1
|
Huang MX, Harrington DL, Angeles-Quinto A, Ji Z, Robb-Swan A, Huang CW, Shen Q, Hansen H, Baumgartner J, Hernandez-Lucas J, Nichols S, Jacobus J, Song T, Lerman I, Bazhenov M, Krishnan GP, Baker DG, Rao R, Lee RR. EMG-projected MEG high-resolution source imaging of human motor execution: Brain-muscle coupling above movement frequencies. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-20. [PMID: 39290632 PMCID: PMC11403128 DOI: 10.1162/imag_a_00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 09/19/2024]
Abstract
Magnetoencephalography (MEG) is a non-invasive functional imaging technique for pre-surgical mapping. However, movement-related MEG functional mapping of primary motor cortex (M1) has been challenging in presurgical patients with brain lesions and sensorimotor dysfunction due to the large numbers of trials needed to obtain adequate signal to noise. Moreover, it is not fully understood how effective the brain communication is with the muscles at frequencies above the movement frequency and its harmonics. We developed a novel Electromyography (EMG)-projected MEG source imaging technique for localizing early-stage (-100 to 0 ms) M1 activity during ~l min recordings of left and right self-paced finger movements (~1 Hz). High-resolution MEG source images were obtained by projecting M1 activity towards the skin EMG signal without trial averaging. We studied delta (1-4 Hz), theta (4-7 Hz), alpha (8-12 Hz), beta (15-30 Hz), gamma (30-90 Hz), and upper-gamma (60-90 Hz) bands in 13 healthy participants (26 datasets) and three presurgical patients with sensorimotor dysfunction. In healthy participants, EMG-projected MEG accurately localized M1 with high accuracy in delta (100.0%), theta (100.0%), and beta (76.9%) bands, but not alpha (34.6%) or gamma/upper-gamma (0.0%) bands. Except for delta, all other frequency bands were above the movement frequency and its harmonics. In three presurgical patients, M1 activity in the affected hemisphere was also accurately localized, despite highly irregular EMG movement patterns in one patient. Altogether, our EMG-projected MEG imaging approach is highly accurate and feasible for M1 mapping in presurgical patients. The results also provide insight into movement-related brain-muscle coupling above the movement frequency and its harmonics.
Collapse
Affiliation(s)
- Ming-Xiong Huang
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Radiology, University of California, San Diego, CA, United States
- Department of Electrical and Computer Engineering, University of California, San Diego, CA, United States
| | - Deborah L Harrington
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Radiology, University of California, San Diego, CA, United States
| | | | - Zhengwei Ji
- Department of Radiology, University of California, San Diego, CA, United States
| | - Ashley Robb-Swan
- Department of Radiology, University of California, San Diego, CA, United States
| | - Charles W Huang
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Qian Shen
- Department of Radiology, University of California, San Diego, CA, United States
| | - Hayden Hansen
- Department of Radiology, University of California, San Diego, CA, United States
| | - Jared Baumgartner
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, United States
| | - Jaqueline Hernandez-Lucas
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, United States
| | - Sharon Nichols
- Department of Neurosciences, University of California, San Diego, CA, United States
| | - Joanna Jacobus
- Department of Psychiatry, University of California, San Diego, CA, United States
| | - Tao Song
- Department of Radiology, University of California, San Diego, CA, United States
| | - Imanuel Lerman
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, United States
| | - Maksim Bazhenov
- Department of Medicine, University of California, San Diego, CA, United States
| | - Giri P Krishnan
- Department of Medicine, University of California, San Diego, CA, United States
| | - Dewleen G Baker
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, CA, United States
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, United States
| | - Ramesh Rao
- Department of Electrical and Computer Engineering, University of California, San Diego, CA, United States
| | - Roland R Lee
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Radiology, University of California, San Diego, CA, United States
| |
Collapse
|
2
|
