
Mammalian spermatogenesis is a complex biological process occurring in the seminiferous tubules in the testis. This process represents a delicate balance between cell proliferation, differentiation, and apoptosis. In most mammals, the testicles are kept in the scrotum 2 to 7°C below body core temperature, and the spermatogenic process proceeds with a blood and oxygen supply that is fairly independent of changes in other vascular beds in the body. Despite this apparently well-controlled local environment, pathologies such as varicocele or testicular torsion and environmental exposure to low oxygen (hypoxia) can result in changes in blood flow, nutrients, and oxygen supply along with an increased local temperature that may induce adverse effects on Leydig cell function and spermatogenesis. These conditions may lead to male subfertility or infertility. Our literature analyses and our own results suggest that conditions such as germ cell apoptosis and DNA damage are common features in hypoxia and varicocele and testicular torsion. Furthermore, oxidative damage seems to be present in these conditions during the initiation stages of germ cell damage and apoptosis. Other mechanisms like membrane-bound metalloproteinases and phospholipase A2 activation could also be part of the pathophysiological consequences of testicular hypoxia.
Collapse
|
10
|
Kikuchi K, Miura N, Kawahara KI, Murai Y, Morioka M, Lapchak PA, Tanaka E. Edaravone (Radicut), a free radical scavenger, is a potentially useful addition to thrombolytic therapy in patients with acute ischemic stroke. Biomed Rep 2012; 1:7-12. [PMID: 24648884 DOI: 10.3892/br.2012.7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/08/2012] [Indexed: 01/30/2023] Open
Abstract
Acute ischemic stroke (AIS) is a major cause of morbidity and mortality in the aging population worldwide. Alteplase, a recombinant tissue plasminogen activator, is the only Food and Drug Administration-approved thrombolytic agent for the treatment of AIS. Only 2-5% of patients with stroke receive thrombolytic treatment, mainly due to delay in reaching the hospital. Edaravone is a free radical scavenger marketed in Japan to treat patients with AIS, who present within 24 h of the onset of symptoms. When used in combination with alteplase, edaravone may have three useful effects: enhancement of early recanalization, inhibition of alteplase-induced hemorrhagic transformation and extension of the therapeutic time window for alteplase. This is the first review of the literature evaluating the clinical efficacy of edaravone, aiming to clarify whether edaravone should be further evaluated for clinical use worldwide. This review covers both clinical and experimental studies conducted between 1994 and 2012. Edaravone is a potentially useful neurovascular protective agent, used in combination with thrombolytic agents to treat >15 million patients devastated by stroke worldwide annually. Additional clinical studies are necessary to verify the efficacy of edaravone when used in combination with a thrombolytic agent.
Collapse
Affiliation(s)
- Kiyoshi Kikuchi
- Department of Neurology, Cedars-Sinai Medical Center, Davis Research Building, Los Angeles, CA 90048, USA
| | - Naoki Miura
- Veterinary Teaching Hospital and Laboratory of Veterinary Diagnostic Imaging, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065
| | - Ko-Ichi Kawahara
- Laboratory of Functional Foods, Department of Biomedical Engineering, Osaka Institute of Technology, Osaka 535-8585; ; Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan
| | | | - Motohiro Morioka
- Neurosurgery, Kurume University School of Medicine, Fukuoka 830-0011
| | - Paul A Lapchak
- Department of Neurology, Cedars-Sinai Medical Center, Davis Research Building, Los Angeles, CA 90048, USA
| | | |
Collapse
|
11
|
Abstract
