1
|
Tzanou A, Theodorou E, Mantas I, Dalezios Y. Excitatory Projections of Wide Field Collicular Neurons to the Nucleus of the Optic Tract in the Rat. J Comp Neurol 2024; 532:e25651. [PMID: 38961597 DOI: 10.1002/cne.25651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024]
Abstract
The superficial layers of the mammalian superior colliculus (SC) contain neurons that are generally responsive to visual stimuli but can differ considerably in morphology and response properties. To elucidate the structure and function of these neurons, we combined extracellular recording and juxtacellular labeling, detailed anatomical reconstruction, and ultrastructural analysis of the synaptic contacts of labeled neurons, using transmission electron microscopy. Our labeled neurons project to different brainstem nuclei. Of particular importance are neurons that fit the morphological criteria of the wide field (WF) neurons and whose dendrites are horizontally oriented. They display a rather characteristic axonal projection pattern to the nucleus of optic tract (NOT); thus, we call them superior collicular WF projecting to the NOT (SCWFNOT) neurons. We corroborated the morphological characterization of this neuronal type as a distinct neuronal class with the help of unsupervised hierarchical cluster analysis. Our ultrastructural data demonstrate that SCWFNOT neurons establish excitatory connections with their targets in the NOT. Although, in rodents, the literature about the WF neurons has focused on their extensive projection to the lateral posterior nucleus of the thalamus, as a conduit for information to reach the visual association areas of the cortex, our data suggest that this subclass of WF neurons may participate in the optokinetic nystagmus.
Collapse
Affiliation(s)
- Athanasia Tzanou
- School of Medicine, University of Crete, Heraklion, Greece
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Greece
| | - Eirini Theodorou
- School of Medicine, University of Crete, Heraklion, Greece
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Greece
| | - Ioannis Mantas
- School of Medicine, University of Crete, Heraklion, Greece
| | - Yannis Dalezios
- School of Medicine, University of Crete, Heraklion, Greece
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Greece
| |
Collapse
|
2
|
Veale R, Takahashi M. Pathways for Naturalistic Looking Behavior in Primate II. Superior Colliculus Integrates Parallel Top-down and Bottom-up Inputs. Neuroscience 2024; 545:86-110. [PMID: 38484836 DOI: 10.1016/j.neuroscience.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/24/2024]
Abstract
Volitional signals for gaze control are provided by multiple parallel pathways converging on the midbrain superior colliculus (SC), whose deeper layers output to the brainstem gaze circuits. In the first of two papers (Takahashi and Veale, 2023), we described the properties of gaze behavior of several species under both laboratory and natural conditions, as well as the current understanding of the brainstem and spinal cord circuits implementing gaze control in primate. In this paper, we review the parallel pathways by which sensory and task information reaches SC and how these sensory and task signals interact within SC's multilayered structure. This includes both bottom-up (world statistics) signals mediated by sensory cortex, association cortex, and subcortical structures, as well as top-down (goal and task) influences which arrive via either direct excitatory pathways from cerebral cortex, or via indirect basal ganglia relays resulting in inhibition or dis-inhibition as appropriate for alternative behaviors. Models of attention such as saliency maps serve as convenient frameworks to organize our understanding of both the separate computations of each neural pathway, as well as the interaction between the multiple parallel pathways influencing gaze. While the spatial interactions between gaze's neural pathways are relatively well understood, the temporal interactions between and within pathways will be an important area of future study, requiring both improved technical methods for measurement and improvement of our understanding of how temporal dynamics results in the observed spatiotemporal allocation of gaze.
Collapse
Affiliation(s)
- Richard Veale
- Department of Neurobiology, Graduate School of Medicine, Kyoto University, Japan
| | - Mayu Takahashi
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan.
| |
Collapse
|
3
|
Melleu FF, Canteras NS. Pathways from the Superior Colliculus to the Basal Ganglia. Curr Neuropharmacol 2024; 22:1431-1453. [PMID: 37702174 PMCID: PMC11097988 DOI: 10.2174/1570159x21666230911102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 09/14/2023] Open
Abstract
The present work aims to review the structural organization of the mammalian superior colliculus (SC), the putative pathways connecting the SC and the basal ganglia, and their role in organizing complex behavioral output. First, we review how the complex intrinsic connections between the SC's laminae projections allow for the construction of spatially aligned, visual-multisensory maps of the surrounding environment. Moreover, we present a summary of the sensory-motor inputs of the SC, including a description of the integration of multi-sensory inputs relevant to behavioral control. We further examine the major descending outputs toward the brainstem and spinal cord. As the central piece of this review, we provide a thorough analysis covering the putative interactions between the SC and the basal ganglia. To this end, we explore the diverse thalamic routes by which information from the SC may reach the striatum, including the pathways through the lateral posterior, parafascicular, and rostral intralaminar thalamic nuclei. We also examine the interactions between the SC and subthalamic nucleus, representing an additional pathway for the tectal modulation of the basal ganglia. Moreover, we discuss how information from the SC might also be relayed to the basal ganglia through midbrain tectonigral and tectotegmental projections directed at the substantia nigra compacta and ventrotegmental area, respectively, influencing the dopaminergic outflow to the dorsal and ventral striatum. We highlight the vast interplay between the SC and the basal ganglia and raise several missing points that warrant being addressed in future studies.
Collapse
Affiliation(s)
| | - Newton Sabino Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
4
|
Benarroch E. What Are the Functions of the Superior Colliculus and Its Involvement in Neurologic Disorders? Neurology 2023; 100:784-790. [PMID: 37068960 PMCID: PMC10115501 DOI: 10.1212/wnl.0000000000207254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 04/19/2023] Open
|
5
|
Isa T, Marquez-Legorreta E, Grillner S, Scott EK. The tectum/superior colliculus as the vertebrate solution for spatial sensory integration and action. Curr Biol 2021; 31:R741-R762. [PMID: 34102128 DOI: 10.1016/j.cub.2021.04.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The superior colliculus, or tectum in the case of non-mammalian vertebrates, is a part of the brain that registers events in the surrounding space, often through vision and hearing, but also through electrosensation, infrared detection, and other sensory modalities in diverse vertebrate lineages. This information is used to form maps of the surrounding space and the positions of different salient stimuli in relation to the individual. The sensory maps are arranged in layers with visual input in the uppermost layer, other senses in deeper positions, and a spatially aligned motor map in the deepest layer. Here, we will review the organization and intrinsic function of the tectum/superior colliculus and the information that is processed within tectal circuits. We will also discuss tectal/superior colliculus outputs that are conveyed directly to downstream motor circuits or via the thalamus to cortical areas to control various aspects of behavior. The tectum/superior colliculus is evolutionarily conserved among all vertebrates, but tailored to the sensory specialties of each lineage, and its roles have shifted with the emergence of the cerebral cortex in mammals. We will illustrate both the conserved and divergent properties of the tectum/superior colliculus through vertebrate evolution by comparing tectal processing in lampreys belonging to the oldest group of extant vertebrates, larval zebrafish, rodents, and other vertebrates including primates.
