1
|
Mattar M, Umutoni F, Hassan MA, Wamburu MW, Turner R, Patton JS, Chen X, Lei W. Chemotherapy-Induced Peripheral Neuropathy: A Recent Update on Pathophysiology and Treatment. Life (Basel) 2024; 14:991. [PMID: 39202733 PMCID: PMC11355765 DOI: 10.3390/life14080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major long-lasting side effect of some chemotherapy drugs, which threatens cancer survival rate. CIPN mostly affects sensory neurons and occasionally motor neurons, causing numbness, tingling, discomfort, and burning pain in the upper and lower extremities. The pathophysiology of CIPN is not completely understood; however, it is believed that chemotherapies induce peripheral neuropathy via directly damaging mitochondria, impairing the function of ion channels, triggering immunological mechanisms, and disrupting microtubules. The treatment of CIPN is a medical challenge, and there are no approved pharmacological options. Currently, duloxetine and other antidepressants, antioxidant, anti-inflammatory, and ion-channel targeted therapies are commonly used in clinics to relieve the symptoms of CIPN. Several other types of drugs, such as cannabinoids, sigma-1 receptor antagonists, and nicotinamides ribose, are being evaluated in preclinical and clinical studies. This paper summarizes the information related to the physiology of CIPN and medicines that could be used for treating this condition.
Collapse
Affiliation(s)
- Marina Mattar
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
| | - Florence Umutoni
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| | - Marwa A. Hassan
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
| | - M. Wambui Wamburu
- Department of Pharmacy Practice, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA;
| | - Reagan Turner
- Department of Biology, Presbyterian College, Clinton, SC 29325, USA;
| | - James S. Patton
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| | - Xin Chen
- Department of Pharmaceutical and Clinical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA;
| | - Wei Lei
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| |
Collapse
|
2
|
Becker G, Atuati SF, Oliveira SM. G Protein-Coupled Receptors and Ion Channels Involvement in Cisplatin-Induced Peripheral Neuropathy: A Review of Preclinical Studies. Cancers (Basel) 2024; 16:580. [PMID: 38339331 PMCID: PMC10854671 DOI: 10.3390/cancers16030580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Cisplatin is a platinum-based chemotherapy drug widely used to treat various solid tumours. Although it is effective in anti-cancer therapy, many patients develop peripheral neuropathy during and after cisplatin treatment. Peripheral neuropathy results from lesions or diseases in the peripheral somatosensory nervous system and is a significant cause of debilitation and suffering in patients. In recent years, preclinical studies have been conducted to elucidate the mechanisms involved in chemotherapy-induced peripheral neuropathic pain, as well as to promote new therapeutic targets since current treatments are ineffective and are associated with adverse effects. G-protein coupled receptors and ion channels play a significant role in pain processing and may represent promising targets for improving the management of cisplatin-induced neuropathic pain. This review describes the role of G protein-coupled receptors and ion channels in cisplatin-induced pain, analysing preclinical experimental studies that investigated the role of each receptor subtype in the modulation of cisplatin-induced pain.
Collapse
|
3
|
Cataldo G, Lunzer MM, Akgün E, Wong HL, Portoghese PS, Simone DA. MMG22 Potently Blocks Hyperalgesia in Cisplatin-treated Mice. Neuroscience 2023; 516:54-61. [PMID: 36805004 PMCID: PMC10065962 DOI: 10.1016/j.neuroscience.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
MMG22 is a bivalent ligand containing MOR agonist and mGluR5 antagonist pharmacophores connected by a 22-atom linker. Intrathecal (i.t.) administration of MMG22 to inflamed mice has been reported to produce fmol-range antinociception in the reversal of LPS-induced hyperalgesia. MMG22 reduced hyperalgesia in the spared nerve injury (SNI) model of neuropathic pain at 10 days after injury but not at 30 days after injury, perhaps related to the inflammation that occurs early after injury but subsequently subsides. The present study determined the efficacy of MMG22 in cisplatin-treated male mice in order to provide data relating to the efficacy of MMG22 in the treatment of neuropathic pain that is associated with inflammation. Groups of eight mice each received daily intraperitoneal (i.p.) injections of cisplatin for seven days to produce robust mechanical allodynia defined by the decrease in withdrawal threshold using an electronic von Frey applied to the plantar surface of the hind paw. Intrathecal administration of MMG22 potently reduced mechanical hyperalgesia (ED50 0.04 fmol/mouse) without tolerance, whereas MMG10 was essentially inactive. Morphine was less potent than MMG22 by >5-orders of magnitude and displayed tolerance. Subcutaneous MMG22 was effective (ED50 = 2.41 mg/kg) and devoid of chronic tolerance. We propose that MMG22 induces the formation of a MOR-mGluR5 heteromer through selective interaction with the upregulated NR2B subunit of activated NMDAR, in view of the 4600-fold reduction of i.t. MMG22 antinociception by the selective NR2B antagonist, Ro25-6981. A possible explanation for the substantially reduced potency for MMG22 in the SNI model is discussed.