Aims To provide common Organic Chemistry/Polymer Science thermoset free-radical crosslinking Sciences for Medical understanding and also present research findings for several common vitamins/antioxidants with a new class of drugs known as free-radical inhibitors. Study Design Peroxide/Fenton transition-metal redox couples that generate free radicals were combined with unsaturated lipid oils to demonstrate thermoset-polymer chain growth by crosslinking with the α-β-unsaturated aldehyde acrolein into rubbery/adhesive solids. Further, Vitamin A and beta carotene were similarly studied for crosslink pathological potential. Also, free-radical inhibitor hydroquinone was compared for antioxidant capability with Vitamin E. Place and Duration of Study Department of Materials Science and Engineering and Department of Biomaterials, University of Alabama at Birmingham, between June 2005 and August 2012. Methodology Observations were recorded for Fenton free-radical crosslinking of unsaturated lipids and vitamin A/beta carotene by photography further with weight measurements and percent-shrinkage testing directly related to covalent crosslinking of unsaturated lipids recorded over time with different concentrations of acrolein. Also, hydroquinone and vitamin E were compared at concentrations from 0.0–7.3wt% as antioxidants for reductions in percent-shrinkage measurements, n = 5. Results Unsaturated lipid oils responded to Fenton thermoset-polymer reactive secondary sequence reactions only by acrolein with crosslinking into rubbery-type solids and different non-solid gluey products. Further, molecular oxygen crosslinking was demonstrated with lipid peroxidation and acrolein at specially identified margins. By peroxide/Fenton free-radical testing, both vitamin A and beta-carotene demonstrated possible pathology chemistry for chain-growth crosslinking. During lipid/acrolein testing over a 50 hour time period at 7.3wt% antioxidants, hydroquinone significantly reduced percent shrinkage greatly compared to the standard antioxidant vitamin E, %shrinkage at 11.6 ±1.3 for hydroquinone and 27.8 ±2.2 for vitamin E, P = .001. Conclusion Free radicals crosslinked unsaturated lipid fatty acids into thermoset polymers through Fenton reactions when combined with acrolein. Further, hydroquinone was a superior antioxidant to vitamin E.
Collapse
Affiliation(s)
- Richard C Petersen
- University of Alabama at Birmingham, SDB 539, 1919 7 Avenue South, Biomaterials and Biomedical Engineering, Birmingham AL 35294, USA
| |
Collapse
|
12
|
The physiological behaviour of IMR-32 neuroblastoma cells is affected by a 12-h hypoxia/24-h reoxygenation period. Neurochem Res 2010; 35:1691-9. [PMID: 20640916 DOI: 10.1007/s11064-010-0231-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2010] [Indexed: 10/19/2022]
Abstract
Nervous system cells are highly dependent on adequate tissue oxygenation and are very susceptible to hypoxia, which causes mitochondrial dysfunctions involved in apoptosis and necrosis. In this paper, we examine the effect of a 12-h incubation of differentiated IMR-32 neuroblastoma cells in a hypoxic environment (73% N(2): 2% O(2): 5% CO(2), v:v) by evaluating cell viability, modifications of NO, intracellular Ca(2+) concentration [Ca(2+)](i) and membrane potential, the production of phosphorylated ERK, desferoxamine-chelatable free iron and esterified F2-isoprostane levels. The same parameters were evaluated after a subsequent 24-h re-oxygenation period. The NO concentration increased significantly immediately after hypoxia and returned to values similar to those of controls after the reoxygenation period. At the same time, we observed a significant increase of [Ca(2+)](i) immediately after hypoxia. Phosphorylated ERK proteins increased significantly during the first 2 h of hypoxia, then decreased, and remained practically unmodified after 12 h hypoxia and the following reoxygenation period. Moreover, IMR-32 cell mitochondria were significantly depolarized after hypoxia, while membrane potential returned to normal after the reoxygenation period. Finally, desferoxamine-chelatable free iron and F2-isoprostane levels also increased significantly after hypoxia. Our results indicate that 2% O(2) hypoxia induces variations of NO and [Ca(2+)](i) with subsequent mitochondrial depolarization, and it is responsible for oxidative stress, represented by increased free iron and F2-isoprostane, protein carbonyls and 4 hydroxynonenal protein adducts levels.