Collapse
Affiliation(s)
- Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan; Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, 606-8501, Japan
| | | | - Sten Grillner
- Department of Neuroscience, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Ethan K Scott
- The Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
6
|
Basso MA, Bickford ME, Cang J. Unraveling circuits of visual perception and cognition through the superior colliculus. Neuron 2021; 109:918-937. [PMID: 33548173 PMCID: PMC7979487 DOI: 10.1016/j.neuron.2021.01.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
The superior colliculus is a conserved sensorimotor structure that integrates visual and other sensory information to drive reflexive behaviors. Although the evidence for this is strong and compelling, a number of experiments reveal a role for the superior colliculus in behaviors usually associated with the cerebral cortex, such as attention and decision-making. Indeed, in addition to collicular outputs targeting brainstem regions controlling movements, the superior colliculus also has ascending projections linking it to forebrain structures including the basal ganglia and amygdala, highlighting the fact that the superior colliculus, with its vast inputs and outputs, can influence processing throughout the neuraxis. Today, modern molecular and genetic methods combined with sophisticated behavioral assessments have the potential to make significant breakthroughs in our understanding of the evolution and conservation of neuronal cell types and circuits in the superior colliculus that give rise to simple and complex behaviors.
Collapse
Affiliation(s)
- Michele A Basso
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | | | - Jianhua Cang
- University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
7
|
Hafed ZM, Chen CY, Tian X, Baumann MP, Zhang T. Active vision at the foveal scale in the primate superior colliculus. J Neurophysiol 2021; 125:1121-1138. [PMID: 33534661 DOI: 10.1152/jn.00724.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The primate superior colliculus (SC) has recently been shown to possess both a large foveal representation as well as a varied visual processing repertoire. This structure is also known to contribute to eye movement generation. Here, we describe our current understanding of how SC visual and movement-related signals interact within the realm of small eye movements associated with the foveal scale of visuomotor behavior. Within the SC's foveal representation, there is a full spectrum of visual, visual-motor, and motor-related discharge for fixational eye movements. Moreover, a substantial number of neurons only emit movement-related discharge when microsaccades are visually guided, but not when similar movements are generated toward a blank. This represents a particularly striking example of integrating vision and action at the foveal scale. Beyond that, SC visual responses themselves are strongly modulated, and in multiple ways, by the occurrence of small eye movements. Intriguingly, this impact can extend to eccentricities well beyond the fovea, causing both sensitivity enhancement and suppression in the periphery. Because of large foveal magnification of neural tissue, such long-range eccentricity effects are neurally warped into smaller differences in anatomical space, providing a structural means for linking peripheral and foveal visual modulations around fixational eye movements. Finally, even the retinal-image visual flows associated with tiny fixational eye movements are signaled fairly faithfully by peripheral SC neurons with relatively large receptive fields. These results demonstrate how studying active vision at the foveal scale represents an opportunity for understanding primate vision during natural behaviors involving ever-present foveating eye movements.NEW & NOTEWORTHY The primate superior colliculus (SC) is ideally suited for active vision at the foveal scale: it enables detailed foveal visual analysis by accurately driving small eye movements, and it also possesses a visual processing machinery that is sensitive to active eye movement behavior. Studying active vision at the foveal scale in the primate SC is informative for broader aspects of active perception, including the overt and covert processing of peripheral extra-foveal visual scene locations.
Collapse
Affiliation(s)
- Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Chih-Yang Chen
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Xiaoguang Tian
- University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthias P Baumann
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Tong Zhang
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| |
Collapse
|
8
|
Lee KH, Tran A, Turan Z, Meister M. The sifting of visual information in the superior colliculus. eLife 2020; 9:50678. [PMID: 32286224 PMCID: PMC7237212 DOI: 10.7554/elife.50678] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/09/2020] [Indexed: 01/28/2023] Open
Abstract
Much of the early visual system is devoted to sifting the visual scene for the few bits of behaviorally relevant information. In the visual cortex of mammals, a hierarchical system of brain areas leads eventually to the selective encoding of important features, like faces and objects. Here, we report that a similar process occurs in the other major visual pathway, the superior colliculus. We investigate the visual response properties of collicular neurons in the awake mouse with large-scale electrophysiology. Compared to the superficial collicular layers, neuronal responses in the deeper layers become more selective for behaviorally relevant stimuli; more invariant to location of stimuli in the visual field; and more suppressed by repeated occurrence of a stimulus in the same location. The memory of familiar stimuli persists in complete absence of the visual cortex. Models of these neural computations lead to specific predictions for neural circuitry in the superior colliculus.
Collapse
Affiliation(s)
- Kyu Hyun Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Alvita Tran
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Zeynep Turan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Markus Meister
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
9
|
Bednárová V, Grothe B, Myoga MH. Complex and spatially segregated auditory inputs of the mouse superior colliculus. J Physiol 2018; 596:5281-5298. [PMID: 30206945 PMCID: PMC6209754 DOI: 10.1113/jp276370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/10/2018] [Indexed: 12/22/2022] Open
Abstract
Key points Although the visual circuits in the superior colliculus (SC) have been thoroughly examined, the auditory circuits lack equivalent scrutiny. SC neurons receiving auditory inputs in mice were characterized and three distinguishable types of neurons were found. The auditory pathways from external nuclei of the inferior colliculus (IC) were characterized, and a novel direct inhibitory connection and an excitation that drives feed‐forward inhibitory circuits within the SC were found. The direct excitatory and inhibitory inputs exhibited distinct arbourization patterns in the SC. These findings suggest functional differences between excitatory and inhibitory sensory information that targets the auditory SC.
Abstract The superior colliculus (SC) is a midbrain structure that integrates auditory, somatosensory and visual inputs to drive orientation movements. While much is known about how visual information is processed in the superficial layers of the SC, little is known about the SC circuits in the deep layers that process auditory inputs. We therefore characterized intrinsic neuronal properties in the auditory‐recipient layer of the SC (stratum griseum profundum; SGP) and confirmed three electrophysiologically defined clusters of neurons, consistent with literature from other SC layers. To determine the types of inputs to the SGP, we expressed Channelrhodopsin‐2 in the nucleus of the brachium of the inferior colliculus (nBIC) and external cortex of the inferior colliculus (ECIC) and optically stimulated these pathways while recording from SGP neurons. Probing the connections in this manner, we described a monosynaptic excitation that additionally drives feed‐forward inhibition via circuits intrinsic to the SC. Moreover, we found a profound long‐range monosynaptic inhibition in 100% of recorded SGP neurons, a surprising finding considering that only about 15% of SGP‐projecting neurons in the nBIC/ECIC are inhibitory. Furthermore, we found spatial differences in the cell body locations as well as axon trajectories between the monosynaptic excitatory and inhibitory inputs, suggesting that these inputs may be functionally distinct. Taking this together with recent anatomical evidence suggesting an auditory excitation from the nBIC and a GABAergic multimodal inhibition from the ECIC, we propose that sensory integration in the SGP is more multifaceted than previously thought. Although the visual circuits in the superior colliculus (SC) have been thoroughly examined, the auditory circuits lack equivalent scrutiny. SC neurons receiving auditory inputs in mice were characterized and three distinguishable types of neurons were found. The auditory pathways from external nuclei of the inferior colliculus (IC) were characterized, and a novel direct inhibitory connection and an excitation that drives feed‐forward inhibitory circuits within the SC were found. The direct excitatory and inhibitory inputs exhibited distinct arbourization patterns in the SC. These findings suggest functional differences between excitatory and inhibitory sensory information that targets the auditory SC.
