1
|
Bhattacharya D, Bartley AF, Li Q, Dobrunz LE. Bicuculline restores frequency-dependent hippocampal I/E ratio and circuit function in PGC-1ɑ null mice. Neurosci Res 2022; 184:9-18. [PMID: 35842011 PMCID: PMC10865982 DOI: 10.1016/j.neures.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 10/31/2022]
Abstract
Altered inhibition/excitation (I/E) balance contributes to various brain disorders. Dysfunctional GABAergic interneurons enhance or reduce inhibition, resulting in I/E imbalances. Differences in short-term plasticity between excitation and inhibition cause frequency-dependence of the I/E ratio, which can be altered by GABAergic dysfunction. However, it is unknown whether I/E imbalances can be rescued pharmacologically using a single dose when the imbalance magnitude is frequency-dependent. Loss of PGC-1α (peroxisome proliferator activated receptor γ coactivator 1α) causes transcriptional dysregulation in hippocampal GABAergic interneurons. PGC-1α-/- slices have enhanced baseline inhibition onto CA1 pyramidal cells, causing increased I/E ratio and impaired circuit function. High frequency stimulation reduces the I/E ratio and recovers circuit function in PGC-1α-/- slices. Here we tested if using a low dose of bicuculline that can restore baseline I/E ratio can also rescue the frequency-dependent I/E imbalances in these mice. Remarkably, bicuculline did not reduce the I/E ratio below that of wild type during high frequency stimulation. Interestingly, bicuculline enhanced the paired-pulse ratio (PPR) of disynaptic inhibition without changing the monosynaptic inhibition PPR, suggesting that bicuculline modifies interneuron recruitment and not GABA release. Bicuculline improved CA1 output in PGC-1α-/- slices, enhancing EPSP-spike coupling to wild type levels at high and low frequencies. Our results show that it is possible to rescue frequency-dependent I/E imbalances in an animal model of transcriptional dysregulation with a single treatment.
Collapse
Affiliation(s)
- Dwipayan Bhattacharya
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States
| | - Aundrea F Bartley
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States
| | - Qin Li
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States
| | - Lynn E Dobrunz
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States.
| |
Collapse
|
2
|
Multicoding in neural information transfer suggested by mathematical analysis of the frequency-dependent synaptic plasticity in vivo. Sci Rep 2020; 10:13974. [PMID: 32811844 PMCID: PMC7435278 DOI: 10.1038/s41598-020-70876-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/04/2020] [Indexed: 11/29/2022] Open
Abstract
Two elements of neural information processing have primarily been proposed: firing rate and spike timing of neurons. In the case of synaptic plasticity, although spike-timing-dependent plasticity (STDP) depending on presynaptic and postsynaptic spike times had been considered the most common rule, recent studies have shown the inhibitory nature of the brain in vivo for precise spike timing, which is key to the STDP. Thus, the importance of the firing frequency in synaptic plasticity in vivo has been recognized again. However, little is understood about how the frequency-dependent synaptic plasticity (FDP) is regulated in vivo. Here, we focused on the presynaptic input pattern, the intracellular calcium decay time constants, and the background synaptic activity, which vary depending on neuron types and the anatomical and physiological environment in the brain. By analyzing a calcium-based model, we found that the synaptic weight differs depending on these factors characteristic in vivo, even if neurons receive the same input rate. This finding suggests the involvement of multifaceted factors other than input frequency in FDP and even neural coding in vivo.
Collapse
|
3
|
Sun HY, Li Q, Bartley AF, Dobrunz LE. Target-cell-specific Short-term Plasticity Reduces the Excitatory Drive onto CA1 Interneurons Relative to Pyramidal Cells During Physiologically-derived Spike Trains. Neuroscience 2018; 388:430-447. [PMID: 30099117 PMCID: PMC6201261 DOI: 10.1016/j.neuroscience.2018.07.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 06/27/2018] [Accepted: 07/30/2018] [Indexed: 11/25/2022]
Abstract
Short-term plasticity enables synaptic strength to be dynamically regulated by input timing. Excitatory synapses arising from the same axon can have profoundly different presynaptic forms of short-term plasticity onto inhibitory and excitatory neurons. We previously showed that Schaffer collateral synapses onto most hippocampal CA1 stratum radiatum interneurons have less paired-pulse facilitation than synapses onto CA1 pyramidal cells, but little difference in steady-state short-term depression. However, less is known about how synapses onto interneurons respond to temporally complex patterns that occur in vivo. Here we compared Schaffer collateral synapses onto stratum radiatum interneurons and pyramidal cells in acute hippocampal slices in response to physiologically-derived spike trains. We find that synapses onto interneurons have less short-term facilitation than synapses onto pyramidal cells, and a subset expresses only short-term depression. Mathematical modeling predicts this target cell-specific short-term plasticity occurs through differences in initial release probability. All three groups have more short-term facilitation during physiologically-derived train stimulation than during constant-frequency stimulation at the same frequency, indicating that variability in stimulus timing is important. These target-cell specific differences in short-term plasticity reduce the strength of excitatory input onto interneurons relative to pyramidal cells, and of depression interneurons relative to facilitation interneurons, during high frequency portions of the train. This occurs to a similar extent at 25 °C and at 33 °C, and is even greater at physiological extracellular calcium. Target-cell specific differences in short-term plasticity enable synapses to have different temporal filtering characteristics, which may help to dynamically regulate the balance of inhibition and excitation in CA1.