Collapse
|
13
|
Sánchez HA, Orellana JA, Verselis VK, Sáez JC. Metabolic inhibition increases activity of connexin-32 hemichannels permeable to Ca2+ in transfected HeLa cells. Am J Physiol Cell Physiol 2009; 297:C665-78. [PMID: 19587218 PMCID: PMC2740400 DOI: 10.1152/ajpcell.00200.2009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 07/01/2009] [Indexed: 02/08/2023]
Abstract
Numerous cell types express functional connexin (Cx) hemichannels (HCs), and membrane depolarization and/or exposure to a divalent cation-free bathing solution (DCFS) have been shown to promote HC opening. However, little is known about conditions that can promote HC opening in the absence of strong depolarization and when extracellular divalent cation concentrations remain at physiological levels. Here the effects of metabolic inhibition (MI), an in vitro model of ischemia, on the activity of mouse Cx32 HCs were examined. In HeLa cells stably transfected with mouse Cx32 (HeLa-Cx32), MI induced an increase in cellular permeability to ethidium (Etd). The increase in Etd uptake was directly related to an increase in levels of Cx32 HCs present at the cell surface. Moreover, MI increased membrane currents in HeLa-Cx32 cells. Underlying these currents were channels exhibiting a unitary conductance of approximately 90 pS, consistent with Cx32 HCs. These currents and Etd uptake were blocked by HC inhibitors. The increase in Cx32 HC activity was preceded by a rapid reduction in mitochondrial membrane potential and a rise in free intracellular Ca(2+) concentration ([Ca(2+)](i)). The increase in free [Ca(2+)](i) was prevented by HC blockade or exposure to extracellular DCFS and was virtually absent in parental HeLa cells. Moreover, inhibition of Cx32 HCs expressed by HeLa cells in low-confluence cultures drastically reduced cell death induced by oxygen-glucose deprivation, which is a more physiological model of ischemia-reperfusion. Thus HC blockade could reduce the increase in free [Ca(2+)](i) and cell death induced by ischemia-like conditions in cells expressing Cx32 HCs.
Collapse
Affiliation(s)
- Helmuth A Sánchez
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | | | | | | |
Collapse
|
14
|
Maher PA, Schubert DR. Metabolic links between diabetes and Alzheimer's disease. Expert Rev Neurother 2009; 9:617-30. [PMID: 19402773 DOI: 10.1586/ern.09.18] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is a cluster of risk factors for Type 2 diabetes and vascular disease that include high blood glucose, obesity, high blood pressure, increased blood triacylglycerols and insulin resistance. All of these factors, both individually and collectively, increase the risk of Alzheimer's disease (AD) and vascular dementia. Alterations in insulin signaling, glucose and fatty acid metabolism, as well as the accumulation of oxidatively modified and glycated proteins, are associated with both diabetes and the dementias. Data from animal and cell culture models have shown that there is a synergistic interaction between most of these stresses in both AD and diabetes, and with the elevated beta-amyloid peptide levels that are also linked to AD. Some of these parameters can be modified by diet and others may require novel drugs. However, because of the multiplicity of physiological pathways involved, conventional drug therapies directed against a single target are not going to be effective in treating AD or the complications of diabetes. It is therefore likely that the only successful therapy will involve the use of drugs with multiple targets in concert with changes in diet and lifestyle.
Collapse
Affiliation(s)
- Pamela A Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037-1099, USA.
| | | |
Collapse
|
15
|
Signorini C, Ciccoli L, Leoncini S, Carloni S, Perrone S, Comporti M, Balduini W, Buonocore G. Free iron, total F-isoprostanes and total F-neuroprostanes in a model of neonatal hypoxic-ischemic encephalopathy: neuroprotective effect of melatonin. J Pineal Res 2009; 46:148-54. [PMID: 19141088 DOI: 10.1111/j.1600-079x.2008.00639.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Oxidative stress due to free radical formation and initiation of abnormal oxidative reactions is involved in several diseases of newborns, such as hypoxic-ischemic encephalopathy. Melatonin, an endogenously produced indoleamine primarily formed in the pineal gland, is a potent free radical scavenger as well as an indirect antioxidant. The present study was conducted to evaluate the formation of oxidative damage mediators and the possible effect of melatonin treatment in a model of hypoxic-ischemic encephalopathy in 7-day-old rats. Pups were subjected to permanent ligation of the right common carotid artery and exposed for 2.5 hr to a nitrogen-oxygen mixture (92% and 8%, respectively) (hypoxia-ischemia, HI). Melatonin was injected intraperitoneally to a group of rats at the dose of 15 mg/kg 30 min before starting the ischemic procedure (HI-Melatonin). After 24 hr of treatment, in homogenized cerebral cortex, desferoxamine (DFO)-chelatable free iron, total F(2)-isoprostanes and total F(4)-neuroprostanes, originating from the free radical-catalyzed peroxidation of arachidonic and docosahexaenoic acids, respectively, were determined. HI induced a significant increase in DFO-chelatable iron, total F(2)-isoprostanes and F(4)-neuroprostanes in both right and left side of the cerebral cortex. In HI-Melatonin-treated animals the levels of free iron, F(2)-isoprostanes, and F(4)-neuroprostanes were significantly lower than that in HI rats and the values were similar to controls. These data show the important neuroprotective role of melatonin in reducing oxidative damage resulting from HI. Melatonin could represent a potential safe approach to perinatal brain damage in humans.
