1
|
McIntire A, Miller T, Thapa S, Joseph A, Carlson KF, Reavis KM, Hughes CK. Blast Exposure Associations With Hearing Loss and Self-Reported Hearing Difficulty. Otolaryngol Head Neck Surg 2024; 171:1370-1378. [PMID: 38984918 DOI: 10.1002/ohn.890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/03/2024] [Accepted: 05/12/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE Examine associations between military blast exposures on hearing loss and self-reported hearing difficulties among Active-Duty Service Members (ADSM) and Veterans from the Noise Outcomes in Servicemembers Epidemiology (NOISE) study. STUDY DESIGN Cross-sectional. SETTING Multi-institutional tertiary referral centers. METHODS Blast exposure was assessed with a comprehensive blast questionnaire. Outcome measures included pure-tone hearing thresholds; Speech Recognition in Noise Test; Hearing Handicap Inventory for Adults (HHIA); and Speech, Spatial and Qualities of Hearing Scale (SSQ)-12. RESULTS Twenty-one percent (102/494) of ADSM and 36.8% (196/533) of Veterans self-reported blast exposure. Compared to ADSM without blast exposure, blast-exposed ADSM had increased odds of high frequency (3-8 kHz) and extended-high frequency (9-16 kHz) hearing loss (odds ratio [OR] = 2.5, CI: 1.3, 4.7; OR = 3.7, CI: 1.9, 7.0, respectively). ADSM and Veterans with blast exposure were more likely than their nonblast exposed counterparts to report hearing difficulty on the HHIA (OR = 1.9, CI: 1.1, 3.3; OR = 2.1, CI: 1.4, 3.2, respectively). Those with self-reported blast exposure also had lower SSQ-12 scores (ADSM mean difference = -0.6, CI: -1.0, -0.1; Veteran mean difference: -0.9, CI: -1.3, -0.5). CONCLUSION Results suggest that blast exposure is a prevalent source of hearing injury in the military. We found that among ADSM, blast exposure was associated with hearing loss, predominately in the higher frequencies. Blast exposure was associated with poorer self-perceived hearing ability in ADSM and Veterans. IRB: #FWH20180143H Joint Base San Antonio (JBSA) Military Healthcare System; #3159/9495 Joint VA Portland Health Care System (VAPORHCS) Oregon Health and Science University (OHSU).
Collapse
Affiliation(s)
- Aaron McIntire
- Department of Otolaryngology, Naval Medical Center San Diego, San Diego, California, USA
| | - Tanner Miller
- Department of Otolaryngology, Naval Hospital Camp Pendleton, Camp Pendleton, California, USA
| | - Samrita Thapa
- VA RR&D, National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, Oregon, USA
- Department of Otolaryngology, Oregon Health & Science University, Portland, Oregon, USA
| | - Antony Joseph
- Hearing Loss Prevention Laboratory, Communication Sciences and Disorders, Illinois State University, Normal, Illinois, USA
| | - Kathleen F Carlson
- VA RR&D, National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, Oregon, USA
- VA HSR&D, Center to Improve Veteran Involvement in Care (CIVIC), VA Portland Health Care System, Portland, Oregon, USA
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, Oregon, USA
| | - Kelly M Reavis
- VA RR&D, National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, Oregon, USA
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, Oregon, USA
| | - Charlotte K Hughes
- Department of Otolaryngology, Naval Medical Center San Diego, San Diego, California, USA
- Department of Otolaryngology, University of California San Diego, San Diego, California, USA
| |
Collapse
|
2
|
