1
|
Kawai F. Somatic ion channels and action potentials in olfactory receptor cells and vomeronasal receptor cells. J Neurophysiol 2024; 131:455-471. [PMID: 38264787 DOI: 10.1152/jn.00137.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024] Open
Abstract
Olfactory receptor cells are primary sensory neurons that catch odor molecules in the olfactory system, and vomeronasal receptor cells catch pheromones in the vomeronasal system. When odor or pheromone molecules bind to receptor proteins expressed on the membrane of the olfactory cilia or vomeronasal microvilli, receptor potentials are generated in their receptor cells. This initial excitation is transmitted to the soma via dendrites, and action potentials are generated in the soma and/or axon and transmitted to the central nervous system. Thus, olfactory and vomeronasal receptor cells play an important role in converting chemical signals into electrical signals. In this review, the electrophysiological characteristics of ion channels in the somatic membrane of olfactory receptor cells and vomeronasal receptor cells in various species are described and the differences between the action potential dynamics of olfactory receptor cells and vomeronasal receptor cells are compared.
Collapse
Affiliation(s)
- Fusao Kawai
- Department of Physiology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
2
|
Sarno N, Hernandez-Clavijo A, Boccaccio A, Menini A, Pifferi S. Slow Inactivation of Sodium Channels Contributes to Short-Term Adaptation in Vomeronasal Sensory Neurons. eNeuro 2022; 9:ENEURO.0471-21.2022. [PMID: 35487703 PMCID: PMC9116931 DOI: 10.1523/eneuro.0471-21.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/16/2022] [Accepted: 04/08/2022] [Indexed: 01/10/2023] Open
Abstract
Adaptation plays an important role in sensory systems as it dynamically modifies sensitivity to allow the detection of stimulus changes. The vomeronasal system controls many social behaviors in most mammals by detecting pheromones released by conspecifics. Stimuli activate a transduction cascade in vomeronasal neurons that leads to spiking activity. Whether and how these neurons adapt to stimuli is still debated and largely unknown. Here, we measured short-term adaptation performing current-clamp whole-cell recordings by using diluted urine as a stimulus, as it contains many pheromones. We measured spike frequency adaptation in response to repeated identical stimuli of 2-10 s duration that was dependent on the time interval between stimuli. Responses to paired current steps, bypassing the signal transduction cascade, also showed spike frequency adaptation. We found that voltage-gated Na+ channels in VSNs undergo slow inactivation processes. Furthermore, recovery from slow inactivation of voltage-gated Na+ channels occurs in several seconds, a time scale similar to that measured during paired-pulse adaptation protocols, suggesting that it partially contributes to short-term spike frequency adaptation. We conclude that vomeronasal neurons do exhibit a time-dependent short-term spike frequency adaptation to repeated natural stimuli and that slow inactivation of Na+ channels contributes to this form of adaptation. These findings not only increase our knowledge about adaptation in the vomeronasal system, but also raise the question of whether slow inactivation of Na+ channels may play a role in other sensory systems.
Collapse
Affiliation(s)
- Nicole Sarno
- Neurobiology Group, SISSA Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | - Andres Hernandez-Clavijo
- Neurobiology Group, SISSA Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | - Anna Boccaccio
- Institute of Biophysics, National Research Council, 16149 Genova, Italy
| | - Anna Menini
- Neurobiology Group, SISSA Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | - Simone Pifferi
- Neurobiology Group, SISSA Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
3
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
4
|
Leinders-Zufall T, Storch U, Mederos y Schnitzler M, Ojha NK, Koike K, Gudermann T, Zufall F. A diacylglycerol photoswitching protocol for studying TRPC channel functions in mammalian cells and tissue slices. STAR Protoc 2021; 2:100527. [PMID: 34027485 PMCID: PMC8121987 DOI: 10.1016/j.xpro.2021.100527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Small molecular probes designed for photopharmacology and opto-chemogenetics are rapidly gaining widespread recognition for investigations of transient receptor potential canonical (TRPC) channels. This protocol describes the use of three photoswitchable diacylglycerol analogs—PhoDAG-1, PhoDAG-3, and OptoDArG—for ultrarapid activation and deactivation of native TRPC2 channels in mouse vomeronasal sensory neurons and olfactory type B cells, as well as heterologously expressed human TRPC6 channels. Photoconversion can be achieved in mammalian tissue slices and enables all-optical stimulation and shutoff of TRPC channels. For complete details on the use and execution of this protocol, please refer to Leinders-Zufall et al. (2018). DAG photoswitching enables ultrarapid activation and deactivation of TRPC channels Multiple photoswitchable DAG analogs are now available DAG photoconversion is sufficient for the gating of TRPC2, TRPC3, and TRPC6 Photoswitching combined with Ca2+ imaging enables all-optical stimulation and recording
Collapse
Affiliation(s)
- Trese Leinders-Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Ursula Storch
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, 80336 München, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 München, Germany
| | - Michael Mederos y Schnitzler
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, 80336 München, Germany
| | - Navin K. Ojha
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Kohei Koike
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Thomas Gudermann
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, 80336 München, Germany
| | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
- Corresponding author
| |
Collapse
|
5
|
Eckstein E, Pyrski M, Pinto S, Freichel M, Vennekens R, Zufall F. Cyclic regulation of Trpm4 expression in female vomeronasal neurons driven by ovarian sex hormones. Mol Cell Neurosci 2020; 105:103495. [PMID: 32298804 DOI: 10.1016/j.mcn.2020.103495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/13/2020] [Accepted: 04/11/2020] [Indexed: 01/29/2023] Open
Abstract
The vomeronasal organ (VNO), the sensory organ of the mammalian accessory olfactory system, mediates the activation of sexually dimorphic reproductive behavioral and endocrine responses in males and females. It is unclear how sexually dimorphic and state-dependent responses are generated by vomeronasal sensory neurons (VSNs). Here, we report the expression of the transient receptor potential (TRP) channel Trpm4, a Ca2+-activated monovalent cation channel, as a second TRP channel present in mouse VSNs, in addition to the diacylglycerol-sensitive Trpc2 channel. The expression of Trpm4 in the mouse VNO is sexually dimorphic and, in females, is tightly linked to their reproductive cycle. We show that Trpm4 protein expression is upregulated specifically during proestrus and estrus, when female mice are about to ovulate and become sexually active and receptive. The cyclic regulation of Trpm4 expression in female VSNs depends on ovarian sex hormones and is abolished by surgical removal of the ovaries (OVX). Trpm4 upregulation can be restored in OVX mice by systemic treatment with 17ß-estradiol, requires endogenous activity of aromatase enzyme, and is strongly reduced during late pregnancy. This cyclic regulation of Trpm4 offers a neural mechanism by which female mice could regulate the relative strength of sensory signals in their VSNs, depending on hormonal state. Trpm4 is likely to participate in sex-specific, estrous cycle-dependent and sex hormone-regulated functions of the VNO, and may serve as a previously unknown genetic substrate for dissecting mammalian sexually dimorphic cellular and behavioral responses.