Collapse
Affiliation(s)
- Cinzia Signorini
- Department of Pathophysiology, Experimental Medicine and Public Health, University of Siena, Siena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Dunn KM, Renic M, Flasch AK, Harder DR, Falck J, Roman RJ. Elevated production of 20-HETE in the cerebral vasculature contributes to severity of ischemic stroke and oxidative stress in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2008; 295:H2455-65. [PMID: 18952718 DOI: 10.1152/ajpheart.00512.2008] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hypertension is a major risk factor for stroke, but the factors that contribute to the increased incidence and severity of ischemic stroke in hypertension remain to be determined. 20-hydroxyeicosatetraenoic acid (20-HETE) has been reported to be a potent constrictor of cerebral arteries, and inhibitors of 20-HETE formation reduce infarct size following cerebral ischemia. The present study examined whether elevated production of 20-HETE in the cerebral vasculature could contribute to the larger infarct size previously reported after transient middle cerebral artery occlusion (MCAO) in hypertensive strains of rat [spontaneously hypertensive rat (SHR) and spontaneously hypertensive stroke-prone rat (SHRSP)]. The synthesis of 20-HETE in the cerebral vasculature of SHRSP measured by liquid chromatography-tandem mass spectrometry was about twice that seen in Wistar-Kyoto (WKY) rats. This was associated with the elevated expression of cytochrome P-450 (CYP)4A protein and CYP4A1 and CYP4A8 mRNA. Infarct volume after transient MCAO was greater in SHRSP (36+/-4% of hemisphere volume) than in SHR (19+/-5%) or WKY rats (5+/-2%). This was associated with a significantly greater reduction in regional cerebral blood flow (rCBF) in SHR and SHRSP than in WKY rats during the ischemic period (78% vs. 62%). In WKY rats, rCBF returned to 75% of control following reperfusion. In contrast, SHR and SHRSP exhibited a large (166+/-18% of baseline) and sustained (1 h) postischemic hyperperfusion. Acute blockade of the synthesis of 20-HETE with N-hydroxy-N'-(4-butyl-2-methylphenyl)-formamidine (HET0016; 1 mg/kg) reduced infarct size by 59% in SHR and 87% in SHRSP. HET0016 had no effect on the fall in rCBF during MCAO but eliminated the hyperemic response. HET0016 also attenuated vascular O2*- formation and restored endothelium-dependent dilation in cerebral arteries of SHRSP. These results indicate the production of 20-HETE is elevated in the cerebral vasculature of SHRSP and contributes to oxidative stress, endothelial dysfunction, and the enhanced sensitivity to ischemic stroke in this hypertensive model.
