1
|
Oliveira DSD, Carbonaro M, Raiteri BJ, Botter A, Ponfick M, Del Vecchio A. The discharge characteristics of motor units innervating functionally paralyzed muscles. J Neurophysiol 2025; 133:343-357. [PMID: 39704677 DOI: 10.1152/jn.00389.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Abstract
For individuals with motor complete spinal cord injury (SCI), previous works have shown that spared motor neurons below the injury level can still be voluntarily controlled. In this study, we investigated the behavior of these neurons after SCI by analyzing neural and spatial properties of individual motor units using high-density surface electromyography (HDsEMG) and ultrasound imaging. The dataset for this study is based on motor unit data from our previous work (Oliveira et al. Brain 147: 3583-3595, 2024). Eight participants with chronic motor complete SCI and twelve uninjured controls attempted multiple hand movements, guided by a virtual hand, while we recorded forearm muscle activity. We analyzed the common synaptic input to motor neurons with a factorization method and found two dominant motor unit modes in both the SCI and control groups. Each mode was strongly correlated with the virtual hand's flexion or extension movements. The delay between flexion and extension movements and the motor unit modes was similar between groups, suggesting preserved common input to motor neurons after SCI. We classified motor units into task-modulated or nonmodulated (i.e., tonic or irregularly firing) based on their discharge patterns and phase difference with virtual hand kinematics and found a higher proportion of nonmodulated motor units in the SCI group. At the motor unit action potential level, we found larger motor unit territories after SCI. Finally, we observed distinct movements of paralyzed muscles with concurrent HDsEMG and ultrasound imaging, indicating the presence of highly functional motor units with distinct spared territories after SCI.NEW & NOTEWORTHY Here, we observed a similar pattern of motor unit activation during attempted hand movements in individuals with complete SCI, who cannot move their fingers, and in a control group, who performed the prescribed movements. Despite differences in individual motor unit behavior between these groups, such as a higher proportion of nonmodulated motor units in SCI, movement intention can still be decoded from paralyzed muscles.
Collapse
Affiliation(s)
- Daniela Souza De Oliveira
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marco Carbonaro
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunication, Politecnico di Torino, Turin, Italy
| | - Brent James Raiteri
- Human Movement Science, Faculty of Sport Science, Ruhr University Bochum, Bochum, Germany
| | - Alberto Botter
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunication, Politecnico di Torino, Turin, Italy
| | - Matthias Ponfick
- Querschnittzentrum Rummelsberg, Krankenhaus Rummelsberg GmbH, Schwarzenbruck, Germany
| | - Alessandro Del Vecchio
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Urbin MA, Liu F, Moon CH. Preserved force control by the digits via minimal sparing of cortico-spinal connectivity after stroke. Exp Physiol 2024. [PMID: 39673738 DOI: 10.1113/ep092134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/15/2024] [Indexed: 12/16/2024]
Abstract
The ability to regulate finger forces is critical for manipulating objects during everyday tasks but is impaired after damage to white matter tracts that transmit motor commands into the spinal cord. This study examines cortico-spinal connectivity required for force control by the digits after neurological injury. We report on a unique case of a stroke survivor who retained the ability to control finger forces at a level comparable to neurologically intact adults despite extensive loss of white matter volume and severely compromised transmission from cortical motor areas onto the final common pathway. Using a combination of imaging methods and noninvasive stimulation techniques, we illustrate the structure and function of a slow-conducting, cortico-spinal pathway minimally spared by stroke that underlies this stroke survivor's ability to transition and stabilize finger forces of the paretic hand during precision grip. We interpret findings in the context of physiological mechanisms underlying distal limb control and current thinking on neural adaptation after brain injury due to stroke.
