1
|
Zink ME, Zhen L, McHaney JR, Klara J, Yurasits K, Cancel V, Flemm O, Mitchell C, Datta J, Chandrasekaran B, Parthasarathy A. Increased listening effort and cochlear neural degeneration underlie behavioral deficits in speech perception in noise in normal hearing middle-aged adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606213. [PMID: 39149285 PMCID: PMC11326149 DOI: 10.1101/2024.08.01.606213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Middle-age is a critical period of rapid changes in brain function that presents an opportunity for early diagnostics and intervention for neurodegenerative conditions later in life. Hearing loss is one such early indicator linked to many comorbidities later in life. However, current clinical tests fail to capture hearing difficulties for ∼10% of middle-aged adults seeking help at hearing clinics. Cochlear neural degeneration (CND) could play a role in these hearing deficits, but our current understanding is limited by the lack of objective diagnostics and uncertainty regarding its perceptual consequences. Here, using a cross-species approach, we measured envelope following responses (EFRs) - neural ensemble responses to sound originating from the peripheral auditory pathway - in young and middle-aged adults with normal audiometric thresholds, and compared these responses to young and middle-aged Mongolian gerbils, where CND was histologically confirmed. We observed near identical changes in EFRs across species that were associated with CND. Perceptual effects measured as behavioral readouts showed deficits in the most challenging listening conditions and were associated with CND. Additionally, pupil-indexed listening effort increased even at moderate task difficulties where behavioral outcomes were matched. Our results reveal perceptual deficits in middle-aged adults driven by CND and increases in listening effort, which may result in increased listening fatigue and conversational disengagement.
Collapse
|
2
|
Sammeth CA, Walker KA, Greene NT, Klug A, Tollin DJ. Degradation in Binaural and Spatial Hearing and Auditory Temporal Processing Abilities as a Function of Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602575. [PMID: 39026701 PMCID: PMC11257585 DOI: 10.1101/2024.07.08.602575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Objective Sensorineural hearing loss is common with advancing age, but even with normal or near normal hearing in older persons, performance deficits are often seen for suprathreshold listening tasks such as understanding speech in background noise or localizing sound direction. This suggests there is also a more central source of the problem. Objectives of this study were to examine as a function of age (young adult to septuagenarian) performance on: 1) a spatial acuity task examining lateralization ability, and a spatial speech-in-noise (SSIN) recognition task, both measured in a hemi-anechoic sound field using a circular horizontal-plane loudspeaker array, and 2) a suprathreshold auditory temporal processing task and a spectro-temporal processing task, both measured under headphones. Further, we examined any correlations between the measures.DesignSubjects were 48 adults, aged 21 to 78, with either normal hearing or only a mild sensorineural hearing loss through 4000 Hz. The lateralization task measured minimum audible angle (MAA) for 500 and 4000 Hz narrowband noise (NBN) bursts in diffuse background noise for both an on-axis (subject facing 0°) and off-axis (facing 45°) listening condition at signal-to-noise ratios (SNRs) of -3, -6, -9, and -12 dB. For 42 of the subjects, SSIN testing was also completed for key word recognition in sentences in multi-talker babble noise; specifically, the separation between speech and noise loudspeakers was adaptively varied to determine the difference needed for 40% and 80% correct performance levels. Finally, auditory temporal processing ability was examined using the Temporal Fine Structure test (44 subjects), and the Spectro-Temporal Modulation test (46 subjects). Results Mean lateralization performances were poorer (larger MAAs) in older compared to younger subjects, particularly in the more adverse listening conditions (4000 Hz, off-axis, and poorer SNRs). Performance variability was notably higher for older subjects than for young adults. The 4000 Hz NBN bursts produced larger MAAs than did 500 Hz NBN bursts. The SSIN data also showed declining mean performance with age at both criterion levels, with greater variability again found for older subjects. Spearman rho analyses revealed some low to moderate, but significant correlation coefficients for age versus MAA and age versus SSIN results. A low but significant correlation was also observed between the most adverse MAA and SSIN conditions. Results from both the TFS and STM assessments showed decreased mean performance with aging, and revealed moderate, significant correlations, with the strongest relationship shown with the TFS test. Finally, of note, extended-high-frequency (EHF) hearing loss (measured between 9000 and 16,000 Hz) was found in older but not young subjects, and correlated with decreasing performance on several tasks. Conclusions Particularly for more adverse listening conditions, age-related deficits were found on both of the spatial hearing tasks and in temporal and spectro-temporal processing abilities. It may be that deficits in temporal processing ability contribute to poorer spatial hearing performance in older subjects due to inaccurate coding of binaural/interaural timing information sent from the periphery to the brainstem. In addition, EHF hearing loss may be a coexisting factor in the reduced performance in older subjects.
Collapse
|
3
|
Schirmer J, Wolpert S, Dapper K, Rühle M, Wertz J, Wouters M, Eldh T, Bader K, Singer W, Gaudrain E, Başkent D, Verhulst S, Braun C, Rüttiger L, Munk MHJ, Dalhoff E, Knipper M. Neural Adaptation at Stimulus Onset and Speed of Neural Processing as Critical Contributors to Speech Comprehension Independent of Hearing Threshold or Age. J Clin Med 2024; 13:2725. [PMID: 38731254 PMCID: PMC11084258 DOI: 10.3390/jcm13092725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Background: It is assumed that speech comprehension deficits in background noise are caused by age-related or acquired hearing loss. Methods: We examined young, middle-aged, and older individuals with and without hearing threshold loss using pure-tone (PT) audiometry, short-pulsed distortion-product otoacoustic emissions (pDPOAEs), auditory brainstem responses (ABRs), auditory steady-state responses (ASSRs), speech comprehension (OLSA), and syllable discrimination in quiet and noise. Results: A noticeable decline of hearing sensitivity in extended high-frequency regions and its influence on low-frequency-induced ABRs was striking. When testing for differences in OLSA thresholds normalized for PT thresholds (PTTs), marked differences in speech comprehension ability exist not only in noise, but also in quiet, and they exist throughout the whole age range investigated. Listeners with poor speech comprehension in quiet exhibited a relatively lower pDPOAE and, thus, cochlear amplifier performance independent of PTT, smaller and delayed ABRs, and lower performance in vowel-phoneme discrimination below phase-locking limits (/o/-/u/). When OLSA was tested in noise, listeners with poor speech comprehension independent of PTT had larger pDPOAEs and, thus, cochlear amplifier performance, larger ASSR amplitudes, and higher uncomfortable loudness levels, all linked with lower performance of vowel-phoneme discrimination above the phase-locking limit (/i/-/y/). Conslusions: This study indicates that listening in noise in humans has a sizable disadvantage in envelope coding when basilar-membrane compression is compromised. Clearly, and in contrast to previous assumptions, both good and poor speech comprehension can exist independently of differences in PTTs and age, a phenomenon that urgently requires improved techniques to diagnose sound processing at stimulus onset in the clinical routine.
Collapse
Affiliation(s)
- Jakob Schirmer
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Stephan Wolpert
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Konrad Dapper
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany
| | - Moritz Rühle
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Jakob Wertz
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Marjoleen Wouters
- Department of Information Technology, Ghent University, Technologiepark 126, 9052 Zwijnaarde, Belgium; (M.W.); (S.V.)
| | - Therese Eldh
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Katharina Bader
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Etienne Gaudrain
- Lyon Neuroscience Research Center, Centre National de la Recherche Scientifique UMR5292, Inserm U1028, Université Lyon 1, Centre Hospitalier Le Vinatier-Bâtiment 462–Neurocampus, 95 Boulevard Pinel, 69675 Bron CEDEX, France;
- Department of Otorhinolaryngology, University Medical Center Groningen (UMCG), Hanzeplein 1, BB21, 9700 RB Groningen, The Netherlands;
| | - Deniz Başkent
- Department of Otorhinolaryngology, University Medical Center Groningen (UMCG), Hanzeplein 1, BB21, 9700 RB Groningen, The Netherlands;
| | - Sarah Verhulst
- Department of Information Technology, Ghent University, Technologiepark 126, 9052 Zwijnaarde, Belgium; (M.W.); (S.V.)