Collapse
Affiliation(s)
- Hua Yu Sun
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Qin Li
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aundrea F Bartley
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lynn E Dobrunz
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
4
|
Milshtein-Parush H, Frere S, Regev L, Lahav C, Benbenishty A, Ben-Eliyahu S, Goshen I, Slutsky I. Sensory Deprivation Triggers Synaptic and Intrinsic Plasticity in the Hippocampus. Cereb Cortex 2018; 27:3457-3470. [PMID: 28407141 DOI: 10.1093/cercor/bhx084] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Indexed: 12/17/2022] Open
Abstract
Hippocampus, a temporal lobe structure involved in learning and memory, receives information from all sensory modalities. Despite extensive research on the role of sensory experience in cortical map plasticity, little is known about whether and how sensory experience regulates functioning of the hippocampal circuits. Here, we show that 9 ± 2 days of whisker deprivation during early mouse development depresses activity of CA3 pyramidal neurons by several principal mechanisms: decrease in release probability, increase in the fraction of silent synapses, and reduction in intrinsic excitability. As a result of deprivation-induced presynaptic inhibition, CA3-CA1 synaptic facilitation was augmented at high frequencies, shifting filtering properties of synapses. The changes in the AMPA-mediated synaptic transmission were accompanied by an increase in NR2B-containing NMDA receptors and a reduction in the AMPA/NMDA ratio. The observed reconfiguration of the CA3-CA1 connections may represent a homeostatic adaptation to augmentation in synaptic activity during the initial deprivation phase. In adult mice, tactile disuse diminished intrinsic excitability without altering synaptic facilitation. We suggest that sensory experience regulates computations performed by the hippocampus by tuning its synaptic and intrinsic characteristics.
Collapse
Affiliation(s)
- Hila Milshtein-Parush
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Samuel Frere
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Limor Regev
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem 91904,Israel
| | - Coren Lahav
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Amit Benbenishty
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.,Neuroimmunology Research Unit, School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shamgar Ben-Eliyahu
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.,Neuroimmunology Research Unit, School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Inbal Goshen
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem 91904,Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
5
|
Afferent specific role of NMDA receptors for the circuit integration of hippocampal neurogliaform cells. Nat Commun 2017; 8:152. [PMID: 28751664 PMCID: PMC5532276 DOI: 10.1038/s41467-017-00218-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 06/13/2017] [Indexed: 01/28/2023] Open
Abstract
Appropriate integration of GABAergic interneurons into nascent cortical circuits is critical for ensuring normal information processing within the brain. Network and cognitive deficits associated with neurological disorders, such as schizophrenia, that result from NMDA receptor-hypofunction have been mainly attributed to dysfunction of parvalbumin-expressing interneurons that paradoxically express low levels of synaptic NMDA receptors. Here, we reveal that throughout postnatal development, thalamic, and entorhinal cortical inputs onto hippocampal neurogliaform cells are characterized by a large NMDA receptor-mediated component. This NMDA receptor-signaling is prerequisite for developmental programs ultimately responsible for the appropriate long-range AMPAR-mediated recruitment of neurogliaform cells. In contrast, AMPAR-mediated input at local Schaffer-collateral synapses on neurogliaform cells remains normal following NMDA receptor-ablation. These afferent specific deficits potentially impact neurogliaform cell mediated inhibition within the hippocampus and our findings reveal circuit loci implicating this relatively understudied interneuron subtype in the etiology of neurodevelopmental disorders characterized by NMDA receptor-hypofunction.Proper brain function depends on the correct assembly of excitatory and inhibitory neurons into neural circuits. Here the authors show that during early postnatal development in mice, NMDAR signaling via activity of long-range synaptic inputs onto neurogliaform cells is required for their appropriate integration into the hippocampal circuitry.