Collapse
Affiliation(s)
- Eugenia Eckstein
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Martina Pyrski
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Silvia Pinto
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Marc Freichel
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany.
| |
Collapse
|
6
|
Mohrhardt J, Nagel M, Fleck D, Ben-Shaul Y, Spehr M. Signal Detection and Coding in the Accessory Olfactory System. Chem Senses 2019; 43:667-695. [PMID: 30256909 PMCID: PMC6211456 DOI: 10.1093/chemse/bjy061] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In many mammalian species, the accessory olfactory system plays a central role in guiding behavioral and physiological responses to social and reproductive interactions. Because of its relatively compact structure and its direct access to amygdalar and hypothalamic nuclei, the accessory olfactory pathway provides an ideal system to study sensory control of complex mammalian behavior. During the last several years, many studies employing molecular, behavioral, and physiological approaches have significantly expanded and enhanced our understanding of this system. The purpose of the current review is to integrate older and newer studies to present an updated and comprehensive picture of vomeronasal signaling and coding with an emphasis on early accessory olfactory system processing stages. These include vomeronasal sensory neurons in the vomeronasal organ, and the circuitry of the accessory olfactory bulb. Because the overwhelming majority of studies on accessory olfactory system function employ rodents, this review is largely focused on this phylogenetic order, and on mice in particular. Taken together, the emerging view from both older literature and more recent studies is that the molecular, cellular, and circuit properties of chemosensory signaling along the accessory olfactory pathway are in many ways unique. Yet, it has also become evident that, like the main olfactory system, the accessory olfactory system also has the capacity for adaptive learning, experience, and state-dependent plasticity. In addition to describing what is currently known about accessory olfactory system function and physiology, we highlight what we believe are important gaps in our knowledge, which thus define exciting directions for future investigation.
Collapse
Affiliation(s)
- Julia Mohrhardt
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Maximilian Nagel
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - David Fleck
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, School of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
7
|
Noguchi T, Miyazono S, Kashiwayanagi M. Stimulus dynamics-dependent information transfer of olfactory and vomeronasal sensory neurons in mice. Neuroscience 2018; 400:48-61. [PMID: 30599273 DOI: 10.1016/j.neuroscience.2018.12.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 01/29/2023]
Abstract
The parallel processing of chemical signals by the main olfactory system and the vomeronasal system has been known to control animal behavior. The physiological significance of peripheral parallel pathways consisting of olfactory sensory neurons and vomeronasal sensory neurons is not well understood. Here, we show complementary characteristics of the information transfer of the olfactory sensory neurons and vomeronasal sensory neurons. A difference in excitability between the sensory neurons was revealed by patch-clamp experiments. The olfactory and vomeronasal sensory neurons showed phasic and tonic firing, respectively. Intrinsic channel kinetics determining firing patterns was demonstrated by a Hodgkin-Huxley-style computation. Our estimation of the information carried by action potentials during one cycle of sinusoidal stimulation with variable durations revealed distinct characteristics of information transfer between the sensory neurons. Phasic firing of the olfactory sensory neurons was suitable to carry information about rapid changes in a shorter cycle (<200 ms). In contrast, tonic firing of the vomeronasal sensory neurons was able to convey information about smaller stimuli changing slowly with longer cycles (>500 ms). Thus, the parallel pathways of the two types of sensory neurons can convey information about a wide range of dynamic stimuli. A combination of complementary characteristics of olfactory information transfer may enhance the synergy of the interaction between the main olfactory system and the vomeronasal system.
Collapse
Affiliation(s)
- Tomohiro Noguchi
- Department of Sensory Physiology, Asahikawa Medical University, Asahikawa, Japan.
| | - Sadaharu Miyazono
- Department of Sensory Physiology, Asahikawa Medical University, Asahikawa, Japan.
| | - Makoto Kashiwayanagi
- Department of Sensory Physiology, Asahikawa Medical University, Asahikawa, Japan.
| |
Collapse
|
8
|
Münch J, Billig G, Hübner CA, Leinders-Zufall T, Zufall F, Jentsch TJ. Ca 2+-activated Cl - currents in the murine vomeronasal organ enhance neuronal spiking but are dispensable for male-male aggression. J Biol Chem 2018; 293:10392-10403. [PMID: 29769308 DOI: 10.1074/jbc.ra118.003153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/06/2018] [Indexed: 01/11/2023] Open
Abstract
Ca2+-activated Cl- currents have been observed in many physiological processes, including sensory transduction in mammalian olfaction. The olfactory vomeronasal (or Jacobson's) organ (VNO) detects molecular cues originating from animals of the same species or from predators. It then triggers innate behaviors such as aggression, mating, or flight. In the VNO, Ca2+-activated Cl- channels (CaCCs) are thought to amplify the initial pheromone-evoked receptor potential by mediating a depolarizing Cl- efflux. Here, we confirmed the co-localization of the Ca2+-activated Cl- channels anoctamin 1 (Ano1, also called TMEM16A) and Ano2 (TMEM16B) in microvilli of apically and basally located vomeronasal sensory neurons (VSNs) and their absence in supporting cells of the VNO. Both channels were expressed as functional isoforms capable of giving rise to Ca2+-activated Cl- currents. Although these currents persisted in the VNOs of mice lacking Ano2, they were undetectable in olfactory neuron-specific Ano1 knockout mice irrespective of the presence of Ano2 The loss of Ca2+-activated Cl- currents resulted in diminished spontaneous and drastically reduced pheromone-evoked spiking of VSNs. Although this indicated an important role of anoctamin channels in VNO signal amplification, the lack of this amplification did not alter VNO-dependent male-male territorial aggression in olfactory Ano1/Ano2 double knockout mice. We conclude that Ano1 mediates the bulk of Ca2+-activated Cl- currents in the VNO and that Ano2 plays only a minor role. Furthermore, vomeronasal signal amplification by CaCCs appears to be dispensable for the detection of male-specific pheromones and for near-normal aggressive behavior in mice.