Collapse
Affiliation(s)
- Giuseppe Cataldo
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mary M Lunzer
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eyup Akgün
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Henry L Wong
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Philip S Portoghese
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Donald A Simone
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
4
|
Chen C, Wang W, Raymond M, Ahmadinejad F, Poklis JL, Em B, Gewirtz DA, Lichtman AH, Li N. Genetic Knockout of Fatty Acid Amide Hydrolase Ameliorates Cisplatin-Induced Nephropathy in Mice. Mol Pharmacol 2023; 103:230-240. [PMID: 36702548 PMCID: PMC10029825 DOI: 10.1124/molpharm.122.000618] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 01/27/2023] Open
Abstract
Cisplatin is a potent first-line therapy for many solid malignancies, such as breast, ovarian, lung, testicular, and head and neck cancer. However, acute kidney injury (AKI) is a major dose-limiting toxicity in cisplatin therapy, which often hampers the continuation of cisplatin treatment. The endocannabinoid system, consisting of anandamide (AEA) and 2-arachidonoylglycerol and cannabinoid receptors, participates in different kidney diseases. Inhibition of fatty acid amide hydrolase (FAAH), the primary enzyme for the degradation of AEA and AEA-related N-acylethanolamines, elicits anti-inflammatory effects; however, little is known about its role in cisplatin nephrotoxicity. The current study tested the hypothesis that genetic deletion of Faah mitigates cisplatin-induced AKI. Male wild-type C57BL6 (WT) and Faah-/- mice were administered a single dose of intraperitoneal injection of cisplatin (30 mg/kg) and euthanatized 72 hours later. Faah-/- mice showed a reduction of cisplatin-induced blood urea nitrogen, plasma creatinine levels, kidney injury markers, and tubular damage in comparison with WT mice. The renal protection from Faah deletion was associated with enhanced tone of AEA-related N-acylethanolamines (palmitoylethanolamide and oleoylethanolamide), attenuated nuclear factor-κB/p65 activity, DNA damage markers p53 and p21, and decreased expression of the inflammatory cytokine interleukin-1β, as well as infiltration of macrophages and leukocytes in the kidneys. Notably, a selective FAAH inhibitor (PF-04457845) did not interfere with or perturb the antitumor effects of cisplatin in two head and neck squamous cell carcinoma cell lines, HN30 and HN12. Our work highlights that FAAH inactivation prevents cisplatin-induced nephrotoxicity in mice and that targeting FAAH could provide a novel strategy to mitigate cisplatin-induced nephrotoxicity. SIGNIFICANCE STATEMENT: Mice lacking the Faah gene are protected from cisplatin-induced inflammation, DNA damage response, tubular damage, and kidney dysfunction. Inactivation of FAAH could be a potential strategy to mitigate cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Chaoling Chen
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Weili Wang
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Marissa Raymond
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Fereshteh Ahmadinejad
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Justin L Poklis
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Brandon Em
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - David A Gewirtz
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Aron H Lichtman
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Ningjun Li
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
5
|
Karvat J, Andrade TES, Kraus SI, Beppler LM, de Jesus GDSC, Ferreira JB, da Silva MD. Drug repositioning: diacerein as a new therapeutic approach in a mice model of sciatic nerve injury. Pharmacol Rep 2023; 75:358-375. [PMID: 36809646 DOI: 10.1007/s43440-023-00461-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Peripheral nerve injuries negatively impact the quality of life of patients, with no effective treatment available that accelerates sensorimotor recovery and promotes functional improvement and pain relief. The aim of this study was to evaluate the effects of diacerein (DIA) in an experimental mice model of sciatic nerve crush. METHOD In this study, male Swiss mice were used, randomly separated into six groups as follows: FO (false-operated + vehicle); FO + DIA (false-operated + diacerein 30 mg/kg); SNI (sciatic nerve injury + vehicle); SNI + DIA in doses of 3, 10 and 30 mg/kg (sciatic nerve injury + treatment with diacerein in doses of 3-30 mg/kg). DIA or vehicle was administered 24 h after the surgical procedure, intragastrically, twice a day. The lesion of the right sciatic nerve was generated by crush. RESULTS We found that the treatment of animals with DIA accelerated sensorimotor recovery of the animal. In addition, animals in the sciatic nerve injury + vehicle (SNI) group showed hopelessness, anhedonia, and lack of well-being, which were significantly inhibited by DIA treatment. The SNI group showed a reduction in the diameters of nerve fibers, axons, and myelin sheaths, while DIA treatment recovered all these parameters. In addition, the treatment of animals with DIA prevented an increase the levels of interleukin (IL)-1β and a reduction in the levels of the brain-derived growth factor (BDNF). CONCLUSIONS Treatment with DIA reduces hypersensitivity and depression like behaviors in animals. Furthermore, DIA promotes functional recovery and regulates IL-1β and BDNF concentrations.
Collapse
Affiliation(s)
- Jhenifer Karvat
- Laboratory of Neurobiology of Pain and Inflammation (LANDI), Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil.,Program of Post-Graduation in Neuroscience, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Tassiane Emanuelle Servare Andrade
- Laboratory of Neurobiology of Pain and Inflammation (LANDI), Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil.,Program of Post-Graduation in Neuroscience, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Scheila Iria Kraus
- Laboratory of Neurobiology of Pain and Inflammation (LANDI), Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil.,Program of Post-Graduation in Neuroscience, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Larissa May Beppler
- Laboratory of Neurobiology of Pain and Inflammation (LANDI), Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Gustavo Dos Santos Catarina de Jesus
- Laboratory of Neurobiology of Pain and Inflammation (LANDI), Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Jeane Bachi Ferreira
- Laboratory of Neurobiology of Pain and Inflammation (LANDI), Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Morgana Duarte da Silva
- Laboratory of Neurobiology of Pain and Inflammation (LANDI), Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil. .,Program of Post-Graduation in Neuroscience, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
6
|
Meregalli C, Monza L, Jongen JLM. A mechanistic understanding of the relationship between skin innervation and chemotherapy-induced neuropathic pain. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2022; 3:1066069. [PMID: 36582196 PMCID: PMC9792502 DOI: 10.3389/fpain.2022.1066069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Neuropathic pain is a frequent complication of chemotherapy-induced peripheral neurotoxicity (CIPN). Chemotherapy-induced peripheral neuropathies may serve as a model to study mechanisms of neuropathic pain, since several other common causes of peripheral neuropathy like painful diabetic neuropathy may be due to both neuropathic and non-neuropathic pain mechanisms like ischemia and inflammation. Experimental studies are ideally suited to study changes in morphology, phenotype and electrophysiologic characteristics of primary afferent neurons that are affected by chemotherapy and to correlate these changes to behaviors reflective of evoked pain, mainly hyperalgesia and allodynia. However, hyperalgesia and allodynia may only represent one aspect of human pain, i.e., the sensory-discriminative component, while patients with CIPN often describe their pain using words like annoying, tiring and dreadful, which are affective-emotional descriptors that cannot be tested in experimental animals. To understand why some patients with CIPN develop neuropathic pain and others not, and which are the components of neuropathic pain that they are experiencing, experimental and clinical pain research should be combined. Emerging evidence suggests that changes in subsets of primary afferent nerve fibers may contribute to specific aspects of neuropathic pain in both preclinical models and in patients with CIPN. In addition, the role of cutaneous neuroimmune interactions is considered. Since obtaining dorsal root ganglia and peripheral nerves in patients is problematic, analyses performed on skin biopsies from preclinical models as well as patients provide an opportunity to study changes in primary afferent nerve fibers and to associate these changes to human pain. In addition, other biomarkers of small fiber damage in CIPN, like corneal confocal microscope and quantitative sensory testing, may be considered.
Collapse
Affiliation(s)
- Cristina Meregalli
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy,Correspondence: Cristina Meregalli
| | - Laura Monza
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Joost L. M. Jongen
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| |
Collapse
|
7
|
Bagues A, López-Tofiño Y, Llorente-Berzal Á, Abalo R. Cannabinoid drugs against chemotherapy-induced adverse effects: focus on nausea/vomiting, peripheral neuropathy and chemofog in animal models. Behav Pharmacol 2022; 33:105-129. [PMID: 35045012 DOI: 10.1097/fbp.0000000000000667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although new drugs are being developed for cancer treatment, classical chemotherapeutic agents are still front-line therapies, despite their frequent association with severe side effects that can hamper their use. Cannabinoids may prevent or palliate some of these side effects. The aim of the present study is to review the basic research which has been conducted evaluating the effects of cannabinoid drugs in the treatment of three important side effects induced by classical chemotherapeutic agents: nausea and vomiting, neuropathic pain and cognitive impairment. Several published studies have demonstrated that cannabinoids are useful in preventing and reducing the nausea, vomits and neuropathy induced by different chemotherapy regimens, though other side effects can occur, such as a reduction of gastrointestinal motility, along with psychotropic effects when using centrally-acting cannabinoids. Thus, peripherally-acting cannabinoids and new pharmacological options are being investigated, such as allosteric or biased agonists. Additionally, due to the increase in the survival of cancer patients, there are emerging data that demonstrate an important cognitive deterioration due to chemotherapy, and because the cannabinoid drugs have a neuroprotective effect, they could be useful in preventing chemotherapy-induced cognitive impairment (as demonstrated through studies in other neurological disorders), but this has not yet been tested. Thus, although cannabinoids seem a promising therapeutic approach in the treatment of different side effects induced by chemotherapeutic agents, future research will be necessary to find pharmacological options with a safer profile. Moreover, a new line of research awaits to be opened to elucidate their possible usefulness in preventing cognitive impairment.