Collapse
Affiliation(s)
- Veronika Bednárová
- Max Planck Fellow Group: Circuits of Spatial Hearing, Max Planck Institute of Neurobiology, 82152, Planegg-Martinsried, Germany.,Division of Neurobiology, Department Biologie II, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Benedikt Grothe
- Max Planck Fellow Group: Circuits of Spatial Hearing, Max Planck Institute of Neurobiology, 82152, Planegg-Martinsried, Germany.,Division of Neurobiology, Department Biologie II, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Michael H Myoga
- Max Planck Fellow Group: Circuits of Spatial Hearing, Max Planck Institute of Neurobiology, 82152, Planegg-Martinsried, Germany.,Division of Neurobiology, Department Biologie II, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
10
|
Villalobos CA, Wu Q, Lee PH, May PJ, Basso MA. Parvalbumin and GABA Microcircuits in the Mouse Superior Colliculus. Front Neural Circuits 2018; 12:35. [PMID: 29780307 PMCID: PMC5946669 DOI: 10.3389/fncir.2018.00035] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/16/2018] [Indexed: 11/13/2022] Open
Abstract
The mammalian superior colliculus (SC) is a sensorimotor midbrain structure responsible for orienting behaviors. Although many SC features are known, details of its intrinsic microcircuits are lacking. We used transgenic mice expressing reporter genes in parvalbumin-positive (PV+) and gamma aminobutyric acid-positive (GABA+) neurons to test the hypothesis that PV+ neurons co-localize GABA and form inhibitory circuits within the SC. We found more PV+ neurons in the superficial compared to the intermediate SC, although a larger percentage of PV+ neurons co-expressed GABA in the latter. Unlike PV+ neurons, PV+/GABA+ neurons showed predominantly rapidly inactivating spiking patterns. Optogenetic activation of PV+ neurons revealed direct and feedforward GABAergic inhibitory synaptic responses, as well as excitatory glutamatergic synapses. We propose that PV+ neurons in the SC may be specialized for a variety of circuit functions within the SC rather than forming a homogeneous, GABAergic neuronal subtype as they appear to in other regions of the brain.
Collapse
Affiliation(s)
- Claudio A Villalobos
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences - Department of Neurobiology, Semel Institute for Neuroscience and Human Behavior - Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Qiong Wu
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences - Department of Neurobiology, Semel Institute for Neuroscience and Human Behavior - Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Psyche H Lee
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences - Department of Neurobiology, Semel Institute for Neuroscience and Human Behavior - Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Paul J May
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Michele A Basso
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences - Department of Neurobiology, Semel Institute for Neuroscience and Human Behavior - Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
11
|
James SS, Papapavlou C, Blenkinsop A, Cope AJ, Anderson SR, Moustakas K, Gurney KN. Integrating Brain and Biomechanical Models-A New Paradigm for Understanding Neuro-muscular Control. Front Neurosci 2018; 12:39. [PMID: 29467606 PMCID: PMC5808253 DOI: 10.3389/fnins.2018.00039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/16/2018] [Indexed: 12/26/2022] Open
Abstract
To date, realistic models of how the central nervous system governs behavior have been restricted in scope to the brain, brainstem or spinal column, as if these existed as disembodied organs. Further, the model is often exercised in relation to an in vivo physiological experiment with input comprising an impulse, a periodic signal or constant activation, and output as a pattern of neural activity in one or more neural populations. Any link to behavior is inferred only indirectly via these activity patterns. We argue that to discover the principles of operation of neural systems, it is necessary to express their behavior in terms of physical movements of a realistic motor system, and to supply inputs that mimic sensory experience. To do this with confidence, we must connect our brain models to neuro-muscular models and provide relevant visual and proprioceptive feedback signals, thereby closing the loop of the simulation. This paper describes an effort to develop just such an integrated brain and biomechanical system using a number of pre-existing models. It describes a model of the saccadic oculomotor system incorporating a neuromuscular model of the eye and its six extraocular muscles. The position of the eye determines how illumination of a retinotopic input population projects information about the location of a saccade target into the system. A pre-existing saccadic burst generator model was incorporated into the system, which generated motoneuron activity patterns suitable for driving the biomechanical eye. The model was demonstrated to make accurate saccades to a target luminance under a set of environmental constraints. Challenges encountered in the development of this model showed the importance of this integrated modeling approach. Thus, we exposed shortcomings in individual model components which were only apparent when these were supplied with the more plausible inputs available in a closed loop design. Consequently we were able to suggest missing functionality which the system would require to reproduce more realistic behavior. The construction of such closed-loop animal models constitutes a new paradigm of computational neurobehavior and promises a more thoroughgoing approach to our understanding of the brain's function as a controller for movement and behavior.
Collapse
Affiliation(s)
- Sebastian S. James
- Adaptive Behaviour Research Group, Department of Psychology, The University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In-Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Chris Papapavlou
- Department of Electrical and Computer Engineering, The University of Patras, Patras, Greece
| | - Alexander Blenkinsop
- Adaptive Behaviour Research Group, Department of Psychology, The University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In-Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Alexander J. Cope
- Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom
| | - Sean R. Anderson
- Insigneo Institute for In-Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
- Department of Automatic Control Systems Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Konstantinos Moustakas
- Department of Electrical and Computer Engineering, The University of Patras, Patras, Greece
| | - Kevin N. Gurney
- Adaptive Behaviour Research Group, Department of Psychology, The University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In-Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
12
|
Khan AZ, Munoz DP, Takahashi N, Blohm G, McPeek RM. Effects of a pretarget distractor on saccade reaction times across space and time in monkeys and humans. J Vis 2017; 16:5. [PMID: 27148697 PMCID: PMC5833323 DOI: 10.1167/16.7.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Previous studies have shown that the influence of a behaviorally irrelevant distractor on saccade reaction times (SRTs) varies depending on the temporal and spatial relationship between the distractor and the saccade target. We measured distractor influence on SRTs to a subsequently presented target, varying the spatial location and the timing between the distractor and the target. The distractor appeared at one of four equally eccentric locations, followed by a target (either 50 ms or 200 ms after) at one of 136 different locations encompassing an area of 20° square. We extensively tested two humans and two monkeys on this task to determine interspecies similarities and differences, since monkey neurophysiology is often used to interpret human behavioral findings. Results were similar across species; for the short interval (50 ms), SRTs were shortest to a target presented close to or at the distractor location and increased primarily as a function of the distance from the distractor. There was also an effect of distractor-target direction and visual field. For the long interval (200 ms) the results were inverted; SRTs were longest for short distances between the distractor and target and decreased as a function of distance from distractor. Both SRT patterns were well captured by a two-dimensional dynamic field model with short-distance excitation and long-distance inhibition, based upon known functional connectivity found in the superior colliculus that includes wide-spread excitation and inhibition. Based on these findings, we posit that the different time-dependent patterns of distractor-related SRTs can emerge from the same underlying neuronal mechanisms common to both species.
Collapse
|
13
|
Abstract
The superior colliculus is one of the most well-studied structures in the brain, and with each new report, its proposed role in behavior seems to increase in complexity. Forty years of evidence show that the colliculus is critical for reorienting an organism toward objects of interest. In monkeys, this involves saccadic eye movements. Recent work in the monkey colliculus and in the homologous optic tectum of the bird extends our understanding of the role of the colliculus in higher mental functions, such as attention and decision making. In this review, we highlight some of these recent results, as well as those capitalizing on circuit-based methodologies using transgenic mice models, to understand the contribution of the colliculus to attention and decision making. The wealth of information we have about the colliculus, together with new tools, provides a unique opportunity to obtain a detailed accounting of the neurons, circuits, and computations that underlie complex behavior.