Huang MX, Harrington DL, Angeles-Quinto A, Ji Z, Robb-Swan A, Huang CW, Shen Q, Hansen H, Baumgartner J, Hernandez-Lucas J, Nichols S, Jacobus J, Song T, Lerman I, Bazhenov M, Krishnan GP, Baker DG, Rao R, Lee RR. EMG-projected MEG High-Resolution Source Imaging of Human Motor Execution: Brain-Muscle Coupling above Movement Frequencies. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.23.23291825. [PMID: 37425691 PMCID: PMC10327237 DOI: 10.1101/2023.06.23.23291825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Magnetoencephalography (MEG) is a non-invasive functional imaging technique for pre-surgical mapping. However, movement-related MEG functional mapping of primary motor cortex (M1) has been challenging in presurgical patients with brain lesions and sensorimotor dysfunction due to the large numbers of trails needed to obtain adequate signal to noise. Moreover, it is not fully understood how effective the brain communication is with the muscles at frequencies above the movement frequency and its harmonics. We developed a novel Electromyography (EMG)-projected MEG source imaging technique for localizing M1 during ~1 minute recordings of left and right self-paced finger movements (~1 Hz). High-resolution MEG source images were obtained by projecting M1 activity towards the skin EMG signal without trial averaging. We studied delta (1-4 Hz), theta (4-7 Hz), alpha (8-12 Hz), beta (15-30 Hz), and gamma (30-90 Hz) bands in 13 healthy participants (26 datasets) and two presurgical patients with sensorimotor dysfunction. In healthy participants, EMG-projected MEG accurately localized M1 with high accuracy in delta (100.0%), theta (100.0%), and beta (76.9%) bands, but not alpha (34.6%) and gamma (0.0%) bands. Except for delta, all other frequency bands were above the movement frequency and its harmonics. In both presurgical patients, M1 activity in the affected hemisphere was also accurately localized, despite highly irregular EMG movement patterns in one patient. Altogether, our EMG-projected MEG imaging approach is highly accurate and feasible for M1 mapping in presurgical patients. The results also provide insight into movement related brain-muscle coupling above the movement frequency and its harmonics.
Collapse
Affiliation(s)
- Ming-Xiong Huang
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Radiology, University of California, San Diego, CA, USA
- Department of Electrical and Computer Engineering, University of California, San Diego, CA, USA
| | - Deborah L. Harrington
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Radiology, University of California, San Diego, CA, USA
| | | | - Zhengwei Ji
- Department of Radiology, University of California, San Diego, CA, USA
| | - Ashley Robb-Swan
- Department of Radiology, University of California, San Diego, CA, USA
| | - Charles W. Huang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Qian Shen
- Department of Radiology, University of California, San Diego, CA, USA
| | - Hayden Hansen
- Department of Radiology, University of California, San Diego, CA, USA
| | - Jared Baumgartner
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA
| | | | - Sharon Nichols
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Joanna Jacobus
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Tao Song
- Department of Radiology, University of California, San Diego, CA, USA
| | - Imanuel Lerman
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA
| | - Maksim Bazhenov
- Department of Medicine, University of California, San Diego, CA, USA
| | - Giri P Krishnan
- Department of Medicine, University of California, San Diego, CA, USA
| | - Dewleen G. Baker
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, CA, USA
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, USA
| | - Ramesh Rao
- Department of Electrical and Computer Engineering, University of California, San Diego, CA, USA
| | - Roland R. Lee
- Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Radiology, University of California, San Diego, CA, USA
| |
Collapse
|
3
|
Delcamp C, Gasq D, Cormier C, Amarantini D. Corticomuscular and intermuscular coherence are correlated after stroke: a simplified motor control? Brain Commun 2023; 5:fcad187. [PMID: 37377979 PMCID: PMC10292907 DOI: 10.1093/braincomms/fcad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 05/11/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
During movement, corticomuscular coherence is a measure of central-peripheral communication, while intermuscular coherence is a measure of the amount of common central drive to the muscles. Although these two measures are modified in stroke subjects, no author has explored a correlation between them, neither in stroke subjects nor in healthy subjects. Twenty-four chronic stroke subjects and 22 healthy control subjects were included in this cohort study, and they performed 20 active elbow extension movements. The electroencephalographic and electromyographic activity of the elbow flexors and extensors were recorded. Corticomuscular and intermuscular coherence were calculated in the time-frequency domain for each limb of stroke and control subjects. Partial rank correlations were performed to study the link between these two variables. Our results showed a positive correlation between corticomuscular and intermuscular coherence only for stroke subjects, for their paretic and non-paretic limbs (P < 0.022; Rho > 0.50). These results suggest, beyond the cortical and spinal hypotheses to explain them, that stroke subjects present a form of simplification of motor control. When central-peripheral communication increases, it is less modulated and more common to the muscles involved in the active movement. This motor control simplification suggests a new way of understanding the plasticity of the neuromuscular system after stroke.