Collapse
Affiliation(s)
- Ana Bagues
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón
- High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC)
- Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Yolanda López-Tofiño
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC
| | - Álvaro Llorente-Berzal
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland
- Centre for Pain Research and Galway Neuroscience Centre, NCBES, National University of Ireland, Galway, Ireland
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón
- Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC
- Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia de la Sociedad Española del Dolor, Madrid, Spain
| |
Collapse
|
8
|
D'Andre S, McAllister S, Nagi J, Giridhar KV, Ruiz-Macias E, Loprinzi C. Topical Cannabinoids for Treating Chemotherapy-Induced Neuropathy: A Case Series. Integr Cancer Ther 2021; 20:15347354211061739. [PMID: 34841942 PMCID: PMC8646190 DOI: 10.1177/15347354211061739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy is a common and often severe side effect from many chemotherapeutic agents, with limited treatment options. There is no literature on the use of topical cannabinoids for chemotherapy-induced neuropathy. CASE PRESENTATIONS The current manuscript presents a case series of patients presenting in oncology clinics at Sutter Health, CA and Mayo Clinic, Rochester, MN from April 2019 to December 2020 with chemotherapy-induced peripheral neuropathy who used topical creams containing the cannabinoids delta-nine-tetrahydrocannabinol (THC) and/or cannabidiol (CBD). CONCLUSIONS This case series suggests that topical cannabinoids may be helpful for patients with chemotherapy-induced peripheral neuropathy. This paper also discusses the potential mechanisms of action by which topical cannabinoids might alleviate established CIPN symptoms. A randomized placebo-controlled trial using a standardized product is planned to study the actual efficacy of such treatment.
Collapse
Affiliation(s)
- Stacy D'Andre
- Sutter Institute for Medical Research, Sacramento, CA, USA
| | - Sean McAllister
- Sutter California Pacific Medical Research Institute, San Francisco, CA, USA
| | - Jasdeepa Nagi
- Sutter Institute for Medical Research, Sacramento, CA, USA
| | | | | | | |
Collapse
|
9
|
Bae EH, Greenwald MK, Schwartz AG. Chemotherapy-Induced Peripheral Neuropathy: Mechanisms and Therapeutic Avenues. Neurotherapeutics 2021; 18:2384-2396. [PMID: 34676514 PMCID: PMC8804039 DOI: 10.1007/s13311-021-01142-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2021] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a serious and often persistent adverse consequence of certain chemotherapeutic agents. It is a major dose-limiting factor of many first-line chemotherapies, affecting 20-50% of patients at standard doses and nearly all patients at high doses. As cancer survivorship continues to increase with improvements in early diagnosis and treatment, more patients will experience CIPN despite completing cancer treatment, which interferes with recovery, leading to chronic pain and worsening quality of life. The National Cancer Institute has identified CIPN as a priority in translational research. To date, there are no FDA-approved drugs for preventing or treating CIPN, with emerging debate on mechanisms and promising new targets. This review highlights current literature and suggests novel approaches to CIPN based on proposed mechanisms of action that aim either to confer neuroprotection against chemotherapy-induced neurotoxicity or reverse the downstream effects of painful neuropathy.
Collapse
Affiliation(s)
- Esther H Bae
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 3901 Chrysler Service Drive, Suite 2A, Detroit, MI, 48201, USA
| | - Mark K Greenwald
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 3901 Chrysler Service Drive, Suite 2A, Detroit, MI, 48201, USA.
- Karmanos Cancer Institute, Detroit, MI, USA.
| | - Ann G Schwartz
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 3901 Chrysler Service Drive, Suite 2A, Detroit, MI, 48201, USA
- Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|
10
|
League AF, Gorman BL, Hermes DJ, Johnson CT, Jacobs IR, Yadav-Samudrala BJ, Poklis JL, Niphakis MJ, Cravatt BF, Lichtman AH, Ignatowska-Jankowska BM, Fitting S. Monoacylglycerol Lipase Inhibitor MJN110 Reduces Neuronal Hyperexcitability, Restores Dendritic Arborization Complexity, and Regulates Reward-Related Behavior in Presence of HIV-1 Tat. Front Neurol 2021; 12:651272. [PMID: 34484091 PMCID: PMC8415271 DOI: 10.3389/fneur.2021.651272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 07/12/2021] [Indexed: 12/01/2022] Open
Abstract
While current therapeutic strategies for people living with human immunodeficiency virus type 1 (HIV-1) suppress virus replication peripherally, viral proteins such as transactivator of transcription (Tat) enter the central nervous system early upon infection and contribute to chronic inflammatory conditions even alongside antiretroviral treatment. As demand grows for supplemental strategies to combat virus-associated pathology presenting frequently as HIV-associated neurocognitive disorders (HAND), the present study aimed to characterize the potential utility of inhibiting monoacylglycerol lipase (MAGL) activity to increase inhibitory activity at cannabinoid receptor-type 1 receptors through upregulation of 2-arachidonoylglycerol (2-AG) and downregulation of its degradation into proinflammatory metabolite arachidonic acid (AA). The MAGL inhibitor MJN110 significantly reduced intracellular calcium and increased dendritic branching complexity in Tat-treated primary frontal cortex neuron cultures. Chronic MJN110 administration in vivo increased 2-AG levels in the prefrontal cortex (PFC) and striatum across Tat(+) and Tat(–) groups and restored PFC N-arachidonoylethanolamine (AEA) levels in Tat(+) subjects. While Tat expression significantly increased rate of reward-related behavioral task acquisition in a novel discriminative stimulus learning and cognitive flexibility assay, MJN110 altered reversal acquisition specifically in Tat(+) mice to rates indistinguishable from Tat(–) controls. Collectively, our results suggest a neuroprotective role of MAGL inhibition in reducing neuronal hyperexcitability, restoring dendritic arborization complexity, and mitigating neurocognitive alterations driven by viral proteins associated with latent HIV-1 infection.