Collapse
Affiliation(s)
- Jonas Münch
- From the Leibniz-Forschungsinstitut für Molekulare Pharmakologie, D-13125 Berlin, Germany.,the Max-Delbrück-Centrum für Molekulare Medizin, D-13125 Berlin, Germany.,the Graduate Program, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Gwendolyn Billig
- From the Leibniz-Forschungsinstitut für Molekulare Pharmakologie, D-13125 Berlin, Germany.,the Max-Delbrück-Centrum für Molekulare Medizin, D-13125 Berlin, Germany
| | - Christian A Hübner
- Institut für Humangenetik, Universitätsklinikum Jena, D-07747 Jena, Germany
| | - Trese Leinders-Zufall
- the Center for Integrative Physiology and Molecular Medicine, Saarland University, D-66421 Homburg, Germany, and
| | - Frank Zufall
- the Center for Integrative Physiology and Molecular Medicine, Saarland University, D-66421 Homburg, Germany, and
| | - Thomas J Jentsch
- From the Leibniz-Forschungsinstitut für Molekulare Pharmakologie, D-13125 Berlin, Germany, .,the Max-Delbrück-Centrum für Molekulare Medizin, D-13125 Berlin, Germany.,the NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, D-10117 Berlin, Germany
| |
Collapse
|
9
|
Type 3 inositol 1,4,5-trisphosphate receptor is dispensable for sensory activation of the mammalian vomeronasal organ. Sci Rep 2017; 7:10260. [PMID: 28860523 PMCID: PMC5579292 DOI: 10.1038/s41598-017-09638-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/21/2017] [Indexed: 12/31/2022] Open
Abstract
Signal transduction in sensory neurons of the mammalian vomeronasal organ (VNO) involves the opening of the canonical transient receptor potential channel Trpc2, a Ca2+-permeable cation channel that is activated by diacylglycerol and inhibited by Ca2+-calmodulin. There has been a long-standing debate about the extent to which the second messenger inositol 1,4,5-trisphosphate (InsP3) and type 3 InsP3 receptor (InsP3R3) are involved in the opening of Trpc2 channels and in sensory activation of the VNO. To address this question, we investigated VNO function of mice carrying a knockout mutation in the Itpr3 locus causing a loss of InsP3R3. We established a new method to monitor Ca2+ in the endoplasmic reticulum of vomeronasal sensory neurons (VSNs) by employing the GFP-aequorin protein sensor erGAP2. We also performed simultaneous InsP3 photorelease and Ca2+ monitoring experiments, and analysed Ca2+ dynamics, sensory currents, and action potential or field potential responses in InsP3R3-deficient VSNs. Disruption of Itpr3 abolished or minimized the Ca2+ transients evoked by photoactivated InsP3, but there was virtually no effect on sensory activation of VSNs. Therefore, InsP3R3 is dispensable for primary chemoelectrical transduction in mouse VNO. We conclude that InsP3R3 is not required for gating of Trpc2 in VSNs.
Collapse
|
10
|
Bolz F, Kasper S, Bufe B, Zufall F, Pyrski M. Organization and Plasticity of Sodium Channel Expression in the Mouse Olfactory and Vomeronasal Epithelia. Front Neuroanat 2017; 11:28. [PMID: 28420967 PMCID: PMC5376585 DOI: 10.3389/fnana.2017.00028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/20/2017] [Indexed: 12/15/2022] Open
Abstract
To understand the molecular basis of neuronal excitation in the mammalian olfactory system, we conducted a systematic analysis of the organization of voltage-gated sodium (Nav) channel subunits in the main olfactory epithelium (MOE) and vomeronasal organ (VNO) of adult mice. We also analyzed changes in Nav channel expression during development in these two systems and during regeneration of the MOE. Quantitative PCR shows that Nav1.7 is the predominant isoform in both adult MOE and VNO. We detected pronounced immunoreactivity for Nav1.7 and Nav1.3 in axons of olfactory and vomeronasal sensory neurons (VSNs). Analysis of Nav1.2 and Nav1.6 revealed an unexpected subsystem-specific distribution. In the MOE, these Nav channels are absent from olfactory sensory neurons (OSNs) but present in non-neuronal olfactory cell types. In the VNO, Nav1.2 and Nav1.6 are confined to VSNs, with Nav1.2-immunoreactive somata solely present in the basal layer of the VNO. The subcellular localization of Nav1.3 and Nav1.7 in OSNs can change dramatically during periods of heightened plasticity in the MOE. During the first weeks of development and during regeneration of the olfactory epithelium following chemical lesion, expression of Nav1.3 and Nav1.7 is transiently enhanced in the somata of mature OSNs. Our results demonstrate a highly complex organization of Nav channel expression in the mouse olfactory system, with specific commonalities but also differences between the MOE and the VNO. On the basis of their subcellular localization, Nav1.3 and Nav1.7 should play major roles in action potential propagation in both MOE and VNO, whereas Nav1.2 and Nav1.6 are specific to the function of VSNs. The plasticity of Nav channel expression in OSNs during early development and recovery from injury could reflect important physiological requirements in a variety of activity-dependent mechanisms.
Collapse
Affiliation(s)
- Florian Bolz
- Center for Integrative Physiology and Molecular Medicine, Saarland UniversityHomburg, Germany
| | - Stephanie Kasper
- Center for Integrative Physiology and Molecular Medicine, Saarland UniversityHomburg, Germany
| | - Bernd Bufe
- Center for Integrative Physiology and Molecular Medicine, Saarland UniversityHomburg, Germany
| | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland UniversityHomburg, Germany
| | - Martina Pyrski
- Center for Integrative Physiology and Molecular Medicine, Saarland UniversityHomburg, Germany
| |
Collapse
|
11
|
Ackels T, Drose DR, Spehr M. In-depth Physiological Analysis of Defined Cell Populations in Acute Tissue Slices of the Mouse Vomeronasal Organ. J Vis Exp 2016. [PMID: 27684435 DOI: 10.3791/54517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In most mammals, the vomeronasal organ (VNO) is a chemosensory structure that detects both hetero- and conspecific social cues. Vomeronasal sensory neurons (VSNs) express a specific type of G protein-coupled receptor (GPCR) from at least three different chemoreceptor gene families allowing sensitive and specific detection of chemosensory cues. These families comprise the V1r and V2r gene families as well as the formyl peptide receptor (FPR)-related sequence (Fpr-rs) family of putative chemoreceptor genes. In order to understand the physiology of vomeronasal receptor-ligand interactions and downstream signaling, it is essential to identify the biophysical properties inherent to each specific class of VSNs. The physiological approach described here allows identification and in-depth analysis of a defined population of sensory neurons using a transgenic mouse line (Fpr-rs3-i-Venus). The use of this protocol, however, is not restricted to this specific line and thus can easily be extended to other genetically modified lines or wild type animals.