Collapse
Affiliation(s)
- Célia Delcamp
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Université Paul Sabatier, 31062 Toulouse, France
| | - David Gasq
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Université Paul Sabatier, 31062 Toulouse, France
- Department of Functional Physiological Explorations, University Hospital of Toulouse, Hôpital de Rangueil, 31400 Toulouse, France
| | - Camille Cormier
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Université Paul Sabatier, 31062 Toulouse, France
- Department of Functional Physiological Explorations, University Hospital of Toulouse, Hôpital de Rangueil, 31400 Toulouse, France
| | - David Amarantini
- Correspondence to: David Amarantini Unité ToNIC, UMR 1214, CHU PURPAN – Pavillon BAUDOT Place du Dr Joseph Baylac, 31024 Toulouse Cedex 3, France E-mail:
| |
Collapse
|
4
|
Glories D, Soulhol M, Amarantini D, Duclay J. Combined effect of contraction type and intensity on corticomuscular coherence during isokinetic plantar flexions. Eur J Appl Physiol 2023; 123:609-621. [PMID: 36352055 DOI: 10.1007/s00421-022-05087-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022]
Abstract
During isometric contractions, corticomuscular coherence (CMC) may be modulated along with the contraction intensity. Furthermore, CMC may also vary between contraction types due to the contribution of spinal inhibitory mechanisms. However, the interaction between the effect of the contraction intensity and of the contraction type on CMC remains hitherto unknown. Therefore, CMC and spinal excitability modulations were compared during submaximal isometric, shortening and lengthening contractions of plantar flexor muscles at 25, 50, and 70% of the maximal soleus (SOL) EMG activity. CMC was computed in the time-frequency domain between the Cz EEG electrode signal and the SOL or medial gastrocnemius (MG) EMG signals. The results indicated that beta-band CMC was decreased in the SOL only between 25 and 50-70% contractions for both isometric and anisometric contractions, but remained similar for all contraction intensities in the MG. Spinal excitability was similar for all contraction intensities in both muscles. Meanwhile a divergence of the EEG and the EMG signals mean frequency was observed only in the SOL and only between 25 and 50-70% contractions, independently from the contraction type. Collectively, these findings confirm an effect of the contraction intensity on beta-band CMC, although it was only measured in the SOL, between low-level and high-level contraction intensities. Furthermore, the current findings provide new evidence that the observed modulations of beta-band CMC with the contraction intensity does not depend on the contraction type or on spinal excitability variations.
Collapse
Affiliation(s)
- Dorian Glories
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, 118 Route de Narbonne, 3062, Toulouse Cedex 9, France
| | - Mathias Soulhol
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, 118 Route de Narbonne, 3062, Toulouse Cedex 9, France
| | - David Amarantini
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, 118 Route de Narbonne, 3062, Toulouse Cedex 9, France
| | - Julien Duclay
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, 118 Route de Narbonne, 3062, Toulouse Cedex 9, France.
| |
Collapse
|
5
|
Mongold SJ, Piitulainen H, Legrand T, Ghinst MV, Naeije G, Jousmäki V, Bourguignon M. Temporally stable beta sensorimotor oscillations and cortico-muscular coupling underlie force steadiness. Neuroimage 2022; 261:119491. [PMID: 35908607 DOI: 10.1016/j.neuroimage.2022.119491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/29/2022] Open
Abstract
As humans, we seamlessly hold objects in our hands, and may even lose consciousness of these objects. This phenomenon raises the unsettled question of the involvement of the cerebral cortex, the core area for voluntary motor control, in dynamically maintaining steady muscle force. To address this issue, we measured magnetoencephalographic brain activity from healthy adults who maintained a steady pinch grip. Using a novel analysis approach, we uncovered fine-grained temporal modulations in the beta sensorimotor brain rhythm and its coupling with muscle activity, with respect to several aspects of muscle force (rate of increase/decrease or plateauing high/low). These modulations preceded changes in force features by ∼40 ms and possessed behavioral relevance, as less salient or absent modulation predicted a more stable force output. These findings have consequences for the existing theories regarding the functional role of cortico-muscular coupling, and suggest that steady muscle contractions are characterized by a stable rather than fluttering involvement of the sensorimotor cortex.