Collapse
Affiliation(s)
- Michele A Basso
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences and Neurobiology, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90095;
| | - Paul J May
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi 39216
| |
Collapse
|
14
|
Bolton A, Murata Y, Kirchner R, Kim SY, Young A, Dang T, Yanagawa Y, Constantine-Paton M. A Diencephalic Dopamine Source Provides Input to the Superior Colliculus, where D1 and D2 Receptors Segregate to Distinct Functional Zones. Cell Rep 2015; 13:1003-15. [DOI: 10.1016/j.celrep.2015.09.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/17/2015] [Accepted: 09/15/2015] [Indexed: 11/27/2022] Open
|
15
|
Excitatory synaptic feedback from the motor layer to the sensory layers of the superior colliculus. J Neurosci 2014; 34:6822-33. [PMID: 24828636 DOI: 10.1523/jneurosci.3137-13.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural circuits that translate sensory information into motor commands are organized in a feedforward manner converting sensory information into motor output. The superior colliculus (SC) follows this pattern as it plays a role in converting visual information from the retina and visual cortex into motor commands for rapid eye movements (saccades). Feedback from movement to sensory regions is hypothesized to play critical roles in attention, visual image stability, and saccadic suppression, but in contrast to feedforward pathways, motor feedback to sensory regions has received much less attention. The present study used voltage imaging and patch-clamp recording in slices of rat SC to test the hypothesis of an excitatory synaptic pathway from the motor layers of the SC back to the sensory superficial layers. Voltage imaging revealed an extensive depolarization of the superficial layers evoked by electrical stimulation of the motor layers. A pharmacologically isolated excitatory synaptic potential in the superficial layers depended on stimulus strength in the motor layers in a manner consistent with orthodromic excitation. Patch-clamp recording from neurons in the sensory layers revealed excitatory synaptic potentials in response to glutamate application in the motor layers. The location, size, and morphology of responsive neurons indicated they were likely to be narrow-field vertical cells. This excitatory projection from motor to sensory layers adds an important element to the circuitry of the SC and reveals a novel feedback pathway that could play a role in enhancing sensory responses to attended targets as well as visual image stabilization.
Collapse
|
16
|
|
17
|
Phongphanphanee P, Marino RA, Kaneda K, Yanagawa Y, Munoz DP, Isa T. Distinct local circuit properties of the superficial and intermediate layers of the rodent superior colliculus. Eur J Neurosci 2014; 40:2329-43. [PMID: 24708086 DOI: 10.1111/ejn.12579] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 01/29/2023]
Abstract
The superior colliculus (SC) is critical in localizing salient visual stimuli and making decisions on the location of the next saccade. Lateral interactions across the spatial map of the SC are hypothesized to help mediate these processes. Here, we investigate lateral interactions within the SC by applying whole-cell recordings in horizontal slices of mouse SC, which maintained the local structure of the superficial (SCs) visual layer, which is hypothesized to participate in localizing salient stimuli, and the intermediate (SCi) layer, which is supposed to participate in saccade decision-making. When effects of either electrical or chemical (uncaging of free glutamate) stimuli were applied to multiple sites with various distances from the recorded cell, a pattern of center excitation-surround inhibition was found to be prominent in SCs. When the interactions of synaptic effects induced by simultaneous stimulation of two sites were tested, non-linear facilitatory or inhibitory interactions were observed. In contrast, in the SCi, stimulation induced mainly excitation, which masked underlying inhibition. The excitatory synaptic effects of stimulation applied at remote sites were summed in a near linear manner. The result suggested that SCs lateral interactions appear suitable for localizing salient stimuli, while the lateral interactions within SCi are more suitable for faithfully accumulating subthreshold signals for saccadic decision-making. Implementation of this laminar-specific organization makes the SC a unique structure for serially processing signals for saliency localization and saccadic decision-making.
Collapse
Affiliation(s)
- Penphimon Phongphanphanee
- Department of Developmental Physiology, National Institute of Physiological Sciences, Myodaiji, Okazaki, 444-8585, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Development of a neural circuit in the superior colliculus: analysis of the propagation of neuronal excitation from intermediate to superficial layers. Neuroreport 2014; 25:242-7. [PMID: 24488028 DOI: 10.1097/wnr.0000000000000081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The superior colliculus is important for orientation behaviors, in which visuomotor transformation is performed by the pathway from the superficial layer (SGS) to the intermediate layers (SGI). The opposite pathway (from the SGI to the SGS) also exists, raising the possibility of a feedback circuit, although it could be either negative (inhibitory) or positive (excitatory). In this study, we focused on the development of the feedback circuit. We used optical imaging methods that can measure neuronal population responses directly, as the orientation behaviors are determined by large population activities of superior colliculus neurons. We examined the postnatal development of the propagation pattern of neuronal excitation from the SGI to the SGS using a GABAA receptor antagonist. The optical response propagated within the SGI, but not to the SGS in infant mice that have not opened their eyes. In contrast, in young mice after eye opening, the optical response propagated initially in the SGI and then to the SGS. The GABAA receptor antagonist increased the optical response in the SGS in young mice, as well as that in the SGI in infant mice. Together, these results suggest that axons of SGI neurons terminate to the SGS during development after eye opening.
Collapse
|
19
|
Optogenetic investigation of the role of the superior colliculus in orienting movements. Behav Brain Res 2013; 255:55-63. [PMID: 23643689 DOI: 10.1016/j.bbr.2013.04.040] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 03/27/2013] [Accepted: 04/25/2013] [Indexed: 12/13/2022]
Abstract
In vivo studies have demonstrated that the superior colliculus (SC) integrates sensory information and plays a role in controlling orienting motor output. However, how the complex microcircuitry within the SC, as documented by slice studies, subserves these functions is unclear. Optogenetics affords the potential to examine, in behaving animals, the functional roles of specific neuron types that comprise heterogeneous nuclei. As a first step toward understanding how SC microcircuitry underlies motor output, we applied optogenetics to mice performing an odor discrimination task in which sensory decisions are reported by either a leftward or rightward SC-dependent orienting movement. We unilaterally expressed either channelrhodopsin-2 or halorhodopsin in the SC and delivered light in order to excite or inhibit motor-related SC activity as the movement was planned. We found that manipulating SC activity predictably affected the direction of the selected movement in a manner that depended on the difficulty of the odor discrimination. This study demonstrates that the SC plays a similar role in directional orienting movements in mice as it does in other species, and provides a framework for future investigations into how specific SC cell types contribute to motor control.
Collapse
|
20
|
Aparicio MA, Saldaña E. The dorsal tectal longitudinal column (TLCd): a second longitudinal column in the paramedian region of the midbrain tectum. Brain Struct Funct 2013; 219:607-30. [PMID: 23468089 PMCID: PMC3933748 DOI: 10.1007/s00429-013-0522-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 02/08/2013] [Indexed: 11/03/2022]
Abstract
The tectal longitudinal column (TLC) is a longitudinally oriented, long and narrow nucleus that spans the paramedian region of the midbrain tectum of a large variety of mammals (Saldaña et al. in J Neurosci 27:13108–13116, 2007). Recent analysis of the organization of this region revealed another novel nucleus located immediately dorsal, and parallel, to the TLC. Because the name “tectal longitudinal column” also seems appropriate for this novel nucleus, we suggest the TLC described in 2007 be renamed the “ventral tectal longitudinal column (TLCv)”, and the newly discovered nucleus termed the “dorsal tectal longitudinal column (TLCd)”. This work represents the first characterization of the rat TLCd. A constellation of anatomical techniques was used to demonstrate that the TLCd differs from its surrounding structures (TLCv and superior colliculus) cytoarchitecturally, myeloarchitecturally, neurochemically and hodologically. The distinct expression of vesicular amino acid transporters suggests that TLCd neurons are GABAergic. The TLCd receives major projections from various areas of the cerebral cortex (secondary visual mediomedial area, and granular and dysgranular retrosplenial cortices) and from the medial pretectal nucleus. It densely innervates the ipsilateral lateral posterior and laterodorsal nuclei of the thalamus. Thus, the TLCd is connected with vision-related neural centers. The TLCd may be unique as it constitutes the only known nucleus made of GABAergic neurons dedicated to providing massive inhibition to higher order thalamic nuclei of a specific sensory modality.