Collapse
Affiliation(s)
- Tobias Ackels
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University; Mill Hill Laboratory, The Francis Crick Institute;
| | - Daniela R Drose
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University
| |
Collapse
|
12
|
Ackels T, von der Weid B, Rodriguez I, Spehr M. Physiological characterization of formyl peptide receptor expressing cells in the mouse vomeronasal organ. Front Neuroanat 2014; 8:134. [PMID: 25484858 PMCID: PMC4240171 DOI: 10.3389/fnana.2014.00134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/01/2014] [Indexed: 12/14/2022] Open
Abstract
The mouse vomeronasal organ (VNO) is a chemosensory structure that detects both hetero- and conspecific social cues. Based on largely monogenic expression of either type 1 or 2 vomeronasal receptors (V1Rs/V2Rs) or members of the formyl peptide receptor (FPR) family, the vomeronasal sensory epithelium harbors at least three neuronal subpopulations. While various neurophysiological properties of both V1R- and V2R-expressing neurons have been described using genetically engineered mouse models, the basic biophysical characteristics of the more recently identified FPR-expressing vomeronasal neurons have not been studied. Here, we employ a transgenic mouse strain that coexpresses an enhanced variant of yellow fluorescent protein together with FPR-rs3 allowing to identify and analyze FPR-rs3-expressing neurons in acute VNO tissue slices. Single neuron electrophysiological recordings allow comparative characterization of the biophysical properties inherent to a prototypical member of the FPR-expressing subpopulation of VNO neurons. In this study, we provide an in-depth analysis of both passive and active membrane properties, including detailed characterization of several types of voltage-activated conductances and action potential discharge patterns, in fluorescently labeled vs. unmarked vomeronasal neurons. Our results reveal striking similarities in the basic (electro) physiological architecture of both transgene-expressing and non-expressing neurons, confirming the suitability of this genetically engineered mouse model for future studies addressing more specialized issues in vomeronasal FPR neurobiology.
Collapse
Affiliation(s)
- Tobias Ackels
- Department of Chemosensation, RWTH Aachen University Aachen, Germany
| | - Benoît von der Weid
- Department of Genetics and Evolution, University of Geneva Geneva, Switzerland
| | - Ivan Rodriguez
- Department of Genetics and Evolution, University of Geneva Geneva, Switzerland
| | - Marc Spehr
- Department of Chemosensation, RWTH Aachen University Aachen, Germany
| |
Collapse
|
13
|
Weiss J, Pyrski M, Weissgerber P, Zufall F. Altered synaptic transmission at olfactory and vomeronasal nerve terminals in mice lacking N-type calcium channel Cav2.2. Eur J Neurosci 2014; 40:3422-35. [PMID: 25195871 DOI: 10.1111/ejn.12713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 12/19/2022]
Abstract
We investigated the role of voltage-activated calcium (Cav) channels for synaptic transmission at mouse olfactory and vomeronasal nerve terminals at the first synapse of the main and accessory olfactory pathways, respectively. We provided evidence for a central role of the N-type Cav channel subunit Cav2.2 in presynaptic transmitter release at these synapses. Striking Cav2.2 immunoreactivity was localised to the glomerular neuropil of the main olfactory bulb (MOB) and accessory olfactory bulb (AOB), and co-localised with presynaptic molecules such as bassoon. Voltage-clamp recordings of sensory nerve-evoked, excitatory postsynaptic currents (EPSCs) in mitral/tufted (M/T) and superficial tufted cells of the MOB and mitral cells of the AOB, in combination with established subtype-specific Cav channel toxins, indicated a predominant role of N-type channels in transmitter release at these synapses, whereas L-type, P/Q-type, and R-type channels had either no or only relatively minor contributions. In Cacna1b mutant mice lacking the Cav2.2 (α1B) subunit of N-type channels, olfactory nerve-evoked M/T cell EPSCs were not reduced but became blocker-resistant, thus indicating a major reorganisation and compensation of Cav channel subunits as a result of the Cav2.2 deletion at this synapse. Cav2.2-deficient mice also revealed that Cav2.2 was critically required for paired-pulse depression of olfactory nerve-evoked EPSCs in M/T cells of the MOB, and they demonstrated an essential requirement for Cav2.2 in vomeronasal nerve-evoked EPSCs of AOB mitral cells. Thus, Cacna1b loss-of-function mutations are unlikely to cause general anosmia but Cacna1b emerges as a strong candidate in the search for mutations causing altered olfactory perception, such as changes in general olfactory sensitivity and altered social responses to chemostimuli.
Collapse
Affiliation(s)
- Jan Weiss
- Department of Physiology, University of Saarland School of Medicine, Kirrbergerstrasse, Building 58, D-66421, Homburg, Germany
| | | | | | | |
Collapse
|
14
|
Paradoxical contribution of SK3 and GIRK channels to the activation of mouse vomeronasal organ. Nat Neurosci 2012; 15:1236-44. [PMID: 22842147 PMCID: PMC3431453 DOI: 10.1038/nn.3173] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/25/2012] [Indexed: 12/30/2022]
Abstract
The vomeronasal organ (VNO) is essential for intraspecies communication in many terrestrial vertebrates. The ionic mechanisms of VNO activation remain unclear. We found that the calcium-activated potassium channel SK3 and the G protein-activated potassium channel GIRK are part of an independent pathway for VNO activation. In slice preparations, the potassium channels attenuated inward currents carried by TRPC2 and calcium-activated chloride channels (CACCs). In intact tissue preparations, paradoxically, the potassium channels enhanced urine-evoked inward currents. This discrepancy resulted from the loss of a high concentration of lumenal potassium, which enabled the influx of potassium ions to depolarize the VNO neurons in vivo. Both Sk3 (also known as Kcnn3) and Girk1 (also known as Kcnj3) homozygous null mice showed deficits in mating and aggressive behaviors, and the deficiencies in Sk3(-/-) mice were exacerbated by Trpc2 knockout. Our results suggest that VNO activation is mediated by TRPC2, CACCs and two potassium channels, all of which contributed to the in vivo depolarization of VNO neurons.
