1
|
McInturff S, Adenis V, Coen FV, Lacour SP, Lee DJ, Brown MC. Sensitivity to Pulse Rate and Amplitude Modulation in an Animal Model of the Auditory Brainstem Implant (ABI). J Assoc Res Otolaryngol 2023; 24:365-384. [PMID: 37156973 PMCID: PMC10335994 DOI: 10.1007/s10162-023-00897-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 03/19/2023] [Indexed: 05/10/2023] Open
Abstract
The auditory brainstem implant (ABI) is an auditory neuroprosthesis that provides hearing by electrically stimulating the cochlear nucleus (CN) of the brainstem. Our previous study (McInturff et al., 2022) showed that single-pulse stimulation of the dorsal (D)CN subdivision with low levels of current evokes responses that have early latencies, different than the late response patterns observed from stimulation of the ventral (V)CN. How these differing responses encode more complex stimuli, such as pulse trains and amplitude modulated (AM) pulses, has not been explored. Here, we compare responses to pulse train stimulation of the DCN and VCN, and show that VCN responses, measured in the inferior colliculus (IC), have less adaption, higher synchrony, and higher cross-correlation. However, with high-level DCN stimulation, responses become like those to VCN stimulation, supporting our earlier hypothesis that current spreads from electrodes on the DCN to excite neurons located in the VCN. To AM pulses, stimulation of the VCN elicits responses with larger vector strengths and gain values especially in the high-CF portion of the IC. Additional analysis using neural measures of modulation thresholds indicate that these measures are lowest for VCN. Human ABI users with low modulation thresholds, who score best on comprehension tests, may thus have electrode arrays that stimulate the VCN. Overall, the results show that the VCN has superior response characteristics and suggest that it should be the preferred target for ABI electrode arrays in humans.
Collapse
Affiliation(s)
- Stephen McInturff
- Eaton-Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, 02114, USA.
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA.
| | - Victor Adenis
- Eaton-Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, 02114, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Florent-Valéry Coen
- Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), 1202, Geneva, Switzerland
| | - Stéphanie P Lacour
- Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), 1202, Geneva, Switzerland
| | - Daniel J Lee
- Eaton-Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, 02114, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - M Christian Brown
- Eaton-Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, 02114, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
McInturff S, Coen FV, Hight AE, Tarabichi O, Kanumuri VV, Vachicouras N, Lacour SP, Lee DJ, Brown MC. Comparison of Responses to DCN vs. VCN Stimulation in a Mouse Model of the Auditory Brainstem Implant (ABI). J Assoc Res Otolaryngol 2022; 23:391-412. [PMID: 35381872 PMCID: PMC9085982 DOI: 10.1007/s10162-022-00840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/31/2022] [Indexed: 10/18/2022] Open
Abstract
The auditory brainstem implant (ABI) is an auditory neuroprosthesis that provides hearing to deaf patients by electrically stimulating the cochlear nucleus (CN) of the brainstem. Whether such stimulation activates one or the other of the CN's two major subdivisions is not known. Here, we demonstrate clear response differences from the stimulation of the dorsal (D) vs. ventral (V) subdivisions of the CN in a mouse model of the ABI with a surface-stimulating electrode array. For the DCN, low levels of stimulation evoked multiunit responses in the inferior colliculus (IC) that were unimodally distributed with early latencies (avg. peak latency of 3.3 ms). However, high levels of stimulation evoked a bimodal distribution with the addition of a late latency response peak (avg. peak latency of 7.1 ms). For the VCN, in contrast, electrical stimulation elicited multiunit responses that were usually unimodal and had a latency similar to the DCN's late response. Local field potentials (LFP) from the IC showed components that correlated with early and late multiunit responses. Surgical cuts to sever the output of the DCN, the dorsal acoustic stria (DAS), gave insight into the origin of these early and late responses. Cuts eliminated early responses but had little-to-no effect on late responses. The early responses thus originate from cells that project through the DAS, such as DCN's pyramidal and giant cells. Late responses likely arise from the spread of stimulation from a DCN-placed electrode array to the VCN and could originate in bushy and/or stellate cells. In human ABI users, the spread of stimulation in the CN may result in abnormal response patterns that could hinder performance.
Collapse
Affiliation(s)
- Stephen McInturff
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA.