Collapse
Affiliation(s)
- Michael A Urbin
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Fang Liu
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chan Hong Moon
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Butler CLP, Sangari S, Chen B, Perez MA. Enhanced inhibitory input to triceps brachii in humans with spinal cord injury. J Physiol 2024; 602:6909-6923. [PMID: 39504123 DOI: 10.1113/jp285510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 07/24/2024] [Indexed: 11/16/2024] Open
Abstract
Most individuals with cervical spinal cord injury (SCI) show increased muscle weakness in the elbow extensor compared to elbow flexor muscles. Although this is a well-known functional deficit, the underlying neural mechanisms remain poorly understood. To address this question, we measured the suppression of voluntary electromyographic activity (svEMG; a measurement thought to reflect changes in intracortical inhibition) by applying low-intensity transcranial magnetic stimulation over the arm representation of the primary motor cortex during 10% of isometric maximal voluntary contraction (MVC) into elbow flexion or extension in individuals with and without chronic cervical SCI. We found that the svEMG latency and duration were not different between the biceps and triceps brachii in controls but prolonged in the triceps in individuals with SCI. The svEMG area was larger in the triceps compared to the biceps in both groups and further increased in SCI participants, suggesting a pronounced intracortical inhibitory input during elbow extension. A negative correlation was found between svEMG area and MVCs indicating that control and SCI participants with lower svEMG area had larger MVCs. The svEMG area was not different between 5% and 30% of MVC, making it less probable that differences in muscle strength between groups contributed to our results. These findings support the existence of strong inhibitory input to corticospinal projections controlling elbow extensor compared to flexor muscles, which is more pronounced after chronic cervical SCI. KEY POINTS: After cervical spinal cord injury (SCI), people often recover function in elbow flexor, but much less in elbow extensor muscles. The neural mechanisms contributing to this difference remain unknown. We measured the suppression of voluntary electromyographic activity (svEMG) elicited through low-intensity transcranial magnetic stimulation of the primary motor cortex (assumed to reflect changes in intracortical inhibition) in the biceps and triceps muscles in controls and individuals with cervical chronic incomplete SCI. We found increased svEMG area in the triceps compared to the biceps in controls and SCI participants, with this measurement being even more pronounced in the triceps after SCI. The svEMG area correlated with maximal voluntary contraction values in both groups, suggesting the people with lesser inhibition had larger motor output. Our results support the presence of strong cortical inhibitory input to corticospinal projections controlling elbow extensor compared to elbow flexors muscles after cervical SCI.
Collapse
Affiliation(s)
- Carley L P Butler
- Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
- Edward Hines Jr. VA Hospital, Hines, IL, USA
| | | | - Bing Chen
- Shirley Ryan AbilityLab, Chicago, IL, USA
- Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Monica A Perez
- Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
- Edward Hines Jr. VA Hospital, Hines, IL, USA
| |
Collapse
|
4
|
Debenham MIB, Franz CK, Berger MJ. Neuromuscular consequences of spinal cord injury: New mechanistic insights and clinical considerations. Muscle Nerve 2024; 70:12-27. [PMID: 38477416 DOI: 10.1002/mus.28070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024]
Abstract
The spinal cord facilitates communication between the brain and the body, containing intrinsic systems that work with lower motor neurons (LMNs) to manage movement. Spinal cord injuries (SCIs) can lead to partial paralysis and dysfunctions in muscles below the injury. While traditionally this paralysis has been attributed to disruptions in the corticospinal tract, a growing body of work demonstrates LMN damage is a factor. Motor units, comprising the LMN and the muscle fibers with which they connect, are essential for voluntary movement. Our understanding of their changes post-SCI is still emerging, but the health of motor units is vital, especially when considering innovative SCI treatments like nerve transfer surgery. This review seeks to collate current literature on how SCI impact motor units and explore neuromuscular clinical implications and treatment avenues. SCI reduced motor unit number estimates, and surviving motor units had impaired signal transmission at the neuromuscular junction, force-generating capacity, and excitability, which have the potential to recover chronically, yet the underlaying mechanisms are unclear. Furthermore, electrodiagnostic evaluations can aid in assessing the health lower and upper motor neurons, identify suitable targets for nerve transfer surgeries, and detect patients with time sensitive injuries. Lastly, many electrodiagnostic abnormalities occur in both chronic and acute SCI, yet factors contributing to these abnormalities are unknown. Future studies are required to determine how motor units adapt following SCI and the clinical implications of these adaptations.