Jiang S, Sanders S, Welch P, Gan RZ. Therapeutic Function of Liraglutide for Mitigation of Blast-Induced Hearing Damage: An Initial Investigation in Animal Model of Chinchilla. Mil Med 2024; 189:407-415. [PMID: 39160824 DOI: 10.1093/milmed/usae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/17/2024] [Accepted: 03/14/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Auditory injuries induced by repeated exposures to blasts reduce the operational performance capability and the life quality of military personnel. The treatment for blast-induced progressive hearing damage is lacking. We have recently investigated the therapeutic function of liraglutide, a glucagon-like peptide-1 receptor agonist, to mitigate blast-induced hearing damage in the animal model of chinchilla, under different blast intensities, wearing earplugs (EPs) or not during blasts, and drug-treatment plan. The goal of this study was to investigate the therapeutical function of liraglutide by comparing the results obtained under different conditions. MATERIALS AND METHODS Previous studies on chinchillas from two under-blast ear conditions (EP/open), two blast plans (G1: 6 blasts at 3-5 psi or G2:3 blasts at 15-25 psi), and three treatment plans (blast control, pre-blast drug treatment, and post-blast drug treatment) were summarized. The auditory brainstem response (ABR), distortion product otoacoustic emission (DPOAE), and middle latency response (MLR) recorded within 14 days after the blasts were used. Statistical analysis was performed to evaluate the effect of liraglutide under different conditions. RESULTS ABR threshold shifts indicated that the conditions of the EP and open ears were substantially different. Results from EP chinchillas indicated that the pre-blast treatment reduced the acute ABR threshold elevation on the day of blasts, and the significance of such an effect increased with the blast level. Liraglutide-treated open chinchillas showed lower ABR threshold shifts at the later stage of the experiment regardless of the blast levels. The DPOAE was less damaged after G2 blasts compared to G1 when pre-blast liraglutide was administrated. Lower post-blast MLR amplitudes were observed in the pre-blast treatment groups. CONCLUSIONS This study indicated that the liraglutide mitigated the blast-induced auditory injuries. In EP ears, the pre-blast administration of liraglutide reduced the severity of blast-induced acute damage in ears with EP protection, especially under G2. In animals with open ears, the effect of liraglutide on the restoration of hearing increased with time. The liraglutide potentially benefits post-blast hearing through multiple approaches with different mechanics.
Collapse
Affiliation(s)
- Shangyuan Jiang
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Sarah Sanders
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Paige Welch
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Rong Z Gan
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
3
|
Harris M, Nguyen A, Brown NJ, Picton B, Gendreau J, Bui N, Sahyouni R, Lin HW. Mild Traumatic Brain Injury and the Auditory System: An Overview of the Mechanisms, Clinical Presentations, and Current Diagnostic Modalities. J Neurotrauma 2024; 41:1524-1532. [PMID: 37742111 DOI: 10.1089/neu.2023.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023] Open
Abstract
The acute and long-term consequences of mild traumatic brain injury (mTBI) are far reaching. Though it may often be overlooked due to the now expansive field of research dedicated to understanding the consequences of mTBI on the brain, recent work has revealed that substantial changes in the vestibulo-auditory system can also occur due to mTBI. These changes, termed "labyrinthine" or "cochlear concussion," include hearing loss, vertigo, and tinnitus that develop after mTBI in the setting of an intact bony labyrinthine capsule (as detected on imaging). In the review that follows, we focus our discussion on the effects of mTBI on the peripheral structures and pathways of the auditory and vestibular systems. Although the effects of indirect trauma (e.g., noise and blast trauma) have been well-investigated, there exists a profound need to improve our understanding of the effects of direct head injury (such as mTBI) on the auditory and vestibular systems. Our aim is to summarize the current evidentiary foundation upon which labyrinthine and/or cochlear concussion are based to shed light on the ways in which clinicians can refine the existing modalities used to diagnose and treat patients experiencing mTBI as it relates to hearing and balance.