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA.
| | - Florent-Valéry Coen
- Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), 1202, Geneva, Switzerland
| | - Ariel E Hight
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA
| | - Osama Tarabichi
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, USA
| | - Vivek V Kanumuri
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, USA
| | - Nicolas Vachicouras
- Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), 1202, Geneva, Switzerland
| | - Stéphanie P Lacour
- Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), 1202, Geneva, Switzerland
| | - Daniel J Lee
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - M Christian Brown
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Lee JI, Seist R, McInturff S, Lee DJ, Brown MC, Stankovic KM, Fried S. Magnetic stimulation allows focal activation of the mouse cochlea. eLife 2022; 11:76682. [PMID: 35608242 PMCID: PMC9177144 DOI: 10.7554/elife.76682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cochlear implants (CIs) provide sound and speech sensations for patients with severe to profound hearing loss by electrically stimulating the auditory nerve. While most CI users achieve some degree of open set word recognition under quiet conditions, hearing that utilizes complex neural coding (e.g., appreciating music) has proved elusive, probably because of the inability of CIs to create narrow regions of spectral activation. Several novel approaches have recently shown promise for improving spatial selectivity, but substantial design differences from conventional CIs will necessitate much additional safety and efficacy testing before clinical viability is established. Outside the cochlea, magnetic stimulation from small coils (micro-coils) has been shown to confine activation more narrowly than that from conventional microelectrodes, raising the possibility that coil-based stimulation of the cochlea could improve the spectral resolution of CIs. To explore this, we delivered magnetic stimulation from micro-coils to multiple locations of the cochlea and measured the spread of activation utilizing a multielectrode array inserted into the inferior colliculus; responses to magnetic stimulation were compared to analogous experiments with conventional microelectrodes as well as to responses when presenting auditory monotones. Encouragingly, the extent of activation with micro-coils was ~60% narrower compared to electric stimulation and largely similar to the spread arising from acoustic stimulation. The dynamic range of coils was more than three times larger than that of electrodes, further supporting a smaller spread of activation. While much additional testing is required, these results support the notion that magnetic micro-coil CIs can produce a larger number of independent spectral channels and may therefore improve auditory outcomes. Further, because coil-based devices are structurally similar to existing CIs, fewer impediments to clinical translational are likely to arise.
Collapse
Affiliation(s)
- Jae-Ik Lee
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Richard Seist
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, United States.,Department of Otorhinolaryngology - Head and Neck Surgery, Paracelsus Medical University, Salzburg, Austria
| | - Stephen McInturff
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, United States.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, United States
| | - Daniel J Lee
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, United States.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, United States
| | - M Christian Brown
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, United States.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, United States
| | - Konstantina M Stankovic
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, United States.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, United States.,Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, United States
| | - Shelley Fried
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States.,Boston VA Medical Center, Boston, United States
| |
Collapse
|
4
|
Young JC, Nasser HM, Casillas-Espinosa PM, O'Brien TJ, Jackson GD, Paolini AG. Multiunit cluster firing patterns of piriform cortex and mediodorsal thalamus in absence epilepsy. Epilepsy Behav 2019; 97:229-243. [PMID: 31254843 DOI: 10.1016/j.yebeh.2019.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/09/2019] [Accepted: 05/20/2019] [Indexed: 01/24/2023]
Abstract
OBJECTIVE The objective of the study were to investigate patterns of multiunit cluster firing in the piriform cortex (PC) and mediodorsal thalamus (MDT) in a rat model of genetic generalized epilepsy (GGE) with absence seizures and to assess whether these regions contribute to the initiation or spread of generalized epileptiform discharges. METHODS Multiunit clusters and their corresponding local field potentials (LFPs) were recorded from microelectrode arrays implanted in the PC and MDT in urethane anesthetized Genetic Absence Epilepsy Rats from Strasbourg (GAERS) and nonepileptic control (NEC) rats. Peristimulus time histograms (PSTHs) and cross-correlograms were used to observe transient changes in both the rate of firing and synchrony over time. The phase locking of multiunit clusters to LFP signals (spike-LFP phase locking) was calculated for frequency bands associated with olfactory communication between the two brain regions. RESULTS There were significant increases in both rate of firing and synchronous activity at the onset of generalized epileptiform discharges in both PC and MDT. Prior to and following these increases in synchronous activity, there were periods of suppression. Significant increases in spike-LFP phase locking were observed within the PC prior to the onset of epileptiform discharges across all spectral bands. There were also significant increases in spike-LFP phase locking within the theta band of the MDT prior to onset. Between the two brain regions, there was a significant decrease in spike-LFP phase locking -0.5 s prior to onset in the theta band which coincided with a significant elevation in spike-LFP phase locking in the gamma band. CONCLUSIONS Both the PC and MDT are engaged in the absence epilepsy network. Early spike-LFP phase locking between these two brain regions suggests potential involvement in the initiation of seizure activity.