Collapse
Affiliation(s)
- Mathew I B Debenham
- International Collaboration on Repair Discoveries (ICORD), Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine & Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin K Franz
- Biologics Laboratory, Shirley Ryan AbilityLab, Chicago, Illinois, USA
- Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Michael J Berger
- International Collaboration on Repair Discoveries (ICORD), Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine & Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Dolbow DR, Gorgey AS, Johnston TE, Bersch I. Electrical Stimulation Exercise for People with Spinal Cord Injury: A Healthcare Provider Perspective. J Clin Med 2023; 12:jcm12093150. [PMID: 37176591 PMCID: PMC10179213 DOI: 10.3390/jcm12093150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/05/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023] Open
Abstract
Electrical stimulation exercise has become an important modality to help improve the mobility and health of individuals with spinal cord injury (SCI). Electrical stimulation is used to stimulate peripheral nerves in the extremities to assist with muscle strengthening or functional activities such as cycling, rowing, and walking. Electrical stimulation of the peripheral nerves in the upper extremities has become a valuable tool for predicting the risk of hand deformities and rehabilitating functional grasping activities. The purpose of this paper is to provide healthcare providers perspective regarding the many rehabilitation uses of electrical stimulation in diagnosing and treating individuals with SCI. Electrical stimulation has been shown to improve functional mobility and overall health, decrease spasticity, decrease the risk of cardiometabolic conditions associated with inactivity, and assist in the diagnosis/prognosis of hand deformities in those with tetraplegia. Studies involving non-invasive stimulation of the spinal nerves via external electrodes aligned with the spinal cord and more invasive stimulation of electrodes implanted in the epidural lining of the spinal cord have demonstrated improvements in the ability to stand and enhanced the stepping pattern during ambulation. Evidence is also available to educate healthcare professionals in using functional electrical stimulation to reduce muscle spasticity and to recognize limitations and barriers to exercise compliance in those with SCI. Further investigation is required to optimize the dose-response relationship between electrical stimulation activities and the mobility and healthcare goals of those with SCI and their healthcare providers.
Collapse
Affiliation(s)
- David R Dolbow
- Department of Physical Therapy, College of Osteopathic Medicine, William Carey University, Hattiesburg, MS 39401, USA
| | - Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, VA 23249, USA
- College of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Therese E Johnston
- Department of Physical Therapy, Arcadia University, Glenside, PA 19038, USA
| | - Ines Bersch
- International FES Centre®, Swiss Paraplegic Center, CH-6207 Nottwil, Switzerland
| |
Collapse
|
6
|
Bersch I, Krebs J, Fridén J. A Prediction Model for Various Treatment Pathways of Upper Extremity in Tetraplegia. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:889577. [PMID: 36188973 PMCID: PMC9397669 DOI: 10.3389/fresc.2022.889577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022]
Abstract
Upper extremity function is essential for the autonomy in patients with cervical spinal cord injuries and consequently a focus of the rehabilitation and treatment efforts. Routinely, an individualized treatment plan is proposed to the patient by an interprofessional team. It dichotomizes into a conservative and a surgical treatment pathway. To select an optimal pathway, it is important to define predictors that substantiate the treatment strategy. Apart from standard assessments (Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI), the manual muscle test (MRC), and lower motoneuron integrity of key actuators for hand function performed by motor point (MP) mapping might serve as a possible predictor. Type of damage (upper motor neuron (UMN) or lower motor neuron (LMN) lesion) influences hand posture and thus treatment strategy as positioning and splinting of fingers, hands, arms, and surgical reconstructive procedures (muscle-tendon or nerve transfers) in choice and timing of intervention. For this purpose, an analysis of a database comprising 220 patients with cervical spinal cord injury is used. It includes ISNCSCI, MRC, and MP mapping of defined muscles at selected time points after injury. The ordinal regression analysis performed indicates that MP and ASIA impairment scale (AIS) act as predictors of muscle strength acquisition. In accordance with the innervation status defined by MP, electrical stimulation (ES) is executed either via nerve or direct muscle stimulation as a supplementary therapy to the traditional occupational and physiotherapeutic treatment methods. Depending on the objective, ES is applied for motor learning, strengthening, or maintenance of muscle contractile properties. By employing ES, hand and arm function can be predicted by MP and AIS and used as the basis for providing an individualized treatment plan.