Collapse
Affiliation(s)
- M-Auxiliadora Aparicio
- Department of Cell Biology and Pathology, Medical School, University of Salamanca, 37007, Salamanca, Spain
| | | |
Collapse
|
21
|
The mechanism of saccade motor pattern generation investigated by a large-scale spiking neuron model of the superior colliculus. PLoS One 2013; 8:e57134. [PMID: 23431402 PMCID: PMC3576366 DOI: 10.1371/journal.pone.0057134] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 01/17/2013] [Indexed: 11/19/2022] Open
Abstract
The subcortical saccade-generating system consists of the retina, superior colliculus, cerebellum and brainstem motoneuron areas. The superior colliculus is the site of sensory-motor convergence within this basic visuomotor loop preserved throughout the vertebrates. While the system has been extensively studied, there are still several outstanding questions regarding how and where the saccade eye movement profile is generated and the contribution of respective parts within this system. Here we construct a spiking neuron model of the whole intermediate layer of the superior colliculus based on the latest anatomy and physiology data. The model consists of conductance-based spiking neurons with quasi-visual, burst, buildup, local inhibitory, and deep layer inhibitory neurons. The visual input is given from the superficial superior colliculus and the burst neurons send the output to the brainstem oculomotor nuclei. Gating input from the basal ganglia and an integral feedback from the reticular formation are also included. We implement the model in the NEST simulator and show that the activity profile of bursting neurons can be reproduced by a combination of NMDA-type and cholinergic excitatory synaptic inputs and integrative inhibitory feedback. The model shows that the spreading neural activity observed in vivo can keep track of the collicular output over time and reset the system at the end of a saccade through activation of deep layer inhibitory neurons. We identify the model parameters according to neural recording data and show that the resulting model recreates the saccade size-velocity curves known as the saccadic main sequence in behavioral studies. The present model is consistent with theories that the superior colliculus takes a principal role in generating the temporal profiles of saccadic eye movements, rather than just specifying the end points of eye movements.
Collapse
|
22
|
Wang Z, Kruijne W, Theeuwes J. Lateral interactions in the superior colliculus produce saccade deviation in a neural field model. Vision Res 2012; 62:66-74. [PMID: 22503807 DOI: 10.1016/j.visres.2012.03.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/27/2012] [Accepted: 03/28/2012] [Indexed: 10/28/2022]
Abstract
Contrary to human intuition, saccades (rapid eye movements) rarely go directly to their intended destination, but instead typically deviate from the optimal track. Previous studies have demonstrated that saccades may deviate toward or away from irrelevant distractors. Deviation toward distractors is generally explained with theories of "population coding", while deviation away from distractors is believed to be caused by top-down inhibition at the distractor location. With a Mexican-hat shaped lateral interaction kernel, we successfully simulated both deviation toward and away from distractors using a neural field model of the superior colliculus (SC). Our findings suggest that top-down inhibition of the SC is not necessary for the generation of saccade deviations.
Collapse
Affiliation(s)
- Zhiguo Wang
- Vrije Universiteit, Vander Boechorststraat 1, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
23
|
Baldwin MKL, Wong P, Reed JL, Kaas JH. Superior colliculus connections with visual thalamus in gray squirrels (Sciurus carolinensis): evidence for four subdivisions within the pulvinar complex. J Comp Neurol 2011; 519:1071-94. [PMID: 21344403 DOI: 10.1002/cne.22552] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As diurnal rodents with a well-developed visual system, squirrels provide a useful comparison of visual system organization with other highly visual mammals such as tree shrews and primates. Here, we describe the projection pattern of gray squirrel superior colliculus (SC) with the large and well-differentiated pulvinar complex. Our anatomical results support the conclusion that the pulvinar complex of squirrels consists of four distinct nuclei. The caudal (C) nucleus, distinct in cytochrome oxidase (CO), acetylcholinesterase (AChE), and vesicular glutamate transporter-2 (VGluT2) preparations, received widespread projections from the ipsilateral SC, although a crude retinotopic organization was suggested. The caudal nucleus also received weaker projections from the contralateral SC. The caudal nucleus also projects back to the ipsilateral SC. Lateral (RLl) and medial (RLm) parts of the previously defined rostral lateral pulvinar (RL) were architectonically distinct, and each nucleus received its own retinotopic pattern of focused ipsilateral SC projections. The SC did not project to the rostral medial (RM) nucleus of the pulvinar. SC injections also revealed ipsilateral connections with the dorsal and ventral lateral geniculate nuclei, nuclei of the pretectum, and nucleus of the brachium of the inferior colliculus and bilateral connections with the parabigeminal nuclei. Comparisons with other rodents suggest that a variously named caudal nucleus, which relays visual inputs from the SC to temporal visual cortex, is common to all rodents and possibly most mammals. RM and RL divisions of the pulvinar complex also appear to have homologues in other rodents.
Collapse
Affiliation(s)
- Mary K L Baldwin
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37212, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Attenuation of visual activity in the superficial layers (SLs), stratum griseum superficiale and stratum opticum, of the superior colliculus during saccades may contribute to reducing perceptual blur during saccades and also may help prevent subsequent unwanted saccades. GABAergic neurons in the intermediate, premotor, layer (SGI), stratum griseum intermedium, send an inhibitory input to SL. This pathway provided the basis for a model proposing that the SGI premotor cells that project to brainstem gaze centers and discharge before saccades also activate neighboring GABAergic neurons that suppress saccade-induced visual activity in SL. The in vitro method allowed us to test this model. We made whole-cell patch-clamp recordings in collicular slices from either rats or GAD67-GFP knock-in mice, in which GABAergic neurons could be identified by their expression of green fluorescence protein (GFP). Antidromic electrical stimulation of SGI premotor cells was produced by applying pulse currents in which their axons congregate after exiting the superior colliculus. The stimulation evoked monosynaptic EPSCs in SGI GABAergic neurons that project to SL, as would be predicted if these neurons receive excitatory input from the premotor cells. Second, IPSCs were evoked in SL neurons, some of which project to the visual thalamus. These IPSCs were polysynaptically mediated by the GABAergic neurons that were excited by the antidromically activated SGI neurons. These results support the hypothesis that collaterals of premotor neuron axons excite GABAergic neurons that inhibit SL visuosensory cells.