Collapse
Affiliation(s)
- James C Young
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia.
| | - Helen M Nasser
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia; ISN Psychology - Institute for Social Neuroscience, Melbourne, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Monash University, Melbourne, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Australia; Department of Neurology, The Royal Melbourne Hospital, The University of Melbourne, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Monash University, Melbourne, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Australia; Department of Neurology, The Royal Melbourne Hospital, The University of Melbourne, Australia
| | - Graeme D Jackson
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia; Department of Neurology, Austin Health, Melbourne, Australia
| | - Antonio G Paolini
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia; ISN Psychology - Institute for Social Neuroscience, Melbourne, Australia; School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| |
Collapse
|
5
|
Guex AA, Hight AE, Narasimhan S, Vachicouras N, Lee DJ, Lacour SP, Brown MC. Auditory brainstem stimulation with a conformable microfabricated array elicits responses with tonotopically organized components. Hear Res 2019; 377:339-352. [PMID: 30867111 DOI: 10.1016/j.heares.2019.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/11/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
Abstract
Auditory brainstem implants (ABIs) restore hearing to deaf individuals not eligible for cochlear implants. Speech comprehension in ABI users is generally poor compared to that of cochlear implant users, and side effects are common. The poor performance may result from activating broad areas and multiple neuronal populations of the cochlear nucleus, however detailed studies of the responses to surface stimulation of the cochlear nucleus are lacking. A conformable electrode array was microfabricated to fit on the rat's dorsal cochlear nucleus (DCN). It hosts 20 small electrodes (each 100 μm diam.). The array was tested by recording evoked potentials and neural activity along the tonotopic axis of the inferior colliculus (IC). Almost all bipolar electrode pairs elicited responses, in some cases with an even, or relatively constant, pattern of thresholds and supra-threshold measures along the long axis of the array. This pattern suggests that conformable arrays can provide relatively constant excitation along the surface of the DCN and thus might decrease the ABI side effects caused by spread of high current to adjacent structures. We also examined tonotopic patterns of the IC responses. Compared to sound-evoked responses, electrically-evoked response mappings had less tonotopic organization and were broader in width. They became more tonotopic when the evoked activity common to all electrodes and the late phase of response were subtracted out, perhaps because the remaining activity is from tonotopically organized principal cells of the DCN. Responses became less tonotopic when inter-electrode distance was increased from 400 μm to 800 μm but were relatively unaffected by changing to monopolar stimulation. The results illustrate the challenges of using a surface array to present tonotopic cues and improve speech comprehension in humans who use the ABI.
Collapse
Affiliation(s)
- Amélie A Guex
- Laboratory for Soft Bioelectronic Interfaces, Centre for Neuroprosthetics, School of Engineering, Institute of Microengineering & Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Ariel Edward Hight
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear, and Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Shreya Narasimhan
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear, and Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Nicolas Vachicouras
- Laboratory for Soft Bioelectronic Interfaces, Centre for Neuroprosthetics, School of Engineering, Institute of Microengineering & Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Daniel J Lee
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear, and Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Stéphanie P Lacour
- Laboratory for Soft Bioelectronic Interfaces, Centre for Neuroprosthetics, School of Engineering, Institute of Microengineering & Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - M Christian Brown
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear, and Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
McCreery D, Yadev K, Han M. Responses of neurons in the feline inferior colliculus to modulated electrical stimuli applied on and within the ventral cochlear nucleus; Implications for an advanced auditory brainstem implant. Hear Res 2018; 363:85-97. [PMID: 29573880 DOI: 10.1016/j.heares.2018.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 03/01/2018] [Accepted: 03/06/2018] [Indexed: 11/25/2022]
Abstract
Auditory brainstem implants (ABIs) can restore useful hearing to persons with deafness who cannot benefit from cochlear implants. However, the quality of hearing restored by ABIs rarely is comparable to that provided by cochlear implants in persons for whom those are appropriate. In an animal model, we evaluated elements of a prototype of an ABI in which the functions of macroelectrodes on the surface of the dorsal cochlear nucleus would be integrated with the function of multiple penetrating microelectrodes implanted into the ventral cochlear nucleus. The surface electrodes would convey most of the range of loudness percepts while the intranuclear microelectrodes would sharpen and focus pitch percepts. In the present study, stimulating electrodes were implanted chronically on the surface of the animal's dorsal cochlear nucleus (DCN) and also within their ventral cochlear nucleus (VCN). Recording microelectrodes were implanted into the central nucleus of the inferior colliculus (ICC). The electrical stimuli were sinusoidally modulated stimulus pulse trains applied on the DCN and within the VCN. Temporal encoding of neuronal responses was quantified as vector strength (VS) and as full-cycle rate of neuronal activity in the ICC. VS and full-cycle AP rate were measured for 4 stimulation modes; continuous and transient amplitude modulation of the stimulus pulse trains, each delivered via the macroelectrode on the surface of the DCN and then by the intranuclear penetrating microelectrodes. In the proposed clinical device the functions of the surface and intranuclear microelectrodes could best be integrated if there is minimal variation in the neuronal responses across the range of modulation depth, modulation frequencies, and across the four stimulation modes. In this study VS did vary as much as 34% across modulation frequency and modulation depth within a stimulation mode, and up to 40% between modulation modes. However, these intra- and inter-mode variances differed for different stimulation rates, and at 500 Hz the inter-mode differences in VS and across the range of modulation frequencies and modulation depths was<Roman> = </Roman>24% and the intra-modal differences were<Roman> = </Roman>15%. The findings were generally similar for rate encoding of modulation depth, although the depth of transient amplitude modulation delivered by the surface electrode was weakly encoded as full-cycle rate. Overall, our findings support the concept of a clinical ABI that employs surface stimulation and intranuclear microstimulation in an integrated manner.