Collapse
|
7
|
Wecht JR, Savage WM, Famodimu GO, Mendez GA, Levine JM, Maher MT, Weir JP, Wecht JM, Carmel JB, Wu YK, Harel NY. Posteroanterior Cervical Transcutaneous Spinal Cord Stimulation: Interactions with Cortical and Peripheral Nerve Stimulation. J Clin Med 2021; 10:jcm10225304. [PMID: 34830584 PMCID: PMC8623612 DOI: 10.3390/jcm10225304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
Transcutaneous spinal cord stimulation (TSCS) has demonstrated potential to beneficially modulate spinal cord motor and autonomic circuitry. We are interested in pairing cervical TSCS with other forms of nervous system stimulation to enhance synaptic plasticity in circuits serving hand function. We use a novel configuration for cervical TSCS in which the anode is placed anteriorly over ~C4–C5 and the cathode posteriorly over ~T2–T4. We measured the effects of single pulses of TSCS paired with single pulses of motor cortex or median nerve stimulation timed to arrive at the cervical spinal cord at varying intervals. In 13 participants with and 15 participants without chronic cervical spinal cord injury, we observed that subthreshold TSCS facilitates hand muscle responses to motor cortex stimulation, with a tendency toward greater facilitation when TSCS is timed to arrive at cervical synapses simultaneously or up to 10 milliseconds after cortical stimulus arrival. Single pulses of subthreshold TSCS had no effect on the amplitudes of median H-reflex responses or F-wave responses. These findings support a model in which TSCS paired with appropriately timed cortical stimulation has the potential to facilitate convergent transmission between descending motor circuits, segmental afferents, and spinal motor neurons serving the hand. Studies with larger numbers of participants and repetitively paired cortical and spinal stimulation are needed.
Collapse
Affiliation(s)
- Jaclyn R. Wecht
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (J.R.W.); (W.M.S.); (G.O.F.); (G.A.M.); (J.M.L.); (M.T.M.); (J.M.W.); (Y.-K.W.)
| | - William M. Savage
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (J.R.W.); (W.M.S.); (G.O.F.); (G.A.M.); (J.M.L.); (M.T.M.); (J.M.W.); (Y.-K.W.)
| | - Grace O. Famodimu
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (J.R.W.); (W.M.S.); (G.O.F.); (G.A.M.); (J.M.L.); (M.T.M.); (J.M.W.); (Y.-K.W.)
| | - Gregory A. Mendez
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (J.R.W.); (W.M.S.); (G.O.F.); (G.A.M.); (J.M.L.); (M.T.M.); (J.M.W.); (Y.-K.W.)
| | - Jonah M. Levine
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (J.R.W.); (W.M.S.); (G.O.F.); (G.A.M.); (J.M.L.); (M.T.M.); (J.M.W.); (Y.-K.W.)
| | - Matthew T. Maher
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (J.R.W.); (W.M.S.); (G.O.F.); (G.A.M.); (J.M.L.); (M.T.M.); (J.M.W.); (Y.-K.W.)
| | - Joseph P. Weir
- Department of Health, Sport & Exercise Sciences, University of Kansas, Lawrence, KS 66045, USA;
| | - Jill M. Wecht
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (J.R.W.); (W.M.S.); (G.O.F.); (G.A.M.); (J.M.L.); (M.T.M.); (J.M.W.); (Y.-K.W.)