Collapse
|
6
|
Brady LJ, Bartley AF, Li Q, McMeekin LJ, Hablitz JJ, Cowell RM, Dobrunz LE. Transcriptional dysregulation causes altered modulation of inhibition by haloperidol. Neuropharmacology 2016; 111:304-313. [PMID: 27480797 PMCID: PMC5207497 DOI: 10.1016/j.neuropharm.2016.07.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 07/14/2016] [Accepted: 07/26/2016] [Indexed: 11/30/2022]
Abstract
Many neuropsychiatric and neurodevelopmental disorders such as schizophrenia and autism involve interneuron transcriptional dysregulation. The transcriptional coactivator PGC-1α regulates gene expression in GABAergic interneurons, which are important for regulating hippocampal network activity. Genetic deletion of PGC-1α causes a decrease in parvalbumin expression, similar to what is observed in schizophrenia postmortem tissue. Our lab has previously shown that PGC-1α-/- mice have enhanced GABAergic inhibition onto CA1 pyramidal cells, which increases the inhibition/excitation (I/E) ratio, alters hippocampal circuit function, and impairs hippocampal dependent behavior. The typical antipsychotic haloperidol, a dopamine receptor antagonist with selectivity for D2-like receptors, has previously been shown to increase excitation in the CA1 region of hippocampus. We therefore tested whether haloperidol could normalize the I/E balance in CA1 of PGC-1α-/- mice, potentially improving circuit function and behavior. Surprisingly, we discovered instead that interneuron transcriptional dysregulation caused by loss of PGC-1α alters the effects of haloperidol on hippocampal synaptic transmission and circuit function. Acute administration of haloperidol causes disinhibition in CA1 and decreases the I/E ratio onto CA1 pyramidal cells in slices from PGC-1α+/+ mice, but not PGC-1α-/- mice. The spread of activity in CA1, assessed by voltage sensitive dye imaging, is increased by haloperidol in slices from PGC-1α+/+ mice; however haloperidol decreases the spread of activity in slices from PGC-1α-/- mice. Haloperidol increased the power of hippocampal gamma oscillation in slices from PGC-1α+/+ mice but reduced the power of gamma oscillations in slices from PGC-1α-/- mice. Nest construction, an innate hippocampal-dependent behavior, is inhibited by haloperidol in PGC-1α+/+ mice, but not in PGC-1α-/- mice, which already have impaired nest building. The effects of haloperidol are mimicked and occluded by a D2 receptor antagonist in slices from PGC-1α+/+ mice, and the effects of blocking D2 receptors are lost in slices from PGC-1α-/- mice, although there is no change in D2 receptor transcript levels. Together, our results show that hippocampal inhibitory synaptic transmission, CA1 circuit function, and hippocampal dependent behavior are modulated by the antipsychotic haloperidol, and that these effects of haloperidol are lost in PGC-1α-/- mice. These results have implications for the treatment of individuals with conditions involving PGC-1α deficiency.
Collapse
Affiliation(s)
- Lillian J Brady
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, USA; Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA.
| | - Aundrea F Bartley
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, USA; Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA.
| | - Qin Li
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, USA; Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA.
| | - Laura J McMeekin
- Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA; Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1720 7th Ave. S., Birmingham, AL, USA.
| | - John J Hablitz
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, USA; Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA.
| | - Rita M Cowell
- Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA; Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1720 7th Ave. S., Birmingham, AL, USA.
| | - Lynn E Dobrunz
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, USA; Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA.