Collapse
Affiliation(s)
- Kathryn M Dunn
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
17
|
Erb-Downward JR, Noggle RM, Williamson PR, Huffnagle GB. The role of laccase in prostaglandin production by Cryptococcus neoformans. Mol Microbiol 2008; 68:1428-37. [PMID: 18410494 DOI: 10.1111/j.1365-2958.2008.06245.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recently, it has been demonstrated that the opportunistic fungal pathogen Cryptococcus neoformans can synthesize authentic immunomodulatory prostaglandins. The mechanism by which this takes place is unclear as there is no cyclooxygenase homologue in the cryptococcal genome. In this study, we show that cryptococcal production of both PGE(2) and PGF(2 alpha) can be chemically inhibited by caffeic acid, resveratrol and nordihydroguaiaretic acid. These polyphenolic molecules are frequently used as inhibitors of lipoxygenase enzymes; however, blast searches of the cryptococcal genome were unable to identify any homologues of mammalian, plant or fungal lipoxygenases. Next we investigated cryptococcal laccase, an enzyme known to bind polyphenols, and found that either antibody depletion or genetic deletion of the primary cryptococcal laccase (lac1 Delta) resulted in a loss of cryptococcal prostaglandin production. To determine how laccase is involved, we tested recombinant laccase activity on the prostaglandin precursors, arachidonic acid (AA), PGG(2) and PGH(2). Using mass spectroscopy we determined that recombinant Lac1 does not modify AA or PGH(2), but does have a marked activity toward PGG(2) converting it to PGE(2) and 15-keto-PGE(2). These data demonstrate a critical role for laccase in cryptococcal prostaglandin production, and provides insight into a new and unique fungal prostaglandin pathway.
Collapse
Affiliation(s)
- John R Erb-Downward
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-0642, USA
| | | | | | | |
Collapse
|
18
|
Strauss KI. Antiinflammatory and neuroprotective actions of COX2 inhibitors in the injured brain. Brain Behav Immun 2008; 22:285-98. [PMID: 17996418 PMCID: PMC2855502 DOI: 10.1016/j.bbi.2007.09.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 09/14/2007] [Accepted: 09/20/2007] [Indexed: 12/22/2022] Open
Abstract
Overexpression of COX2 appears to be both a marker and an effector of neural damage after a variety of acquired brain injuries, and in natural or pathological aging of the brain. COX2 inhibitors may be neuroprotective in the brain by reducing prostanoid and free radical synthesis, or by directing arachidonic acid down alternate metabolic pathways. The arachidonic acid shunting hypothesis proposes that COX2 inhibitors' neuroprotective effects may be mediated by increased formation of potentially beneficial eicosanoids. Under conditions where COX2 activity is inhibited, arachidonic acid accumulates or is converted to eicosanoids via lipoxygenases and cytochrome P450 (CYP) epoxygenases. Several P450 eicosanoids have been demonstrated to have beneficial effects in the brain and/or periphery. We suspect that arachidonic acid shunting may be as important to functional recovery after brain injuries as altered prostanoid formation per se. Thus, COX2 inhibition and arachidonic acid shunting have therapeutic implications beyond the suppression of prostaglandin synthesis and free radical formation.
Collapse
Affiliation(s)
- Kenneth I. Strauss
- Mayfield Neurotrauma Research Lab, Department of Neurosurgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML515, Cincinnati, OH 45267 ()
| |
Collapse
|
19
|
Noor JI, Ueda Y, Ikeda T, Ikenoue T. Edaravone inhibits lipid peroxidation in neonatal hypoxic-ischemic rats: An in vivo microdialysis study. Neurosci Lett 2007; 414:5-9. [PMID: 17280782 DOI: 10.1016/j.neulet.2006.10.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 10/11/2006] [Accepted: 10/11/2006] [Indexed: 11/28/2022]
Abstract
The occurrence of hypoxia-ischemia (HI) during early fetal or neonatal stages of an individual leads to the damaging of immature neurons resulting in behavioral and psychological dysfunctions. Free radical-mediated lipid peroxidation is the main cause of neurotoxicity including neonatal brain damage. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) is a novel anti-oxidant agent and the drug of choice in the treatment of acute ischemic brain disorders in adult patient. The purpose of this study is to determine the direct effects of edaravone in inhibiting the lipid peroxidation production in the neonatal rat brains during hypoxic-ischemic insult by electron paramagnetic resonance (EPR) spectoroscopy and in vivo brain microdialysis. Seven-day-old Wistar rats were subjected to left common carotid artery ligation and a probe was inserted in the rat hippocampus. Edaravone (5, 50, or 100 microM) or saline was perfused with a spin trap agent (alpha-(4-pyridyl-N-oxide)-N-tert-butylnitrone; POBN) before, during and after hypoxia (1h of 8% O2 exposure) and then analyzed by EPR. Edaravone (100 microM) did not show any EPR evidence of POBN adduct formation during and after hypoxic-ischemic insult. However, the EPR signal increased, but not significantly during the hypoxic period in the hypoxic and edaravone 50 microM-treated groups compared to control. Edaravone at 5 microM significantly increased the EPR signals compared to control. This study shows that edaravone directly and dose-dependently inhibited the formation of lipid free radicals produced during hypoxic-ischemic insult in the neonatal rat brain. These results suggest that edaravone is able to attenuate neuronal damage in the rat neonatal brain by inhibiting the formation of lipid radicals.