Collapse
Affiliation(s)
- Scott J Mongold
- Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - Harri Piitulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Thomas Legrand
- Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Marc Vander Ghinst
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Service d'ORL et de chirurgie cervico-faciale, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Gilles Naeije
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Centre de Référence Neuromusculaire, Department of Neurology, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Veikko Jousmäki
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Aalto NeuroImaging, Aalto University School of Science, Espoo, Finland
| | - Mathieu Bourguignon
- Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; BCBL, Basque Center on Cognition, Brain and Language, 20009 San Sebastian, Spain
| |
Collapse
|
6
|
Cerone GL, Giangrande A, Ghislieri M, Gazzoni M, Piitulainen H, Botter A. Design and validation of a wireless Body Sensor Network for integrated EEG and HD-sEMG acquisitions. IEEE Trans Neural Syst Rehabil Eng 2022; 30:61-71. [PMID: 34982687 DOI: 10.1109/tnsre.2022.3140220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Sensorimotor integration is the process through which the human brain plans the motor program execution according to external sources. Within this context, corticomuscular and corticokinematic coherence analyses are common methods to investigate the mechanism underlying the central control of muscle activation. This requires the synchronous acquisition of several physiological signals, including EEG and sEMG. Nevertheless, physical constraints of the current, mostly wired, technologies limit their application in dynamic and naturalistic contexts. In fact, although many efforts were made in the development of biomedical instrumentation for EEG and HD-sEMG signal acquisition, the need for an integrated wireless system is emerging. We hereby describe the design and validation of a new fully wireless body sensor network for the integrated acquisition of EEG and HD-sEMG signals. This Body Sensor Network is composed of wireless bio-signal acquisition modules, named sensor units, and a set of synchronization modules used as a general-purpose system for time-locked recordings. The system was characterized in terms of accuracy of the synchronization and quality of the collected signals. An in-depth characterization of the entire system and an end-to-end comparison of the wireless EEG sensor unit with a wired benchmark EEG device were performed. The proposed device represents an advancement of the State-of-the-Art technology allowing the integrated acquisition of EEG and HD-sEMG signals for the study of sensorimotor integration.
Collapse
|
7
|
Short MR, Hernandez-Pavon JC, Jones A, Pons JL. EEG hyperscanning in motor rehabilitation: a position paper. J Neuroeng Rehabil 2021; 18:98. [PMID: 34112208 PMCID: PMC8194127 DOI: 10.1186/s12984-021-00892-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/31/2021] [Indexed: 11/10/2022] Open
Abstract
Studying the human brain during interpersonal interaction allows us to answer many questions related to motor control and cognition. For instance, what happens in the brain when two people walking side by side begin to change their gait and match cadences? Adapted from the neuroimaging techniques used in single-brain measurements, hyperscanning (HS) is a technique used to measure brain activity from two or more individuals simultaneously. Thus far, HS has primarily focused on healthy participants during social interactions in order to characterize inter-brain dynamics. Here, we advocate for expanding the use of this electroencephalography hyperscanning (EEG-HS) technique to rehabilitation paradigms in individuals with neurological diagnoses, namely stroke, spinal cord injury (SCI), Parkinson's disease (PD), and traumatic brain injury (TBI). We claim that EEG-HS in patient populations with impaired motor function is particularly relevant and could provide additional insight on neural dynamics, optimizing rehabilitation strategies for each individual patient. In addition, we discuss future technologies related to EEG-HS that could be developed for use in the clinic as well as technical limitations to be considered in these proposed settings.