| | - Christoph Braun
- Magnetoencephalography-Centre and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany;
- Center for Mind and Brain Research, University of Trento, Palazzo Fedrigotti-corso Bettini 31, 38068 Rovereto, Italy
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Matthias H. J. Munk
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany
- Department of Psychiatry & Psychotherapy, University of Tübingen, Calwerstraße 14, 72076 Tübingen, Germany
| | - Ernst Dalhoff
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| |
Collapse
|
4
|
Ferrán S, Manrique-Huarte R, Lima JP, Rodríguez-Zanetti C, Calavia D, Andrade CJ, Terrasa D, Huarte A, Manrique M. Early Detection of Hearing Loss among the Elderly. Life (Basel) 2024; 14:471. [PMID: 38672742 PMCID: PMC11051108 DOI: 10.3390/life14040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Age-related hearing loss (ARHL) is a complex communication disorder that affects the cochlea and central auditory pathway. The goal of this study is to characterize this type of hearing loss and to identify non-invasive, inexpensive, and quick tests to detect ARHL among elderly adults, seeking to preserve quality of life and reduce the burden on healthcare systems. METHODS An observational, prospective study is conducted with >55-year-old subjects divided into the following groups: normal range (Group A), detected but not treated (Group B), and detected and treated (Group C). During follow-up, Speech Spatial Qualities (SSQ12), and Hearing Handicap Inventory in the Elderly Screening test (HHIE-S) questionnaires were assessed, along with hearing levels (hearing thresholds at 4 kHz were studied in more depth), and a series of tests and questionnaires to assess balance, cognitive level, level of dependence, and depression. RESULTS A total of 710 patients were included in this study. The duration of hearing loss (11.8 yr. in Group B and 21.0 yr. in Group C) and average time-to-treatment for Group C (14.1 yr.) are both protracted. Both of the used questionnaires show statistically significant differences among the groups, revealing greater handicaps for Group C. Audiometry performed at 4 kHz shows how hearing loss progresses with age, finding differences between men and women. There is a correlation between time-to-treatment in Group C and the cognitive test DSST (-0.26; p = 0.003). CONCLUSIONS HHIE-S, SSQ12, and 4 kHz audiometry are sensitive and feasible tests to implement in screening programs.
Collapse
Affiliation(s)
| | | | - Janaina P. Lima
- Clínica Universidad de Navarra, 31008 Pamplona, Spain; (S.F.); (R.M.-H.); (C.R.-Z.); (D.C.); (C.J.A.); (D.T.); (A.H.); (M.M.)
| | | | | | | | | | | | | |
Collapse
|
5
|
Temboury-Gutierrez M, Encina-Llamas G, Dau T. Predicting early auditory evoked potentials using a computational model of auditory-nerve processing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:1799-1812. [PMID: 38445986 DOI: 10.1121/10.0025136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024]
Abstract
Non-invasive electrophysiological measures, such as auditory evoked potentials (AEPs), play a crucial role in diagnosing auditory pathology. However, the relationship between AEP morphology and cochlear degeneration remains complex and not well understood. Dau [J. Acoust. Soc. Am. 113, 936-950 (2003)] proposed a computational framework for modeling AEPs that utilized a nonlinear auditory-nerve (AN) model followed by a linear unitary response function. While the model captured some important features of the measured AEPs, it also exhibited several discrepancies in response patterns compared to the actual measurements. In this study, an enhanced AEP modeling framework is presented, incorporating an improved AN model, and the conclusions from the original study were reevaluated. Simulation results with transient and sustained stimuli demonstrated accurate auditory brainstem responses (ABRs) and frequency-following responses (FFRs) as a function of stimulation level, although wave-V latencies remained too short, similar to the original study. When compared to physiological responses in animals, the revised model framework showed a more accurate balance between the contributions of auditory-nerve fibers (ANFs) at on- and off-frequency regions to the predicted FFRs. These findings emphasize the importance of cochlear processing in brainstem potentials. This framework may provide a valuable tool for assessing human AN models and simulating AEPs for various subtypes of peripheral pathologies, offering opportunities for research and clinical applications.
Collapse
Affiliation(s)
- Miguel Temboury-Gutierrez
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
| | - Gerard Encina-Llamas
- Copenhagen Hearing and Balance Center, Ear, Nose and Throat (ENT) and Audiology Clinic, Rigshospitalet, Copenhagen University Hospital, Copenhagen, DK-2100, Denmark
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, 08500, Catalonia, Spain
| | - Torsten Dau
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
- Copenhagen Hearing and Balance Center, Ear, Nose and Throat (ENT) and Audiology Clinic, Rigshospitalet, Copenhagen University Hospital, Copenhagen, DK-2100, Denmark
| |
Collapse
|
6
|
Liu J, Stohl J, Overath T. Hidden hearing loss: Fifteen years at a glance. Hear Res 2024; 443:108967. [PMID: 38335624 DOI: 10.1016/j.heares.2024.108967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Hearing loss affects approximately 18% of the population worldwide. Hearing difficulties in noisy environments without accompanying audiometric threshold shifts likely affect an even larger percentage of the global population. One of the potential causes of hidden hearing loss is cochlear synaptopathy, the loss of synapses between inner hair cells (IHC) and auditory nerve fibers (ANF). These synapses are the most vulnerable structures in the cochlea to noise exposure or aging. The loss of synapses causes auditory deafferentation, i.e., the loss of auditory afferent information, whose downstream effect is the loss of information that is sent to higher-order auditory processing stages. Understanding the physiological and perceptual effects of this early auditory deafferentation might inform interventions to prevent later, more severe hearing loss. In the past decade, a large body of work has been devoted to better understand hidden hearing loss, including the causes of hidden hearing loss, their corresponding impact on the auditory pathway, and the use of auditory physiological measures for clinical diagnosis of auditory deafferentation. This review synthesizes the findings from studies in humans and animals to answer some of the key questions in the field, and it points to gaps in knowledge that warrant more investigation. Specifically, recent studies suggest that some electrophysiological measures have the potential to function as indicators of hidden hearing loss in humans, but more research is needed for these measures to be included as part of a clinical test battery.
Collapse
Affiliation(s)
- Jiayue Liu
- Department of Psychology and Neuroscience, Duke University, Durham, USA.
| | - Joshua Stohl
- North American Research Laboratory, MED-EL Corporation, Durham, USA
| | - Tobias Overath
- Department of Psychology and Neuroscience, Duke University, Durham, USA
| |
Collapse
|
7
|
Bramhall NF, McMillan GP. Perceptual Consequences of Cochlear Deafferentation in Humans. Trends Hear 2024; 28:23312165241239541. [PMID: 38738337 DOI: 10.1177/23312165241239541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Cochlear synaptopathy, a form of cochlear deafferentation, has been demonstrated in a number of animal species, including non-human primates. Both age and noise exposure contribute to synaptopathy in animal models, indicating that it may be a common type of auditory dysfunction in humans. Temporal bone and auditory physiological data suggest that age and occupational/military noise exposure also lead to synaptopathy in humans. The predicted perceptual consequences of synaptopathy include tinnitus, hyperacusis, and difficulty with speech-in-noise perception. However, confirming the perceptual impacts of this form of cochlear deafferentation presents a particular challenge because synaptopathy can only be confirmed through post-mortem temporal bone analysis and auditory perception is difficult to evaluate in animals. Animal data suggest that deafferentation leads to increased central gain, signs of tinnitus and abnormal loudness perception, and deficits in temporal processing and signal-in-noise detection. If equivalent changes occur in humans following deafferentation, this would be expected to increase the likelihood of developing tinnitus, hyperacusis, and difficulty with speech-in-noise perception. Physiological data from humans is consistent with the hypothesis that deafferentation is associated with increased central gain and a greater likelihood of tinnitus perception, while human data on the relationship between deafferentation and hyperacusis is extremely limited. Many human studies have investigated the relationship between physiological correlates of deafferentation and difficulty with speech-in-noise perception, with mixed findings. A non-linear relationship between deafferentation and speech perception may have contributed to the mixed results. When differences in sample characteristics and study measurements are considered, the findings may be more consistent.
Collapse
Affiliation(s)
- Naomi F Bramhall
- VA National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, Portland, OR, USA
- Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Garnett P McMillan
- VA National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, Portland, OR, USA
| |
Collapse
|
8
|
Vasilkov V, Caswell-Midwinter B, Zhao Y, de Gruttola V, Jung DH, Liberman MC, Maison SF. Evidence of cochlear neural degeneration in normal-hearing subjects with tinnitus. Sci Rep 2023; 13:19870. [PMID: 38036538 PMCID: PMC10689483 DOI: 10.1038/s41598-023-46741-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/04/2023] [Indexed: 12/02/2023] Open
Abstract
Tinnitus, reduced sound-level tolerance, and difficulties hearing in noisy environments are the most common complaints associated with sensorineural hearing loss in adult populations. This study aims to clarify if cochlear neural degeneration estimated in a large pool of participants with normal audiograms is associated with self-report of tinnitus using a test battery probing the different stages of the auditory processing from hair cell responses to the auditory reflexes of the brainstem. Self-report of chronic tinnitus was significantly associated with (1) reduced cochlear nerve responses, (2) weaker middle-ear muscle reflexes, (3) stronger medial olivocochlear efferent reflexes and (4) hyperactivity in the central auditory pathways. These results support the model of tinnitus generation whereby decreased neural activity from a damaged cochlea can elicit hyperactivity from decreased inhibition in the central nervous system.