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jason B. Carmel
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA;
| | - Yu-Kuang Wu
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (J.R.W.); (W.M.S.); (G.O.F.); (G.A.M.); (J.M.L.); (M.T.M.); (J.M.W.); (Y.-K.W.)
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Noam Y. Harel
- James J. Peters VA Medical Center, Bronx, NY 10468, USA; (J.R.W.); (W.M.S.); (G.O.F.); (G.A.M.); (J.M.L.); (M.T.M.); (J.M.W.); (Y.-K.W.)
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence:
| |
Collapse
|
8
|
Sangari S, Kirshblum S, Guest JD, Oudega M, Perez MA. Distinct patterns of spasticity and corticospinal connectivity following complete spinal cord injury. J Physiol 2021; 599:4441-4454. [PMID: 34107068 DOI: 10.1113/jp281862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/01/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Damage to corticospinal axons have implications for the development of spasticity following spinal cord injury (SCI). Here, we examined to which extent residual corticospinal connections and spasticity are present in muscles below the injury (quadriceps femoris and soleus) in humans with motor complete thoracic SCI. We found three distinct sub-groups of people: participants with spasticity and corticospinal responses in the quadriceps femoris and soleus, participants with spasticity and corticospinal responses in the quadriceps femoris only, and participants with no spasticity or corticospinal responses in either muscle. Spasticity and corticospinal responses were present in the quadriceps but never only in the soleus muscle, suggesting a proximal to distal gradient of symptoms of hyperreflexia. These results suggest that concomitant patterns of residual corticospinal connectivity and spasticity exist in humans with motor complete SCI and that a clinical exam of spasticity might be a good predictor of residual corticospinal connectivity. ABSTRACT The loss of corticospinal axons has implications for the development of spasticity following spinal cord injury (SCI). However, the extent to which residual corticospinal connections and spasticity are present across muscles below the injury remains unknown. To address this question, we tested spasticity using the Modified Ashworth Scale and transmission in the corticospinal pathway by examining motor evoked potentials elicited by transcranial magnetic stimulation over the leg motor cortex (cortical MEPs) and by direct activation of corticospinal axons by electrical stimulation over the thoracic spine (thoracic MEPs), in the quadriceps femoris and soleus muscles, in 30 individuals with motor complete thoracic SCI. Cortical MEPs were also conditioned by thoracic electrical stimulation at intervals allowing their summation or collision. We found three distinct sub-groups of participants: 47% showed spasticity in the quadriceps femoris and soleus muscle, 30% showed spasticity in the quadriceps femoris muscle only, and 23% showed no spasticity in either muscle. While cortical MEPs were present only in the quadriceps in participants with spasticity, thoracic MEPs were present in both muscles when spasticity was present. Thoracic electrical stimulation facilitated and suppressed cortical MEPs, showing that both forms of stimulation activated similar corticospinal axons. Cortical and thoracic MEPs correlated with the degree of spasticity in both muscles. These results provide the first evidence that related patterns of residual corticospinal connectivity and spasticity exist in muscles below the injury after motor complete thoracic SCI and highlight that a clinical exam of spasticity can predict residual corticospinal connectivity after severe paralysis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sina Sangari
- Shirley Ryan AbilityLab, Chicago, Illinois, 60611.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, 60611
| | - Steven Kirshblum
- Kessler Institute for Rehabilitation, Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - James D Guest
- The Miami Project to Cure Paralysis, University of Miami, Miami, 33136