Collapse
Affiliation(s)
- Mark Harris
- Department of Neurological Surgery, Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, Irvine, California, USA
| | - Andrew Nguyen
- University of Florida College of Medicine, Gainesville, Florida, USA
| | - Nolan J Brown
- Department of Neurological Surgery, Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, Irvine, California, USA
| | - Bryce Picton
- Department of Neurological Surgery, Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, Irvine, California, USA
| | - Julian Gendreau
- Johns Hopkins Whiting School of Engineering, Baltimore, Maryland, USA
| | - Nicholas Bui
- Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Ronald Sahyouni
- Department of Neurological Surgery, University of California, San Diego, San Diego, California, USA
| | - Harrison W Lin
- Division of Neurotology and Skull Base Surgery, Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
4
|
Coventry BS, Lawlor GL, Bagnati CB, Krogmeier C, Bartlett EL. Characterization and closed-loop control of infrared thalamocortical stimulation produces spatially constrained single-unit responses. PNAS NEXUS 2024; 3:pgae082. [PMID: 38725532 PMCID: PMC11079674 DOI: 10.1093/pnasnexus/pgae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/07/2024] [Indexed: 05/12/2024]
Abstract
Deep brain stimulation (DBS) is a powerful tool for the treatment of circuitopathy-related neurological and psychiatric diseases and disorders such as Parkinson's disease and obsessive-compulsive disorder, as well as a critical research tool for perturbing neural circuits and exploring neuroprostheses. Electrically mediated DBS, however, is limited by the spread of stimulus currents into tissue unrelated to disease course and treatment, potentially causing undesirable patient side effects. In this work, we utilize infrared neural stimulation (INS), an optical neuromodulation technique that uses near to midinfrared light to drive graded excitatory and inhibitory responses in nerves and neurons, to facilitate an optical and spatially constrained DBS paradigm. INS has been shown to provide spatially constrained responses in cortical neurons and, unlike other optical techniques, does not require genetic modification of the neural target. We show that INS produces graded, biophysically relevant single-unit responses with robust information transfer in rat thalamocortical circuits. Importantly, we show that cortical spread of activation from thalamic INS produces more spatially constrained response profiles than conventional electrical stimulation. Owing to observed spatial precision of INS, we used deep reinforcement learning (RL) for closed-loop control of thalamocortical circuits, creating real-time representations of stimulus-response dynamics while driving cortical neurons to precise firing patterns. Our data suggest that INS can serve as a targeted and dynamic stimulation paradigm for both open and closed-loop DBS.
Collapse
Affiliation(s)
- Brandon S Coventry
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Georgia L Lawlor
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Christina B Bagnati
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Claudia Krogmeier
- Department of Computer Graphics Technology, Purdue University, West Lafayette, IN 47907, USA
| | - Edward L Bartlett
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
5
|
Parida S, Yurasits K, Cancel VE, Zink ME, Mitchell C, Ziliak MC, Harrison AV, Bartlett EL, Parthasarathy A. Rapid and objective assessment of auditory temporal processing using dynamic amplitude-modulated stimuli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.28.577641. [PMID: 38352339 PMCID: PMC10862703 DOI: 10.1101/2024.01.28.577641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Auditory neural coding of speech-relevant temporal cues can be noninvasively probed using envelope following responses (EFRs), neural ensemble responses phase-locked to the stimulus amplitude envelope. EFRs emphasize different neural generators, such as the auditory brainstem or auditory cortex, by altering the temporal modulation rate of the stimulus. EFRs can be an important diagnostic tool to assess auditory neural coding deficits that go beyond traditional audiometric estimations. Existing approaches to measure EFRs use discrete amplitude modulated (AM) tones of varying modulation frequencies, which is time consuming and inefficient, impeding clinical translation. Here we present a faster and more efficient framework to measure EFRs across a range of AM frequencies using stimuli that dynamically vary in modulation rates, combined with spectrally specific analyses that offer optimal spectrotemporal resolution. EFRs obtained from several species (humans, Mongolian gerbils, Fischer-344 rats, and Cba/CaJ mice) showed robust, high-SNR tracking of dynamic AM trajectories (up to 800Hz in humans, and 1.4 kHz in rodents), with a fivefold decrease in recording time and thirtyfold increase in spectrotemporal resolution. EFR amplitudes between dynamic AM stimuli and traditional discrete AM tokens within the same subjects were highly correlated (94% variance explained) across species. Hence, we establish a time-efficient and spectrally specific approach to measure EFRs. These results could yield novel clinical diagnostics for precision audiology approaches by enabling rapid, objective assessment of temporal processing along the entire auditory neuraxis.