Collapse
Affiliation(s)
- Viacheslav Vasilkov
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA
- Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, USA
| | - Benjamin Caswell-Midwinter
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA
- Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, USA
| | - Yan Zhao
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA
| | - Victor de Gruttola
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02114, USA
| | - David H Jung
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA
- Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, USA
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA
- Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, USA
| | - Stéphane F Maison
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA.
- Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
9
|
Bramhall NF, Theodoroff SM, McMillan GP, Kampel SD, Buran BN. Associations Between Physiological Correlates of Cochlear Synaptopathy and Tinnitus in a Veteran Population. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:4635-4652. [PMID: 37889209 DOI: 10.1044/2023_jslhr-23-00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
PURPOSE Animal models and human temporal bones indicate that noise exposure is a risk factor for cochlear synaptopathy, a possible etiology of tinnitus. Veterans are exposed to high levels of noise during military service. Therefore, synaptopathy may explain the high rates of noise-induced tinnitus among Veterans. Although synaptopathy cannot be directly evaluated in living humans, animal models indicate that several physiological measures are sensitive to synapse loss, including the auditory brainstem response (ABR), the middle ear muscle reflex (MEMR), and the envelope following response (EFR). The purpose of this study was to determine whether tinnitus is associated with reductions in physiological correlates of synaptopathy that parallel animal studies. METHOD Participants with normal audiograms were grouped according to Veteran status and tinnitus report (Veterans with tinnitus, Veterans without tinnitus, and non-Veteran controls). The effects of being a Veteran with tinnitus on ABR, MEMR, and EFR measurements were independently modeled using Bayesian regression analysis. RESULTS Modeled point estimates of MEMR and EFR magnitude showed reductions for Veterans with tinnitus compared with non-Veterans, with the most evident reduction observed for the EFR. Two different approaches were used to provide context for the Veteran tinnitus effect on the EFR by comparing to age-related reductions in EFR magnitude and synapse numbers observed in previous studies. These analyses suggested that EFR magnitude/synapse counts were reduced in Veterans with tinnitus by roughly the same amount as over 20 years of aging. CONCLUSION These findings suggest that cochlear synaptopathy may contribute to tinnitus perception in noise-exposed Veterans. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.24347761.
Collapse
Affiliation(s)
- Naomi F Bramhall
- VA RR&D National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, OR
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland
| | - Sarah M Theodoroff
- VA RR&D National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, OR
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland
| | - Garnett P McMillan
- VA RR&D National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, OR
| | - Sean D Kampel
- VA RR&D National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, OR
| | - Brad N Buran
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland
| |
Collapse
|
10
|
Füllgrabe C, Fontan L, Vidal É, Massari H, Moore BCJ. Effects of hearing loss, age, noise exposure, and listening skills on envelope regularity discrimination. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:2453-2461. [PMID: 37850836 DOI: 10.1121/10.0021884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
The envelope regularity discrimination (ERD) test assesses the ability to discriminate irregular from regular amplitude modulation (AM). The measured threshold is called the irregularity index (II). It was hypothesized that the II at threshold should be almost unaffected by the loudness recruitment that is associated with cochlear hearing loss because the effect of recruitment is similar to multiplying the AM depth by a certain factor, and II values depend on the amount of envelope irregularity relative to the baseline modulation depth. To test this hypothesis, the ERD test was administered to 60 older adults with varying degrees of hearing loss, using carrier frequencies of 1 and 4 kHz. The II values for the two carrier frequencies were highly correlated, indicating that the ERD test was measuring a consistent characteristic of each subject. The II values at 1 and 4 kHz were not significantly correlated with the audiometric thresholds at the corresponding frequencies, consistent with the hypothesis. The II values at 4 kHz were significantly positively correlated with age. There was an unexpected negative correlation between II values and a measure of noise exposure. This is argued to reflect the confounding effects of listening skills.
Collapse
Affiliation(s)
- Christian Füllgrabe
- Ear Institute, University College London, 332 Gray's Inn Road, London, WC1X 8EE, United Kingdom
| | | | | | | | - Brian C J Moore
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, United Kingdom
| |
Collapse
|
11
|
McHaney JR, Hancock KE, Polley DB, Parthasarathy A. Sensory representations and pupil-indexed listening effort provide complementary contributions to multi-talker speech intelligibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.553131. [PMID: 37645975 PMCID: PMC10462058 DOI: 10.1101/2023.08.13.553131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Optimal speech perception in noise requires successful separation of the target speech stream from multiple competing background speech streams. The ability to segregate these competing speech streams depends on the fidelity of bottom-up neural representations of sensory information in the auditory system and top-down influences of effortful listening. Here, we use objective neurophysiological measures of bottom-up temporal processing using envelope-following responses (EFRs) to amplitude modulated tones and investigate their interactions with pupil-indexed listening effort, as it relates to performance on the Quick speech in noise (QuickSIN) test in young adult listeners with clinically normal hearing thresholds. We developed an approach using ear-canal electrodes and adjusting electrode montages for modulation rate ranges, which extended the rage of reliable EFR measurements as high as 1024Hz. Pupillary responses revealed changes in listening effort at the two most difficult signal-to-noise ratios (SNR), but behavioral deficits at the hardest SNR only. Neither pupil-indexed listening effort nor the slope of the EFR decay function independently related to QuickSIN performance. However, a linear model using the combination of EFRs and pupil metrics significantly explained variance in QuickSIN performance. These results suggest a synergistic interaction between bottom-up sensory coding and top-down measures of listening effort as it relates to speech perception in noise. These findings can inform the development of next-generation tests for hearing deficits in listeners with normal-hearing thresholds that incorporates a multi-dimensional approach to understanding speech intelligibility deficits.
Collapse
Affiliation(s)
- Jacie R. McHaney
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA
| | - Kenneth E. Hancock
- Deparment of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA
| | - Daniel B. Polley
- Deparment of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA
| | - Aravindakshan Parthasarathy
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh PA
| |
Collapse
|
12
|
Kempfle JS, Jung DH. Experimental drugs for the prevention or treatment of sensorineural hearing loss. Expert Opin Investig Drugs 2023; 32:643-654. [PMID: 37598357 DOI: 10.1080/13543784.2023.2242253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023]
Abstract
INTRODUCTION Sensorineural hearing loss results in irreversible loss of inner ear hair cells and spiral ganglion neurons. Reduced sound detection and speech discrimination can span all ages, and sensorineural hearing rehabilitation is limited to amplification with hearing aids or cochlear implants. Recent insights into experimental drug treatments for inner ear regeneration and otoprotection have paved the way for clinical trials in order to restore a more physiological hearing experience. Paired with the development of innovative minimally invasive approaches for drug delivery to the inner ear, new, emerging treatments for hearing protection and restoration are within reach. AREAS COVERED This expert opinion provides an overview of the latest experimental drug therapies to protect from and to restore sensorineural hearing loss. EXPERT OPINION The degree and type of cellular damage to the cochlea, the responsiveness of remaining, endogenous cells to regenerative treatments, and the duration of drug availability within cochlear fluids will determine the success of hearing protection or restoration.
Collapse
Affiliation(s)
- Judith S Kempfle
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology, Head & Neck Surgery, Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology, UMass Memorial Medical Center, Worcester, MA, USA
- Department of Otolaryngology, Head & Neck Surgery, University of Massachusetts Medical School, Worcester, MA, USA
| | - David H Jung
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology, Head & Neck Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Vasilkov V, Liberman MC, Maison SF. Isolating auditory-nerve contributions to electrocochleography by high-pass filtering: A better biomarker for cochlear nerve degeneration? JASA EXPRESS LETTERS 2023; 3:024401. [PMID: 36858988 PMCID: PMC9969351 DOI: 10.1121/10.0017328] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/26/2023] [Indexed: 05/17/2023]
Abstract
In search of biomarkers for cochlear neural degeneration (CND) in electrocochleography from humans with normal thresholds, we high-pass and low-pass filtered the responses to separate contributions of auditory-nerve action potentials (N1) from hair-cell summating potentials (SP). The new N1 measure is better correlated with performance on difficult word-recognition tasks used as a proxy for CND. Furthermore, the paradoxical correlation between larger SPs and worse word scores, observed with classic electrocochleographic analysis, disappears with the new metric. Classic SP is simultaneous with and opposite in phase to an early neural contribution, and filtering separates the sources to eliminate this interference.