Collapse
|
15
|
Calcium-activated sustained firing responses distinguish accessory from main olfactory bulb mitral cells. J Neurosci 2012; 32:6251-62. [PMID: 22553031 DOI: 10.1523/jneurosci.4397-11.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many mammals rely on pheromones for mediating social interactions. Recent studies indicate that both the main olfactory system (MOS) and accessory olfactory system (AOS) detect and process pheromonal stimuli, yet the functional difference between these two chemosensory systems remains unclear. We hypothesized that the main functional distinction between the MOS and AOS is the type of sensory information processing performed by each system. Here we compared the electrophysiological responses of mitral cells recorded from the accessory olfactory bulb (AOB) and main olfactory bulb (MOB) in acute mouse brain slices to various stimuli and found them markedly different. The response of MOB mitral cells to brief (0.1 ms, 1-100 V) stimulation of their sensory afferents remained transient regardless of stimulus strength, whereas sufficiently strong stimuli evoked sustained firing in AOB mitral cells lasting up to several minutes. Using EPSC-like current injections (10-100 pA, 10 ms rise time constant, 5 s decay time constant) in the presence of various synaptic blockers (picrotoxin, CGP55845, APV, DNQX, E4CPG, and MSPG), we demonstrated that this difference is attributable to distinct intrinsic properties of the two neuronal populations. The AOB sustained responses were found to be mediated by calcium-activated nonselective cationic current induced by transient intense firing. This current was found to be at least partially mediated by TRPM4 channels activated by calcium influx. We hypothesize that the sustained activity of the AOS induces a new sensory state in the animal, reflecting its social context.
Collapse
|
16
|
Vick JS, Delay RJ. ATP excites mouse vomeronasal sensory neurons through activation of P2X receptors. Neuroscience 2012; 220:341-50. [PMID: 22698690 DOI: 10.1016/j.neuroscience.2012.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/17/2012] [Accepted: 06/01/2012] [Indexed: 11/19/2022]
Abstract
Purinergic signaling through activation of P2X and P2Y receptors is critically important in the chemical senses. In the mouse main olfactory epithelium (MOE), adenosine 5'-triphosphate (ATP) elicits an increase in intracellular calcium ([Ca(2+)](I)) and reduces the responsiveness of olfactory sensory neurons to odorants through activation of P2X and P2Y receptors. We investigated the role of purinergic signaling in vomeronasal sensory neuron (VSN)s from the mouse vomeronasal organ (VNO), an olfactory organ distinct from the MOE that responds to many conspecific chemical cues. Using a combination of calcium imaging and patch-clamp electrophysiology with isolated VSNs, we demonstrated that ATP elicits an increase in [Ca(2+)](I) and an inward current with similar EC(50)s. Neither adenosine nor the P2Y receptor ligands adenosine 5'-diphosphate, uridine 5'-triphosphate, and uridine-5'-disphosphate could mimic either effect of ATP. Moreover, the increase in [Ca(2+)](I) required the presence of extracellular calcium and the inward current elicited by ATP was partially blocked by the P2X receptor antagonists pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate and 2',3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate. Consistent with the activation of P2X receptors, we detected gene expression of the P2X1 and 3 receptors in the VNO by Reverse transcription polymerase chain reaction (RT-PCR). When co-delivered with dilute urine, a natural stimulus, ATP significantly increased the inward current above that elicited by dilute urine or ATP alone. Mechanical stimulation of the VNO induced the release of ATP, detected by luciferin-luciferase luminometry, and this release of ATP was completely abolished in the presence of the connexin/pannexin hemichannel blocker, carbenoxolone. We conclude that the release of ATP could occur during the activity of the vasomotor pump that facilitates the movement of chemicals into the VNO for detection by VSNs. This mechanism could lead to a global increase in excitability and the chemosensory response in VSNs through activation of P2X receptors.
Collapse
Affiliation(s)
- J S Vick
- Department of Biology and Vermont Chemosensory Group, University of Vermont, Marsh Life Science Building, 109 Carrigan Drive, Burlington, VT 05405, United States.
| | | |
Collapse
|
17
|
Rupasinghe DB, Knapp O, Blomster LV, Schmid AB, Adams DJ, King GF, Ruitenberg MJ. Localization of Nav 1.7 in the normal and injured rodent olfactory system indicates a critical role in olfaction, pheromone sensing and immune function. Channels (Austin) 2012; 6:103-10. [PMID: 22622154 DOI: 10.4161/chan.19484] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Loss-of-function mutations in the pore-forming α subunit of the voltage-gated sodium channel 1.7 (Nav 1.7) cause congenital indifference to pain and anosmia. We used immunohistochemical techniques to study Nav 1.7 localization in the rat olfactory system in order to better understand its role in olfaction. We confirm that Nav 1.7 is expressed on olfactory sensory axons and report its presence on vomeronasal axons, indicating an important role for Nav 1.7 in transmission of pheromonal cues. Following neuroepithelial injury, Nav 1.7 was transiently expressed by cells of monocytic lineage. These findings support an emerging role for Nav 1.7 in immune function. This sodium channel may provide an important pharmacological target for treatment of inflammatory injury and inflammatory pain syndromes.
Collapse
Affiliation(s)
- Darshani B Rupasinghe
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | | | | | | | | | | | | |
Collapse
|
18
|
Requirement of calcium-activated chloride channels in the activation of mouse vomeronasal neurons. Nat Commun 2011; 2:365. [PMID: 21694713 PMCID: PMC3156823 DOI: 10.1038/ncomms1368] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 05/24/2011] [Indexed: 11/25/2022] Open
Abstract
In terrestrial vertebrates, the vomeronasal organ (VNO) detects and transduces pheromone signals. VNO activation is thought to be mediated by the transient receptor potential C2 (TRPC2) channel. The aberrant behavioural phenotypes observed in TRPC2−/− mice are generally attributed to the lost VNO function. Recently, calcium-activated chloride channels have been shown to contribute to VNO activation. Here we show that CACCs can be activated in VNO slice preparations from the TRPC2−/− mice and this activation is blocked by pharmacological agents that inhibit intracellular Ca2+ release. Urine-evoked Cl− current is sufficient to drive spiking changes in VNO neurons from both wild-type (WT) and TRPC2−/− mice. Moreover, blocking Cl− conductance essentially abolishes VNO activation in WT neurons. These results suggest a TRPC2-independent signalling pathway in the VNO and the requirement of calcium-activated chloride channels currents to mediate pheromone activation. Our data further suggest that TRPC2−/− mice retain partial VNO function. The vomeronasal organ detects pheromones, which are thought to activate TRPC2 channels on the surface of vomeronasal neurons. Using TRPC2 knockout mice, the authors show that urinary pheromones can also activate these neurons via calcium-activated chloride channels, suggesting a TRPC2-independent pathway for sensing pheromones.