| |
Collapse
|
7
|
Interneuron Transcriptional Dysregulation Causes Frequency-Dependent Alterations in the Balance of Inhibition and Excitation in Hippocampus. J Neurosci 2016; 35:15276-90. [PMID: 26586816 DOI: 10.1523/jneurosci.1834-15.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Circuit dysfunction in complex brain disorders such as schizophrenia and autism is caused by imbalances between inhibitory and excitatory synaptic transmission (I/E). Short-term plasticity differentially alters responses from excitatory and inhibitory synapses, causing the I/E ratio to change as a function of frequency. However, little is known about I/E ratio dynamics in complex brain disorders. Transcriptional dysregulation in interneurons, particularly parvalbumin interneurons, is a consistent pathophysiological feature of schizophrenia. Peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α) is a transcriptional coactivator that in hippocampus is highly concentrated in inhibitory interneurons and regulates parvalbumin transcription. Here, we used PGC-1α(-/-) mice to investigate effects of interneuron transcriptional dysregulation on the dynamics of the I/E ratio at the synaptic and circuit level in hippocampus. We find that loss of PGC-1α increases the I/E ratio onto CA1 pyramidal cells in response to Schaffer collateral stimulation in slices from young adult mice. The underlying mechanism is enhanced basal inhibition, including increased inhibition from parvalbumin interneurons. This decreases the spread of activation in CA1 and dramatically limits pyramidal cell spiking, reducing hippocampal output. The I/E ratio and CA1 output are partially restored by paired-pulse stimulation at short intervals, indicating frequency-dependent effects. However, circuit dysfunction persists, indicated by alterations in kainate-induced gamma oscillations and impaired nest building. Together, these results show that transcriptional dysregulation in hippocampal interneurons causes frequency-dependent alterations in I/E ratio and circuit function, suggesting that PGC-1α deficiency in psychiatric and neurological disorders contributes to disease by causing functionally relevant alterations in I/E balance. SIGNIFICANCE STATEMENT Alteration in the inhibitory and excitatory synaptic transmission (I/E) balance is a fundamental principle underlying the circuit dysfunction observed in many neuropsychiatric and neurodevelopmental disorders. The I/E ratio is dynamic, continuously changing because of synaptic short-term plasticity. We show here that transcriptional dysregulation in interneurons, particularly parvalbumin interneurons, causes frequency-dependent alterations in the I/E ratio and in circuit function in hippocampus. Peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α-deficient) mice have enhanced inhibition in CA1, the opposite of what is seen in cortex. This study fills an important gap in current understanding of how changes in inhibition in complex brain disorders affect I/E dynamics, leading to region-specific circuit dysfunction and behavioral impairment. This study also provides a conceptual framework for analyzing the effects of short-term plasticity on the I/E balance in disease models.
Collapse
|
8
|
Bartley AF, Dobrunz LE. Short-term plasticity regulates the excitation/inhibition ratio and the temporal window for spike integration in CA1 pyramidal cells. Eur J Neurosci 2015; 41:1402-15. [PMID: 25903384 DOI: 10.1111/ejn.12898] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/27/2015] [Accepted: 03/16/2015] [Indexed: 12/21/2022]
Abstract
Many neurodevelopmental and neuropsychiatric disorders involve an imbalance between excitation and inhibition caused by synaptic alterations. The proper excitation/inhibition (E/I) balance is especially critical in CA1 pyramidal cells, because they control hippocampal output. Activation of Schaffer collateral axons causes direct excitation of CA1 pyramidal cells, quickly followed by disynaptic feedforward inhibition, stemming from synaptically induced firing of GABAergic interneurons. Both excitatory and inhibitory synapses are modulated by short-term plasticity, potentially causing dynamic tuning of the E/I ratio. However, the effects of short-term plasticity on the E/I ratio in CA1 pyramidal cells are not yet known. To determine this, we recorded disynaptic inhibitory postsynaptic currents and the E/I ratio in CA1 pyramidal cells in acute hippocampal slices from juvenile mice. We found that, whereas inhibitory synapses had paired-pulse depression, disynaptic inhibition instead had paired-pulse facilitation (≤ 200-ms intervals), caused by increased recruitment of feedforward interneurons. Although enhanced disynaptic inhibition helped to constrain paired-pulse facilitation of excitation, the E/I ratio was still larger on the second pulse, increasing pyramidal cell spiking. Surprisingly, this occurred without compromising the precision of spike timing. The E/I balance regulates the temporal spike integration window from multiple inputs; here, we showed that paired-pulse stimulation can broaden the spike integration window. Together, our findings show that the combined effects of short-term plasticity of disynaptic inhibition and monosynaptic excitation alter the E/I balance in CA1 pyramidal cells, leading to dynamic modulation of spike probability and the spike integration window. Short-term plasticity is therefore an important mechanism for modulating signal processing of hippocampal output.