Collapse
Affiliation(s)
- Viacheslav Vasilkov
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear and Department of Otolaryngology -Head and Neck Surgery, Harvard Medical School, Boston, Massachussetts 02114, USA ; ;
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear and Department of Otolaryngology -Head and Neck Surgery, Harvard Medical School, Boston, Massachussetts 02114, USA ; ;
| | - Stéphane F Maison
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear and Department of Otolaryngology -Head and Neck Surgery, Harvard Medical School, Boston, Massachussetts 02114, USA ; ;
| |
Collapse
|
14
|
Park Y, Shin SH, Byun SW, Lee ZY, Lee HY. Audiological and psychological assessment of tinnitus patients with normal hearing. Front Neurol 2023; 13:1102294. [PMID: 36712420 PMCID: PMC9878854 DOI: 10.3389/fneur.2022.1102294] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction This study was performed to assess identifiable abnormalities in tinnitus patients with normal hearing. Methods The medical records of subjective non-pulsatile tinnitus patients with normal hearing confirmed by conventional pure-tone audiometry who visited our tinnitus clinic between March 2020 and May 2022 were reviewed. The loudness discomfort level (LDL), extended high-frequency hearing loss (EHFHL), summating potential (SP)/action potential (AP) ratio, distortion product otoacoustic emission (DPOAE), thresholds of auditory brainstem response (ABR) wave V, somatic modulation, and psychiatric symptoms, such as anxiety, depression, and stress were evaluated by questionnaires. Results Decreased LDL (n = 48, 59.8%) was the most frequent finding, followed by EHFHL (n = 29, 35.4%), increased SP/AP ratio (n = 27, 32.9%), psychiatric symptoms (n = 24, 29.3%), decreased DPOAE (n = 17, 20.7%), somatic modulation (n = 8, 9.8%), and increased ABR threshold (n = 3, 3.7%); 75.6% of patients had one or more of these findings. The presence of psychiatric symptoms was independently associated with the Tinnitus Handicap Inventory (THI) score. Conclusion Tinnitus in patients with normal hearing may be accompanied by a combination of various subclinical abnormal audiological findings. However, the presence of psychiatric symptoms alone was independently associated with tinnitus distress.
Collapse
|
15
|
Van Der Biest H, Keshishzadeh S, Keppler H, Dhooge I, Verhulst S. Envelope following responses for hearing diagnosis: Robustness and methodological considerations. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:191. [PMID: 36732231 DOI: 10.1121/10.0016807] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Recent studies have found that envelope following responses (EFRs) are a marker of age-related and noise- or ototoxic-induced cochlear synaptopathy (CS) in research animals. Whereas the cochlear injury can be well controlled in animal research studies, humans may have an unknown mixture of sensorineural hearing loss [SNHL; e.g., inner- or outer-hair-cell (OHC) damage or CS] that cannot be teased apart in a standard hearing evaluation. Hence, a direct translation of EFR markers of CS to a differential CS diagnosis in humans might be compromised by the influence of SNHL subtypes and differences in recording modalities between research animals and humans. To quantify the robustness of EFR markers for use in human studies, this study investigates the impact of methodological considerations related to electrode montage, stimulus characteristics, and presentation, as well as analysis method on human-recorded EFR markers. The main focus is on rectangularly modulated pure-tone stimuli to evoke the EFR based on a recent auditory modelling study that showed that the EFR was least affected by OHC damage and most sensitive to CS in this stimulus configuration. The outcomes of this study can help guide future clinical implementations of electroencephalography-based SNHL diagnostic tests.
Collapse
Affiliation(s)
- Heleen Van Der Biest
- Hearing Technology at Wireless, Acoustics, Environment and Expert Systems, Department of Information Technology, Ghent, Belgium
| | - Sarineh Keshishzadeh
- Hearing Technology at Wireless, Acoustics, Environment and Expert Systems, Department of Information Technology, Ghent, Belgium
| | - Hannah Keppler
- Department of Rehabilitation Sciences-Audiology, Ghent University, Ghent, Belgium
| | - Ingeborg Dhooge
- Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Sarah Verhulst
- Hearing Technology at Wireless, Acoustics, Environment and Expert Systems, Department of Information Technology, Ghent, Belgium
| |
Collapse
|
16
|
Le Prell CG, Clavier OH, Bao J. Noise-induced hearing disorders: Clinical and investigational tools. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:711. [PMID: 36732240 PMCID: PMC9889121 DOI: 10.1121/10.0017002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
A series of articles discussing advanced diagnostics that can be used to assess noise injury and associated noise-induced hearing disorders (NIHD) was developed under the umbrella of the United States Department of Defense Hearing Center of Excellence Pharmaceutical Interventions for Hearing Loss working group. The overarching goals of the current series were to provide insight into (1) well-established and more recently developed metrics that are sensitive for detection of cochlear pathology or diagnosis of NIHD, and (2) the tools that are available for characterizing individual noise hazard as personal exposure will vary based on distance to the sound source and placement of hearing protection devices. In addition to discussing the utility of advanced diagnostics in patient care settings, the current articles discuss the selection of outcomes and end points that can be considered for use in clinical trials investigating hearing loss prevention and hearing rehabilitation.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Department of Speech, Language, and Hearing Science, University of Texas at Dallas, Richardson, Texas 75080, USA
| | | | - Jianxin Bao
- Gateway Biotechnology Inc., St. Louis, Missouri 63132, USA
| |
Collapse
|
17
|
Trevino M, Zang A, Lobarinas E. The middle ear muscle reflex: Current and future role in assessing noise-induced cochlear damage. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:436. [PMID: 36732247 PMCID: PMC9867568 DOI: 10.1121/10.0016853] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
The middle ear muscle reflex (MEMR) in humans is a bilateral contraction of the middle ear stapedial muscle in response to moderate-to-high intensity acoustic stimuli. Clinically, MEMR thresholds have been used for differential diagnosis of otopathologies for decades. More recently, changes in MEMR amplitude or threshold have been proposed as an assessment for noise-induced synaptopathy, a subclinical form of cochlear damage characterized by suprathreshold hearing problems that occur as a function of inner hair cell (IHC) synaptic loss, including hearing-in-noise deficits, tinnitus, and hyperacusis. In animal models, changes in wideband MEMR immittance have been correlated with noise-induced synaptopathy; however, studies in humans have shown more varied results. The discrepancies observed across studies could reflect the heterogeneity of synaptopathy in humans more than the effects of parametric differences or relative sensitivity of the measurement. Whereas the etiology and degree of synaptopathy can be carefully controlled in animal models, synaptopathy in humans likely stems from multiple etiologies and thus can vary greatly across the population. Here, we explore the evolving research evidence of the MEMR response in relation to subclinical noise-induced cochlear damage and the MEMR as an early correlate of suprathreshold deficits.
Collapse
Affiliation(s)
- Monica Trevino
- School of Behavioral and Brain Sciences, Department of Speech, Language and Hearing, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Andie Zang
- School of Behavioral and Brain Sciences, Department of Speech, Language and Hearing, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Edward Lobarinas
- School of Behavioral and Brain Sciences, Department of Speech, Language and Hearing, The University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
18
|
Shehabi AM, Prendergast G, Guest H, Plack CJ. Binaural temporal coding and the middle ear muscle reflex in audiometrically normal young adults. Hear Res 2023; 427:108663. [PMID: 36502543 DOI: 10.1016/j.heares.2022.108663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022]
Abstract
Noise exposure may damage the synapses that connect inner hair cells with auditory nerve fibers, before outer hair cells are lost. In humans, this cochlear synaptopathy (CS) is thought to decrease the fidelity of peripheral auditory temporal coding. In the current study, the primary hypothesis was that higher middle ear muscle reflex (MEMR) thresholds, as a proxy measure of CS, would be associated with smaller values of the binaural intelligibility level difference (BILD). The BILD, which is a measure of binaural temporal coding, is defined here as the difference in thresholds between the diotic and the antiphasic versions of the digits in noise (DIN) test. This DIN BILD may control for factors unrelated to binaural temporal coding such as linguistic, central auditory, and cognitive factors. Fifty-six audiometrically normal adults (34 females) aged 18 - 30 were tested. The test battery included standard pure tone audiometry, tympanometry, MEMR using a 2 kHz elicitor and 226 Hz and 1 kHz probes, the Noise Exposure Structured Interview, forward digit span test, extended high frequency (EHF) audiometry, and diotic and antiphasic DIN tests. The study protocol was pre-registered prior to data collection. MEMR thresholds did not predict the DIN BILD. Secondary analyses showed no association between MEMR thresholds and the individual diotic and antiphasic DIN thresholds. Greater lifetime noise exposure was non-significantly associated with higher MEMR thresholds, larger DIN BILD values, and lower (better) antiphasic DIN thresholds, but not with diotic DIN thresholds, nor with EHF thresholds. EHF thresholds were associated with neither MEMR thresholds nor any of the DIN outcomes, including the DIN BILD. Results provide no evidence that young, audiometrically normal people incur CS with impacts on binaural temporal processing.