Collapse
|
19
|
Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature 2011; 472:186-90. [PMID: 21441906 DOI: 10.1038/nature09975] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 03/04/2011] [Indexed: 12/19/2022]
Abstract
Loss of function of the gene SCN9A, encoding the voltage-gated sodium channel Na(v)1.7, causes a congenital inability to experience pain in humans. Here we show that Na(v)1.7 is not only necessary for pain sensation but is also an essential requirement for odour perception in both mice and humans. We examined human patients with loss-of-function mutations in SCN9A and show that they are unable to sense odours. To establish the essential role of Na(v)1.7 in odour perception, we generated conditional null mice in which Na(v)1.7 was removed from all olfactory sensory neurons. In the absence of Na(v)1.7, these neurons still produce odour-evoked action potentials but fail to initiate synaptic signalling from their axon terminals at the first synapse in the olfactory system. The mutant mice no longer display vital, odour-guided behaviours such as innate odour recognition and avoidance, short-term odour learning, and maternal pup retrieval. Our study creates a mouse model of congenital general anosmia and provides new strategies to explore the genetic basis of the human sense of smell.
Collapse
|
20
|
Löf C, Viitanen T, Sukumaran P, Törnquist K. TRPC2: Of Mice But Not Men. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:125-34. [DOI: 10.1007/978-94-007-0265-3_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Abstract
In mammalian species, detection of pheromone cues by the vomeronasal organ (VNO) at different concentrations can elicit distinct behavioral responses and endocrine changes. It is not well understood how concentration-dependent activation of the VNO impacts innate behaviors. In this study, we find that, when mice investigate the urogenital areas of a conspecific animal, the urinary pheromones can reach the VNO at a concentration of approximately 1% of that in urine. At this level, urinary pheromones elicit responses from a subset of cells that are tuned to sex-specific cues and provide unambiguous identification of the sex and strain of animals. In contrast, low concentrations of urine do not activate these cells. Strikingly, we find a population of neurons that is only activated by low concentrations of urine. The properties of these neurons are not found in neurons responding to putative single-compound pheromones. Additional analyses show that these neurons are masked by high-concentration pheromones. Thus, an antagonistic interaction in natural pheromones results in the activation of distinct populations of cells at different concentrations. The differential activation is likely to trigger different downstream circuitry and underlies the concentration-dependent pheromone perception.
Collapse
|
22
|
Mast TG, Brann JH, Fadool DA. The TRPC2 channel forms protein-protein interactions with Homer and RTP in the rat vomeronasal organ. BMC Neurosci 2010; 11:61. [PMID: 20492691 PMCID: PMC2881103 DOI: 10.1186/1471-2202-11-61] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Accepted: 05/21/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The signal transduction cascade operational in the vomeronasal organ (VNO) of the olfactory system detects odorants important for prey localization, mating, and social recognition. While the protein machinery transducing these external cues has been individually well characterized, little attention has been paid to the role of protein-protein interactions among these molecules. Development of an in vitro expression system for the transient receptor potential 2 channel (TRPC2), which establishes the first electrical signal in the pheromone transduction pathway, led to the discovery of two protein partners that couple with the channel in the native VNO. RESULTS Homer family proteins were expressed in both male and female adult VNO, particularly Homer 1b/c and Homer 3. In addition to this family of scaffolding proteins, the chaperones receptor transporting protein 1 (RTP1) and receptor expression enhancing protein 1 (REEP1) were also expressed. RTP1 was localized broadly across the VNO sensory epithelium, goblet cells, and the soft palate. Both Homer and RTP1 formed protein-protein interactions with TRPC2 in native reciprocal pull-down assays and RTP1 increased surface expression of TRPC2 in in vitro assays. The RTP1-dependent TRPC2 surface expression was paralleled with an increase in ATP-stimulated whole-cell current in an in vitro patch-clamp electrophysiological assay. CONCLUSIONS TRPC2 expression and channel activity is regulated by chaperone- and scaffolding-associated proteins, which could modulate the transduction of chemosignals. The developed in vitro expression system, as described here, will be advantageous for detailed investigations into TRPC2 channel activity and cell signalling, for a channel protein that was traditionally difficult to physiologically assess.
Collapse
Affiliation(s)
- Thomas G Mast
- Department of Biological Science, The Florida State University, Tallahassee, FL 32306, USA
| | | | | |
Collapse
|
23
|
Yang C, Delay RJ. Calcium-activated chloride current amplifies the response to urine in mouse vomeronasal sensory neurons. ACTA ACUST UNITED AC 2010; 135:3-13. [PMID: 20038523 PMCID: PMC2806418 DOI: 10.1085/jgp.200910265] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The vomeronasal organ (VNO) is an odor detection system that mediates many pheromone-sensitive behaviors. Vomeronasal sensory neurons (VSNs), located in the VNO, are the initial site of interaction with odors/pheromones. However, how an individual VSN transduces chemical signals into electrical signals is still unresolved. Here, we show that a Ca2+-activated Cl− current contributes ∼80% of the response to urine in mouse VSNs. Using perforated patch clamp recordings with gramicidin, which leaves intracellular chloride undisrupted, we found that the urine-induced inward current (Vhold = −80 mV) was decreased in the presence of chloride channel blockers. This was confirmed using whole cell recordings and altering extracellular chloride to shift the reversal potential. Further, the urine-induced currents were eliminated when both extracellular Ca2+ and Na+ were removed. Using inside-out patches from dendritic tips, we recorded Ca2+-activated Cl− channel activity. Several candidates for this Ca2+-activated Cl− channel were detected in VNO by reverse transcription–polymerase chain reaction. In addition, a chloride cotransporter, Na+-K+-2Cl− isoform 1, was detected and found to mediate much of the chloride accumulation in VSNs. Collectively, our data demonstrate that chloride acts as a major amplifier for signal transduction in mouse VSNs. This amplification would increase the responsiveness to pheromones or odorants.
Collapse
Affiliation(s)
- Chun Yang
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|
24
|
Leinders-Zufall T, Ishii T, Mombaerts P, Zufall F, Boehm T. Structural requirements for the activation of vomeronasal sensory neurons by MHC peptides. Nat Neurosci 2009; 12:1551-8. [PMID: 19935653 DOI: 10.1038/nn.2452] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 10/21/2009] [Indexed: 11/09/2022]
Abstract
In addition to their role in the immune response, peptide ligands of major histocompatibility complex (MHC) molecules function as olfactory cues for subsets of vomeronasal sensory neurons (VSNs) in the mammalian nose. How MHC peptide diversity is recognized and encoded by these cells is unclear. We found that mouse VSNs expressing the vomeronasal receptor gene V2r1b (also known as Vmn2r26) detected MHC peptides at subpicomolar concentrations and exhibited combinatorial activation with overlapping specificities. In a given cell, peptide responsiveness was broad, but highly specific; peptides differing by a single amino-acid residue could be distinguished. Cells transcribing a V2r1b locus that has been disrupted by gene targeting no longer showed such peptide responses. Our results reveal fundamental parameters governing the response to MHC peptides by VSNs. We suggest that the peptide presentation system provided by MHC molecules co-evolves with the peptide recognition systems expressed by T cells and VSNs.