Collapse
|
25
|
Balaram P, Takahata T, Kaas JH. VGLUT2 mRNA and protein expression in the visual thalamus and midbrain of prosimian galagos (Otolemur garnetti). Eye Brain 2011; 2011:5-15. [PMID: 22984342 DOI: 10.2147/eb.s16998] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Vesicular glutamate transporters (VGLUTs) control the storage and presynaptic release of glutamate in the central nervous system, and are involved in the majority of glutamatergic transmission in the brain. Two VGLUT isoforms, VGLUT1 and VGLUT2, are known to characterize complementary distributions of glutamatergic neurons in the rodent brain, which suggests that they are each responsible for unique circuits of excitatory transmission. In rodents, VGLUT2 is primarily utilized in thalamocortical circuits, and is strongly expressed in the primary sensory nuclei, including all areas of the visual thalamus. The distribution of VGLUT2 in the visual thalamus and midbrain has yet to be characterized in primate species. Thus, the present study describes the expression of VGLUT2 mRNA and protein across the visual thalamus and superior colliculus of prosimian galagos to provide a better understanding of glutamatergic transmission in the primate brain. VGLUT2 is strongly expressed in all six layers of the dorsal lateral geniculate nucleus, and much less so in the intralaminar zones, which correspond to retinal and superior collicular inputs, respectively. The parvocellular and magnocellular layers expressed VGLUT2 mRNA more densely than the koniocellular layers. A patchy distribution of VGLUT2 positive terminals in the pulvinar complex possibly reflects inputs from the superior colliculus. The upper superficial granular layers of the superior colliculus, with inputs from the retina, most densely expressed VGLUT2 protein, while the lower superficial granular layers, with projections to the pulvinar, most densely expressed VGLUT2 mRNA. The results are consistent with the conclusion that retinal and superior colliculus projections to the thalamus depend highly on the VGLUT2 transporter, as do cortical projections from the magnocellular and parvocellular layers of the lateral geniculate nucleus and neurons of the pulvinar complex.
Collapse
Affiliation(s)
- Pooja Balaram
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | | | | |
Collapse
|
26
|
Fleuriet J, Hugues S, Perrinet L, Goffart L. Saccadic foveation of a moving visual target in the rhesus monkey. J Neurophysiol 2010; 105:883-95. [PMID: 21160007 DOI: 10.1152/jn.00622.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When generating a saccade toward a moving target, the target displacement that occurs during the period spanning from its detection to the saccade end must be taken into account to accurately foveate the target and to initiate its pursuit. Previous studies have shown that these saccades are characterized by a lower peak velocity and a prolonged deceleration phase. In some cases, a second peak eye velocity appears during the deceleration phase, presumably reflecting the late influence of a mechanism that compensates for the target displacement occurring before saccade end. The goal of this work was to further determine in the head restrained monkey the dynamics of this putative compensatory mechanism. A step-ramp paradigm, where the target motion was orthogonal to a target step occurring along the primary axes, was used to estimate from the generated saccades: a component induced by the target step and another one induced by the target motion. Resulting oblique saccades were compared with saccades to a static target with matched horizontal and vertical amplitudes. This study permitted to estimate the time taken for visual motion-related signals to update the programming and execution of saccades. The amplitude of the motion-related component was slightly hypometric with an undershoot that increased with target speed. Moreover, it matched with the eccentricity that the target had 40-60 ms before saccade end. The lack of significant difference in the delay between the onsets of the horizontal and vertical components between saccades directed toward a static target and those aimed at a moving target questions the late influence of the compensatory mechanism. The results are discussed within the framework of the "dual drive" and "remapping" hypotheses.
Collapse
Affiliation(s)
- Jérome Fleuriet
- Institut de Neurosciences Cognitives de la Méditerranée, Unité Mixte de Recherche 6193, Centre National de la Recherche Scientifique, Aix-Marseille Universités, Marseille, France
| | | | | | | |
Collapse
|
27
|
Mundiñano IC, Martínez-Millán L. Somatosensory cross-modal plasticity in the superior colliculus of visually deafferented rats. Neuroscience 2009; 165:1457-70. [PMID: 19932888 DOI: 10.1016/j.neuroscience.2009.11.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 11/13/2009] [Accepted: 11/16/2009] [Indexed: 11/18/2022]
Abstract
The effects of neonatal visual deafferentation on the final adult pattern of cortico-collicular connections from the rat primary somatosensory cortex barrel field were studied by injecting an anterograde tracer (BDA) into different locations of the barrel cortex. Collicular afferents originating in the barrel cortex normally end in the intermediate collicular strata (SGI and SAI). However, neonatal visual deafferentation caused an invasion of abundant somatosensory cortical afferents into the lateral portions of the superficial collicular strata (SGS and SO). Moreover, anterograde-labelled fibers in the intermediate strata were more densely packed in visually deafferented animals. In order to study the activity of the altered somatosensory cortico-collicular connection, the effects of two different types of whisker stimuli on c-fos expression in the SC were analyzed (apomorphine treatment and enriched environment exploration). In stimulated control animals, c-fos expression was clearly evident in neurons of the intermediate layers 2 h after whisker stimulation. Similar stimulation in adult animals that underwent neonatal visual deafferentation triggered higher levels of c-fos expression in the superficial collicular layers that were invaded by cortico-collicular axonal branches. In exploration experiments, increased levels of c-fos expression were also detected in lateral parts of the intermediate layers of visually deafferented animals. These results suggest that the ascending fibers of somatosensory cortical origin can recruit deafferented superficial collicular neurons that enabling them to participate in extravisual behavioural responses mediated by collicular circuits.
Collapse
Affiliation(s)
- I C Mundiñano
- Laboratory of Regenerative Therapy, Department of Neurology and Neuroscience Division, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | |
Collapse
|
28
|
Isa T, Hall WC. Exploring the superior colliculus in vitro. J Neurophysiol 2009; 102:2581-93. [PMID: 19710376 PMCID: PMC2777828 DOI: 10.1152/jn.00498.2009] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 08/25/2009] [Indexed: 11/22/2022] Open
Abstract
The superior colliculus plays an important role in the translation of sensory signals that encode the location of objects in space into motor signals that encode vectors of the shifts in gaze direction called saccades. Since the late 1990s, our two laboratories have been applying whole cell patch-clamp techniques to in vitro slice preparations of rodent superior colliculus to analyze the structure and function of its circuitry at the cellular level. This review describes the results of these experiments and discusses their contributions to our understanding of the mechanisms responsible for sensorimotor integration in the superior colliculus. The experiments analyze vertical interactions between its superficial visuosensory and intermediate premotor layers and propose how they might contribute to express saccades and to saccadic suppression. They also compare and contrast the circuitry within each of these layers and propose how this circuitry might contribute to the selection of the targets for saccades and to the build-up of the premotor commands that precede saccades. Experiments also explore in vitro the roles of extrinsic inputs to the superior colliculus, including cholinergic inputs from the parabigeminal and parabrachial nuclei and GABAergic inputs from the substantia nigra pars reticulata, in modulating the activity of the collicular circuitry. The results extend and clarify our understanding of the multiple roles the superior colliculus plays in sensorimotor integration.
Collapse
Affiliation(s)
- Tadashi Isa
- Dept. of Developmental Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan.
| | | |
Collapse
|
29
|
Spatiotemporal profiles of field potentials in mouse superior colliculus analyzed by multichannel recording. J Neurosci 2008; 28:9309-18. [PMID: 18784311 DOI: 10.1523/jneurosci.1905-08.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The onset and vector of orienting behaviors, such as saccades, are controlled by commands that descend from a population of neurons in deep layers of the superior colliculus (dSC). In this study, to characterize the role of the collicular local circuitry that generates the spatiotemporal pattern of command activity in the dSC neuronal population, responses evoked by single-pulse electrical stimulation in superficial layers of the superior colliculus (sSC) were analyzed by a 64-channel field potential recording system (planar electrode, 8 x 8 pattern; 150 microm interelectrode spacing) in slices obtained from 16- to 22-d-old mice. A negative field potential with short latency and short duration spatially restricted to the recording sites in sSC was evoked adjacent to the stimulation site. After bath application of 10 mum bicuculline, the same stimulus induced a large negative field response with long duration that spread from sSC to dSC. The dSC potential initially showed a positive response, presumably because of reversal of the negative potential that originated in sSC, and then a long negative response that spread horizontally as far as 1 mm. These responses disappeared after application of an NMDA receptor antagonist, 2-amino-5-phosphonovelarate, indicating that NMDA receptors have an important role in the generation of these responses. Simultaneous whole-cell patch-clamp recordings showed that the long-lasting negative field potentials corresponded to the depolarization accompanying burst spike activity of SC neurons. The present study revealed an extensive excitatory network in the dSC that may contribute to the generation of activity by a large population of neurons that discharge before a saccade.