Collapse
Affiliation(s)
- Aundrea F Bartley
- Department of Neurobiology, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd, SHEL 902, Birmingham, AL, 35294, USA
| | - Lynn E Dobrunz
- Department of Neurobiology, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd, SHEL 902, Birmingham, AL, 35294, USA
| |
Collapse
|
9
|
Petersen R, Moradpour F, Eadie B, Shin J, Kannangara T, Delaney K, Christie B. Electrophysiological identification of medial and lateral perforant path inputs to the dentate gyrus. Neuroscience 2013; 252:154-68. [DOI: 10.1016/j.neuroscience.2013.07.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/23/2013] [Accepted: 07/27/2013] [Indexed: 10/26/2022]
|
10
|
Śmiałowska M, Gołembiowska K, Kajta M, Zięba B, Dziubina A, Domin H. Selective mGluR1 antagonist EMQMCM inhibits the kainate-induced excitotoxicity in primary neuronal cultures and in the rat hippocampus. Neurotox Res 2012; 21:379-92. [PMID: 22144346 PMCID: PMC3296950 DOI: 10.1007/s12640-011-9293-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 11/07/2011] [Accepted: 11/23/2011] [Indexed: 10/25/2022]
Abstract
Abundant evidence suggests that indirect inhibitory modulation of glutamatergic transmission, via metabotropic glutamatergic receptors (mGluR), may induce neuroprotection. The present study was designed to determine whether the selective antagonist of mGluR1 (3-ethyl-2-methyl-quinolin-6-yl)-(4-methoxy-cyclohexyl)-methanone methanesulfonate (EMQMCM), showed neuroprotection against the kainate (KA)-induced excitotoxicity in vitro and in vivo. In in vitro studies on mouse primary cortical and hippocampal neuronal cultures, incubation with KA (150 μM) induced strong degeneration [measured as lactate dehydrogenase (LDH) efflux] and apoptosis (measured as caspase-3 activity). EMQMCM (0.1-100 μM) added 30 min to 6 h after KA, significantly attenuated the KA-induced LDH release and prevented the increase in caspase-3 activity in the cultures. Those effects were dose- and time-dependent. In in vivo studies KA (2.5 nmol/1 μl) was unilaterally injected into the rat dorsal CA1 hippocampal region. Degeneration was calculated by counting surviving neurons in the CA pyramidal layer using stereological methods. It was found that EMQMCM (5-10 nmol/1 μl) injected into the dorsal hippocampus 30 min, 1 h, or 3 h (the higher dose only) after KA significantly prevented the KA-induced neuronal degeneration. In vivo microdialysis studies in rat hippocampus showed that EMQMCM (100 μM) significantly increased γ-aminobutyric acid (GABA) and decreased glutamate release. When perfused simultaneously with KA, EMQMCM substantially increased GABA release and prevented the KA-induced glutamate release. The obtained results indicate that the mGluR1 antagonist, EMQMCM, may exert neuroprotection against excitotoxicity after delayed treatment (30 min to 6 h). The role of enhanced GABAergic transmission in the neuroprotection is postulated.
Collapse
Affiliation(s)
- Maria Śmiałowska
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| | | | | | | | | | | |
Collapse
|
11
|
Gómez González JF, Mel BW, Poirazi P. Distinguishing Linear vs. Non-Linear Integration in CA1 Radial Oblique Dendrites: It's about Time. Front Comput Neurosci 2011; 5:44. [PMID: 22171217 PMCID: PMC3214726 DOI: 10.3389/fncom.2011.00044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 09/20/2011] [Indexed: 01/10/2023] Open
Abstract
It was recently shown that multiple excitatory inputs to CA1 pyramidal neuron dendrites must be activated nearly simultaneously to generate local dendritic spikes and supralinear responses at the soma; even slight input desynchronization prevented local spike initiation (Gasparini and Magee, 2006; Losonczy and Magee, 2006). This led to the conjecture that CA1 pyramidal neurons may only express their non-linear integrative capabilities during the highly synchronized sharp waves and ripples that occur during slow wave sleep and resting/consummatory behavior, whereas during active exploration and REM sleep (theta rhythm), inadequate synchronization of excitation would lead CA1 pyramidal cells to function as essentially linear devices. Using a detailed single neuron model, we replicated the experimentally observed synchronization effect for brief inputs mimicking single synaptic release events. When synapses were driven instead by double pulses, more representative of the bursty inputs that occur in vivo, we found that the tolerance for input desynchronization was increased by more than an order of magnitude. The effect depended mainly on paired-pulse facilitation of NMDA receptor-mediated responses at Schaffer collateral synapses. Our results suggest that CA1 pyramidal cells could function as non-linear integrative units in all major hippocampal states.