Collapse
Affiliation(s)
- Adnan M Shehabi
- Manchester Centre for Audiology and Deafness, University of Manchester, UK; Department of Audiology and Speech Therapy, Birzeit University, Palestine.
| | | | - Hannah Guest
- Manchester Centre for Audiology and Deafness, University of Manchester, UK
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, UK; Department of Psychology, Lancaster University, UK
| |
Collapse
|
19
|
Grinn SK, Le Prell CG. Evaluation of hidden hearing loss in normal-hearing firearm users. Front Neurosci 2022; 16:1005148. [PMID: 36389238 PMCID: PMC9644938 DOI: 10.3389/fnins.2022.1005148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/07/2022] [Indexed: 04/05/2024] Open
Abstract
Some noise exposures resulting in temporary threshold shift (TTS) result in cochlear synaptopathy. The purpose of this retrospective study was to evaluate a human population that might be at risk for noise-induced cochlear synaptopathy (i.e., "hidden hearing loss"). Participants were firearm users who were (1) at-risk for prior audiometric noise-induced threshold shifts, given their history of firearm use, (2) likely to have experienced complete threshold recovery if any prior TTS had occurred, based on this study's normal-hearing inclusion criteria, and (3) not at-risk for significant age-related synaptopathic loss, based on this study's young-adult inclusion criteria. 70 participants (age 18-25 yr) were enrolled, including 33 firearm users experimental (EXP), and 37 non-firearm users control (CNTRL). All participants were required to exhibit audiometric thresholds ≤20 dB HL bilaterally, from 0.25 to 8 kHz. The study was designed to test the hypothesis that EXP participants would exhibit a reduced cochlear nerve response compared to CNTRL participants, despite normal-hearing sensitivity in both groups. No statistically significant group differences in auditory performance were detected between the CNTRL and EXP participants on standard audiom to etry, extended high-frequency audiometry, Words-in-Noise performance, distortion product otoacoustic emission, middle ear muscle reflex, or auditory brainstem response. Importantly, 91% of EXP participants reported that they wore hearing protection either "all the time" or "almost all the time" while using firearms. The data suggest that consistent use of hearing protection during firearm use can effectively protect cochlear and neural measures of auditory function, including suprathreshold responses. The current results do not exclude the possibility that neural pathology may be evident in firearm users with less consistent hearing protection use. However, firearm users with less consistent hearing protection use are also more likely to exhibit threshold elevation, among other cochlear deficits, thereby confounding the isolation of any potentially selective neural deficits. Taken together, it seems most likely that firearm users who consistently and correctly use hearing protection will exhibit preserved measures of cochlear and neural function, while firearm users who inconsistently and incorrectly use hearing protection are most likely to exhibit cochlear injury, rather than evidence of selective neural injury in the absence of cochlear injury.
Collapse
Affiliation(s)
- Sarah K. Grinn
- Department of Communication Sciences and Disorders, Central Michigan University, Mount Pleasant, MI, United States
| | - Colleen G. Le Prell
- Department of Speech, Language, and Hearing, University of Texas at Dallas, Dallas, TX, United States
| |
Collapse
|
20
|
Lai J, Bidelman GM. Relative changes in the cochlear summating potentials to paired-clicks predict speech-in-noise perception and subjective hearing acuity. JASA EXPRESS LETTERS 2022; 2:102001. [PMID: 36319209 PMCID: PMC9987329 DOI: 10.1121/10.0014815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Objective assays of human cochlear synaptopathy (CS) have been challenging to develop. It is suspected that relative summating potential (SP) changes are different in listeners with CS. In this proof-of-concept study, young, normal-hearing adults were recruited and assigned to a low/high-risk group for having CS based on their extended audiograms (9-16 kHz). SPs to paired-clicks with varying inter-click intervals isolated non-refractory receptor components of cochlear activity. Abrupt increases in SPs to paired- vs single-clicks were observed in high-risk listeners. Critically, exaggerated SPs predicted speech-in-noise and subjective hearing abilities, suggesting relative SP changes to rapid clicks might help identify putative synaptopathic listeners.
Collapse
Affiliation(s)
- Jesyin Lai
- Diagnostic Imaging Department, St. Jude Children's Research Hospital, Memphis, Tennessee 38152, USA
| | - Gavin M Bidelman
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, Indiana 47408, USA ,
| |
Collapse
|
21
|
Drakopoulos F, Vasilkov V, Osses Vecchi A, Wartenberg T, Verhulst S. Model-based hearing-enhancement strategies for cochlear synaptopathy pathologies. Hear Res 2022; 424:108569. [DOI: 10.1016/j.heares.2022.108569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022]
|
22
|
Zhang Y, Chen J, Zhang Y, Sun B, Liu Y. Using Auditory Characteristics to Select Hearing Aid Compression Speeds for Presbycusic Patients. Front Aging Neurosci 2022; 14:869338. [PMID: 35847672 PMCID: PMC9285002 DOI: 10.3389/fnagi.2022.869338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/20/2022] [Indexed: 11/23/2022] Open
Abstract
Objectives This study aimed to select the optimal hearing aid compression speeds (fast-acting and slow-acting) for presbycusic patients by using auditory characteristics including temporal modulation and speech-in-noise performance. Methods In total, 24 patients with unilateral or bilateral moderate sensorineural hearing loss who scored higher than 21 on the Montreal Cognitive Assessment (MoCA) test participated in this study. The electrocochleogram (ECochG) results, including summating potentials (SP) and action potentials (AP), were recorded. Subjects' temporal modulation thresholds and speech recognition at 4 individualized signal-to-noise ratios were measured under three conditions, namely, unaided, aided with fast-acting compression (FAC), and aided with slow-acting compression (SAC). Results The results of this study showed that modulation discrimination thresholds in the unaided (−8.14 dB) and aided SAC (−8.19 dB) conditions were better than the modulation thresholds in the FAC (−4.67 dB) conditions. The speech recognition threshold (SRT75%) for FAC (5.21 dB) did not differ significantly from SAC (3.39 dB) (p = 0.12). A decision tree analysis showed that the inclusion of the AP, unaided modulation thresholds, and unaided SRT75% may correctly identify the optimal compression speeds (FAC vs. SAC) for individual presbycusic patients with up to 90% accuracy. Conclusion Both modes of compression speeds improved a presbycusic patient's speech recognition ability in noise. The SAC hearing aids may better preserve the modulation thresholds than the FAC hearing aids. The measurement of AP, along with the unaided modulation thresholds and unaided SRT75%, may help guide the selection of optimal compression speeds for individual presbycusic patients.