Collapse
Affiliation(s)
- Douglas McCreery
- Neural Engineering Program at Huntington Medical Research Institutes, 734 Fairmount Ave, Pasadena, CA 91105, USA.
| | - Kamal Yadev
- Rigetti Computing, 775Heinz Avenue, Berkeley, CA 94710, USA.
| | - Martin Han
- Biomedical Engineering Department, School of Engineering & Institute of Material Sciences, The University of Connecticut at Storrs, 260Glenbrook Rd, Unit 3247, Storrs, Connecticut 06269-3247, USA.
| |
Collapse
|
7
|
Lee GW, Zambetta F, Li X, Paolini AG. Utilising reinforcement learning to develop strategies for driving auditory neural implants. J Neural Eng 2016; 13:046027. [PMID: 27432803 DOI: 10.1088/1741-2560/13/4/046027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE In this paper we propose a novel application of reinforcement learning to the area of auditory neural stimulation. We aim to develop a simulation environment which is based off real neurological responses to auditory and electrical stimulation in the cochlear nucleus (CN) and inferior colliculus (IC) of an animal model. Using this simulator we implement closed loop reinforcement learning algorithms to determine which methods are most effective at learning effective acoustic neural stimulation strategies. APPROACH By recording a comprehensive set of acoustic frequency presentations and neural responses from a set of animals we created a large database of neural responses to acoustic stimulation. Extensive electrical stimulation in the CN and the recording of neural responses in the IC provides a mapping of how the auditory system responds to electrical stimuli. The combined dataset is used as the foundation for the simulator, which is used to implement and test learning algorithms. MAIN RESULTS Reinforcement learning, utilising a modified n-Armed Bandit solution, is implemented to demonstrate the model's function. We show the ability to effectively learn stimulation patterns which mimic the cochlea's ability to covert acoustic frequencies to neural activity. Time taken to learn effective replication using neural stimulation takes less than 20 min under continuous testing. SIGNIFICANCE These results show the utility of reinforcement learning in the field of neural stimulation. These results can be coupled with existing sound processing technologies to develop new auditory prosthetics that are adaptable to the recipients current auditory pathway. The same process can theoretically be abstracted to other sensory and motor systems to develop similar electrical replication of neural signals.
Collapse
Affiliation(s)
- Geoffrey W Lee
- School of Computer Science and Information Technology, RMIT University, Melbourne 3000, Australia
| | | | | | | |
Collapse
|
8
|
Harris AR, Morgan SJ, Wallace GG, Paolini AG. A method for systematic electrochemical and electrophysiological evaluation of neural recording electrodes. J Vis Exp 2014. [PMID: 24637902 DOI: 10.3791/51084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
New materials and designs for neural implants are typically tested separately, with a demonstration of performance but without reference to other implant characteristics. This precludes a rational selection of a particular implant as optimal for a particular application and the development of new materials based on the most critical performance parameters. This article develops a protocol for in vitro and in vivo testing of neural recording electrodes. Recommended parameters for electrochemical and electrophysiological testing are documented with the key steps and potential issues discussed. This method eliminates or reduces the impact of many systematic errors present in simpler in vivo testing paradigms, especially variations in electrode/neuron distance and between animal models. The result is a strong correlation between the critical in vitro and in vivo responses, such as impedance and signal-to-noise ratio. This protocol can easily be adapted to test other electrode materials and designs. The in vitro techniques can be expanded to any other nondestructive method to determine further important performance indicators. The principles used for the surgical approach in the auditory pathway can also be modified to other neural regions or tissue.
Collapse
Affiliation(s)
- Alexander R Harris
- School of Psychological Science, La Trobe University; ARC Centre of Excellence for Electromaterials Science;
| | - Simeon J Morgan
- School of Psychological Science, La Trobe University; ARC Centre of Excellence for Electromaterials Science
| | | | - Antonio G Paolini
- School of Psychological Science, La Trobe University; ARC Centre of Excellence for Electromaterials Science; Health Innovations Research Institute, College of Science, Engineering, and Health, RMIT University
| |
Collapse
|
9
|
Verma RU, Guex AA, Hancock KE, Durakovic N, McKay CM, Slama MCC, Brown MC, Lee DJ. Auditory responses to electric and infrared neural stimulation of the rat cochlear nucleus. Hear Res 2014; 310:69-75. [PMID: 24508368 DOI: 10.1016/j.heares.2014.01.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/11/2014] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
In an effort to improve the auditory brainstem implant, a prosthesis in which user outcomes are modest, we applied electric and infrared neural stimulation (INS) to the cochlear nucleus in a rat animal model. Electric stimulation evoked regions of neural activation in the inferior colliculus and short-latency, multipeaked auditory brainstem responses (ABRs). Pulsed INS, delivered to the surface of the cochlear nucleus via an optical fiber, evoked broad neural activation in the inferior colliculus. Strongest responses were recorded when the fiber was placed at lateral positions on the cochlear nucleus, close to the temporal bone. INS-evoked ABRs were multipeaked but longer in latency than those for electric stimulation; they resembled the responses to acoustic stimulation. After deafening, responses to electric stimulation persisted, whereas those to INS disappeared, consistent with a reported "optophonic" effect, a laser-induced acoustic artifact. Thus, for deaf individuals who use the auditory brainstem implant, INS alone did not appear promising as a new approach.