Collapse
|
12
|
Carvalho TP, Buonomano DV. A novel learning rule for long-term plasticity of short-term synaptic plasticity enhances temporal processing. Front Integr Neurosci 2011; 5:20. [PMID: 21660100 PMCID: PMC3105243 DOI: 10.3389/fnint.2011.00020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 05/04/2011] [Indexed: 11/13/2022] Open
Abstract
It is well established that short-term synaptic plasticity (STP) of neocortical synapses is itself plastic - e.g., the induction of LTP and LTD tend to shift STP towards short-term depression and facilitation, respectively. What has not been addressed theoretically or experimentally is whether STP is "learned"; that is, is STP regulated by specific learning rules that are in place to optimize the computations performed at synapses, or, are changes in STP essentially an epiphenomenon of long-term plasticity? Here we propose that STP is governed by specific learning rules that operate independently and in parallel of the associative learning rules governing baseline synaptic strength. We describe a learning rule for STP and, using simulations, demonstrate that it significantly enhances the discrimination of spatiotemporal stimuli. Additionally we generate a set of experimental predictions aimed at testing our hypothesis.
Collapse
|
13
|
Scullin CS, Wilson MC, Partridge LD. Developmental changes in presynaptic Ca(2 +) clearance kinetics and synaptic plasticity in mouse Schaffer collateral terminals. Eur J Neurosci 2010; 31:817-26. [PMID: 20374283 DOI: 10.1111/j.1460-9568.2010.07137.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Presynaptic Ca(2+) influx pathways, cytoplasmic Ca(2+) buffering proteins and Ca(2+) extrusion processes undergo considerable change during the first postnatal month in rodent neurons. These changes may be critical in establishing short-term plasticity at maturing presynaptic terminals where neurotransmitter release is directly dependent on the dynamics of cytoplasmic residual Ca(2+) ([Ca(2+)](res)). In particular, the robust paired-pulse facilitation characteristic of adult neurons is almost entirely lacking in newborns. To examine developmental changes in processes controlling [Ca(2+)](res), we measured the timecourse of [Ca(2+)](res) decay in presynaptic terminals of Schaffer collateral to CA1 synapses in acute hippocampal slices following single and paired orthodromic stimuli in the stratum radiatum. Developmental changes were observed in both the rise time and slow exponential decay components of the response to single stimuli such that this decay was larger and faster in the adult. Furthermore, we observed a greater caffeine-sensitive basal Ca(2+) store, which was differentially affected when active uptake into the endoplasmic reticulum was blocked, in the presynaptic fields of the Schaffer collateral to CA1 terminals of P6 and younger mice when compared to adults. These transitions in [Ca(2+)](res) dynamics occurred gradually over the first weeks of postnatal life and correlated with changes in short-term plasticity.
Collapse
Affiliation(s)
- Chessa S Scullin
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, USA
| | | | | |
Collapse
|
14
|
Cui J, Wang F, Wang K, Xiang H. GABAergic signaling increases through the postnatal development to provide the potent inhibitory capability for the maturing demands of the prefrontal cortex. Cell Mol Neurobiol 2010; 30:543-55. [PMID: 19921423 DOI: 10.1007/s10571-009-9478-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 11/02/2009] [Indexed: 12/18/2022]
Abstract
The developmental profile of the firing patterns and construction of synapse connection were studied in LTS interneurons of prefrontal cortex (PFC) in rats with age (from P7 to P30). We used whole cell patch-clamp recordings to characterize electrophysiological properties of LTS interneurons in PFC at different age stages, including the action potentials (APs), short-term plasticity (STP), evoked excitatory postsynaptic currents (eEPSCs), spontaneous excitatory postsynaptic currents (sEPSC), and spontaneous inhibitory postsynaptic current (sIPSC). The developmental profile of LTS interneurons in our research showed two phases changes. The early phase from P7-P11 to P16-P19 during which the development of individual LTS interneuron dominated and just some simple synaptic connections formed, the synaptic inputs from pyramidal cells play a promoting role for the maturation of LTS interneurons to some extent. This was based on the changes of APs, eEPSCs, and STP such as the curtailment of time course of APs, the increasing facilitation of STP before P16-P19 group. The late phase from P20-P23 to P > 27 during which the function of inhibitory cortex network enhanced and the characters of this inhibitory cortex network continually changed although in the oldest age group (P > 27) in our research. The frequency and amplitude of sIPSC showed continually changes, and at the same age group, the frequency ratios and amplitude ratios of sIPSC was higher than that of sEPSC. Our study showed a foundation to clarify mechanisms underlying the evolution in time of intrinsic neuronal membrane properties and their important roles in balancing the cortex network, providing an academic foundation for the pathological researching on some psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Jihong Cui
- Department of Biological Science and Technology, School of Life Sciences, Sun Yat-sen (Zhongshan) University, 135 Xingang Xi Road, Guangzhou, Guangdong Province, 510275, People's Republic of China
| | | | | | | |
Collapse
|
15
|
Schiess ARB, Scullin C, Partridge LD. Maturation of Schaffer collateral synapses generates a phenotype of unreliable basal evoked release and very reliable facilitated release. Eur J Neurosci 2010; 31:1377-87. [PMID: 20384768 DOI: 10.1111/j.1460-9568.2010.07180.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Short-term synaptic plasticity undergoes important age-dependent changes that have crucial implications during the development of the nervous system. Paired-pulse facilitation is a form of short-term synaptic plasticity by which the response to the second of two temporally-paired stimuli is larger and more reliable than the response to the first stimulus. In this study, a paired-pulse minimal stimulation technique was used to measure the probability and quantal amplitude of synaptic release at hippocampal synapses from 12-16-day-old (young) and 7-9-week-old (adult) rats. In order to assess the contribution of temperature-dependent processes, we carried out experiments at both room temperature and at near physiological temperature. We report here that neither temperature nor maturation affected the low basal evoked release probability and quantal amplitude of release. However, the warmer temperature revealed a unique developmental increase in facilitated evoked release probability and quantal amplitude of release. As a result, although both basal evoked release and facilitated release are rather unreliable in synapses from young animals, the maturation process at near physiological temperature generates a phenotype with unreliable basal evoked release and highly reliable facilitated release.