Collapse
Affiliation(s)
- Yi Zhang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Chen
- School of Electronics Engineering and Computer Science, Peking University, Beijing, China
| | - Yanmei Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Baoxuan Sun
- Widex Hearing Aid (Shanghai) Co., Ltd., Shanghai, China
| | - Yuhe Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yuhe Liu
| |
Collapse
|
23
|
Grant KJ, Parthasarathy A, Vasilkov V, Caswell-Midwinter B, Freitas ME, de Gruttola V, Polley DB, Liberman MC, Maison SF. Predicting neural deficits in sensorineural hearing loss from word recognition scores. Sci Rep 2022; 12:8929. [PMID: 35739134 PMCID: PMC9226113 DOI: 10.1038/s41598-022-13023-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/19/2022] [Indexed: 12/28/2022] Open
Abstract
The current gold standard of clinical hearing assessment includes a pure-tone audiogram combined with a word recognition task. This retrospective study tests the hypothesis that deficits in word recognition that cannot be explained by loss in audibility or cognition may reflect underlying cochlear nerve degeneration (CND). We collected the audiological data of nearly 96,000 ears from patients with normal hearing, conductive hearing loss (CHL) and a variety of sensorineural etiologies including (1) age-related hearing loss (ARHL); (2) neuropathy related to vestibular schwannoma or neurofibromatosis of type 2; (3) Ménière’s disease; (4) sudden sensorineural hearing loss (SSNHL), (5) exposure to ototoxic drugs (carboplatin and/or cisplatin, vancomycin or gentamicin) or (6) noise damage including those with a 4-kHz “noise notch” or reporting occupational or recreational noise exposure. Word recognition was scored using CID W-22 monosyllabic word lists. The Articulation Index was used to predict the speech intelligibility curve using a transfer function for CID W-22. The level at which maximal intelligibility was predicted was used as presentation level (70 dB HL minimum). Word scores decreased dramatically with age and thresholds in all groups with SNHL etiologies, but relatively little in the conductive hearing loss group. Discrepancies between measured and predicted word scores were largest in patients with neuropathy, Ménière’s disease and SSNHL, intermediate in the noise-damage and ototoxic drug groups, and smallest in the ARHL group. In the CHL group, the measured and predicted word scores were very similar. Since word-score predictions assume that audiometric losses can be compensated by increasing stimulus level, their accuracy in predicting word score for CHL patients is unsurprising. The lack of a strong age effect on word scores in CHL shows that cognitive decline is not a major factor in this test. Amongst the possible contributions to word score discrepancies, CND is a prime candidate: it should worsen intelligibility without affecting thresholds and has been documented in human temporal bones with SNHL. Comparing the audiological trends observed here with the existing histopathological literature supports the notion that word score discrepancies may be a useful CND metric.
Collapse
Affiliation(s)
- Kelsie J Grant
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, 243 Charles Street, Boston, MA, 02114-3096, USA
| | - Aravindakshan Parthasarathy
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, 243 Charles Street, Boston, MA, 02114-3096, USA.,Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA.,Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Viacheslav Vasilkov
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, 243 Charles Street, Boston, MA, 02114-3096, USA.,Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Benjamin Caswell-Midwinter
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, 243 Charles Street, Boston, MA, 02114-3096, USA.,Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Maria E Freitas
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, 243 Charles Street, Boston, MA, 02114-3096, USA
| | - Victor de Gruttola
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, 243 Charles Street, Boston, MA, 02114-3096, USA.,Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, 243 Charles Street, Boston, MA, 02114-3096, USA.,Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Stéphane F Maison
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, 243 Charles Street, Boston, MA, 02114-3096, USA. .,Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Shehabi AM, Prendergast G, Plack CJ. The Relative and Combined Effects of Noise Exposure and Aging on Auditory Peripheral Neural Deafferentation: A Narrative Review. Front Aging Neurosci 2022; 14:877588. [PMID: 35813954 PMCID: PMC9260498 DOI: 10.3389/fnagi.2022.877588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Animal studies have shown that noise exposure and aging cause a reduction in the number of synapses between low and medium spontaneous rate auditory nerve fibers and inner hair cells before outer hair cell deterioration. This noise-induced and age-related cochlear synaptopathy (CS) is hypothesized to compromise speech recognition at moderate-to-high suprathreshold levels in humans. This paper evaluates the evidence on the relative and combined effects of noise exposure and aging on CS, in both animals and humans, using histopathological and proxy measures. In animal studies, noise exposure seems to result in a higher proportion of CS (up to 70% synapse loss) compared to aging (up to 48% synapse loss). Following noise exposure, older animals, depending on their species, seem to either exhibit significant or little further synapse loss compared to their younger counterparts. In humans, temporal bone studies suggest a possible age- and noise-related auditory nerve fiber loss. Based on the animal data obtained from different species, we predict that noise exposure may accelerate age-related CS to at least some extent in humans. In animals, noise-induced and age-related CS in separation have been consistently associated with a decreased amplitude of wave 1 of the auditory brainstem response, reduced middle ear muscle reflex strength, and degraded temporal processing as demonstrated by lower amplitudes of the envelope following response. In humans, the individual effects of noise exposure and aging do not seem to translate clearly into deficits in electrophysiological, middle ear muscle reflex, and behavioral measures of CS. Moreover, the evidence on the combined effects of noise exposure and aging on peripheral neural deafferentation in humans using electrophysiological and behavioral measures is even more sparse and inconclusive. Further research is necessary to establish the individual and combined effects of CS in humans using temporal bone, objective, and behavioral measures.
Collapse
Affiliation(s)
- Adnan M. Shehabi
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
- Department of Audiology and Speech Therapy, Birzeit University, Birzeit, Palestine
| | - Garreth Prendergast
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
| | - Christopher J. Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
25
|
Le Prell CG. Prevention of Noise-Induced Hearing Loss Using Investigational Medicines for the Inner Ear: Previous Trial Outcomes Should Inform Future Trial Design. Antioxid Redox Signal 2022; 36:1171-1202. [PMID: 34346254 PMCID: PMC9221155 DOI: 10.1089/ars.2021.0166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 11/13/2022]
Abstract
Significance: Noise-induced hearing loss (NIHL) is an important public health issue resulting in decreased quality of life for affected individuals, and significant costs to employers and governmental agencies. Recent Advances: Advances in the mechanistic understanding of NIHL have prompted a growing number of proposed, in-progress, and completed clinical trials for possible protections against NIHL via antioxidants and other drug agents. Thirty-one clinical trials evaluating prevention of either temporary or permanent NIHL were identified and are reviewed. Critical Issues: This review revealed little consistency in the noise-exposed populations in which drugs are evaluated or the primary outcomes used to measure NIHL prevention. Changes in pure-tone thresholds were the most common primary outcomes; specific threshold metrics included both average hearing loss and incidence of significant hearing loss. Changes in otoacoustic emission (OAE) amplitude were relatively common secondary outcomes. Extended high-frequency (EHF) hearing and speech-in-noise perception are commonly adversely affected by noise exposure but are not consistently included in clinical trials assessing prevention of NIHL. Future Directions: Multiple criteria are available for monitoring NIHL, but the specific criterion to be used to define clinically significant otoprotection remains a topic of discussion. Audiogram-based primary outcome measures can be combined with secondary outcomes, including OAE amplitude, EHF hearing, speech-in-noise testing, tinnitus surveys, and patient-reported outcomes. Standardization of test protocols for the above primary and secondary outcomes, and associated reporting criterion for each, would facilitate clinical trial design and comparison of results across investigational drug agents. Antioxid. Redox Signal. 36, 1171-1202.
Collapse
Affiliation(s)
- Colleen G. Le Prell
- Department of Speech, Language, and Hearing Science, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
26
|
Foster AC, Szobota S, Piu F, Jacques BE, Moore DR, Sanchez VA, Anderson JJ. A neurotrophic approach to treating hearing loss: Translation from animal models to clinical proof-of-concept. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:3937. [PMID: 35778165 DOI: 10.1121/10.0011510] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Currently, there are no approved medicines available for the treatment of hearing loss. However, research over the past two decades has contributed to a growing understanding of the pathological mechanisms in the cochlea that result in hearing difficulties. The concept that a loss of the synapses connecting inner hair cells with the auditory nerve (cochlear synaptopathy) contributes to hearing loss has gained considerable attention. Both animal and human post-mortem studies support the idea that these synapses (ribbon synapses) are highly vulnerable to noise, ototoxicity, and the aging process. Their degeneration has been suggested as an important factor in the speech-in-noise difficulties commonly experienced by those suffering with hearing loss. Neurotrophins such as brain derived neurotrophic factor (BDNF) have the potential to restore these synapses and provide improved hearing function. OTO-413 is a sustained exposure formulation of BDNF suitable for intratympanic administration that in preclinical models has shown the ability to restore ribbon synapses and provide functional hearing benefit. A phase 1/2 clinical trial with OTO-413 has provided initial proof-of-concept for improved speech-in-noise hearing performance in subjects with hearing loss. Key considerations for the design of this clinical study, including aspects of the speech-in-noise assessments, are discussed.
