1
|
Little DF, Snyder JS, Elhilali M. Ensemble modeling of auditory streaming reveals potential sources of bistability across the perceptual hierarchy. PLoS Comput Biol 2020; 16:e1007746. [PMID: 32275706 PMCID: PMC7185718 DOI: 10.1371/journal.pcbi.1007746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/27/2020] [Accepted: 02/25/2020] [Indexed: 11/19/2022] Open
Abstract
Perceptual bistability-the spontaneous, irregular fluctuation of perception between two interpretations of a stimulus-occurs when observing a large variety of ambiguous stimulus configurations. This phenomenon has the potential to serve as a tool for, among other things, understanding how function varies across individuals due to the large individual differences that manifest during perceptual bistability. Yet it remains difficult to interpret the functional processes at work, without knowing where bistability arises during perception. In this study we explore the hypothesis that bistability originates from multiple sources distributed across the perceptual hierarchy. We develop a hierarchical model of auditory processing comprised of three distinct levels: a Peripheral, tonotopic analysis, a Central analysis computing features found more centrally in the auditory system, and an Object analysis, where sounds are segmented into different streams. We model bistable perception within this system by applying adaptation, inhibition and noise into one or all of the three levels of the hierarchy. We evaluate a large ensemble of variations of this hierarchical model, where each model has a different configuration of adaptation, inhibition and noise. This approach avoids the assumption that a single configuration must be invoked to explain the data. Each model is evaluated based on its ability to replicate two hallmarks of bistability during auditory streaming: the selectivity of bistability to specific stimulus configurations, and the characteristic log-normal pattern of perceptual switches. Consistent with a distributed origin, a broad range of model parameters across this hierarchy lead to a plausible form of perceptual bistability.
Collapse
Affiliation(s)
- David F. Little
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Joel S. Snyder
- Department of Psychology, University of Nevada, Las Vegas; Las Vegas, Nevada, United States of America
| | - Mounya Elhilali
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
2
|
Auditory streaming and bistability paradigm extended to a dynamic environment. Hear Res 2019; 383:107807. [PMID: 31622836 DOI: 10.1016/j.heares.2019.107807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/19/2019] [Accepted: 10/01/2019] [Indexed: 11/23/2022]
Abstract
We explore stream segregation with temporally modulated acoustic features using behavioral experiments and modelling. The auditory streaming paradigm in which alternating high- A and low-frequency tones B appear in a repeating ABA-pattern, has been shown to be perceptually bistable for extended presentations (order of minutes). For a fixed, repeating stimulus, perception spontaneously changes (switches) at random times, every 2-15 s, between an integrated interpretation with a galloping rhythm and segregated streams. Streaming in a natural auditory environment requires segregation of auditory objects with features that evolve over time. With the relatively idealized ABA-triplet paradigm, we explore perceptual switching in a non-static environment by considering slowly and periodically varying stimulus features. Our previously published model captures the dynamics of auditory bistability and predicts here how perceptual switches are entrained, tightly locked to the rising and falling phase of modulation. In psychoacoustic experiments we find that entrainment depends on both the period of modulation and the intrinsic switch characteristics of individual listeners. The extended auditory streaming paradigm with slowly modulated stimulus features presented here will be of significant interest for future imaging and neurophysiology experiments by reducing the need for subjective perceptual reports of ongoing perception.
Collapse
|
3
|
Knyazeva S, Selezneva E, Gorkin A, Aggelopoulos NC, Brosch M. Neuronal Correlates of Auditory Streaming in Monkey Auditory Cortex for Tone Sequences without Spectral Differences. Front Integr Neurosci 2018; 12:4. [PMID: 29440999 PMCID: PMC5797536 DOI: 10.3389/fnint.2018.00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/16/2018] [Indexed: 11/13/2022] Open
Abstract
This study finds a neuronal correlate of auditory perceptual streaming in the primary auditory cortex for sequences of tone complexes that have the same amplitude spectrum but a different phase spectrum. Our finding is based on microelectrode recordings of multiunit activity from 270 cortical sites in three awake macaque monkeys. The monkeys were presented with repeated sequences of a tone triplet that consisted of an A tone, a B tone, another A tone and then a pause. The A and B tones were composed of unresolved harmonics formed by adding the harmonics in cosine phase, in alternating phase, or in random phase. A previous psychophysical study on humans revealed that when the A and B tones are similar, humans integrate them into a single auditory stream; when the A and B tones are dissimilar, humans segregate them into separate auditory streams. We found that the similarity of neuronal rate responses to the triplets was highest when all A and B tones had cosine phase. Similarity was intermediate when the A tones had cosine phase and the B tones had alternating phase. Similarity was lowest when the A tones had cosine phase and the B tones had random phase. The present study corroborates and extends previous reports, showing similar correspondences between neuronal activity in the primary auditory cortex and auditory streaming of sound sequences. It also is consistent with Fishman’s population separation model of auditory streaming.