Collapse
Affiliation(s)
- Adrian R B Schiess
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|
16
|
Speed HE, Dobrunz LE. Developmental changes in short-term facilitation are opposite at temporoammonic synapses compared to Schaffer collateral synapses onto CA1 pyramidal cells. Hippocampus 2009; 19:187-204. [PMID: 18777561 DOI: 10.1002/hipo.20496] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CA1 pyramidal neurons receive two distinct excitatory inputs that are each capable of influencing hippocampal output and learning and memory. The Schaffer collateral (SC) input from CA3 axons onto the more proximal dendrites of CA1 is part of the trisynaptic circuit, which originates in Layer II of the entorhinal cortex (EC). The temporoammonic (TA) pathway to CA1 provides input directly from Layer III of the EC onto the most distal dendrites of CA1 pyramidal cells, and is involved in spatial memory and memory consolidation. We have previously described a developmental decrease in short-term facilitation from juvenile (P13-18) to young adult (P28-42) rats at SC synapses that is due to feedback inhibition via synaptically activated mGluR1 on CA1 interneurons. It is not known how short-term changes in synaptic strength are regulated at TA synapses, nor is it known how short-term plasticity is balanced at SC and TA inputs during development. Here we describe a novel developmental increase in short-term facilitation at TA synapses, which is the opposite of the decrease in facilitation occurring at SC synapses. Although short-term facilitation is much lower at TA synapses when compared with SC synapses in juveniles, short-term plasticity at SC and TA synapses converges at similar levels of paired-pulse facilitation in the young adult rat. However, in young adults CA3-CA1 synapses still exhibit more facilitation than TA-CA1 synapses during physiologically-relevant activity, suggesting that the two pathways are each poised to uniquely modulate CA1 output in an activity-dependent manner. Finally, we show that there is a developmental decrease in the initial release probability at TA synapses that underlies their developmental decrease in facilitation, but no developmental change in release probability at SC synapses. This represents a fundamental difference in the presynaptic function of the two major inputs to CA1, which could alter the flow of information in hippocampus during development.
Collapse
Affiliation(s)
- Haley E Speed
- Department of Neurobiology, Civitan International Research Center and Evelyn F McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
17
|
Ferraguti F, Crepaldi L, Nicoletti F. Metabotropic glutamate 1 receptor: current concepts and perspectives. Pharmacol Rev 2009; 60:536-81. [PMID: 19112153 DOI: 10.1124/pr.108.000166] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Almost 25 years after the first report that glutamate can activate receptors coupled to heterotrimeric G-proteins, tremendous progress has been made in the field of metabotropic glutamate receptors. Now, eight members of this family of glutamate receptors, encoded by eight different genes that share distinctive structural features have been identified. The first cloned receptor, the metabotropic glutamate (mGlu) receptor mGlu1 has probably been the most extensively studied mGlu receptor, and in many respects it represents a prototypical subtype for this family of receptors. Its biochemical, anatomical, physiological, and pharmacological characteristics have been intensely investigated. Together with subtype 5, mGlu1 receptors constitute a subgroup of receptors that couple to phospholipase C and mobilize Ca(2+) from intracellular stores. Several alternatively spliced variants of mGlu1 receptors, which differ primarily in the length of their C-terminal domain and anatomical localization, have been reported. Use of a number of genetic approaches and the recent development of selective antagonists have provided a means for clarifying the role played by this receptor in a number of neuronal systems. In this article we discuss recent advancements in the pharmacology and concepts about the intracellular transduction and pathophysiological role of mGlu1 receptors and review earlier data in view of these novel findings. The impact that this new and better understanding of the specific role of these receptors may have on novel treatment strategies for a variety of neurological and psychiatric disorders is considered.