Collapse
Affiliation(s)
- Alan C Foster
- Research and Preclinical Development, Otonomy Inc., 4796 Executive Drive, San Diego, California 92121, USA
| | - Stephanie Szobota
- Research and Preclinical Development, Otonomy Inc., 4796 Executive Drive, San Diego, California 92121, USA
| | - Fabrice Piu
- Research and Preclinical Development, Otonomy Inc., 4796 Executive Drive, San Diego, California 92121, USA
| | - Bonnie E Jacques
- Research and Preclinical Development, Otonomy Inc., 4796 Executive Drive, San Diego, California 92121, USA
| | - David R Moore
- Communication Sciences Research Center, Cincinnati Children's Hospital, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3026, USA
| | - Victoria A Sanchez
- Department of Otolaryngology - Head & Neck Surgery, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 73, Tampa, Florida 33620, USA
| | - Jeffery J Anderson
- Clinical Sciences, Otonomy Inc., 4796 Executive Drive, San Diego, California 92121, USA
| |
Collapse
|
27
|
Jahn KN, Hancock KE, Maison SF, Polley DB. Estimated cochlear neural degeneration is associated with loudness hypersensitivity in individuals with normal audiograms. JASA EXPRESS LETTERS 2022; 2:064403. [PMID: 35719240 PMCID: PMC9199082 DOI: 10.1121/10.0011694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/25/2022] [Indexed: 05/27/2023]
Abstract
In animal models, cochlear neural degeneration (CND) is associated with excess central gain and hyperacusis, but a compelling link between reduced cochlear neural inputs and heightened loudness perception in humans remains elusive. The present study examined whether greater estimated cochlear neural degeneration (eCND) in human participants with normal hearing thresholds is associated with heightened loudness perception and sound aversion. Results demonstrated that loudness perception was heightened in ears with greater eCND and in subjects who self-report loudness aversion via a hyperacusis questionnaire. These findings suggest that CND may be a potential trigger for loudness hypersensitivity.
Collapse
Affiliation(s)
- Kelly N Jahn
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts 02114, USA , , ,
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts 02114, USA , , ,
| | - Stéphane F Maison
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts 02114, USA , , ,
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts 02114, USA , , ,
| |
Collapse
|
28
|
Ripley S, Xia L, Zhang Z, Aiken SJ, Wang J. Animal-to-Human Translation Difficulties and Problems With Proposed Coding-in-Noise Deficits in Noise-Induced Synaptopathy and Hidden Hearing Loss. Front Neurosci 2022; 16:893542. [PMID: 35720689 PMCID: PMC9199355 DOI: 10.3389/fnins.2022.893542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/22/2022] [Indexed: 12/26/2022] Open
Abstract
Noise induced synaptopathy (NIS) and hidden hearing loss (NIHHL) have been hot topic in hearing research since a massive synaptic loss was identified in CBA mice after a brief noise exposure that did not cause permanent threshold shift (PTS) in 2009. Based upon the amount of synaptic loss and the bias of it to synapses with a group of auditory nerve fibers (ANFs) with low spontaneous rate (LSR), coding-in-noise deficit (CIND) has been speculated as the major difficult of hearing in subjects with NIS and NIHHL. This speculation is based upon the idea that the coding of sound at high level against background noise relies mainly on the LSR ANFs. However, the translation from animal data to humans for NIS remains to be justified due to the difference in noise exposure between laboratory animals and human subjects in real life, the lack of morphological data and reliable functional methods to quantify or estimate the loss of the afferent synapses by noise. Moreover, there is no clear, robust data revealing the CIND even in animals with the synaptic loss but no PTS. In humans, both positive and negative reports are available. The difficulty in verifying CINDs has led a re-examination of the hypothesis that CIND is the major deficit associated with NIS and NIHHL, and the theoretical basis of this idea on the role of LSR ANFs. This review summarized the current status of research in NIS and NIHHL, with focus on the translational difficulty from animal data to human clinicals, the technical difficulties in quantifying NIS in humans, and the problems with the SR theory on signal coding. Temporal fluctuation profile model was discussed as a potential alternative for signal coding at high sound level against background noise, in association with the mechanisms of efferent control on the cochlea gain.
Collapse
Affiliation(s)
- Sara Ripley
- School of Communication Sciences and Disorders, Dalhousie University, Halifax, NS, Canada
| | - Li Xia
- Department of Otolaryngology-Head and Neck Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Zhen Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Steve J. Aiken
- School of Communication Sciences and Disorders, Dalhousie University, Halifax, NS, Canada
| | - Jian Wang
- School of Communication Sciences and Disorders, Dalhousie University, Halifax, NS, Canada
- Department of Otolaryngology-Head and Neck Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
29
|
Suthakar K, Liberman MC. Noise Masking in Cochlear Synaptopathy: Auditory Brainstem Response vs. Auditory Nerve Response in Mouse. J Neurophysiol 2022; 127:1574-1585. [PMID: 35583974 PMCID: PMC9169830 DOI: 10.1152/jn.00402.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 11/22/2022] Open
Abstract
After acoustic overexposure, many auditory-nerve fiber (ANF) synapses permanently retract from surviving cochlear hair cells. This synaptopathy is hard to diagnose, since it does not elevate audiometric thresholds until almost no synapses remain, nevertheless it may degrade discrimination of complex stimuli especially in noisy environments. Here, we study an assay based on masking the auditory brainstem responses (ABRs) to a moderate-level probe tone with continuous noise of varied sound levels, and we investigate the underlying ANF responses at the single-fiber level. Synaptopathy was induced by overexposure to octave-band noise, resulting in a permanent synaptic loss of ~50%, without permanent threshold elevation except at the highest frequencies. The normal progressive delay of ABR peaks with increasing masker level is diminished in synaptopathic ears; however, the single-fiber analysis suggests that this normal latency shift does not arise because contributing ANFs shift from low-threshold fibers (with high spontaneous rates) to high-threshold fibers (with low spontaneous rates). Rather, it may arise because of a shift in the cochlear region dominating the response. Surprisingly, the dynamic range of masking, i.e. the difference between the lowest masker level that attenuates the ABR to a fixed-level probe and the lowest masker level that eliminates the ABR, is enhanced in the synaptopathic ears. This ABR behavior mirrors the single-fiber data showing a paradoxical enhancement of onset-response synchrony and resistance to masking in responses of ANFs in the synaptopathic regions. An assay based on the dynamic range of masking could be useful in diagnosing synaptic damage in human populations.
Collapse
Affiliation(s)
- Kirupa Suthakar
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
30
|
Sonstrom Malowski K, Gollihugh LH, Malyuk H, Le Prell CG. Auditory changes following firearm noise exposure, a review. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:1769. [PMID: 35364940 DOI: 10.1121/10.0009675] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Firearms produce peak sound pressure levels (peak SPL) between ∼130 and 175 dB peak SPL, creating significant risk of noise-induced hearing loss (NIHL) in those exposed to firearm noise during occupational, recreational, and/or military operations. Noise-induced tinnitus and hearing loss are common in military service members, public safety officers, and hunters/shooters. Given the significant risk of NIHL due to firearm and other noise sources, there is an interest in, and demand for, interventions to prevent and/or treat NIHL in high-risk populations. However, research and clinical trial designs assessing NIHL prevention have varied due to inconsistent data from the literature, specifically with end point definitions, study protocols, and assessment methodologies. This article presents a scoping review of the literature pertaining to auditory changes following firearm noise exposure. Meta-analysis was not possible due to heterogeneity of the study designs. Recommendations regarding audiologic test approach and monitoring of populations at risk for NIHL are presented based on critical review of the existing literature.
Collapse
Affiliation(s)
| | - Lindsay H Gollihugh
- School of Speech-Language Pathology and Audiology, The University of Akron, Akron, Ohio 44325, USA
| | - Heather Malyuk
- School of Speech-Language Pathology and Audiology, The University of Akron, Akron, Ohio 44325, USA
| | - Colleen G Le Prell
- Department of Speech, Language, and Hearing, The University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
31
|
Cutting Through the Noise: Noise-Induced Cochlear Synaptopathy and Individual Differences in Speech Understanding Among Listeners With Normal Audiograms. Ear Hear 2022; 43:9-22. [PMID: 34751676 PMCID: PMC8712363 DOI: 10.1097/aud.0000000000001147] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Following a conversation in a crowded restaurant or at a lively party poses immense perceptual challenges for some individuals with normal hearing thresholds. A number of studies have investigated whether noise-induced cochlear synaptopathy (CS; damage to the synapses between cochlear hair cells and the auditory nerve following noise exposure that does not permanently elevate hearing thresholds) contributes to this difficulty. A few studies have observed correlations between proxies of noise-induced CS and speech perception in difficult listening conditions, but many have found no evidence of a relationship. To understand these mixed results, we reviewed previous studies that have examined noise-induced CS and performance on speech perception tasks in adverse listening conditions in adults with normal or near-normal hearing thresholds. Our review suggests that superficially similar speech perception paradigms used in previous investigations actually placed very different demands on sensory, perceptual, and cognitive processing. Speech perception tests that use low signal-to-noise ratios and maximize the importance of fine sensory details- specifically by using test stimuli for which lexical, syntactic, and semantic cues do not contribute to performance-are more likely to show a relationship to estimated CS levels. Thus, the current controversy as to whether or not noise-induced CS contributes to individual differences in speech perception under challenging listening conditions may be due in part to the fact that many of the speech perception tasks used in past studies are relatively insensitive to CS-induced deficits.