Collapse
Affiliation(s)
- Matthew R Short
- Legs + Walking Lab, Shirley Ryan AbilityLab, Floor 24, 355 E Erie St, Chicago, IL, 60611, USA.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA
| | - Julio C Hernandez-Pavon
- Legs + Walking Lab, Shirley Ryan AbilityLab, Floor 24, 355 E Erie St, Chicago, IL, 60611, USA.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alyssa Jones
- Legs + Walking Lab, Shirley Ryan AbilityLab, Floor 24, 355 E Erie St, Chicago, IL, 60611, USA
| | - Jose L Pons
- Legs + Walking Lab, Shirley Ryan AbilityLab, Floor 24, 355 E Erie St, Chicago, IL, 60611, USA. .,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA. .,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
8
|
Coupling between human brain activity and body movements: Insights from non-invasive electromagnetic recordings. Neuroimage 2019; 203:116177. [DOI: 10.1016/j.neuroimage.2019.116177] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/28/2019] [Accepted: 09/06/2019] [Indexed: 01/11/2023] Open
|
9
|
Mesin L. Single channel surface electromyogram deconvolution to explore motor unit discharges. Med Biol Eng Comput 2019; 57:2045-2054. [PMID: 31350669 DOI: 10.1007/s11517-019-02010-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 07/04/2019] [Indexed: 11/28/2022]
Abstract
Interference surface electromyogram (EMG) reflects many bioelectric properties of active motor units (MU), which are however difficult to estimate due to the asynchronous summation of their discharges. This paper introduces a deconvolution technique to estimate the cumulative firings of MUs. Tests in simulations show that the power spectral density of the estimated MU firings has a low-frequency peak corresponding to the mean firing rate of MUs in the detection volume of the recording system, weighted by the amplitudes of MU action potentials. The peak increases in amplitude and its centroid shifts to a higher frequency when MU synchronization is simulated (mainly due to the shift of discharges of large MUs). The peak is found even at high force levels, when such a contribution does not emerge from the EMG. This result is also confirmed in preliminary applications to experimental data. Moreover, the simulated cumulative firings of MUs are estimated with a correlation above 90% (considering frequency contributions up to 150 Hz), for all force levels. The method requires a single EMG channel, thus being feasible even in applied studies using simple recording systems. It may open many potential applications, e.g., in the study of the modulation of MU firing rate induced by either fatigue or pathology and in coherency analysis. Graphical Abstract Examples of application of the deconvolution (Deconv) algorithm and comparison with the cumulative firings and the cumulated weighted firings (CWF, i.e., each firing pattern is weighted by the root mean squared amplitude of the corresponding MU action potential). Portions of data are shown on the left, the power spectral densities (PSD) on the right (Welch method applied to 3 s of data, sub-epochs of 0.5 s, mean value removed from each of them, 50% of overlap). A) Simulated signal (50% of maximal voluntary contraction, MVC) with random MU firings. B) Simulated signal (50% MVC) with a level of synchronization equal to 10%. C) Experimental data from vastus medialis at 40% MVC (data decomposed by the algorithm of Holobar and Zazula, IEEE Trans. Sig. Proc. 2007; PSD of the cumulated firings almost identical to that of CWF, as few MUs were identified).
Collapse
Affiliation(s)
- Luca Mesin
- Mathematical Biology and Physiology, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy.
| |
Collapse
|
10
|
Walker S, Avela J, Wikgren J, Meeusen R, Piitulainen H, Baker SN, Parviainen TM. Aging and Strength Training Influence Knee Extensor Intermuscular Coherence During Low- and High-Force Isometric Contractions. Front Physiol 2019; 9:1933. [PMID: 30728782 PMCID: PMC6351450 DOI: 10.3389/fphys.2018.01933] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022] Open
Abstract
Aging is associated with reduced maximum force production and force steadiness during low-force tasks, but both can be improved by training. Intermuscular coherence measures coupling between two peripheral surface electromyography (EMG) signals in the frequency domain. It is thought to represent the presence of common input to alpha-motoneurons, but the functional meaning of intermuscular coherence, particularly regarding aging and training, remain unclear. This study investigated knee extensor intermuscular coherence in previously sedentary young (18–30 years) and older (67–73 years) subjects before and after a 14-week strength training intervention. YOUNG and OLDER groups performed maximum unilateral isometric knee extensions [100% maximum voluntary contraction (MVC)], as well as force steadiness tests at 20 and 70% MVC, pre- and post-training. Intermuscular (i.e., EMG-EMG) coherence analyses were performed for all (three) contraction intensities in vastus lateralis and medialis muscles. Pre-training coefficient of force variation (i.e., force steadiness) and MVC (i.e., maximum torque) were similar between groups. Both groups improved MVC through training, but YOUNG improved more than OLDER (42 ± 27 Nm versus 18 ± 16 Nm, P = 0.022). Force steadiness did not change during 20% MVC trials in either group, but YOUNG demonstrated increased coefficient of force variation during 70% MVC trials (1.28 ± 0.46 to 1.57 ± 0.70, P = 0.01). YOUNG demonstrated greater pre-training coherence during 20% and 70% MVC trials, particularly within the 8–14 Hz (e.g., 20%: 0.105 ± 0.119 versus 0.016 ± 0.009, P = 0.001) and 16–30 Hz (20%: 0.063 ± 0.078 versus 0.012 ± 0.007, P = 0.002) bands, but not during 100% MVC trials. Strength training led to increases in intermuscular coherence within the 40–60 Hz band during 70% MVC trials in YOUNG only, while OLDER decreased within the 8–14 Hz band during 100% MVC trials. Age-related differences in intermuscular coherence were observed between young and older individuals, even when neuromuscular performance levels were similar. The functional significance of intermuscular coherence remains unclear, since coherence within different frequency bands did not explain any of the variance in the regression models for maximum strength or force steadiness during 20 and 70% MVC trials.