Collapse
Affiliation(s)
- Alexis F League
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin L Gorman
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Douglas J Hermes
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Clare T Johnson
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Ian R Jacobs
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Barkha J Yadav-Samudrala
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Justin L Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Micah J Niphakis
- Department of Chemistry, Scripps Research Institute, La Jolla, CA, United States
| | - Benjamin F Cravatt
- Department of Chemistry, Scripps Research Institute, La Jolla, CA, United States
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | | | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
11
|
Finn DP, Haroutounian S, Hohmann AG, Krane E, Soliman N, Rice ASC. Cannabinoids, the endocannabinoid system, and pain: a review of preclinical studies. Pain 2021; 162:S5-S25. [PMID: 33729211 PMCID: PMC8819673 DOI: 10.1097/j.pain.0000000000002268] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT This narrative review represents an output from the International Association for the Study of Pain's global task force on the use of cannabis, cannabinoids, and cannabis-based medicines for pain management, informed by our companion systematic review and meta-analysis of preclinical studies in this area. Our aims in this review are (1) to describe the value of studying cannabinoids and endogenous cannabinoid (endocannabinoid) system modulators in preclinical/animal models of pain; (2) to discuss both pain-related efficacy and additional pain-relevant effects (adverse and beneficial) of cannabinoids and endocannabinoid system modulators as they pertain to animal models of pathological or injury-related persistent pain; and (3) to identify important directions for future research. In service of these goals, this review (1) provides an overview of the endocannabinoid system and the pharmacology of cannabinoids and endocannabinoid system modulators, with specific relevance to animal models of pathological or injury-related persistent pain; (2) describes pharmacokinetics of cannabinoids in rodents and humans; and (3) highlights differences and discrepancies between preclinical and clinical studies in this area. Preclinical (rodent) models have advanced our understanding of the underlying sites and mechanisms of action of cannabinoids and the endocannabinoid system in suppressing nociceptive signaling and behaviors. We conclude that substantial evidence from animal models supports the contention that cannabinoids and endocannabinoid system modulators hold considerable promise for analgesic drug development, although the challenge of translating this knowledge into clinically useful medicines is not to be underestimated.
Collapse
Affiliation(s)
- David P Finn
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre and Centre for Pain Research, Human Biology Building, National University of Ireland Galway, University Road, Galway, Ireland
| | - Simon Haroutounian
- Department of Anesthesiology and Washington University Pain Center, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Andrea G Hohmann
- Psychological and Brain Sciences, Program in Neuroscience, and Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Elliot Krane
- Departments of Anesthesiology, Perioperative, and Pain Medicine, & Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Nadia Soliman
- Pain Research, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, UK
| | - Andrew SC Rice
- Pain Research, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, UK
| |
Collapse
|
12
|
Khasabova IA, Seybold VS, Simone DA. The role of PPARγ in chemotherapy-evoked pain. Neurosci Lett 2021; 753:135845. [PMID: 33774149 PMCID: PMC8089062 DOI: 10.1016/j.neulet.2021.135845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
Abstract
Although millions of people are diagnosed with cancer each year, survival has never been greater thanks to early diagnosis and treatments. Powerful chemotherapeutic agents are highly toxic to cancer cells, but because they typically do not target cancer cells selectively, they are often toxic to other cells and produce a variety of side effects. In particular, many common chemotherapies damage the peripheral nervous system and produce neuropathy that includes a progressive degeneration of peripheral nerve fibers. Chemotherapy-induced peripheral neuropathy (CIPN) can affect all nerve fibers, but sensory neuropathies are the most common, initially affecting the distal extremities. Symptoms include impaired tactile sensitivity, tingling, numbness, paraesthesia, dysesthesia, and pain. Since neuropathic pain is difficult to manage, and because degenerated nerve fibers may not grow back and regain normal function, considerable research has focused on understanding how chemotherapy causes painful CIPN so it can be prevented. Due to the fact that both therapeutic and side effects of chemotherapy are primarily associated with the accumulation of reactive oxygen species (ROS) and oxidative stress, this review focuses on the activation of endogenous antioxidant pathways, especially PPARγ, in order to prevent the development of CIPN and associated pain. The use of synthetic and natural PPARγ agonists to prevent CIPN is discussed.
Collapse
Affiliation(s)
- Iryna A Khasabova
- Department of Diagnostic and Biological Sciences, University of Minnesota, School of Dentistry, Minneapolis, MN, 55455, United States
| | - Virginia S Seybold
- Department of Diagnostic and Biological Sciences, University of Minnesota, School of Dentistry, Minneapolis, MN, 55455, United States
| | - Donald A Simone
- Department of Diagnostic and Biological Sciences, University of Minnesota, School of Dentistry, Minneapolis, MN, 55455, United States.
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW The prevalence of cancer pain will continue to rise as pain is common among the survivorship and general cancer population. As interest in cannabis and cannabinoids for medicinal use including pain management continues to rise, there is growing need to update and review the current state of evidence for their use. The literature was searched for articles in English with key words cannabis, cannabinoids, and cancer pain. The sources of articles were PubMed, Embase, and open Google search. RECENT FINDINGS In a double-blind randomized placebo-controlled trial including a 3-week treatment period of nabiximol for advanced cancer patients with pain refractory to optimized opiate therapy, improvements in average pain were seen in the intention to treat population (P = 0.0854) and per- protocol population (P = 0.0378). SUMMARY To date, preclinical data has demonstrated evidence to suggest promising potential for cancer pain and the urgent need to translate this into clinical practice. Unfortunately, due to limited data, for adults with advanced cancer being treated with opiate therapy, the addition of cannabis or cannabinoids is not currently supported to address cancer pain effectively.
Collapse
|
14
|
Uhelski ML, Bruce D, Speltz R, Wilcox GL, Simone DA. Topical Application of Loperamide/Oxymorphindole, Mu and Delta Opioid Receptor Agonists, Reduces Sensitization of C-fiber Nociceptors that Possess Na V1.8. Neuroscience 2020; 446:102-112. [PMID: 32858141 DOI: 10.1016/j.neuroscience.2020.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 06/27/2020] [Accepted: 08/17/2020] [Indexed: 01/09/2023]
Abstract
It was recently shown that local injection, systemic administration or topical application of the peripherally-restricted mu-opioid receptor (MOR) agonist loperamide (Lo) and the delta-opioid receptor (DOR) agonist oxymorphindole (OMI) synergized to produce highly potent anti-hyperalgesia that was dependent on both MOR and DOR located in the periphery. We assessed peripheral mechanisms by which this Lo/OMI combination produces analgesia in mice expressing the light-sensitive protein channelrhodopsin2 (ChR2) in neurons that express NaV1.8 voltage-gated sodium channels. These mice (NaV1.8-ChR2+) enabled us to selectively target and record electrophysiological activity from these neurons (the majority of which are nociceptive) using blue light stimulation of the hind paw. We assessed the effect of Lo/OMI on nociceptor activity in both naïve mice and mice treated with complete Freund's adjuvant (CFA) to induce chronic inflammation of the hind paw. Teased fiber recording of tibial nerve fibers innervating the plantar hind paw revealed that the Lo/OMI combination reduced responses to light stimulation in naïve mice and attenuated spontaneous activity (SA) as well as responses to light and mechanical stimuli in CFA-treated mice. These results show that Lo/OMI reduces activity of C-fiber nociceptors that express NaV1.8 and corroborate recent behavioral studies demonstrating the potent analgesic effects of this drug combination. Because of its peripheral site of action, Lo/OMI might produce effective analgesia without the side effects associated with activation of opioid receptors in the central nervous system.