| | - Martin Oudega
- Shirley Ryan AbilityLab, Chicago, Illinois, 60611.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois, 60611.,Edward Hines Jr. VA Hospital, Hines, Illinois, 60141
| | - Monica A Perez
- Shirley Ryan AbilityLab, Chicago, Illinois, 60611.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, 60611.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois, 60611.,Edward Hines Jr. VA Hospital, Hines, Illinois, 60141
| |
Collapse
|
9
|
GABAergic Mechanisms Can Redress the Tilted Balance between Excitation and Inhibition in Damaged Spinal Networks. Mol Neurobiol 2021; 58:3769-3786. [PMID: 33826070 PMCID: PMC8279998 DOI: 10.1007/s12035-021-02370-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
Correct operation of neuronal networks depends on the interplay between synaptic excitation and inhibition processes leading to a dynamic state termed balanced network. In the spinal cord, balanced network activity is fundamental for the expression of locomotor patterns necessary for rhythmic activation of limb extensor and flexor muscles. After spinal cord lesion, paralysis ensues often followed by spasticity. These conditions imply that, below the damaged site, the state of balanced networks has been disrupted and that restoration might be attempted by modulating the excitability of sublesional spinal neurons. Because of the widespread expression of inhibitory GABAergic neurons in the spinal cord, their role in the early and late phases of spinal cord injury deserves full attention. Thus, an early surge in extracellular GABA might be involved in the onset of spinal shock while a relative deficit of GABAergic mechanisms may be a contributor to spasticity. We discuss the role of GABA A receptors at synaptic and extrasynaptic level to modulate network excitability and to offer a pharmacological target for symptom control. In particular, it is proposed that activation of GABA A receptors with synthetic GABA agonists may downregulate motoneuron hyperexcitability (due to enhanced persistent ionic currents) and, therefore, diminish spasticity. This approach might constitute a complementary strategy to regulate network excitability after injury so that reconstruction of damaged spinal networks with new materials or cell transplants might proceed more successfully.
Collapse
|
10
|
Mohammed NH, Hamdan FB, Al-Mahdawi AM. Evaluation of F wave and split hand index in patients with amyotrophic lateral sclerosis. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2020. [DOI: 10.1186/s41983-020-00191-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Amyotrophic lateral sclerosis (ALS) is characterized by gradual disturbance of both upper and lower motor neurons (LMN). In ALS, muscle wasting favors the abductor pollicis brevis (APB) and first dorsal interosseous (FDI), with relative preservation of abductor digiti minimi (ADM).
Objectives
To interpret F wave changes in the context of upper and LMN dysfunction and the differences in dysfunction between spinal motoneurons innervating the APB and ADM.
Patients and methods
Forty-four subjects were studied (22 patients with ALS and 22 controls). F wave was elicited by 50 electrical stimuli from the median and ulnar nerves, and the split hand index (SHI) was measured.
Results
F latency mean, median, and maximum and F amplitude mean, median, and maximum F/M amplitude ratio were increased in patients with versus those without pyramidal signs. Limb-onset ALS patients showed the biggest reduction in SHI. The APB muscle of patients with no detectable wasting and upper MN (UMN) signs showed reduced F wave persistence, mean F wave latency and amplitudes, increased index repeater neuron and index F repeater, and mean F/M amplitude ratio.
Conclusion
There is enhanced segmental motoneuronal excitability following UMN dysfunctions. SHI appears to be a diagnostic biomarker for ALS. Abnormal F parameters recorded from APB muscle can distinct patients with ALS from the normal controls to a greater extent than do the APB/ADM and FDI/ADM compound muscle action potential amplitude ratios.