Collapse
Affiliation(s)
- Simon Walker
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Janne Avela
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jan Wikgren
- Department of Psychology, Centre for Interdisciplinary Brain Research, Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Romain Meeusen
- Human Physiology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Harri Piitulainen
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Stuart N Baker
- Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tiina M Parviainen
- Department of Psychology, Centre for Interdisciplinary Brain Research, Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
11
|
Botter A, Vieira TM. Optimization of surface electrodes location for H-reflex recordings in soleus muscle. J Electromyogr Kinesiol 2017; 34:14-23. [PMID: 28342367 DOI: 10.1016/j.jelekin.2017.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 02/10/2017] [Accepted: 03/13/2017] [Indexed: 11/15/2022] Open
Abstract
The Hoffmann reflex (H reflex) is extensively used to investigate the spinal motor neuron excitability in healthy and pathological subjects. Obtaining a representative and robust amplitude estimation of the H reflex is of marked relevance in clinical as well as in research applications. As for the motor responses, this issue is strictly related to the electrode positioning, especially for large, pinnate muscles such as the triceps surae. In this study we investigated the effect of electrode position on soleus H-reflex amplitude. A grid of 96 electrodes was used to identify maximal H reflexes (Hmax) across the whole soleus region available for surface recording. The spatial distribution of Hmax amplitude detected in monopolar and single-differential derivations was used to determine where greatest reflex responses were detected from soleus. For both derivations and for all participants, largest Hmax were detected consistently over the central soleus region, in correspondence of the muscle superficial aponeurosis. Indeed, the amplitude of Hmax provided by conventional electrodes (1cm2 area, 2cm apart) located centrally was significantly greater (median: 35% for monopolar and 79% for single-differential derivations) than that obtained medially, where surface electromyograms are typically recorded from soleus. Computer simulations, used to assist in the interpretation of results, suggest the soleus pinnate architecture was the key determinant of the medio-lateral variability observed for the experimental Hmax. The presented results provide a clear indication for electrode positioning, of crucial relevance in applied studies aimed at eliciting H reflexes.
Collapse
Affiliation(s)
- Alberto Botter
- Laboratory for Engineering of the Neuromuscular System (LISiN), Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Torino, Italy.