Collapse
Affiliation(s)
- Megan L Uhelski
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel Bruce
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rebecca Speltz
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - George L Wilcox
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Dermatology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Donald A Simone
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
15
|
Thomas A, Okine BN, Finn DP, Masocha W. Peripheral deficiency and antiallodynic effects of 2-arachidonoyl glycerol in a mouse model of paclitaxel-induced neuropathic pain. Biomed Pharmacother 2020; 129:110456. [PMID: 32603895 DOI: 10.1016/j.biopha.2020.110456] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Modulation of the endocannabinoid system has been shown to alleviate neuropathic pain. The aim of this study was to evaluate if treatment with paclitaxel, a chemotherapeutic agent that induces neuropathic pain, affects endocannabinoid levels at a time when mice develop paclitaxel-induced mechanical allodynia. We also evaluated the peripheral antiallodynic activity of the endocannabinoid 2-arachidonoyl glycerol (2-AG) and an inhibitor of monoacylglycerol lipase (MAGL), an enzyme responsible for 2-AG hydrolysis. METHODS Female BALB/c mice were treated intraperitoneally with paclitaxel to induce mechanical allodynia. Levels of the endocannabinoids, N-arachidonoylethanolamine (anandamide, AEA), 2-AG, and the N-acylethanolamines (NAEs), N-palmitoylethanolamide (PEA) and N-oleoylethanolamide (OEA), which are structurally-related to AEA, in the brain, spinal cord and paw skin were measured using LC-MS/MS. Protein expression of MAGL in the paw skin was measured using Wes™. The effects of subcutaneous (s.c.) injection of 2-AG and JZL184 (a MAGL inhibitor) into the right hind paw of mice with paclitaxel-induced mechanical allodynia were assessed using the dynamic plantar aesthesiometer. The effects of pretreatment, s.c., into the right hind paw, with cannabinoid type 1 (CB1) receptor antagonist AM251 and CB2 receptor antagonist AM630 on the antiallodynic effects of 2-AG were also evaluated. RESULTS The levels of 2-AG were reduced only in the paw skin of paclitaxel-treated mice, whilst the levels of AEA, PEA and OEA were not significantly altered. There was no change in the expression of MAGL in the paw skin. Administration of 2-AG and JZL184 produced antiallodynic effects against paclitaxel-induced mechanical allodynia in the injected right paw, but did not affect the uninjected left paw. The antiallodynic activity of 2-AG was antagonized by both AM251 and AM630. CONCLUSION These results indicate that during paclitaxel-induced mechanical allodynia there is a deficiency of 2-AG in the periphery, but not in the CNS. Increasing 2-AG in the paw by local administration of 2-AG or a MAGL inhibitor, alleviates mechanical allodynia in a CB1 and CB2 receptor-dependent manner.
Collapse
Affiliation(s)
- Amal Thomas
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait
| | - Bright N Okine
- Pharmacology and Therapeutics, School of Medicine, NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland Galway, University Road, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland Galway, University Road, Galway, Ireland
| | - Willias Masocha
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait.
| |
Collapse
|
16
|
Pioglitazone, a PPARγ agonist, reduces cisplatin-evoked neuropathic pain by protecting against oxidative stress. Pain 2019; 160:688-701. [PMID: 30507781 DOI: 10.1097/j.pain.0000000000001448] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Painful peripheral neuropathy is a dose-limiting side effect of cisplatin treatment. Using a murine model of cisplatin-induced hyperalgesia, we determined whether a PPARγ synthetic agonist, pioglitazone, attenuated the development of neuropathic pain and identified underlying mechanisms. Cisplatin produced mechanical and cold hyperalgesia and decreased electrical thresholds of Aδ and C fibers, which were attenuated by coadministration of pioglitazone (10 mg/kg, intraperitoneally [i.p.]) with cisplatin. Antihyperalgesic effects of pioglitazone were blocked by the PPARγ antagonist T0070907 (10 mg/kg, i.p.). We hypothesized that the ability of pioglitazone to reduce the accumulation of reactive oxygen species (ROS) in dorsal root ganglion (DRG) neurons contributed to its antihyperalgesic activity. Effects of cisplatin and pioglitazone on somatosensory neurons were studied on dissociated mouse DRG neurons after 24 hours in vitro. Incubation of DRG neurons with cisplatin (13 µM) for 24 hours increased the occurrence of depolarization-evoked calcium transients, and these were normalized by coincubation with pioglitazone (10 µM). Oxidative stress in DRG neurons was considered a significant contributor to cisplatin-evoked hyperalgesia because a ROS scavenger attenuated hyperalgesia and normalized the evoked calcium responses when cotreated with cisplatin. Pioglitazone increased the expression and activity of ROS-reducing enzymes in DRG and normalized cisplatin-evoked changes in oxidative stress and labeling of mitochondria with the dye MitoTracker Deep Red, indicating that the antihyperalgesic effects of pioglitazone were attributed to its antioxidant properties in DRG neurons. These data demonstrate clear benefits of broadening the use of the antidiabetic drug pioglitazone, or other PPARγ agonists, to minimize the development of cisplatin-induced painful neuropathy.
Collapse
|
17
|
Blanton HL, Brelsfoard J, DeTurk N, Pruitt K, Narasimhan M, Morgan DJ, Guindon J. Cannabinoids: Current and Future Options to Treat Chronic and Chemotherapy-Induced Neuropathic Pain. Drugs 2019; 79:969-995. [PMID: 31127530 PMCID: PMC8310464 DOI: 10.1007/s40265-019-01132-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Increases in cancer diagnosis have tremendous negative impacts on patients and their families, and major societal and economic costs. The beneficial effect of chemotherapeutic agents on tumor suppression comes with major unwanted side effects such as weight and hair loss, nausea and vomiting, and neuropathic pain. Chemotherapy-induced peripheral neuropathy (CIPN), which can include both painful and non-painful symptoms, can persist 6 months or longer after the patient's last chemotherapeutic treatment. These peripheral sensory and motor deficits are poorly treated by our current analgesics with limited effectiveness. Therefore, the development of novel treatment strategies is an important preclinical research focus and an urgent need for patients. Approaches to prevent CIPN have yielded disappointing results since these compounds may interfere with the anti-tumor properties of chemotherapeutic agents. Nevertheless, the first (serotonin noradrenaline reuptake inhibitors [SNRIs], anticonvulsants, tricyclic antidepressants) and second (5% lidocaine patches, 8% capsaicin patches and weak opioids such as tramadol) lines of treatment for CIPN have shown some efficacy. The clinical challenge of CIPN management in cancer patients and the need to target novel therapies with long-term efficacy in alleviating CIPN are an ongoing focus of research. The endogenous cannabinoid system has shown great promise and efficacy in alleviating CIPN in preclinical and clinical studies. In this review, we will discuss the mechanisms through which the platinum, taxane, and vinca alkaloid classes of chemotherapeutics may produce CIPN and the potential therapeutic effect of drugs targeting the endocannabinoid system in preclinical and clinical studies, in addition to cannabinoid compounds diffuse mechanisms of action in alleviation of CIPN.