Collapse
Affiliation(s)
- Jesmin I Noor
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | | | | | | |
Collapse
|
20
|
Hewett SJ, Bell SC, Hewett JA. Contributions of cyclooxygenase-2 to neuroplasticity and neuropathology of the central nervous system. Pharmacol Ther 2006; 112:335-57. [PMID: 16750270 DOI: 10.1016/j.pharmthera.2005.04.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 04/19/2005] [Indexed: 01/08/2023]
Abstract
Cyclooxygenase (COX) enzymes, or prostaglandin-endoperoxide synthases (PTGS), are heme-containing bis-oxygenases that catalyze the first committed reaction in metabolism of arachidonic acid (AA) to the potent lipid mediators, prostanoids and thromboxanes. Two isozymes of COX enzymes (COX-1 and COX-2) have been identified to date. This review will focus specifically on the neurobiological and neuropathological consequences of AA metabolism via the COX-2 pathway and discuss the potential therapeutic benefit of COX-2 inhibition in the setting of neurological disease. However, given the controversy surrounding the use of COX-2 selective inhibitors with respect to cardiovascular health, it will be important to move beyond COX to identify which down-stream effectors are responsible for the deleterious and/or potentially protective effects of COX-2 activation in the setting of neurological disease. Important advances toward this goal are highlighted herein. Identification of unique effectors in AA metabolism could direct the development of new therapeutics holding significant promise for the prevention and treatment of neurological disorders.
Collapse
Affiliation(s)
- Sandra J Hewett
- Department of Neuroscience MC3401, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA.
| | | | | |
Collapse
|
21
|
Phillis JW, Horrocks LA, Farooqui AA. Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: Their role and involvement in neurological disorders. ACTA ACUST UNITED AC 2006; 52:201-43. [PMID: 16647138 DOI: 10.1016/j.brainresrev.2006.02.002] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 02/23/2006] [Accepted: 02/24/2006] [Indexed: 01/01/2023]
Abstract
Three enzyme systems, cyclooxygenases that generate prostaglandins, lipoxygenases that form hydroxy derivatives and leukotrienes, and epoxygenases that give rise to epoxyeicosatrienoic products, metabolize arachidonic acid after its release from neural membrane phospholipids by the action of phospholipase A(2). Lysophospholipids, the other products of phospholipase A(2) reactions, are either reacylated or metabolized to platelet-activating factor. Under normal conditions, these metabolites play important roles in synaptic function, cerebral blood flow regulation, apoptosis, angiogenesis, and gene expression. Increased activities of cyclooxygenases, lipoxygenases, and epoxygenases under pathological situations such as ischemia, epilepsy, Alzheimer's disease, Parkinson disease, amyotrophic lateral sclerosis, and Creutzfeldt-Jakob disease produce neuroinflammation involving vasodilation and vasoconstriction, platelet aggregation, leukocyte chemotaxis and release of cytokines, and oxidative stress. These are closely associated with the neural cell injury which occurs in these neurological conditions. The metabolic products of docosahexaenoic acid, through these enzymes, generate a new class of lipid mediators, namely docosatrienes and resolvins. These metabolites antagonize the effect of metabolites derived from arachidonic acid. Recent studies provide insight into how these arachidonic acid metabolites interact with each other and other bioactive mediators such as platelet-activating factor, endocannabinoids, and docosatrienes under normal and pathological conditions. Here, we review present knowledge of the functions of cyclooxygenases, lipoxygenases, and epoxygenases in brain and their association with neurodegenerative diseases.