Collapse
|
11
|
Vastano R, Perez MA. Changes in motoneuron excitability during voluntary muscle activity in humans with spinal cord injury. J Neurophysiol 2020; 123:454-461. [PMID: 31461361 PMCID: PMC7052637 DOI: 10.1152/jn.00367.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 11/22/2022] Open
Abstract
The excitability of resting motoneurons increases following spinal cord injury (SCI). The extent to which motoneuron excitability changes during voluntary muscle activity in humans with SCI, however, remains poorly understood. To address this question, we measured F waves by using supramaximal electrical stimulation of the ulnar nerve at the wrist and cervicomedullary motor-evoked potentials (CMEPs) by using high-current electrical stimulation over the cervicomedullary junction in the first dorsal interosseous muscle at rest and during 5 and 30% of maximal voluntary contraction into index finger abduction in individuals with chronic cervical incomplete SCI and aged-matched control participants. We found higher persistence (number of F waves present in each set) and amplitude of F waves at rest in SCI compared with control participants. With increasing levels of voluntary contraction, the amplitude, but not the persistence, of F waves increased in both groups but to a lesser extent in SCI compared with control participants. Similarly, the CMEP amplitude increased in both groups but to a lesser extent in SCI compared with controls. These results were also found at matched absolutely levels of electromyographic activity, suggesting that these changes were not related to decreases in voluntary motor output after SCI. F-wave and CMEP amplitudes were positively correlated across conditions in both groups. These results support the hypothesis that the responsiveness of the motoneuron pool during voluntary activity decreases following SCI, which could alter the generation and strength of voluntary muscle contractions.NEW & NOTEWORTHY How the excitability of motoneurons changes during voluntary muscle activity in humans with spinal cord injury (SCI) remains poorly understood. We found that F-wave and cervicomedullary motor-evoked potential amplitude, outcomes reflecting motoneuronal excitability, increased during voluntary activity compared with rest in SCI participants but to a lesser extent that in controls. These results suggest that the responsiveness of motoneurons during voluntary activity decreases following SCI, which might affect functionally relevant plasticity after the injury.
Collapse
Affiliation(s)
- Roberta Vastano
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida
- Department of Neurological Surgery, University of Miami, Miami, Florida
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida
| | - Monica A Perez
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida
- Department of Neurological Surgery, University of Miami, Miami, Florida
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida
- Shirley Ryan Ability Laboratory, Northwestern University, Chicago, Illinois
- Hines Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
12
|
Santamaría AJ, Benavides FD, DiFede DL, Khan A, Pujol MV, Dietrich WD, Marttos A, Green BA, Hare JM, Guest JD. Clinical and Neurophysiological Changes after Targeted Intrathecal Injections of Bone Marrow Stem Cells in a C3 Tetraplegic Subject. J Neurotrauma 2018; 36:500-516. [PMID: 29790404 DOI: 10.1089/neu.2018.5716] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
High-level quadriplegia is a devastating condition with limited treatment options. Bone marrow derived stem cells (BMSCs) are reported to have immunomodulatory and neurotrophic effects in spinal cord injury (SCI). We report a subject with complete C2 SCI who received three anatomically targeted intrathecal infusions of BMSCs under a single-patient expanded access investigational new drug (IND). She underwent intensive physical therapy and was followed for >2 years. At end-point, her American Spinal Injury Association Impairment Scale (AIS) grade improved from A to B, and she recovered focal pressure touch sensation over several body areas. We conducted serial neurophysiological testing to monitor changes in residual connectivity. Motor, sensory, and autonomic system testing included motor evoked potentials (MEPs), somatosensory evoked potentials (SSEPs), electromyography (EMG) recordings, F waves, galvanic skin responses, and tilt-table responses. The quality and magnitude of voluntary EMG activations increased over time, but remained below the threshold of clinically obvious movement. Unexpectedly, at 14 months post-injury, deep inspiratory maneuvers triggered respiratory-like EMG bursting in the biceps and several other muscles. This finding means that connections between respiratory neurons and motor neurons were newly established, or unmasked. We also report serial analysis of MRI, International Standards for Neurological Classification of SCI (ISNCSCI), pulmonary function, pain scores, cerebrospinal fluid (CSF) cytokines, and bladder assessment. As a single case, the linkage of the clinical and neurophysiological changes to either natural history or to the BMSC infusions cannot be resolved. Nevertheless, such detailed neurophysiological assessment of high cervical SCI patients is rarely performed. Our findings indicate that electrophysiology studies are sensitive to define both residual connectivity and new plasticity.