Collapse
Affiliation(s)
- Henry L Blanton
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Jennifer Brelsfoard
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Nathan DeTurk
- Department of Anesthesiology and Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6592, Lubbock, TX, 79430, USA
| | - Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Daniel J Morgan
- Department of Anesthesiology and Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
18
|
Brain permeant and impermeant inhibitors of fatty-acid amide hydrolase suppress the development and maintenance of paclitaxel-induced neuropathic pain without producing tolerance or physical dependence in vivo and synergize with paclitaxel to reduce tumor cell line viability in vitro. Pharmacol Res 2019; 142:267-282. [PMID: 30739035 DOI: 10.1016/j.phrs.2019.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/22/2018] [Accepted: 02/01/2019] [Indexed: 12/19/2022]
Abstract
Activation of cannabinoid CB1 receptors suppresses pathological pain but also produces unwanted side effects, including tolerance and physical dependence. Inhibition of fatty-acid amide hydrolase (FAAH), the major enzyme catalyzing the degradation of anandamide (AEA), an endocannabinoid, and other fatty-acid amides, suppresses pain without unwanted side effects typical of direct CB1 agonists. However, FAAH inhibitors have failed to show efficacy in several clinical trials suggesting that the right partnership of FAAH inhibition and pathology has yet to be identified. We compared efficacy of chronic treatments with a centrally penetrant FAAH inhibitor (URB597), a peripherally restricted FAAH inhibitor (URB937) and an orthosteric pan-cannabinoid agonist (WIN55,212-2) in suppressing neuropathic pain induced by the chemotherapeutic agent paclitaxel. Each FAAH inhibitor suppressed the development of paclitaxel-induced neuropathic pain and reduced the maintenance of already established allodynia with sustained efficacy. Tolerance developed to the anti-allodynic efficacy of WIN55,212-2, but not to that of URB597 or URB937, in each dosing paradigm. Challenge with the CB1 antagonist rimonabant precipitated CB1-dependent withdrawal in paclitaxel-treated mice receiving WIN55,212-2 but not URB597 or URB937. When dosing with either URB597 or URB937 was restricted to the development of neuropathy, paclitaxel-induced allodynia emerged following termination of drug delivery. These observations suggest that both FAAH inhibitors were anti-allodynic rather than curative. Moreover, neither URB597 nor URB937 impeded the ability of paclitaxel to reduce breast (4T1) or ovarian (HeyA8) tumor cell line viability. In fact, URB597 and URB937 alone reduced 4T1 tumor cell line viability, albeit with low potency, and the dose matrix of each combination with paclitaxel was synergistic in reducing 4T1 and HeyA8 tumor cell line viability according to Bliss, Highest Single Agent (HSA) and Loewe additivity models. Both FAAH inhibitors synergized with paclitaxel to reduce 4T1 and HeyA8 tumor cell line viability without reducing viability of non-tumor HEK293 cells. Neither FAAH inhibitor reduced viability of non-tumor HEK293 cells in either the presence or absence of paclitaxel, suggesting that nonspecific cytotoxic effects were not produced by the same treatments. Our results suggest that FAAH inhibitors reduce paclitaxel-induced allodynia without the occurrence of CB1-dependence in vivo and may, in fact, enhance the anti-tumor actions of paclitaxel in vitro.
Collapse
|
19
|
Boyette-Davis JA, Hou S, Abdi S, Dougherty PM. An updated understanding of the mechanisms involved in chemotherapy-induced neuropathy. Pain Manag 2018; 8:363-375. [PMID: 30212277 PMCID: PMC6462837 DOI: 10.2217/pmt-2018-0020] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/14/2018] [Indexed: 01/16/2023] Open
Abstract
The burdensome condition of chemotherapy-induced peripheral neuropathy occurs with various chemotherapeutics, including bortezomib, oxaliplatin, paclitaxel and vincristine. The symptoms, which include pain, numbness, tingling and loss of motor function, can result in therapy titrations that compromise therapy efficacy. Understanding the mechanisms of chemotherapy-induced peripheral neuropathy is therefore essential, yet incompletely understood. The literature presented here will address a multitude of molecular and cellular mechanisms, beginning with the most well-understood cellular and molecular-level changes. These modifications include alterations in voltage-gated ion channels, neurochemical transmission, organelle function and intracellular pathways. System-level alterations, including changes to glial cells and cytokine activation are also explored. Finally, we present research on the current understanding of genetic contributions to this condition. Suggestions for future research are provided.
Collapse
Affiliation(s)
- Jessica A Boyette-Davis
- Department of Psychology & Behavioral Neuroscience, St Edward's University, 3001 S Congress, Austin, TX 78704, USA
| | - Saiyun Hou
- Division of Anesthesiology, Critical Care & Pain Medicine, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0409, Houston, TX 77030, USA
| | - Salahadin Abdi
- Division of Anesthesiology, Critical Care & Pain Medicine, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0409, Houston, TX 77030, USA
| | - Patrick M Dougherty
- Division of Anesthesiology, Critical Care & Pain Medicine, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0409, Houston, TX 77030, USA
| |
Collapse
|
20
|
Hathway GJ, Murphy E, Lloyd J, Greenspon C, Hulse RP. Cancer Chemotherapy in Early Life Significantly Alters the Maturation of Pain Processing. Neuroscience 2018; 387:214-229. [PMID: 29196027 PMCID: PMC6150930 DOI: 10.1016/j.neuroscience.2017.11.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/24/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022]
Abstract
Advances in pediatric cancer treatment have led to a ten year survival rate greater than 75%. Platinum-based chemotherapies (e.g. cisplatin) induce peripheral sensory neuropathy in adult and pediatric cancer patients. The period from birth through to adulthood represents a period of maturation within nociceptive systems. Here we investigated how cisplatin impacts upon postnatal maturation of nociceptive systems. Neonatal Wistar rats (Postnatal day (P) 7) were injected (i.p.) daily with either vehicle (PBS) or cisplatin (1mg/kg) for five consecutive days. Neither group developed mechanical or thermal hypersensitivity immediately during or after treatment. At P22 the cisplatin group developed mechanical (P < 0.05) and thermal (P < 0.0001) hypersensitivity versus vehicle group. Total DRG or dorsal horn neuronal number did not differ at P45, however there was an increase in intraepidermal nerve fiber density in cisplatin-treated animals at this age. The percentage of IB4+ve, CGRP+ve and NF200+ve DRG neurons was not different between groups at P45. There was an increase in TrkA+ve DRG neurons in the cisplatin group at P45, in addition to increased TrkA, NF200 and vGLUT2 immunoreactivity in the lumbar dorsal horn versus controls. These data highlight the impact pediatric cancer chemotherapy has upon the maturation of pain pathways and later life pain experience.