Collapse
|
30
|
Regulation of burst activity through presynaptic and postsynaptic GABA(B) receptors in mouse superior colliculus. J Neurosci 2008; 28:816-27. [PMID: 18216190 DOI: 10.1523/jneurosci.4666-07.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In slice preparations, electrical stimulation of the superficial gray layer (SGS) of the superior colliculus (SC) induces EPSC bursts in neurons in the intermediate gray layer (SGI) when GABA(A) receptor (GABA(A)R)-mediated inhibition is reduced. This preparation has been used as a model system to study signal processing involved in execution of short-latency orienting responses to visual stimuli such as saccadic eye movements. In the present study, we investigated the role of GABA(B) receptors (GABA(B)Rs) in modulating signal transmission in the above pathway with whole-cell patch-clamp recordings in SC slices obtained from GAD67-GFP knock-in mice. Perfusion of the slice with the GABA(B)R antagonist CGP52432 (CGP) greatly prolonged the duration of the EPSC bursts. Local application of CGP to the SGS but not to the SGI produced similar effects. Because SGS stimulation elicited bursts in GABAergic neurons in the SGS when GABA(A)Rs were blocked, these results suggest that GABA released after bursts activates GABA(B)Rs in the SGS, leading to reduced burst duration. We found both postsynaptic and presynaptic actions of GABA(B)Rs in the SGS; activation of postsynaptic GABA(B)Rs induced outward currents in narrow-field vertical cells, whereas it caused shunting inhibition in distal dendrites in wide-field vertical cells. On the other hand, activation of presynaptic GABA(B)Rs suppressed excitatory synaptic transmissions to non-GABAergic neurons in the SGS. These results indicate that synaptically released GABA can activate both presynaptic and postsynaptic GABA(B)Rs in the SGS and limit the duration of burst responses in the SC local circuit.
Collapse
|
31
|
Lee PH, Sooksawate T, Yanagawa Y, Isa K, Isa T, Hall WC. Identity of a pathway for saccadic suppression. Proc Natl Acad Sci U S A 2007; 104:6824-7. [PMID: 17420449 PMCID: PMC1849959 DOI: 10.1073/pnas.0701934104] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurons in the superficial gray layer (SGS) of the superior colliculus receive visual input and excite intermediate layer (SGI) neurons that play a critical role in initiating rapid orienting movements of the eyes, called saccades. In the present study, two types of experiments demonstrate that a population of SGI neurons gives rise to a reciprocal pathway that inhibits neurons in SGS. First, in GAD67-GFP knockin mice, GABAergic SGI neurons that expressed GFP fluorescence were injected with the tracer biocytin to reveal their axonal projections. Axons arising from GFP-positive neurons in SGI terminated densely in SGS. Next, SGI neurons in rats and mice were stimulated by using the photolysis of caged glutamate, and in vitro whole-cell patch-clamp recordings were used to measure the responses evoked in SGS cells. Large, synaptically mediated outward currents were evoked in SGS neurons. These currents were blocked by gabazine, confirming that they were GABA(A) receptor-mediated inhibitory postsynaptic currents. This inhibitory pathway from SGI transiently suppresses visual activity in SGS, which in turn could have multiple effects. These effects could include reduction of perceptual blurring during saccades as well as prevention of eye movements that might be spuriously triggered by the sweep of the visual field across the retina.
Collapse
Affiliation(s)
- Psyche H. Lee
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Thongchai Sooksawate
- Department of Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; and
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Kaoru Isa
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; and
| | - Tadashi Isa
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; and
- To whom correspondence may be addressed. E-mail: or
| | - William C. Hall
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
32
|
Kato G, Kawasaki Y, Ji RR, Strassman AM. Differential wiring of local excitatory and inhibitory synaptic inputs to islet cells in rat spinal lamina II demonstrated by laser scanning photostimulation. J Physiol 2007; 580:815-33. [PMID: 17289782 PMCID: PMC2075465 DOI: 10.1113/jphysiol.2007.128314] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The substantia gelatinosa (lamina II) of the spinal dorsal horn contains inhibitory and excitatory interneurons that are thought to play a critical role in the modulation of nociception. However, the organization of the intrinsic circuitry within lamina II remains poorly understood. We used glutamate uncaging by laser scanning photostimulation to map the location of neurons that give rise to local synaptic inputs to islet cells, a major class of inhibitory interneuron in lamina II. We also mapped the distribution of sites on the islet cells that exhibited direct (non-synaptic) responses to uncaging of excitatory and inhibitory transmitters. Local synaptic inputs to islet cells arose almost entirely from within lamina II, and these local inputs included both excitatory and inhibitory components. Furthermore, there was a striking segregation in the location of sites that evoked excitatory versus inhibitory synaptic inputs, such that inhibitory presynaptic neurons were distributed more proximal to the islet cell soma. This was paralleled in part by a differential distribution of transmitter receptor sites on the islet cell, in that inhibitory sites were confined to the peri-somatic region while excitatory sites were more widespread. This differential organization of excitatory and inhibitory inputs suggests a principle for the wiring of local circuitry within the substantia gelatinosa.
Collapse
Affiliation(s)
- Go Kato
- Department of Anaesthesia and Critical Care, DA-719, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
33
|
Prichard JR, Armacanqui HS, Benca RM, Behan M. Light-dependent retinal innervation of the rat superior colliculus. Anat Rec (Hoboken) 2007; 290:341-8. [PMID: 17525949 DOI: 10.1002/ar.20424] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mammalian retinal projections are divided into two anatomically and functionally distinct systems: the primary visual system, which mediates conscious visual processing, and the subcortical visual system, which mediates nonconscious responses to light. Light deprivation during a critical period in development alters the anatomy, physiology, and function of the primary visual system in many mammalian species. However, little is known about the influence of dark-rearing on the development of the subcortical visual system. To evaluate whether the early lighting environment alters the anatomy of the subcortical visual system, we examined the retinas and retinofugal projections of rats reared in a 12:12 light/dark cycle or in constant dark from birth to 4 months of age. We found that dark-rearing was associated with a reduction in the distribution of retinal fibers in the stratum opticum of the contralateral superior colliculus. In contrast to the plasticity of the retinocollicular projection, retinal input to sleep, circadian, and pupillary control centers in the hypothalamus, pretectum, and lateral geniculate complex was unaffected by dark-rearing. A decrease in retinal innervation of the stratum opticum and intermediate layers of the superior colliculus may account for some of the deficits in multisensory integration that have been observed in dark-reared animals of several species.