Collapse
|
32
|
Maele TV, Keshishzadeh S, Poortere ND, Dhooge I, Keppler H, Verhulst S. The Variability in Potential Biomarkers for Cochlear Synaptopathy After Recreational Noise Exposure. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:4964-4981. [PMID: 34670099 DOI: 10.1044/2021_jslhr-21-00064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
PURPOSE Speech-in-noise tests and suprathreshold auditory evoked potentials are promising biomarkers to diagnose cochlear synaptopathy (CS) in humans. This study investigated whether these biomarkers changed after recreational noise exposure. METHOD The baseline auditory status of 19 normal-hearing young adults was analyzed using questionnaires, pure-tone audiometry, speech audiometry, and auditory evoked potentials. Nineteen subjects attended a music festival and completed the same tests again at Day 1, Day 3, and Day 5 after the music festival. RESULTS No significant relations were found between lifetime noise-exposure history and the hearing tests. Changes in biomarkers from the first session to the follow-up sessions were nonsignificant, except for speech audiometry, which showed a significant learning effect (performance improvement). CONCLUSIONS Despite the individual variability in prefestival biomarkers, we did not observe changes related to the noise-exposure dose caused by the attended event. This can indicate the absence of noise exposure-driven CS in the study cohort, or reflect that biomarkers were not sensitive enough to detect mild CS. Future research should include a more diverse study cohort, dosimetry, and results from test-retest reliability studies to provide more insight into the relationship between recreational noise exposure and CS. Supplemental Material https://doi.org/10.23641/asha.16821283.
Collapse
Affiliation(s)
- Tine Vande Maele
- Department of Rehabilitation Sciences, Ghent University, Belgium
| | - Sarineh Keshishzadeh
- Hearing Technology, WAVES, Department of Information Technology, Ghent University, Belgium
| | - Nele De Poortere
- Department of Rehabilitation Sciences, Ghent University, Belgium
| | - Ingeborg Dhooge
- Department of Head and Skin, Ghent University, Belgium
- Department of Ear, Nose and Throat, Ghent University Hospital, Belgium
| | - Hannah Keppler
- Department of Rehabilitation Sciences, Ghent University, Belgium
- Department of Ear, Nose and Throat, Ghent University Hospital, Belgium
| | - Sarah Verhulst
- Hearing Technology, WAVES, Department of Information Technology, Ghent University, Belgium
| |
Collapse
|
33
|
Current topics in hearing research: Deafferentation and threshold independent hearing loss. Hear Res 2021; 419:108408. [PMID: 34955321 DOI: 10.1016/j.heares.2021.108408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022]
Abstract
Hearing research findings in recent years have begun to change how we think about hearing loss and how we consider the risk of auditory damage from noise exposure. These findings include evidence of noise-induced cochlear damage in the absence of corresponding permanent threshold elevation or evidence of hair cell loss. Animal studies in several species have shown that noise exposures that produce robust but only temporary threshold shifts can permanently damage inner hair cell synaptic ribbons. This type of synaptic degeneration has also been shown to occur as a result of aging in animals and humans. The emergence of these data has motivated a number of clinical studies aimed at identifying the perceptual correlates associated with synaptopathy. The deficits believed to arise from synaptopathy include poorer hearing in background noise, tinnitus and hyperacusis (loudness intolerance). However, the findings from human studies have been mixed. Key questions remain as to whether synaptopathy reliably produces suprathreshold perceptual deficits or whether it serves as an early indicator of auditory damage with suprathreshold deficits emerging later as a function of further cochlear damage. Here, we provide an overview of both human and animal studies that explore the relationship among inner hair cell damage, including loss of afferent synapses, auditory thresholds, and suprathreshold measures of hearing.
Collapse
|
34
|
Hancock KE, O'Brien B, Santarelli R, Liberman MC, Maison SF. The summating potential in human electrocochleography: Gaussian models and Fourier analysis. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:2492. [PMID: 34717457 PMCID: PMC8637743 DOI: 10.1121/10.0006572] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 05/07/2023]
Abstract
In recent electrocochleographic studies, the amplitude of the summating potential (SP) was an important predictor of performance on word-recognition in difficult listening environments among normal-hearing listeners; paradoxically the SP was largest in those with the worst scores. SP has traditionally been extracted by visual inspection, a technique prone to subjectivity and error. Here, we assess the utility of a fitting algorithm [Kamerer, Neely, and Rasetshwane (2020). J Acoust Soc Am. 147, 25-31] using a summed-Gaussian model to objectify and improve SP identification. Results show that SPs extracted by visual inspection correlate better with word scores than those from the model fits. We also use fast Fourier transform to decompose these evoked responses into their spectral components to gain insight into the cellular generators of SP. We find a component at 310 Hz associated with word-identification tasks that correlates with SP amplitude. This component is absent in patients with genetic mutations affecting synaptic transmission and may reflect a contribution from excitatory post-synaptic potentials in auditory nerve fibers.
Collapse
Affiliation(s)
- Kenneth E Hancock
- Department of Otolaryngology - Head & Neck Surgery, Harvard Medical School and Eaton-Peabody Laboratories, Massachusetts Eye & Ear, 243 Charles Street, Boston, Massachusetts 02115, USA
| | - Bennett O'Brien
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, 243 Charles Street, Boston, Massachusetts 02115, USA
| | - Rosamaria Santarelli
- Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - M Charles Liberman
- Department of Otolaryngology - Head & Neck Surgery, Harvard Medical School and Eaton-Peabody Laboratories, Massachusetts Eye & Ear, 243 Charles Street, Boston, Massachusetts 02115, USA
| | - Stéphane F Maison
- Department of Otolaryngology - Head & Neck Surgery, Harvard Medical School and Eaton-Peabody Laboratories, Massachusetts Eye & Ear, 243 Charles Street, Boston, Massachusetts 02115, USA
| |
Collapse
|
35
|
Patro C, Kreft HA, Wojtczak M. The search for correlates of age-related cochlear synaptopathy: Measures of temporal envelope processing and spatial release from speech-on-speech masking. Hear Res 2021; 409:108333. [PMID: 34425347 PMCID: PMC8424701 DOI: 10.1016/j.heares.2021.108333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 07/17/2021] [Accepted: 08/04/2021] [Indexed: 01/13/2023]
Abstract
Older adults often experience difficulties understanding speech in adverse listening conditions. It has been suggested that for listeners with normal and near-normal audiograms, these difficulties may, at least in part, arise from age-related cochlear synaptopathy. The aim of this study was to assess if performance on auditory tasks relying on temporal envelope processing reveal age-related deficits consistent with those expected from cochlear synaptopathy. Listeners aged 20 to 66 years were tested using a series of psychophysical, electrophysiological, and speech-perception measures using stimulus configurations that promote coding by medium- and low-spontaneous-rate auditory-nerve fibers. Cognitive measures of executive function were obtained to control for age-related cognitive decline. Results from the different tests were not significantly correlated with each other despite a presumed reliance on common mechanisms involved in temporal envelope processing. Only gap-detection thresholds for a tone in noise and spatial release from speech-on-speech masking were significantly correlated with age. Increasing age was related to impaired cognitive executive function. Multivariate regression analyses showed that individual differences in hearing sensitivity, envelope-based measures, and scores from nonauditory cognitive tests did not significantly contribute to the variability in spatial release from speech-on-speech masking for small target/masker spatial separation, while age was a significant contributor.
Collapse
Affiliation(s)
- Chhayakanta Patro
- Department of Psychology, University of Minnesota, N640 Elliott Hall, 75 East River Parkway, Minneapolis, MN 55455, USA.
| | - Heather A Kreft
- Department of Psychology, University of Minnesota, N640 Elliott Hall, 75 East River Parkway, Minneapolis, MN 55455, USA
| | - Magdalena Wojtczak
- Department of Psychology, University of Minnesota, N640 Elliott Hall, 75 East River Parkway, Minneapolis, MN 55455, USA
| |
Collapse
|