| | - Taian M Vieira
- Laboratory for Engineering of the Neuromuscular System (LISiN), Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Torino, Italy
| |
Collapse
|
12
|
Individual difference in β-band corticomuscular coherence and its relation to force steadiness during isometric voluntary ankle dorsiflexion in healthy humans. Clin Neurophysiol 2016; 128:303-311. [PMID: 28042996 DOI: 10.1016/j.clinph.2016.11.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 11/24/2016] [Accepted: 11/26/2016] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Magnitude of β-band coherent neural activities between the sensorimotor cortex and contracting muscle is known to vary across healthy individuals. To clarify how this variance affects actual motor function, this study examined associations between the corticomuscular coherence (CMC) and force steadiness. METHODS CMC was calculated between scalp electroencephalograms (EEGs) over the sensorimotor cortex and surface electromyograms (EMGs) from the tibialis anterior muscle during tonic isometric voluntary ankle dorsiflexion at 30% of maximal effort in 22 healthy individuals. We calculated the maximal peak of CMC (CMCmax), and examined its relations to some measures of force fluctuation, such as the coefficient of variation (ForceCV), the sum of the power spectral density within 1-4Hz (Forceδ-PSD), 5-14Hz (Forceα-PSD), and 15-35Hz (Forceβ-PSD) bands of force signal. RESULTS In all participants showing significant CMC, CMCmax was observed within the β-band. CMCmax was varied across participants (range, 0.084-0.451), and was correlated significantly and positively with ForceCV (r=0.602, p=0.003), Forceβ-PSD (r=0.637, p=0.001), Forceα-PSD (r=0.647, p=0.001), and Forceδ-PSD (r=0.518, p=0.014). CONCLUSION The magnitude of the CMC between EEG over the sensorimotor cortex and EMG of contracting muscle is associated with the amount of force fluctuation during tonic isometric voluntary ankle dorsiflexion in healthy humans. SIGNIFICANCE CMC may influence an individual's ability to stabilize their muscle force output.
Collapse
|
13
|
Franceschetti S, Canafoglia L, Rotondi F, Visani E, Granvillano A, Panzica F. The network sustaining action myoclonus: a MEG-EMG study in patients with EPM1. BMC Neurol 2016; 16:214. [PMID: 27821136 PMCID: PMC5100097 DOI: 10.1186/s12883-016-0738-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/01/2016] [Indexed: 11/12/2022] Open
Abstract
Background To explore the cortical network sustaining action myoclonus and to found markers of the resulting functional impairment, we evaluated the distribution of the cortico-muscular coherence (CMC) and the frequency of coherent cortical oscillations with magnetoencephalography (MEG). All patients had EPM1 (Unverricht-Lundborg) disease known to present with prominent and disabling movement-activated myoclonus. Methods Using autoregressive models, we evaluated CMC on MEG sensors grouped in regions of interests (ROIs) above the main cortical areas. The movement was a repeated sustained isometric extension of the right hand and right foot. We compared the data obtained in 10 EPM1 patients with those obtained in 10 age-matched controls. Results As expected, CMC in beta band was significantly higher in EPM1 patients compared to controls in the ROIs exploring the sensorimotor cortex, but, it was also significantly higher in adjacent ROIs ipsilateral and contralateral to the activated limb. Moreover, the beta-CMC peak occurred at frequencies significantly slower and more stable frequencies in EPM1 patients with respect to controls. The frequency of the beta-CMC peak inversely correlated with the severity of myoclonus. Conclusions the high and spatially extended beta-CMC peaking in a restricted range of low-beta frequencies in EPM1 patients, suggest that action myoclonus may result not only from an enhanced local synchronization but also from a specific oscillatory activity involving an expanded neuronal pool. The significant relationship between beta-CMC peak frequency and the severity of the motor impairment can represent a useful neurophysiological marker for the patients’ evaluation and follow-up.
Collapse
Affiliation(s)
- Silvana Franceschetti
- Department of Neurophysiology, Epilepsy Centre, C. Besta Neurological Institute IRCCS Foundation, Via Celoria 11, 20133, Milan, Italy.
| | - Laura Canafoglia
- Department of Neurophysiology, Epilepsy Centre, C. Besta Neurological Institute IRCCS Foundation, Via Celoria 11, 20133, Milan, Italy
| | - Fabio Rotondi
- Department of Neurophysiology, Epilepsy Centre, C. Besta Neurological Institute IRCCS Foundation, Via Celoria 11, 20133, Milan, Italy.,Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genova, Genova, Italy
| | - Elisa Visani
- Department of Neurophysiology, Epilepsy Centre, C. Besta Neurological Institute IRCCS Foundation, Via Celoria 11, 20133, Milan, Italy
| | - Alice Granvillano
- Department of Neurophysiology, Epilepsy Centre, C. Besta Neurological Institute IRCCS Foundation, Via Celoria 11, 20133, Milan, Italy
| | - Ferruccio Panzica
- Department of Neurophysiology, Epilepsy Centre, C. Besta Neurological Institute IRCCS Foundation, Via Celoria 11, 20133, Milan, Italy
| |
Collapse
|