Collapse
Affiliation(s)
- G J Hathway
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom.
| | - Emily Murphy
- Cancer Biology, School of Medicine, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Joseph Lloyd
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Charles Greenspon
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - R P Hulse
- Cancer Biology, School of Medicine, University of Nottingham, Nottingham NG7 2UH, United Kingdom; School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom.
| |
Collapse
|
21
|
Targeting the Endocannabinoid System for Prevention or Treatment of Chemotherapy-Induced Neuropathic Pain: Studies in Animal Models. Pain Res Manag 2018; 2018:5234943. [PMID: 30147813 PMCID: PMC6083482 DOI: 10.1155/2018/5234943] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022]
Abstract
There is a scarcity of drugs to either prevent or properly manage chemotherapy-induced neuropathic pain (CINP). Cannabis or cannabinoids have been reported to improve pain measures in patients with neuropathic pain. For this review, a search was done in PubMed for papers that examined the expression of and/or evaluated the use of cannabinoids or drugs that prevent or treat established CINP in a CB receptor-dependent manner in animal models. Twenty-eight articles that fulfilled the inclusion and exclusion criteria established were analysed. Studies suggest there is a specific deficiency of endocannabinoids in the periphery during CINP. Inhibitors of FAAH and MGL, enzymes that degrade the endocannabinoids, CB receptor agonists, desipramine, and coadministered indomethacin plus minocycline were found to either prevent the development and/or attenuate established CINP in a CB receptor-dependent manner. The studies analysed suggest that targeting the endocannabinoid system for prevention and treatment of CINP is a plausible therapeutic option. Almost 90% of the studies on animal models of CINP analysed utilised male rodents. Taking into consideration clinical and experimental findings that show gender differences in the mechanisms involved in pain including CINP and in response to analgesics, it is imperative that future studies on CINP utilise more female models.
Collapse
|
22
|
Donertas B, Unel CC, Erol K. Cannabinoids and agmatine as potential therapeutic alternatives for cisplatin-induced peripheral neuropathy. J Exp Pharmacol 2018; 10:19-28. [PMID: 29950907 PMCID: PMC6018893 DOI: 10.2147/jep.s162059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cisplatin is a widely used antineoplastic agent in the treatment of various cancers. Peripheral neuropathy is a well-known side effect of cisplatin and has the potential to result in limiting and/or reducing the dose, decreasing the quality of life. Unfortunately, the mechanism for cisplatin-induced neuropathy has not been completely elucidated. Currently, available treatments for neuropathic pain (NP) are mostly symptomatic, insufficient and are often linked with several detrimental side effects; thus, effective treatments are needed. Cannabinoids and agmatine are endogenous modulators that are implicated in painful states. This review explains the cisplatin-induced neuropathy and antinociceptive effects of cannabinoids and agmatine in animal models of NP and their putative therapeutic potential in cisplatin-induced neuropathy.
Collapse
Affiliation(s)
- Basak Donertas
- Department of Medical Pharmacology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Cigdem Cengelli Unel
- Department of Medical Pharmacology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Kevser Erol
- Department of Medical Pharmacology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
23
|
Sensitization of C-fiber nociceptors in mice with sickle cell disease is decreased by local inhibition of anandamide hydrolysis. Pain 2018; 158:1711-1722. [PMID: 28570479 DOI: 10.1097/j.pain.0000000000000966] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chronic pain and hyperalgesia, as well as pain resulting from episodes of vaso-occlusion, are characteristic features of sickle cell disease (SCD) and are difficult to treat. Since there is growing evidence that increasing local levels of endocannabinoids can decrease hyperalgesia, we examined the effects of URB597, a fatty acid amide hydrolase (FAAH) inhibitor, which blocks the hydrolysis of the endogenous cannabinoid anandamide, on hyperalgesia and sensitization of cutaneous nociceptors in a humanized mouse model of SCD. Using homozygous HbSS-BERK sickle mice, we determined the effects of URB597 on mechanical hyperalgesia and on sensitization of C-fiber nociceptors in vivo. Intraplantar administration of URB597 (10 μg in 10 μL) decreased the frequency of withdrawal responses evoked by a von Frey monofilament (3.9 mN bending force) applied to the plantar hind paw. This was blocked by the CB1 receptor antagonist AM281 but not by the CB2 receptor antagonist AM630. Also, URB597 decreased hyperalgesia in HbSS-BERK/CB2R sickle mice, further confirming the role of CB1 receptors in the effects produced by URB597. Electrophysiological recordings were made from primary afferent fibers of the tibial nerve in anesthetized mice. The proportion of Aδ- and C-fiber nociceptors that exhibited spontaneous activity and responses of C-fibers to mechanical and thermal stimuli were greater in HbSS-BERK sickle mice as compared to control HbAA-BERK mice. Spontaneous activity and evoked responses of nociceptors were decreased by URB597 via CB1 receptors. It is suggested that enhanced endocannabinoid activity in the periphery may be beneficial in alleviating chronic pain associated with SCD.
Collapse
|
24
|
Pace MC, Passavanti MB, De Nardis L, Bosco F, Sansone P, Pota V, Barbarisi M, Palagiano A, Iannotti FA, Panza E, Aurilio C. Nociceptor plasticity: A closer look. J Cell Physiol 2017; 233:2824-2838. [PMID: 28488779 DOI: 10.1002/jcp.25993] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 04/20/2017] [Accepted: 05/09/2017] [Indexed: 12/17/2022]
Abstract
Nociceptors are receptors specifically involved in detecting a tissue damage and transducing it in an electrical signal. Nociceptor activation provoked by any kind of acute lesion is related to the release of several mediators of inflammation, within the framework of a process defined as "peripheral sensitization." This results in an exaggerated response to the painful stimulus, clinically defined as "primary hyperalgesia." The concept of "neuroplasticity" may explain the adaptive mechanisms carried out by the Nervous System in relation to a "harmful" damage; also, neuroplasticity mechanisms are also fundamental for rehabilitative intervention protocols. Here we review several studies that addressed the role of different receptors and ionic channels discovered on nociceptor surface and their role in pain perception. The changes in expression, distribution, and functioning of receptors and ionic channels are thought to be a part of the neuroplasticity property, through which the Nervous System constantly adapts to external stimuli. Moreover, some of the reviewed mediators are also been associated to "central sensitization," a process that results in pain chronicization when the painful stimulation is particularly prolonged or intense, and lastly leads to the memorization of the uncomfortable painful perception.