Collapse
Affiliation(s)
- Stanislava Knyazeva
- Speziallabor Primatenneurobiologie, Leibniz-Institute für Neurobiologie, Magdeburg, Germany
| | - Elena Selezneva
- Speziallabor Primatenneurobiologie, Leibniz-Institute für Neurobiologie, Magdeburg, Germany
| | - Alexander Gorkin
- Speziallabor Primatenneurobiologie, Leibniz-Institute für Neurobiologie, Magdeburg, Germany.,Laboratory of Psychophysiology, Institute of Psychology, Moscow, Russia
| | | | - Michael Brosch
- Speziallabor Primatenneurobiologie, Leibniz-Institute für Neurobiologie, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
4
|
Frostig RD, Chen-Bee CH, Johnson BA, Jacobs NS. Imaging Cajal's neuronal avalanche: how wide-field optical imaging of the point-spread advanced the understanding of neocortical structure-function relationship. NEUROPHOTONICS 2017; 4:031217. [PMID: 28630879 PMCID: PMC5467767 DOI: 10.1117/1.nph.4.3.031217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 05/12/2017] [Indexed: 06/17/2023]
Abstract
This review brings together a collection of studies that specifically use wide-field high-resolution mesoscopic level imaging techniques (intrinsic signal optical imaging; voltage-sensitive dye optical imaging) to image the cortical point spread (PS): the total spread of cortical activation comprising a large neuronal ensemble evoked by spatially restricted (point) stimulation of the sensory periphery (e.g., whisker, pure tone, point visual stimulation). The collective imaging findings, combined with supporting anatomical and electrophysiological findings, revealed some key aspects about the PS including its very large (radius of several mm) and relatively symmetrical spatial extent capable of crossing cytoarchitectural borders and trespassing into other cortical areas; its relationship with underlying evoked subthreshold activity and underlying anatomical system of long-range horizontal projections within gray matter, both also crossing borders; its contextual modulation and plasticity; the ability of its relative spatiotemporal profile to remain invariant to major changes in stimulation parameters; its potential role as a building block for integrative cortical activity; and its ubiquitous presence across various cortical areas and across mammalian species. Together, these findings advance our understanding about the neocortex at the mesoscopic level by underscoring that the cortical PS constitutes a fundamental motif of neocortical structure-function relationship.
Collapse
Affiliation(s)
- Ron D. Frostig
- University of California Irvine, Department of Neurobiology and Behavior, Irvine, California, United States
- University of California Irvine, Department of Biomedical Engineering, Irvine, California, United States
- University of California Irvine, Center for the Neurobiology of Learning and Memory, Irvine, California, United States
| | - Cynthia H. Chen-Bee
- University of California Irvine, Department of Neurobiology and Behavior, Irvine, California, United States
| | - Brett A. Johnson
- University of California Irvine, Department of Neurobiology and Behavior, Irvine, California, United States
| | - Nathan S. Jacobs
- University of California Irvine, Department of Neurobiology and Behavior, Irvine, California, United States
- University of California Irvine, Center for the Neurobiology of Learning and Memory, Irvine, California, United States
| |
Collapse
|
5
|
Leon MI, Miasnikov AA, Wright EJ, Weinberger NM. CS-specific modifications of auditory evoked potentials in the behaviorally conditioned rat. Brain Res 2017; 1670:235-247. [PMID: 28673481 DOI: 10.1016/j.brainres.2017.06.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 11/16/2022]
Abstract
The current report provides a detailed analysis of the changes in the first two components of the auditory evoked potential (AEP) that accompany associative learning. AEPs were recorded from the primary auditory cortex before and after training sessions. Experimental subjects underwent one (n=5) or two (n=7) days of conditioning in which a tone, serving as a conditioned stimulus (CS), was paired with mild foot shock. Control subjects received one (n=5) or two (n=7) days of exposure to the same stimuli delivered randomly. Only animals receiving paired CS-US training developed a conditioned tachycardia response to the tone. Our analyses demonstrated that both early components of the AEP recorded from the granular layer of the cortex undergo CS-specific associative changes: (1) the first, negative component (occurring ∼21ms following tone onset) was significantly augmented after one and two days of training while maintaining its latency, and (2) the second, positive component (occurring ∼50ms following tone onset) was augmented after two days of training, and showed a significant reduction in latency after one and two days of training. We view these changes as evidence of increased cortical synchronization, thereby lending new insight into the temporal dynamics of neural network activity related to auditory learning.