Collapse
Affiliation(s)
- Rohit U Verma
- School of Medicine, University of Manchester, UK; Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, USA; Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA
| | - Amélie A Guex
- Ecole Polytechnique Fédérale de Lausanne, Switzerland
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, USA
| | - Nedim Durakovic
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, USA
| | - Colette M McKay
- School of Psychological Sciences, University of Manchester, UK; The Bionics Institute of Australia, Melbourne, Australia
| | - Michaël C C Slama
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, USA; Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA
| | - M Christian Brown
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, USA; Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel J Lee
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, USA; Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
10
|
McCreery D, Han M, Pikov V, Yadav K, Pannu S. Encoding of the amplitude modulation of pulsatile electrical stimulation in the feline cochlear nucleus by neurons in the inferior colliculus; effects of stimulus pulse rate. J Neural Eng 2013; 10:056010. [PMID: 23928683 DOI: 10.1088/1741-2560/10/5/056010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Persons without a functional auditory nerve cannot benefit from cochlear implants, but some hearing can be restored by an auditory brainstem implant (ABI) with stimulating electrodes implanted on the surface of the cochlear nucleus (CN). Most users benefit from their ABI, but speech recognition tends to be poorer than for users of cochlear implants. Psychophysical studies suggest that poor modulation detection may contribute to the limited performance of ABI users. In a cat model, we determined how the pulse rate of the electrical stimulus applied within or on the CN affects temporal and rate encoding of amplitude modulation (AM) by neurons in the central nucleus of the inferior colliculus (ICC). APPROACH Stimulating microelectrodes were implanted chronically in and on the cats' CN, and multi-site recording microelectrodes were implanted chronically into the ICC. Encoding of AM pulse trains by neurons in the ICC was characterized as vector strength (VS), the synchrony of neural activity with the AM, and as the mean rate of neuronal action potentials (neuronal spike rate (NSR)). MAIN RESULTS For intranuclear microstimulation, encoding of AM as VS was up to 3 dB greater when stimulus pulse rate was increased from 250 to 500 pps, but only for neuronal units with low best acoustic frequencies, and when the electrical stimulation was modulated at low frequencies (10-20 Hz). For stimulation on the surface of the CN, VS was similar at 250 and 500 pps, and the dynamic range of the VS was reduced for pulse rates greater than 250 pps. Modulation depth was encoded strongly as VS when the maximum stimulus amplitude was held constant across a range of modulation depth. This 'constant maximum' protocol allows enhancement of modulation depth while preserving overall dynamic range. However, modulation depth was not encoded as strongly as NSR. SIGNIFICANCE The findings have implications for improved sound processors for present and future ABIs. The performance of ABIs may benefit from using pulse rates greater than those presently used in most ABIs, and by sound processing strategies that enhance the modulation depth of the electrical stimulus while preserving dynamic range.
Collapse
|
11
|
Allitt BJ, Benjaminsen C, Morgan SJ, Paolini AG. Intralaminar stimulation of the inferior colliculus facilitates frequency-specific activation in the auditory cortex. J Neural Eng 2013; 10:046008. [DOI: 10.1088/1741-2560/10/4/046008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Mauger SJ, Shivdasani MN, Rathbone GD, Paolini AG. An in vivo investigation of inferior colliculus single neuron responses to cochlear nucleus pulse train stimulation. J Neurophysiol 2012; 108:2999-3008. [PMID: 22972959 DOI: 10.1152/jn.01087.2011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The auditory brain stem implant (ABI) is being used clinically to restore hearing to patients unable to benefit from a cochlear implant (CI). Speech perception outcomes for ABI users are typically poor compared with most CI users. The ABI is implanted either on the surface of or penetrating through the cochlear nucleus in the auditory brain stem and uses stimulation strategies developed for auditory nerve stimulation with a CI. Although the stimulus rate may affect speech perception outcomes with current stimulation strategies, no studies have systematically investigated the effect of stimulus rate electrophysiologically or clinically. We therefore investigated rate response properties and temporal response properties of single inferior colliculus (IC) neurons from penetrating ABI stimulation using stimulus rates ranging from 100 to 1,600 pulses/s in the rat. We found that the stimulus rate affected the proportion of response types, thresholds, and dynamic ranges of IC activation. The stimulus rate was also found to affect the temporal properties of IC responses, with higher rates providing more temporally similar responses to acoustic stimulation. Suppression of neural firing and inhibition in IC neurons was also found, with response properties varying with the stimulus rate. This study demonstrated that changes in the ABI stimulus rate results in significant differences in IC neuron response properties. Due to electrophysiological differences, the stimulus rate may also change perceptual properties. We suggest that clinical evaluation of the ABI stimulus rate should be performed.