Collapse
Affiliation(s)
- Trese Leinders-Zufall
- Department of Physiology, University of Saarland School of Medicine, Homburg, Germany
| | | | | | | | | |
Collapse
|
25
|
Abstract
The mammalian olfactory system senses an almost unlimited number of chemical stimuli and initiates a process of neural recognition that influences nearly every aspect of life. This review examines the organizational principles underlying the recognition of olfactory stimuli. The olfactory system is composed of a number of distinct subsystems that can be distinguished by the location of their sensory neurons in the nasal cavity, the receptors they use to detect chemosensory stimuli, the signaling mechanisms they employ to transduce those stimuli, and their axonal projections to specific regions of the olfactory forebrain. An integrative approach that includes gene targeting methods, optical and electrophysiological recording, and behavioral analysis has helped to elucidate the functional significance of this subsystem organization for the sense of smell.
Collapse
Affiliation(s)
- Steven D Munger
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | |
Collapse
|
26
|
Abstract
In recent years, considerable progress has been achieved in the comprehension of the profound effects of pheromones on reproductive physiology and behavior. Pheromones have been classified as molecules released by individuals and responsible for the elicitation of specific behavioral expressions in members of the same species. These signaling molecules, often chemically unrelated, are contained in body fluids like urine, sweat, specialized exocrine glands, and mucous secretions of genitals. The standard view of pheromone sensing was based on the assumption that most mammals have two separated olfactory systems with different functional roles: the main olfactory system for recognizing conventional odorant molecules and the vomeronasal system specifically dedicated to the detection of pheromones. However, recent studies have reexamined this traditional interpretation showing that both the main olfactory and the vomeronasal systems are actively involved in pheromonal communication. The current knowledge on the behavioral, physiological, and molecular aspects of pheromone detection in mammals is discussed in this review.
Collapse
|
27
|
Hörnberg M, Gussing F, Berghard A, Bohm S. Retinoic acid selectively inhibits death of basal vomeronasal neurons during late stage of neural circuit formation. J Neurochem 2009; 110:1263-75. [PMID: 19519663 DOI: 10.1111/j.1471-4159.2009.06216.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In mouse, sexual, aggressive, and social behaviors are influenced by G protein-coupled vomeronasal receptor signaling in two distinct subsets of vomeronasal sensory neurons (VSNs): apical and basal VSNs. In addition, G protein-signaling by these receptors inhibits developmental death of VSNs. We show that cells of the vomeronasal nerve express the retinoic acid (RA) synthesizing enzyme retinal dehydrogenase 2. Analyses of transgenic mice with VSNs expressing a dominant-negative RA receptor indicate that basal VSNs differ from apical VSNs with regard to a transient wave of RA-regulated and caspase 3-mediated cell death during the first postnatal week. Analyses of G-protein subunit deficient mice indicate that RA and vomeronasal receptor signaling combine to regulate postnatal expression of Kirrel-2 (Kin of IRRE-like), a cell adhesion molecule regulating neural activity-dependent formation of precise axonal projections in the main olfactory system. Collectively, the results indicate a novel connection between pre-synaptic RA receptor signaling and neural activity-dependent events that together regulate neuronal survival and maintenance of synaptic contacts.
Collapse
Affiliation(s)
- Maria Hörnberg
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | | | | |
Collapse
|
28
|
Nilsen KB, Nicholas AK, Woods CG, Mellgren SI, Nebuchennykh M, Aasly J. Two novel SCN9A mutations causing insensitivity to pain. Pain 2009; 143:155-8. [DOI: 10.1016/j.pain.2009.02.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 02/18/2009] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
|
29
|
Ca2+ -calmodulin feedback mediates sensory adaptation and inhibits pheromone-sensitive ion channels in the vomeronasal organ. J Neurosci 2009; 29:2125-35. [PMID: 19228965 DOI: 10.1523/jneurosci.5416-08.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mammalian vomeronasal organ (VNO) mediates the regulation of social behaviors by complex chemical signals. These cues trigger transient elevations of intracellular Ca(2+) in vomeronasal sensory neurons (VSNs), but the functional role of such Ca(2+) elevations is unknown. We show that stimulus-induced Ca(2+) entry plays an essential role as a negative feedback regulator of VSN sensitivity. Electrophysiological VSN responses undergo effective sensory adaptation that requires the influx of Ca(2+) and is mediated by calmodulin (CaM). Removal of the Ca(2+)-CaM feedback eliminates this form of adaptation. A key target of this feedback module is the pheromone-sensitive TRPC2-dependent cation channel of VSNs, as its activation is strongly inhibited by Ca(2+)-CaM. Our results reveal a previously unrecognized CaM-signaling pathway that endows the VSNs with a mechanism for adjusting gain and sensitivity of chemosensory signaling in the VNO.
Collapse
|
30
|
Homeostatic control of sensory output in basal vomeronasal neurons: activity-dependent expression of ether-à-go-go-related gene potassium channels. J Neurosci 2009; 29:206-21. [PMID: 19129398 DOI: 10.1523/jneurosci.3656-08.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Conspecific chemosensory communication controls a broad range of social and sexual behaviors. In most mammals, social chemosignals are predominantly detected by sensory neurons of a specialized olfactory subsystem, the vomeronasal organ (VNO). The behavioral relevance of social chemosignaling puts high demands on the accuracy and dynamic range of the underlying transduction mechanisms. However, the physiological concepts implemented to ensure faithful transmission of social information remain widely unknown. Here, we show that sensory neurons in the basal layer of the mouse VNO dynamically control their input-output relationship by activity-dependent regulation of K(+) channel gene expression. Using large-scale expression profiling, immunochemistry, and electrophysiology, we provide molecular and functional evidence for a role of ether-à-go-go-related gene (ERG) K(+) channels as key determinants of cellular excitability. Our findings indicate that an increase in ERG channel expression extends the dynamic range of the stimulus-response function in basal vomeronasal sensory neurons. This novel mechanism of homeostatic plasticity in the periphery of the accessory olfactory system is ideally suited to adjust VNO neurons to a target output range in a layer-specific and use-dependent manner.