Collapse
Affiliation(s)
- Francesco Ferraguti
- Department of Pharmacology, Innsbruck Medical University, Peter-Mayr Strasse 1a, Innsbruck A-6020, Austria.
| | | | | |
Collapse
|
18
|
Sun HY, Bartley AF, Dobrunz LE. Calcium-permeable presynaptic kainate receptors involved in excitatory short-term facilitation onto somatostatin interneurons during natural stimulus patterns. J Neurophysiol 2008; 101:1043-55. [PMID: 19073817 DOI: 10.1152/jn.90286.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Schaffer collateral synapses in hippocampus show target-cell specific short-term plasticity. Using GFP-expressing Inhibitory Neuron (GIN) transgenic mice that express enhanced green fluorescent protein (EGFP) in a subset of somatostatin-containing interneurons (SOM interneurons), we previously showed that Schaffer collateral synapses onto SOM interneurons in stratum (S.) radiatum have unusually large (up to 6-fold) paired-pulse facilitation. This results from a low initial release probability and the enhancement of facilitation by synaptic activation of presynaptic kainate receptors. Here we further investigate the properties of these kainate receptors and examine their effects on short-term facilitation during physiologically derived stimulation patterns, using excitatory postsynaptic currents recorded in S. radiatum interneurons during Schaffer collateral stimulation in acute slices from juvenile GIN mice. We find that GluR5 and GluR6 antagonists decrease short-term facilitation at Schaffer collateral synapses onto SOM interneurons with no additive effects, suggesting that the presynaptic kainate receptors are heteromers containing both GluR5 and GluR6 subunits. The calcium-permeable receptor antagonist 1-napthyl acetyl spermine (NASPM) both mimics and occludes the effect of the kainate receptor antagonists, indicating that the presynaptic kainate receptors are calcium permeable. Furthermore, Schaffer collateral synapses onto SOM interneurons show up to 11-fold short-term facilitation during physiologically derived stimulus patterns, in contrast to other interneurons that have less than 1.5-fold facilitation. Blocking the kainate receptors reduces facilitation in SOM interneurons by approximately 50% during the physiologically derived patterns and reduces the dynamic range. Activation of calcium-permeable kainate receptors containing GluR5/GluR6 causes a dramatic increase in short-term facilitation during physiologically derived stimulus patterns, a mechanism likely to be important in regulating the strength of Schaffer collateral synapses onto SOM interneurons in vivo.
Collapse
Affiliation(s)
- H Y Sun
- Department of Neurobiology, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., SHEL 902, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
19
|
Walters BJ, Campbell SL, Chen PC, Taylor AP, Schroeder DG, Dobrunz LE, Artavanis-Tsakonas K, Ploegh HL, Wilson JA, Cox GA, Wilson SM. Differential effects of Usp14 and Uch-L1 on the ubiquitin proteasome system and synaptic activity. Mol Cell Neurosci 2008; 39:539-48. [PMID: 18771733 DOI: 10.1016/j.mcn.2008.07.028] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 12/22/2022] Open
Abstract
The ubiquitin proteasome pathway has been implicated in the pathogenesis of many neurodegenerative diseases, and alterations in two different deubiquitinating enzymes, Uch-L1 and Usp14, result in neurological phenotypes in mice. We identified a new mutation in Uch-L1 and compared the roles of Uch-L1 and Usp14 in the ubiquitin proteasome system. Deficiencies in either Uch-L1 or Usp14 result in decreased levels of ubiquitin, suggesting that they both regulate ubiquitin stability in the nervous system. However, the effect of ubiquitin depletion on viability and onset of symptoms is more severe in the Usp14-deficient mice, and changes in hippocampal synaptic transmission were only observed in Usp14-deficient mice. In addition, while Usp14 appears to function at the proteasome, Uch-L1 deficiency resulted in up-regulation of lysosomal components, indicating that Uch-L1 and Usp14 may differentially affect the ubiquitin proteasome system and synaptic activity by regulating different pools of ubiquitin in the cell.
Collapse
Affiliation(s)
- B J Walters
- University of Alabama at Birmingham, Department of Neurobiology, Civitan International Research Center, 1825 University Boulevard, Shelby 914, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|