Collapse
Affiliation(s)
- Matthew I Leon
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92697-3800, United States; Department of Psychology, California State University, Bakersfield, 9001 Stockdale Highway, Bakersfield, CA 93311-1022, United States.
| | - Alexandre A Miasnikov
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92697-3800, United States
| | - Ernest J Wright
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92697-3800, United States
| | - Norman M Weinberger
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92697-3800, United States
| |
Collapse
|
6
|
Temporal coherence structure rapidly shapes neuronal interactions. Nat Commun 2017; 8:13900. [PMID: 28054545 PMCID: PMC5228385 DOI: 10.1038/ncomms13900] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 11/10/2016] [Indexed: 11/08/2022] Open
Abstract
Perception of segregated sources is essential in navigating cluttered acoustic environments. A basic mechanism to implement this process is the temporal coherence principle. It postulates that a signal is perceived as emitted from a single source only when all of its features are temporally modulated coherently, causing them to bind perceptually. Here we report on neural correlates of this process as rapidly reshaped interactions in primary auditory cortex, measured in three different ways: as changes in response rates, as adaptations of spectrotemporal receptive fields following stimulation by temporally coherent and incoherent tone sequences, and as changes in spiking correlations during the tone sequences. Responses, sensitivity and presumed connectivity were rapidly enhanced by synchronous stimuli, and suppressed by alternating (asynchronous) sounds, but only when the animals engaged in task performance and were attentive to the stimuli. Temporal coherence and attention are therefore both important factors in auditory scene analysis. One can easily identify if multiple sounds are originating from a single source yet the neural mechanisms underlying this process are unknown. Here the authors show that temporally coherent sounds elicit changes in receptive field dynamics of auditory cortical neurons in ferrets only when paying attention.
Collapse
|
7
|
Itatani N, Klump GM. Animal models for auditory streaming. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0112. [PMID: 28044022 DOI: 10.1098/rstb.2016.0112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2016] [Indexed: 11/12/2022] Open
Abstract
Sounds in the natural environment need to be assigned to acoustic sources to evaluate complex auditory scenes. Separating sources will affect the analysis of auditory features of sounds. As the benefits of assigning sounds to specific sources accrue to all species communicating acoustically, the ability for auditory scene analysis is widespread among different animals. Animal studies allow for a deeper insight into the neuronal mechanisms underlying auditory scene analysis. Here, we will review the paradigms applied in the study of auditory scene analysis and streaming of sequential sounds in animal models. We will compare the psychophysical results from the animal studies to the evidence obtained in human psychophysics of auditory streaming, i.e. in a task commonly used for measuring the capability for auditory scene analysis. Furthermore, the neuronal correlates of auditory streaming will be reviewed in different animal models and the observations of the neurons' response measures will be related to perception. The across-species comparison will reveal whether similar demands in the analysis of acoustic scenes have resulted in similar perceptual and neuronal processing mechanisms in the wide range of species being capable of auditory scene analysis.This article is part of the themed issue 'Auditory and visual scene analysis'.
Collapse
Affiliation(s)
- Naoya Itatani
- Cluster of Excellence Hearing4all, Animal Physiology and Behaviour Group, Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Georg M Klump
- Cluster of Excellence Hearing4all, Animal Physiology and Behaviour Group, Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|