Collapse
Affiliation(s)
- Stefan J Mauger
- School of Psychological Science, La Trobe University, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
13
|
Morgan SJ, Paolini AG. Behavioral determination of stimulus pair discrimination of auditory acoustic and electrical stimuli using a classical conditioning and heart-rate approach. J Vis Exp 2012:e3598. [PMID: 22710937 PMCID: PMC3476383 DOI: 10.3791/3598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Acute animal preparations have been used in research prospectively investigating electrode designs and stimulation techniques for integration into neural auditory prostheses, such as auditory brainstem implants and auditory midbrain implants. While acute experiments can give initial insight to the effectiveness of the implant, testing the chronically implanted and awake animals provides the advantage of examining the psychophysical properties of the sensations induced using implanted devices. Several techniques such as reward-based operant conditioning, conditioned avoidance, or classical fear conditioning have been used to provide behavioral confirmation of detection of a relevant stimulus attribute. Selection of a technique involves balancing aspects including time efficiency (often poor in reward-based approaches), the ability to test a plurality of stimulus attributes simultaneously (limited in conditioned avoidance), and measure reliability of repeated stimuli (a potential constraint when physiological measures are employed). Here, a classical fear conditioning behavioral method is presented which may be used to simultaneously test both detection of a stimulus, and discrimination between two stimuli. Heart-rate is used as a measure of fear response, which reduces or eliminates the requirement for time-consuming video coding for freeze behaviour or other such measures (although such measures could be included to provide convergent evidence). Animals were conditioned using these techniques in three 2-hour conditioning sessions, each providing 48 stimulus trials. Subsequent 48-trial testing sessions were then used to test for detection of each stimulus in presented pairs, and test discrimination between the member stimuli of each pair. This behavioral method is presented in the context of its utilisation in auditory prosthetic research. The implantation of electrocardiogram telemetry devices is shown. Subsequent implantation of brain electrodes into the Cochlear Nucleus, guided by the monitoring of neural responses to acoustic stimuli, and the fixation of the electrode into place for chronic use is likewise shown.
Collapse
|
14
|
Allitt BJ, Morgan SJ, Bell S, Nayagam DAX, Arhatari B, Clark GM, Paolini AG. Midbrain responses to micro-stimulation of the cochlea using high density thin-film arrays. Hear Res 2012; 287:30-42. [PMID: 22531007 DOI: 10.1016/j.heares.2012.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 03/28/2012] [Accepted: 04/03/2012] [Indexed: 10/28/2022]
Abstract
A broader activation of auditory nerve fibres than normal using a cochlear implant contributes to poor frequency discrimination. As cochlear implants also deliver a restricted dynamic range, this hinders the ability to segregate sound sources. Better frequency coding and control over amplitude may be achieved by limiting current spread during electrical stimulation of the cochlea and positioning electrodes closer to the modiolus. Thin-film high density microelectrode arrays and conventional platinum ring electrode arrays were used to stimulate the cochlea of urethane-anaesthetized rats and responses compared. Neurophysiological recordings were taken at 197 multi-unit clusters in the central nucleus of the inferior colliculus (CIC), a site that receives direct monaural innervation from the cochlear nucleus. CIC responses to both the platinum ring and high density electrodes were recorded and differences in activity to changes in stimulation intensity, thresholds and frequency coding of neural activation were examined. The high density electrode array elicited less CIC activity at nonspecific frequency regions than the platinum ring electrode array. The high density electrode array produced significantly lower thresholds and larger dynamic ranges than the platinum ring electrode array when positioned close to the modiolus. These results suggest that a higher density of stimulation sites on electrodes that effectively 'aim' current, combined with placement closer to the modiolus would permit finer control over charge delivery. This may equate to improved frequency specific perception and control over amplitude when using future cochlear implant devices.