Collapse
Affiliation(s)
- Andrea J Santamaría
- 1 The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida
| | - Francisco D Benavides
- 1 The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida
| | - Darcy L DiFede
- 2 Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - Aisha Khan
- 2 Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - Marietsy V Pujol
- 2 Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - W Dalton Dietrich
- 1 The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida.,3 Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Antonio Marttos
- 4 Surgical Critical Care, University of Miami, Miller School of Medicine, Miami, Florida
| | - Barth A Green
- 3 Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Joshua M Hare
- 2 Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - James D Guest
- 1 The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida.,3 Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| |
Collapse
|
13
|
Leech KA, Kim HE, Hornby TG. Strategies to augment volitional and reflex function may improve locomotor capacity following incomplete spinal cord injury. J Neurophysiol 2017; 119:894-903. [PMID: 29093168 DOI: 10.1152/jn.00051.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Many studies highlight the remarkable plasticity demonstrated by spinal circuits following an incomplete spinal cord injury (SCI). Such plasticity can contribute to improvements in volitional motor recovery, such as walking function, although similar mechanisms underlying this recovery may also contribute to the manifestation of exaggerated responses to afferent input, or spastic behaviors. Rehabilitation interventions directed toward augmenting spinal excitability have shown some initial success in improving locomotor function. However, the potential effects of these strategies on involuntary motor behaviors may be of concern. In this article, we provide a brief review of the mechanisms underlying recovery of volitional function and exaggerated reflexes, and the potential overlap between these changes. We then highlight findings from studies that explore changes in spinal excitability during volitional movement in controlled conditions, as well as altered kinematic and behavioral performance during functional tasks. The initial focus will be directed toward recovery of reflex and volitional behaviors following incomplete SCI, followed by recent work elucidating neurophysiological mechanisms underlying patterns of static and dynamic muscle activation following chronic incomplete SCI during primarily single-joint movements. We will then transition to studies of locomotor function and the role of altered spinal integration following incomplete SCI, including enhanced excitability of specific spinal circuits with physical and pharmacological interventions that can modulate locomotor output. The effects of previous and newly developed strategies will need to focus on changes in both volitional function and involuntary spastic reflexes for the successful translation of effective therapies to the clinical setting.
Collapse
Affiliation(s)
- Kristan A Leech
- Department of Neuroscience, Johns Hopkins University , Baltimore, Maryland
| | - Hyosub E Kim
- Department of Psychology, University of California at Berkeley , Berkeley, California
| | | |
Collapse
|
14
|
Khurram OU, Sieck GC, Mantilla CB. Compensatory effects following unilateral diaphragm paralysis. Respir Physiol Neurobiol 2017; 246:39-46. [PMID: 28790008 DOI: 10.1016/j.resp.2017.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 11/18/2022]
Abstract
Injury to nerves innervating respiratory muscles such as the diaphragm muscle results in significant respiratory compromise. Electromyography (EMG) and transdiaphragmatic pressure (Pdi) measurements reflect diaphragm activation and force generation. Immediately after unilateral diaphragm denervation (DNV), ventilatory behaviors can be accomplished without impairment, but Pdi generated during higher force non-ventilatory behaviors is significantly decreased. We hypothesized that 1) the initial reduction in Pdi during higher force behaviors after DNV is ameliorated after 14 days, and 2) changes in Pdi over time after DNV are associated with concordant changes in contralateral diaphragm EMG activity and ventilatory parameters. In adult male rats, the reduced Pdi during occlusion (∼40% immediately after DNV) was ameliorated to ∼20% reduction after 14 days. Contralateral diaphragm EMG activity did not significantly change immediately or 14days after DNV compared to the pre-injury baseline for any motor behavior. Taken together, these results suggest that over time after DNV compensatory changes in inspiratory related muscle activation may partially restore the ability to generate Pdi during higher force behaviors.
Collapse
Affiliation(s)
- Obaid U Khurram
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, United States
| | - Gary C Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, United States; Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Carlos B Mantilla
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, United States; Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, United States.
| |
Collapse
|