Collapse
Affiliation(s)
- Satyabrata Parida
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kimberly Yurasits
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Victoria E. Cancel
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maggie E. Zink
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claire Mitchell
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meredith C. Ziliak
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Audrey V. Harrison
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Edward L. Bartlett
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Aravindakshan Parthasarathy
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
- Department of BioEngineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Cacace AT, Berri B. Blast Overpressures as a Military and Occupational Health Concern. Am J Audiol 2023; 32:779-792. [PMID: 37713532 DOI: 10.1044/2023_aja-23-00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023] Open
Abstract
PURPOSE This tutorial reviews effects of environmental stressors like blast overpressures and other well-known acoustic contaminants (continuous, intermittent, and impulsive noise) on hearing, tinnitus, vestibular, and balance-related functions. Based on the overall outcome of these effects, detailed consideration is given to the health and well-being of individuals. METHOD Because hearing loss and tinnitus are consequential in affecting quality of life, novel neuromodulation paradigms are reviewed for their positive abatement and treatment-related effects. Examples of clinical data, research strategies, and methodological approaches focus on repetitive transcranial magnetic stimulation (rTMS) and electrical stimulation of the vagus nerve paired with tones (VNSt) for their unique contributions to this area. RESULTS Acoustic toxicants transmitted through the atmosphere are noteworthy for their propensity to induce hearing loss and tinnitus. Mounting evidence also indicates that high-level rapid onset changes in atmospheric sound pressure can significantly impact vestibular and balance function. Indeed, the risk of falling secondary to loss of, or damage to, sensory receptor cells in otolith organs (utricle and saccule) is a primary reason for this concern. As part of the complexities involved in VNSt treatment strategies, vocal dysfunction may also manifest. In addition, evaluation of temporospatial gait parameters is worthy of consideration based on their ability to detect and monitor incipient neurological disease, cognitive decline, and mortality. CONCLUSION Highlighting these respective areas underscores the need to enhance information exchange among scientists, clinicians, and caregivers on the benefits and complications of these outcomes.
Collapse
Affiliation(s)
- Anthony T Cacace
- Department of Communication Sciences & Disorders, Wayne State University, Detroit, MI
| | - Batoul Berri
- Department of Communication Sciences & Disorders, Wayne State University, Detroit, MI
- Department of Otolaryngology, University of Michigan, Ann Arbor
| |
Collapse
|
7
|
Jiang S, Sanders S, Gan RZ. Mitigation of Hearing Damage With Liraglutide Treatment in Chinchillas After Repeated Blast Exposures at Mild-TBI. Mil Med 2023; 188:553-560. [PMID: 37948240 DOI: 10.1093/milmed/usad235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/31/2023] [Accepted: 06/15/2023] [Indexed: 11/12/2023] Open
Abstract
INTRODUCTION Although hearing protection devices (HPDs) have been widely used during training and combat, over one million veterans experience service-connected hearing loss. Hearing damage has been reported to be associated with blast-induced mild traumatic brain injury (mTBI) and there is a lack of understanding and treatment. Liraglutide is a glucagon-like peptide-1 receptor agonist and a potential treatment for TBI-induced memory deficits. This study aims to investigate the function of the liraglutide to prevent damage and facilitate hearing restoration in chinchillas exposed to multiple high-intensity, mTBI-level blasts. MATERIALS AND METHODS Chinchillas were divided into three treatment groups: blast control, pre-blast drug treatment, and post-blast drug treatment. On day 1, the chinchilla ears were protected by HPDs and exposed to three blasts with peak pressure levels of 15-25 psi. The auditory brainstem response (ABR), distortion product otoacoustic emission (DPOAE), and middle latency response (MLR) were recorded pre- and post-blast on day 1 and on days 4, 7, 14, and 28. RESULTS Substantial acute damage was observed and progressively recovered in chinchillas after the blast exposures. The pre-blast treatment group exhibited the lowest elevation of the ABR threshold and reduction of the wave I amplitude on day 1 after blasts. The liraglutide treatment insignificantly facilitated the recovery of the DPOAE levels and ABR thresholds on days 14 and 28. The pre-blast treatment chinchillas showed reduced MLR amplitudes on days 4 and 7. CONCLUSIONS This study indicated that the pre-blast liraglutide administration provided damage protection against blasts in addition to the HPDs. Current evidence suggests that the effect of liraglutide is more prominent in the early phase of the experiment.