Collapse
Affiliation(s)
- B J Allitt
- School of Psychological Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | | | | | | | | | | | | |
Collapse
|
15
|
Shivdasani MN, Mauger SJ, Argent RE, Rathbone GD, Paolini AG. Inferior colliculus responses to dual-site intralamina stimulation in the ventral cochlear nucleus. J Comp Neurol 2010; 518:4226-42. [PMID: 20878785 DOI: 10.1002/cne.22450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A major limitation of the present auditory brainstem implant (ABI) is its inability to access the tonotopic organization of the ventral cochlear nucleus (VCN). A previous study by our group indicated that stimulation of single sites within a given VCN frequency region did not always elicit frequency-specific responses within the central nucleus of the inferior colliculus (CIC) and in some cases did not elicit a response at all. For this study, we hypothesized that sequential stimulation (with a short interpulse delay of 320 μsec) of two VCN sites in similar frequency regions would enhance responsiveness in CIC neurons. Multiunit neural recordings in response to pure tones were obtained at 58 VCN and 164 CIC sites in anesthetized rats. Among the 58 VCN sites, 39 pairs of sites with similar characteristic frequencies were chosen for electrical stimulation. Each member of a VCN pair was electrically stimulated individually, followed by sequential stimulation of the pair, while recording CIC responses. On average, CIC sites were found to respond to dual-site VCN stimulation with significantly lower thresholds, wider dynamic ranges, a greater extent of activation with increasing current levels, and a higher degree of frequency specificity compared with single-site stimulation. Although these effects were positive for the most part, in some cases dual-site stimulation resulted in increased CIC thresholds and decreased dynamic ranges, extent of activation, and frequency specificity. The results suggest that multisite stimulation within VCN isofrequency laminae using penetrating electrodes could significantly improve ABI stimulation strategies and implant performance.
Collapse
Affiliation(s)
- Mohit N Shivdasani
- School of Psychological Science, La Trobe University, Bundoora, Victoria, Australia
| | | | | | | | | |
Collapse
|
16
|
McCreery D, Han M, Pikov V. Neuronal activity evoked in the inferior colliculus of the cat by surface macroelectrodes and penetrating microelectrodes implanted in the cochlear nucleus. IEEE Trans Biomed Eng 2010; 57:1765-73. [PMID: 20483692 DOI: 10.1109/tbme.2010.2046169] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Persons lacking functional auditory nerves cannot benefit from cochlear implants, but an auditory brainstem implant (ABI) utilizing stimulating electrodes adjacent to or on their cochlear nucleus (CN) can restore some hearing. We are investigating the feasibility of supplementing these surface electrodes with penetrating microstimulating electrodes within the ventral CN (VCN), and how the two types of electrodes can be used synergistically. Multiunit neuronal responses evoked by VCN electrical stimulation with surface electrodes and microelectrodes were recorded in the inferior colliculus (ICC) of five cats. The findings are consistent with those from patients with type II neurofibromatosis who received ABIs with both surface and microelectrodes. The patients described percepts from their microelectrodes as more similar to pure tones than those from their surface electrodes, consistent with the greater tonotopic selectivity of microelectrodes in the cats' VCN. Also, the patients describe percepts from their surface electrodes as louder than those from the microelectrodes, while in the cat, the neuronal activity evoked in the ICC by the surface electrodes tended to be greater. This concordance helps to validate our cat model as a means of investigating the synergistic use of surface and penetrating electrodes in a clinical ABI.
Collapse
Affiliation(s)
- Douglas McCreery
- Huntington Medical Research Institutes, Pasadena, CA 91105, USA.
| | | | | |
Collapse
|
17
|
Mauger SJ, Shivdasani MN, Rathbone GD, Argent RE, Paolini AG. An in vivo investigation of first spike latencies in the inferior colliculus in response to multichannel penetrating auditory brainstem implant stimulation. J Neural Eng 2010; 7:036004. [PMID: 20440054 DOI: 10.1088/1741-2560/7/3/036004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The cochlear nucleus (CN) is the first auditory processing site within the brain and the target location of the auditory brainstem implant (ABI), which provides speech perception to patients who cannot benefit from a cochlear implant (CI). Although there is variance between ABI recipient speech performance outcomes, performance is typically low compared to CI recipients. Temporal aspects of neural firing such as first spike latency (FSL) are thought to code for many speech features; however, no studies have investigated FSL from CN stimulation. Consequently, ABIs currently do not incorporate CN-specific temporal information. We therefore systematically investigated inferior colliculus (IC) neuron's FSL response to frequency-specific electrical stimulation of the CN in rats. The range of FSLs from electrical stimulation of many neurons indicates that both monosynaptic and polysynaptic pathways were activated, suggesting initial activation of multiple CN neuron types. Electrical FSLs for a single neuron did not change irrespective of the CN frequency region stimulated, indicating highly segregated projections from the CN to the IC. These results present the first evidence of temporal responses to frequency-specific CN electrical stimulation. Understanding the auditory system's temporal response to electrical stimulation will help in future ABI designs and stimulation strategies.