Collapse
Affiliation(s)
- John W Phillis
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
22
|
Kim TH, Kim HI, Song JH. Effects of nordihydroguaiaretic acid on Na+ currents in rat dorsal root ganglion neurons. Brain Res 2006; 1072:62-71. [PMID: 16423329 DOI: 10.1016/j.brainres.2005.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 11/30/2005] [Accepted: 12/05/2005] [Indexed: 11/15/2022]
Abstract
Nordihydroguaiaretic acid (NDGA) is a lipoxygenase (LO) inhibitor with a strong antioxidant activity. It attenuates nociceptive responses produced by various stimuli, which has been ascribed to its LO inhibition. Primary sensory neurons express multiple Na+ channels that are important in processing normal and abnormal nociception. We examined the effects of NDGA on tetrodotoxin-sensitive and tetrodotoxin-resistant Na+ currents in rat dorsal root ganglion neurons. NDGA inhibited both types of Na+ currents concentration dependently and reversibly. Both activation and inactivation time courses were slowed by NDGA, which were not reversible. NDGA produced a hyperpolarizing shift of the steady-state inactivation curves and reduced the maximal availability of both Na+ currents, indicating that it blocks both inactivated and resting Na+ channels. NDGA shifted the conductance-voltage curves of both Na+ currents toward a depolarizing direction and increased the slope factors of the curves. The recovery of Na+ channels from inactivation was retarded by NDGA. All these effects will reduce the excitability of sensory neurons and should be taken into account when it comes to the antinociceptive effects of NDGA.
Collapse
Affiliation(s)
- Tae Hoon Kim
- Department of Pharmacology, Chung-Ang University, College of Medicine, 221 Heuksuk-Dong, Dongjak-Ku, Seoul 156-756, Republic of Korea
| | | | | |
Collapse
|
23
|
Caro AA, Cederbaum AI. Role of cytochrome P450 in phospholipase A2- and arachidonic acid-mediated cytotoxicity. Free Radic Biol Med 2006; 40:364-75. [PMID: 16443151 DOI: 10.1016/j.freeradbiomed.2005.10.044] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 08/26/2005] [Accepted: 10/18/2005] [Indexed: 10/25/2022]
Abstract
Phospholipases A2 (PLA2) comprise a set of extracellular and intracellular enzymes that catalyze the hydrolysis of the sn-2 fatty acyl bond of phospholipids to yield fatty acids and lysophospholipids. The PLA2 reaction is the primary pathway through which arachidonic acid (AA) is released from phospholipids. PLA2s have an important role in cellular death that occurs via necrosis or apoptosis. Several reports support the hypothesis that unesterified arachidonic acid in cells is a signal for the induction of apoptosis. However, most of the biological effects of arachidonic acid are attributable to its metabolism by mainly three different groups of enzymes: cytochromes P450, cyclooxygenases, and lipoxygenases. In this review we will focus on the role of cytochrome P450 in AA metabolism and toxicity. The major pathways of arachidonic acid metabolism catalyzed by cytochrome P450 generate metabolites that are subdivided into two groups: the epoxyeicosatrienoic acids, formed by CYP epoxygenases, and the arachidonic acid derivatives that are hydroxylated at or near the omega-terminus by CYP omega-oxidases. In addition, autoxidation of AA by cytochrome P450-derived reactive oxygen species produces lipid hydroperoxides as primary oxidation products. In some cellular models of toxicity, cytochrome P450 activity exacerbates PLA2- and AA-dependent injury, mainly through the production of oxygen radicals that promote lipid peroxidation or production of metabolites that alter Ca2+ homeostasis. In contrast, in other situations, cytochrome P450 metabolism of AA is protective, mainly by lowering levels of unesterified AA and by production of metabolites that activate antiapoptotic pathways. Several lines of evidence point to the combined action of phospholipase A2 and cytochrome P450 as central in the mechanism of cellular injury in several human diseases, such as alcoholic liver disease and myocardial reperfusion injury. Inhibition of specific PLA2 and cytochrome P450 isoforms may represent novel therapeutic strategies against these diseases.