Collapse
Affiliation(s)
- Shangyuan Jiang
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Sarah Sanders
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Rong Z Gan
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
8
|
Coventry BS, Lawlor GL, Bagnati CB, Krogmeier C, Bartlett EL. Spatially specific, closed-loop infrared thalamocortical deep brain stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.04.560859. [PMID: 37904955 PMCID: PMC10614743 DOI: 10.1101/2023.10.04.560859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Deep brain stimulation (DBS) is a powerful tool for the treatment of circuitopathy-related neurological and psychiatric diseases and disorders such as Parkinson's disease and obsessive-compulsive disorder, as well as a critical research tool for perturbing neural circuits and exploring neuroprostheses. Electrically-mediated DBS, however, is limited by the spread of stimulus currents into tissue unrelated to disease course and treatment, potentially causing undesirable patient side effects. In this work, we utilize infrared neural stimulation (INS), an optical neuromodulation technique that uses near to mid-infrared light to drive graded excitatory and inhibitory responses in nerves and neurons, to facilitate an optical and spatially constrained DBS paradigm. INS has been shown to provide spatially constrained responses in cortical neurons and, unlike other optical techniques, does not require genetic modification of the neural target. We show that INS produces graded, biophysically relevant single-unit responses with robust information transfer in thalamocortical circuits. Importantly, we show that cortical spread of activation from thalamic INS produces more spatially constrained response profiles than conventional electrical stimulation. Owing to observed spatial precision of INS, we used deep reinforcement learning for closed-loop control of thalamocortical circuits, creating real-time representations of stimulus-response dynamics while driving cortical neurons to precise firing patterns. Our data suggest that INS can serve as a targeted and dynamic stimulation paradigm for both open and closed-loop DBS.
Collapse
Affiliation(s)
- Brandon S Coventry
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
- Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN USA
| | - Georgia L Lawlor
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
- Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN USA
| | - Christina B Bagnati
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
| | - Claudia Krogmeier
- Department of Computer Graphics Technology, Purdue University, West Lafayette, IN USA
| | - Edward L Bartlett
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
- Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN USA
| |
Collapse
|
9
|
Jiang S, Sanders S, Gan RZ. Hearing protection and damage mitigation in Chinchillas exposed to repeated low-intensity blasts. Hear Res 2023; 429:108703. [PMID: 36680874 DOI: 10.1016/j.heares.2023.108703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/19/2022] [Accepted: 01/12/2023] [Indexed: 01/17/2023]
Abstract
Repeated exposures to blast overpressure (BOP) introduce hearing complaints in military service members even with the use of hearing protection devices (HPDs). Although epidemiology and animal studies have been performed to investigate the damage formation mechanism of blast-induced hearing damage, there is still a lack of understanding and therapeutic solutions, especially for HPD-protected ears. Recent studies revealed the potential therapeutic function of liraglutide, a glucagon-like peptide-1 receptor agonist, to facilitate post-blast hearing restoration in chinchillas. This study is a continuation and summary of the previous studies performed by Jiang et al. (2021, 2022) to investigate the damage mitigation function of liraglutide treatment in chinchillas with open and protected ears after repeated low-intensity blast exposures within 28 days of observation. Chinchillas were divided into six experimental groups: pre-blast treatment, post-blast treatment, and blast