Collapse
Affiliation(s)
- Stefan J Mauger
- School of Psychological Science, La Trobe University, VIC 3086, Australia. The Bionic Ear Institute, East Melbourne, VIC 3002, Australia
| | | | | | | | | |
Collapse
|
18
|
Zhang J, Zhang X. Electrical stimulation of the dorsal cochlear nucleus induces hearing in rats. Brain Res 2009; 1311:37-50. [PMID: 19941837 DOI: 10.1016/j.brainres.2009.11.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 11/11/2009] [Accepted: 11/12/2009] [Indexed: 10/20/2022]
Abstract
Auditory brainstem implants (ABIs) restore hearing by electrical stimulation of the cochlear nucleus (CN). Depending on the physiological condition, duration of the pre-existing deafness, extent of damage to the CN, and the number of channels accessible to the tonotopic frequency gradients of the CN, ABIs improve speech understanding to varying degrees. Although the ventral cochlear nucleus, a mainstream auditory structure, has been considered a logic target for ABI stimulation, it is not yet clear how the dorsal cochlear nucleus (DCN) contributes to patients' hearing during ABI stimulation. To better understand the mechanisms underlying ABIs, we tested if electrical stimulation of the rat DCN induces hearing using a novel electrical prepulse inhibition (ePPI) of startle reflex behavior model. Our results showed that bipolar electrical stimulation of all channels in the DCN induced behavioral manifestation of hearing and that electrical stimulation of certain channels in the DCN induced robust neural activity in auditory cortex channels that responded to acoustic stimulation and demonstrated well-defined frequency tuning curves. This suggests that the DCN plays an important role in electrical hearing and should be further pursued in designing new ABIs. The novel ePPI behavioral paradigm may potentially be developed into an efficient method for testing hearing in animals with an implantable prosthesis.
Collapse
Affiliation(s)
- Jinsheng Zhang
- Department of Otolaryngology-Head and Neck Surgery, 5E-UHC, Wayne State University School of Medicine, 4201 Saint Antoine, Detroit, MI 48201, USA.
| | | |
Collapse
|
19
|
Shivdasani MN, Mauger SJ, Rathbone GD, Paolini AG. Neural synchrony in ventral cochlear nucleus neuron populations is not mediated by intrinsic processes but is stimulus induced: implications for auditory brainstem implants. J Neural Eng 2009; 6:065003. [PMID: 19850978 DOI: 10.1088/1741-2560/6/6/065003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this investigation was to elucidate if neural synchrony forms part of the spike time-based theory for coding of sound information in the ventral cochlear nucleus (VCN) of the auditory brainstem. Previous research attempts to quantify the degree of neural synchrony at higher levels of the central auditory system have indicated that synchronized firing of neurons during presentation of an acoustic stimulus could play an important role in coding complex sound features. However, it is unknown whether this synchrony could in fact arise from the VCN as it is the first station in the central auditory pathway. Cross-correlation analysis was conducted on 499 pairs of multiunit clusters recorded in the urethane-anesthetized rat VCN in response to pure tones and combinations of two tones to determine the presence of neural synchrony. The shift predictor correlogram was used as a measure for determining the synchrony owing to the effects of the stimulus. Without subtraction of the shift predictor, over 65% of the pairs of multiunit clusters exhibited significant correlation in neural firing when the frequencies of the tones presented matched their characteristic frequencies (CFs). In addition, this stimulus-evoked neural synchrony was dependent on the physical distance between electrode sites, and the CF difference between multiunit clusters as the number of correlated pairs dropped significantly for electrode sites greater than 800 microm apart and for multiunit cluster pairs with a CF difference greater than 0.5 octaves. However, subtraction of the shift predictor correlograms from the raw correlograms resulted in no remaining correlation between all VCN pairs. These results suggest that while neural synchrony may be a feature of sound coding in the VCN, it is stimulus induced and not due to intrinsic neural interactions within the nucleus. These data provide important implications for stimulation strategies for the auditory brainstem implant, which is used to provide functional hearing to the profoundly deaf through electrical stimulation of the VCN.
Collapse
Affiliation(s)
- Mohit N Shivdasani
- School of Psychological Science, La Trobe University, Bundoora, VIC 3086, Australia
| | | | | | | |
Collapse
|
20
|
Abstract
The auditory midbrain implant (AMI) is a new hearing prosthesis designed for stimulation of the inferior colliculus in deaf patients who cannot sufficiently benefit from cochlear implants. The authors have begun clinical trials in which five patients have been implanted with a single shank AMI array (20 electrodes). The goal of this review is to summarize the development and research that has led to the translation of the AMI from a concept into the first patients. This study presents the rationale and design concept for the AMI as well a summary of the animal safety and feasibility studies that were required for clinical approval. The authors also present the initial surgical, psychophysical, and speech results from the first three implanted patients. Overall, the results have been encouraging in terms of the safety and functionality of the implant. All patients obtain improvements in hearing capabilities on a daily basis. However, performance varies dramatically across patients depending on the implant location within the midbrain with the best performer still not able to achieve open set speech perception without lip-reading cues. Stimulation of the auditory midbrain provides a wide range of level, spectral, and temporal cues, all of which are important for speech understanding, but they do not appear to sufficiently fuse together to enable open set speech perception with the currently used stimulation strategies. Finally, several issues and hypotheses for why current patients obtain limited speech perception along with several feasible solutions for improving AMI implementation are presented.
Collapse
Affiliation(s)
- Hubert H Lim
- Department of Biomedical Engineering, University of Minnesota, Minneapolis.
| | | | | |
Collapse
|