Collapse
Affiliation(s)
- Maria Caterina Pace
- Department of Anaesthesiological, Surgical and Emergency Sciences, Second University of Naples, Naples, Italy
| | - Maria Beatrice Passavanti
- Department of Anaesthesiological, Surgical and Emergency Sciences, Second University of Naples, Naples, Italy
| | - Lorenzo De Nardis
- Department of Anaesthesiological, Surgical and Emergency Sciences, Second University of Naples, Naples, Italy
| | - Fabio Bosco
- Department of Anaesthesiological, Surgical and Emergency Sciences, Second University of Naples, Naples, Italy
| | - Pasquale Sansone
- Department of Anaesthesiological, Surgical and Emergency Sciences, Second University of Naples, Naples, Italy
| | - Vincenzo Pota
- Department of Anaesthesiological, Surgical and Emergency Sciences, Second University of Naples, Naples, Italy
| | - Manlio Barbarisi
- Laboratory of Applied Biotechnology, Department of Anaesthesiological, Surgical and Emergency Sciences, Second University of Naples, Naples, Italy
| | - Antonio Palagiano
- Department of Women, Child and General and Specialized Surgery, Second University of Naples, Naples, Italy
| | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry (ICB) Research National Council (CNR), Pozzuoli, Italy
| | - Elisabetta Panza
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Caterina Aurilio
- Department of Anaesthesiological, Surgical and Emergency Sciences, Second University of Naples, Naples, Italy
| |
Collapse
|
25
|
Romero-Sandoval EA, Asbill S, Paige CA, Byrd-Glover K. Peripherally Restricted Cannabinoids for the Treatment of Pain. Pharmacotherapy 2016; 35:917-25. [PMID: 26497478 DOI: 10.1002/phar.1642] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The use of cannabinoids for the treatment of chronic diseases has increased in the United States, with 23 states having legalized the use of marijuana. Although currently available cannabinoid compounds have shown effectiveness in relieving symptoms associated with numerous diseases, the use of cannabis or cannabinoids is still controversial mostly due to their psychotropic effects (e.g., euphoria, laughter) or central nervous system (CNS)-related undesired effects (e.g., tolerance, dependence). A potential strategy to use cannabinoids for medical conditions without inducing psychotropic or CNS-related undesired effects is to avoid their actions in the CNS. This approach could be beneficial for conditions with prominent peripheral pathophysiologic mechanisms (e.g., painful diabetic neuropathy, chemotherapy-induced neuropathy). In this article, we discuss the scientific evidence to target the peripheral cannabinoid system as an alternative to cannabis use for medical purposes, and we review the available literature to determine the pros and cons of potential strategies that can be used to this end.
Collapse
Affiliation(s)
- E Alfonso Romero-Sandoval
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, South Carolina
| | - Scott Asbill
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, South Carolina
| | - Candler A Paige
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, South Carolina
| | - Kiara Byrd-Glover
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, South Carolina
| |
Collapse
|
26
|
|
27
|
Schloss J, Colosimo M, Vitetta L. New Insights into Potential Prevention and Management Options for Chemotherapy-Induced Peripheral Neuropathy. Asia Pac J Oncol Nurs 2016; 3:73-85. [PMID: 27981142 PMCID: PMC5123533 DOI: 10.4103/2347-5625.170977] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/21/2015] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Neurological complications such as chemotherapy-induced peripheral neuropathy (CIPN) and neuropathic pain are frequent side effects of neurotoxic chemotherapy agents. An increasing survival rate and frequent administration of adjuvant chemotherapy treatments involving neurotoxic agents makes it imperative that accurate diagnosis, prevention, and treatment of these neurological complications be implemented. METHODS A consideration was undertaken of the current options regarding protective and treatment interventions for patients undergoing chemotherapy with neurotoxic chemotherapy agent or experience with CIPN. Current knowledge on the mechanism of action has also been identified. The following databases PubMed, the Cochrane Library, Science Direct, Scopus, EMBASE, MEDLINE, CINAHL, CNKI, and Google Scholar were searched for relevant article retrieval. RESULTS A range of pharmaceutical, nutraceutical, and herbal medicine treatments were identified that either showed efficacy or had some evidence of efficacy. Duloxetine was the most effective pharmaceutical agent for the treatment of CIPN. Vitamin E demonstrated potential for the prevention of cisplatin-IPN. Intravenous glutathione for oxaliplatin, Vitamin B6 for both oxaliplatin and cisplatin, and omega 3 fatty acids for paclitaxel have shown protection for CIPN. Acetyl-L-carnitine may provide some relief as a treatment option. Acupuncture may be of benefit for some patients and Gosha-jinki-gan may be of benefit for protection from adverse effects of oxaliplatin induced peripheral neuropathy. CONCLUSIONS Clinicians and researchers acknowledge that there are numerous challenges involved in understanding, preventing, and treating peripheral neuropathy caused by chemotherapeutic agents. New insights into mechanisms of action from chemotherapy agents may facilitate the development of novel preventative and treatment options, thereby enabling medical staff to better support patients by reducing this debilitating side effect.
Collapse
Affiliation(s)
- Janet Schloss
- Mater Private Breast Cancer Centre, Mater Hospital, Brisbane, Australia
- Office of Research, Endeavour College of Natural Health, University of Technology, Brisbane, Australia
| | - Maree Colosimo
- Mater Private Breast Cancer Centre, Mater Hospital, Brisbane, Australia
- Medical Oncology Group of Australia, Clinical Oncology Society of Australia, Queensland Clinical Oncology Group, Brisbane, Australia
| | - Luis Vitetta
- Sydney Medical School, University of Sydney, Sydney 2006, Sydney, Australia
- Medlab Clinical, Sydney, Australia
| |
Collapse
|
28
|
Boyette-Davis JA, Walters ET, Dougherty PM. Mechanisms involved in the development of chemotherapy-induced neuropathy. Pain Manag 2015; 5:285-96. [PMID: 26087973 DOI: 10.2217/pmt.15.19] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating and painful condition seen in patients undergoing treatment with common agents such as vincristine, paclitaxel, oxaliplatin and bortezomib. The mechanisms of this condition are diverse, and include an array of molecular and cellular contributions. Current research implicates genetic predispositions to this condition, which then may influence cellular responses to chemotherapy. Processes found to be influenced during CIPN include increased expression of inflammatory mediators, primarily cytokines, which can create cascading effects in neurons and glia. Changes in ion channels and neurotransmission, as well as changes in intracellular signaling and structures have been implicated in CIPN. This review explores these issues and suggests considerations for future research.
Collapse
Affiliation(s)
- Jessica A Boyette-Davis
- Department of Psychology, York College of Pennsylvania, 441 Country Club Road, York, PA 17403, USA
| | - Edgar T Walters
- Department of Integrative Biology & Pharmacology, The University of Texas Medical School at Houston, 6431 Fannin, Houston, TX 77030, USA
| | - Patrick M Dougherty
- Department of Anesthesiology & Pain Medicine Research, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0409, Houston, TX 77030, USA
| |
Collapse
|
29
|
Poupon L, Kerckhove N, Vein J, Lamoine S, Authier N, Busserolles J, Balayssac D. Minimizing chemotherapy-induced peripheral neuropathy: preclinical and clinical development of new perspectives. Expert Opin Drug Saf 2015; 14:1269-82. [DOI: 10.1517/14740338.2015.1056777] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|