Collapse
|
31
|
Abstract
Sensing the chemical environment is critical for all organisms. Diverse animals from insects to mammals utilize highly organized olfactory system to detect, encode, and process chemostimuli that may carry important information critical for health, survival, social interactions and reproduction. Therefore, for animals to properly interpret and react to their environment it is imperative that the olfactory system recognizes chemical stimuli with appropriate selectivity and sensitivity. Because olfactory receptor proteins play such an essential role in the specific recognition of diverse stimuli, understanding how they interact with and transduce their cognate ligands is a high priority. In the nearly two decades since the discovery that the mammalian odorant receptor gene family constitutes the largest group of G protein-coupled receptor (GPCR) genes, much attention has been focused on the roles of GPCRs in vertebrate and invertebrate olfaction. However, is has become clear that the 'family' of olfactory receptors is highly diverse, with roles for enzymes and ligand-gated ion channels as well as GPCRs in the primary detection of olfactory stimuli.
Collapse
Affiliation(s)
- Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
32
|
Repolarizing responses of BKCa-Cav complexes are distinctly shaped by their Cav subunits. J Neurosci 2008; 28:8238-45. [PMID: 18701686 DOI: 10.1523/jneurosci.2274-08.2008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Large-conductance Ca(2+)- and voltage-activated potassium (BK(Ca)) channels shape the firing pattern in many types of excitable cell through their repolarizing K(+) conductance. The onset and duration of the BK(Ca)-mediated currents typically initiated by action potentials (APs) appear to be cell-type specific and were shown to vary between 1 ms and up to a few tens of milliseconds. In recent work, we showed that reliable activation of BK(Ca) channels under cellular conditions is enabled by their integration into complexes with voltage-activated Ca(2+) (Cav) channels that provide Ca(2+) ions at concentrations sufficiently high (> or =10 microM) for activation of BK(Ca) in the physiological voltage range. Formation of BK(Ca)-Cav complexes is restricted to a subset of Cav channels, Cav1.2 (L-type) and Cav2.1/2.2 (P/Q- and N-type), which differ greatly in their expression pattern and gating properties. Here, we reconstituted distinct BK(Ca)-Cav complexes in Xenopus oocytes and culture cells and used patch-clamp recordings to compare the functional properties of BK(Ca)-Cav1.2 and BK(Ca)-Cav2.1 complexes. Under steady-state conditions, K(+) currents mediated by BK(Ca)-Cav2.1 complexes exhibit a considerably faster rise time and reach maximum at potentials markedly more negative than complexes formed by BK(Ca) and Cav1.2, in line with the distinct steady-state activation and gating kinetics of the two Cav subtypes. When AP waveforms were used as a voltage command, K(+) currents mediated by BK(Ca)-Cav2.1 occurred at shorter APs and lasted longer than that of BK(Ca)-Cav1.2. These results demonstrate that the repolarizing K(+) currents through BK(Ca)-Cav complexes are shaped by the respective Cav subunit and that the distinct Cav channels may adapt BK(Ca) currents to the particular requirements of distinct types of cell.
Collapse
|
33
|
Zhang P, Yang C, Delay RJ. Urine stimulation activates BK channels in mouse vomeronasal neurons. J Neurophysiol 2008; 100:1824-34. [PMID: 18701755 DOI: 10.1152/jn.90555.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Most odor responses in mouse vomeronasal neurons are mediated by the phospholipase C (PLC) pathway, activation of which elevates diacylglycerol (DAG). Lucas et al. showed that DAG activates transient receptor potential channels, subfamily C, member 2 (TRPC2), resulting in a depolarizing Ca2+ influx. DAG can be subsequently converted to arachidonic acid (AA) by a DAG lipase, the role of which remains largely unknown. In this study, we found that urine stimulation of vomeronasal neurons activated large-conductance Ca2+-activated K+ (BK) channels via AA production. Using isolated neurons, we demonstrated that repetitive applications of AA potentiated a K+ current that required a Ca2+ influx and was sensitive to specific BK blockers. Using immunocytochemistry, we found that BK channels are present in vomeronasal neurons with labeling on the soma and heavy labeling on the dendrite with a BK channel antibody. We examined the role of these BK channels in regulating neuronal firing when the neuron was activated by membrane depolarization or urine. Contrary to a recent report, our data suggest that BK channels contribute to adaptation of urine/odor responses because the inhibition of BK channels during urine stimulation promoted repetitive firing. These data strongly support the hypothesis that AA mediates an inhibitory pathway through BK channels, a possible mechanism for odor adaptation in vomeronasal neurons.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | | | | |
Collapse
|
34
|
Dibattista M, Mazzatenta A, Grassi F, Tirindelli R, Menini A. Hyperpolarization-activated cyclic nucleotide-gated channels in mouse vomeronasal sensory neurons. J Neurophysiol 2008; 100:576-86. [PMID: 18509074 DOI: 10.1152/jn.90263.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperpolarization-activated currents (Ih) are present in several neurons of the central and peripheral nervous system. However, Ih in neurons of the vomeronasal organ (VNO) is not well characterized. We studied the properties of Ih in sensory neurons from acute slices of mouse VNO. In voltage-clamp studies, Ih was identified by the characteristic kinetics of activation, voltage dependence, and blockage by Cs+ or ZD-7288, two blockers of the Ih. Forskolin, an activator of adenylyl cyclase, shifted the activation curve for Ih to less negative potentials. A comparison of Ih properties in VNO neurons with those of heterologously expressed hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, together with RT-PCR experiments in VNO, indicate that Ih is caused by HCN2 and/or HCN4 subunits. In current-clamp recordings, blocking Ih with ZD-7288 induced a hyperpolarization of 5.1 mV, an increase in input resistance, a decrease in the sensitivity to elicit action potentials in response to small current injections, and did not modify the frequency of action potentials elicited by a large current injection. It has been shown that in VNO neurons some pheromones induce a decrease in cAMP concentration, but the physiological role of cAMP is unknown. After application of blockers of adenylyl cyclase, we measured a hyperpolarization of 5.1 mV in 11 of 14 neurons, suggesting that basal levels of cAMP could modulate the resting potential. In conclusion, these results show that mouse VNO neurons express HCN2 and/or HCN4 subunits and that Ih contributes to setting the resting membrane potential and to increase excitability at stimulus threshold.
Collapse
Affiliation(s)
- Michele Dibattista
- Sector of Neurobiology, International School for Advanced Studies, Scuola Internazionale di Studi Superiori Avanzati, Neurobiology Sector, Via Beirut 2-4, 34014 Trieste, Italy
| | | | | | | | | |
Collapse
|