Collapse
Affiliation(s)
- Andres A Caro
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, Box 1603, One Gustave L. Levy Place, New York, NY 10029, USA.
| | | |
Collapse
|
24
|
Yue HY, Fujita T, Kumamoto E. Phospholipase A2 activation by melittin enhances spontaneous glutamatergic excitatory transmission in rat substantia gelatinosa neurons. Neuroscience 2006; 135:485-95. [PMID: 16111827 DOI: 10.1016/j.neuroscience.2005.05.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 04/18/2005] [Accepted: 05/25/2005] [Indexed: 11/30/2022]
Abstract
In order to know a role of phospholipase A2 in modulating nociceptive transmission, the effect of a secreted phospholipase A2 activator melittin on spontaneous glutamatergic excitatory transmission was investigated in substantia gelatinosa neurons of an adult rat spinal cord slice by using the whole-cell patch-clamp technique. Bath-applied melittin at concentrations higher than 0.5 microM increased both the amplitude and the frequency of spontaneous excitatory postsynaptic current in a manner independent of tetrodotoxin; the latter effect of which was examined in detail. In 80% of the neurons examined (n = 64), melittin superfused for 3 min gradually increased spontaneous excitatory postsynaptic current frequency (by 65+/-6% at 1 microM; n = 51) in a dose-dependent manner (effective concentration for half-maximal effect = 1.1 microM). This effect subsided within 3 min after washout. The spontaneous excitatory postsynaptic current frequency increase produced by melittin was reduced by the phospholipase A2 inhibitor 4-bromophenacryl bromide (10 microM) while being unaffected by the cyclooxygenase inhibitor indomethacin (100 microM) and the lipoxygenase inhibitor nordihydroguaiaretic acid (100 microM). A similar increase in spontaneous excitatory postsynaptic current frequency was produced by exogenous arachidonic acid (50 microM); this effect was also unaffected by the cyclooxygenase or lipoxygenase inhibitor. Melittin failed to increase spontaneous excitatory postsynaptic current frequency in a nominally Ca2+-free or La3+-containing Krebs solution. We conclude that melittin increases the spontaneous release of L-glutamate to substantia gelatinosa neurons by activating secreted phospholipase A2 and increasing Ca2+ influx through voltage-gated Ca2+ channels in nerve terminals, probably with an involvement of arachidonic acid but not its metabolites produced by cyclooxygenase and lipoxygenase. Considering that the substantia gelatinosa plays an important role in regulating nociceptive transmission, it is suggested that this transmission may be positively modulated by secreted phospholipase A2 activation in the substantia gelatinosa.
Collapse
Affiliation(s)
- H-Y Yue
- Department of Physiology, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | | | | |
Collapse
|
25
|
Ueda Y, Noor JI, Nagatomo K, Doi T, Ikeda T, Nakajima A, Ikenoue T. Generation of lipid radicals in the hippocampus of neonatal rats after acute hypoxic-ischemic brain damage. Exp Brain Res 2005; 169:117-21. [PMID: 16237522 DOI: 10.1007/s00221-005-0122-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 08/01/2005] [Indexed: 10/25/2022]
Abstract
Free radical-mediated lipid peroxidation has been strongly suggested to be the main cause of neuronal toxicity in the rat brain, including neonatal brain damage. The primary objective of this experiment was to see if the generation of free radicals occurred in the acute phase of ischemic-hypoxic insult in neonatal rats, by electron paramagnetic resonance (EPR) spectroscopy and in vivo brain microdialysis. A spin trap agent, alpha-(4-pyridyl-N-oxide)-N-tert-butylnitrone was perfused through a probe in the hippocampus before and after hypoxia and then an analysis was performed by EPR. From the EPR analysis of spin adduct in the dialysates, we obtained the EPR spectrum of six line spectra for which the hyperfine coupling constants corresponded to those of the EPR signal from the lipoxygenase/linoleic acid (LPX/LA), a lipid radical generating system, increased transiently just after hypoxia. The results of our in vivo study show the lipid peroxidation of the neuronal membrane to progress during neonatal ischemic-hypoxic insult. We hypothesize that an increased formation of lipid radicals may participate in the cascade of reactions leading to neuronal damage in the hippocampus following ischemic-hypoxic insult in neonatal rats.
Collapse
Affiliation(s)
- Yuto Ueda
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, Kihara 5200, 889-1692 Miyazaki, Japan.
| | | | | | | | | | | | | |
Collapse
|