Collapse
Affiliation(s)
- J Roxanne Prichard
- Behavioral Neuroscience Program, University of St. Thomas, St. Paul, Minnesota 55105, USA.
| | | | | | | |
Collapse
|
34
|
Lee P, Hall WC. An in vitro study of horizontal connections in the intermediate layer of the superior colliculus. J Neurosci 2006; 26:4763-8. [PMID: 16672648 PMCID: PMC6674151 DOI: 10.1523/jneurosci.0724-06.2006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Some models propose that the spatial and temporal distributions of premotor activity in the intermediate layer of the superior colliculus are shaped by neuronal ensembles that give rise to local excitatory and distant inhibitory connections. One function proposed for these connections is to mediate a "winner-take-all" network; the short-range excitatory connections build up the activity of neighboring cells that command orienting movements in one direction, whereas the wide-ranging inhibitory projections attenuate the activity of remote cells that command incompatible movements. We used in vitro photostimulation and whole-cell patch-clamp recording to test these models by measuring the spatial extent of synaptic interactions within the rat intermediate layer. Uncaging glutamate over whole-cell patch-clamped cells in the intermediate layer elicited long-lasting inward currents, resulting from direct activation of glutamate receptors expressed by the cells, and brief synaptic currents evoked by activation of presynaptic neurons. The synaptic responses comprised clusters of excitatory and inhibitory currents. The size of these responses depended on the location of the stimulus with respect to the clamped cell. Large responses were commonly evoked by stimuli within 200 microm of the soma in the intermediate layer; smaller responses could occasionally be evoked from sites as distant as 500 microm. Responses evoked by stimulation beyond this distance were rare. Although the results demonstrated powerful local excitatory and inhibitory connections, they did not support the pattern of short-range excitation and widespread inhibition predicted by the winner-take-all hypothesis.
Collapse
|
35
|
Li X, Kim B, Basso MA. Transient pauses in delay-period activity of superior colliculus neurons. J Neurophysiol 2006; 95:2252-64. [PMID: 16394072 DOI: 10.1152/jn.01000.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A feature of neurons in the mammalian superior colliclus (SC) is the robust discharge of action potentials preceding the onset of rapid eye movements called saccades. The burst, which commands ocular motoneurons, is often preceded by persistent, low-level activity, likely reflecting neuronal processes such as target selection, saccade selection and preparation. Here, we report on a transient pause in persistent activity of SC neurons. We trained monkeys to make or withhold saccades based on the shape of a centrally located cue. We found that after the cue changed shape, there was a measurable pause in persistent activity of SC neurons, even though the cue was located well outside the response field of the neurons. We show here that this pause is not a simple, transient inhibitory drive from neurons representing the central visual field. Rather, the occurrence of the pause depends on the occurrence of saccades made much later in the trial. The characteristics of the pause such as magnitude or duration are not predictable from the task condition, rather the occurrence of the pause across the SC neuronal population varies with whether a saccade is made much later in the trial. We developed a model that accounts for our results and makes testable predictions about the effects of signals related to inhibition in SC neuronal populations.
Collapse
Affiliation(s)
- Xiaobing Li
- Department of Physiology, University of Wisconsin, Madison Medical School, Madison, WI 53706, USA
| | | | | |
Collapse
|
36
|
Saito Y, Isa T. Organization of Interlaminar Interactions in the Rat Superior Colliculus. J Neurophysiol 2005; 93:2898-907. [PMID: 15601732 DOI: 10.1152/jn.01051.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our previous studies have shown that when slices of the rat superior colliculus (SC) are exposed to a solution containing 10 μM bicuculline and a low concentration of Mg2+ (0.1 mM), most neurons in the intermediate gray layer (stratum griseum intermediale; SGI), wide-field vertical (WFV) cells in the optic layer (stratum opticum; SO), and a minor population of neurons in the superficial gray layer (stratum griseum superficiale; SGS) exhibit spontaneous depolarization and burst firing, which are synchronous among adjacent neurons. These spontaneous and synchronous depolarizations were thought to share common mechanisms with presaccadic burst activity in SGI neurons. In the present study, we explored the site responsible for generation of synchronous depolarization of SGI neurons by performing dual whole cell recordings under different slice conditions. A pair of SGI neurons recorded in a small rectangular piece of the SGI punched out from the SC slice showed synchronous depolarization but far less frequently than those recorded in a small rectangular piece including SGS and SO. This suggests that the superficial layers are needed for triggering synchronous depolarization in the SGI. Furthermore, we recorded spontaneous depolarizations in pairs of neurons belonging to the different layers. Analysis of their synchronicity revealed that WFV cells in the SO exhibit synchronous depolarizations with both SGS and SGI neurons, and the onset of spontaneous depolarization in WFV cells precedes those of neurons in other layers. Further, when SGS and SGI neurons exhibit synchronous depolarizations, SGI neurons usually precede the SGS neurons. These observations give further evidence to the existence of interlaminar interaction between superficial and deeper layers of the SC. In addition, it is suggested that WFV cells can trigger burst activity in other layers of the SC and that there is an excitatory signal transmission from the deeper layers to the superficial layers.
Collapse
Affiliation(s)
- Yasuhiko Saito
- Department of Integrative Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan
| | | |
Collapse
|
37
|
Sooksawate T, Saito Y, Isa T. Electrophysiological and morphological properties of identified crossed tecto-reticular neurons in the rat superior colliculus. Neurosci Res 2005; 52:174-84. [PMID: 15893578 DOI: 10.1016/j.neures.2005.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2004] [Revised: 03/05/2005] [Accepted: 03/10/2005] [Indexed: 11/22/2022]
Abstract
Previously we classified randomly sampled neurons in the intermediate layer (SI) of the rat superior colliculus (SC) into six subclasses according to their firing responses to depolarizing current pulses and five subclasses based on their morphological properties in slice preparations. In the present study, we investigated properties of a major output cell group of the rat SC (PND 17-24), crossed tecto-reticular neurons (cTRNs), which project to the contralateral medial pontine reticular formation. The cTRNs were identified by retrograde labeling with a fluorescent tracer (n=112). We compared their properties with those of presumed interneurons (n=127). We found that a majority of cTRNs were regular spiking neurons with moderate firing frequency (73%) and were multipolar-shaped (66%). The cTRNs had larger membrane capacitance, larger soma size and lower input impedance than presumed interneurons. Electrical stimulation of the superficial gray layer induced oligosynaptic EPSPs in the cTRNs. When bicuculline was added to the extracellular solution, the EPSPs were markedly enhanced and bursting spike responses were induced. The bursting responses were suppressed by applying D-2-amino-5-phosphonovalerate. These results suggest that the cTRNs exhibit NMDA receptor-dependent bursting responses to visual inputs. These observations give insights into the neuronal mechanism of generating burst activity in cTRNs, which triggers orienting behaviors.
Collapse
Affiliation(s)
- Thongchai Sooksawate
- Department of Developmental Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan
| | | | | |
Collapse
|
38
|
Abstract
Pathways linking action to perception are generally presented as passing from sensory pathways, through the thalamus, and then to a putative hierarchy of corticocortical links to motor outputs or to memory. Evidence for more direct sensorimotor links is now presented to show that cerebral cortex rarely, if ever, receives messages representing receptor activity only; thalamic inputs to cortex also carry copies of current motor instructions. Pathways afferent to the thalamus represent the primary input to neocortex. Generally they are made up of branching axons that send one branch to the thalamus and another to output centers of the brain stem or spinal cord. The information transmitted through the classical "sensory" pathways to the thalamus represents not only information about the environment and the body, but also about instructions currently on their way to motor centers. The proposed hierarchy of direct corticocortical connections of the sensory pathways is not the only possible hierarchy of cortical connections. There is also a hierarchy of the corticofugal pathways to motor centers in the midbrain, and there are transthalamic corticocortical pathways that may show a comparable hierarchy. The extent to which these hierarchies may match each other, and relate to early developmental changes are poorly defined at present, but are important for understanding mechanisms that can link action and perception in the developing brain.
Collapse
Affiliation(s)
- R W Guillery
- Department of Anatomy, School of Medicine, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|