control with ears open or protected by earplug (EP). All animals were exposed to six consecutive blasts at the level of 3-5 psi (21-35 kPa) on Day 1. Hearing function tests including auditory brainstem response (ABR), distortion product otoacoustic emission (DPOAE), and middle latency response (MLR) were performed on Day 1 (pre- and post-blast) and Days 4, 7, 14, and 28 after blast exposure. Results indicated that the damage mitigation function of the liraglutide treatment in the open-ear chinchillas was reflected by the significantly lower ABR threshold shifts in the drug treatment groups than in the blast controls. In EP groups, the higher ABR wave I/V ratio and lower MLR amplitude observed in the drug-treated chinchillas suggested that the post-blast hyperactivities in the auditory system might be potentially ameliorated by the liraglutide treatment. The 28-day-long experiment showed the effect of liraglutide treatment increased with time in both open and EP groups. This study demonstrated that the use of HPDs prevented the blast-induced complications in the middle ear and reduced the damage caused in the central auditory system. The liraglutide treatment showed an effect increasing with time and different outcomes in open and EP chinchillas. This innovation in the animal model of chinchilla provides insights to investigate subtle changes in the higher-level structures of the auditory system.
Collapse
Affiliation(s)
- Shangyuan Jiang
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK, United States
| | - Sarah Sanders
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK, United States
| | - Rong Z Gan
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK, United States.
| |
Collapse
|
10
|
Perumal V, Ravula AR, Shao N, Chandra N. Effect of minocycline and its nano-formulation on central auditory system in blast-induced hearing loss rat model. J Otol 2023; 18:38-48. [PMID: 36820161 PMCID: PMC9937842 DOI: 10.1016/j.joto.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 01/25/2023] Open
Abstract
Blast injuries are common among the military service members and veterans. One of the devastating effects of blast wave induced TBI is either temporary or permanent hearing loss. Treating hearing loss using minocycline is restricted by optimal drug concentration, route of administration, and its half-life. Therefore, therapeutic approach using novel therapeutic delivery method is in great need. Among the different delivery methods, nanotechnology-based drug delivery is desirable, which can achieve longer systemic circulation, pass through some biological barriers and specifically targets desired sites. The current study aimed to examine therapeutic effect of minocycline and its nanoparticle formulation in moderate blast induced hearing loss rat model through central auditory system. The I.v. administered nanoparticle at reduced dose and frequency than regularly administered toxic dose. After moderate blast exposure, rats had hearing impairment as determined by ABR at 7- and 30-days post exposure. In chronic condition, free minocycline also showed the significant reduction in ABR threshold. In central auditory system, it is found in this study that minocycline nanoparticles ameliorate excitation in inferior colliculus; and astrocytes and microglia activation after the blast exposure is reduced by minocycline nanoparticles administration. The study demonstrated that in moderate blast induced hearing loss, minocycline and its nanoparticle formulation exhibited the optimal therapeutic effect on the recovery of the ABR impairment and a protective effect through central auditory system. In conclusion, targeted and non-targeted nanoparticle formulation have therapeutic effect on blast induced hearing loss.
Collapse
Key Words
- 5-HsT, 5-hydroxytryptamine
- ABR, auditory brainstem response
- AC, auditory cortex
- Blast injury and targeted drug delivery
- CAS, central auditory system
- DAI, (diffuse axonal injury)
- GABA, gamma-aminobutyric acid
- HL, (Hearing loss)
- Hearing loss
- Minocycline
- NMDAR1, N-methyl-D-aspartate receptor 1
- Nanoparticle
- PAS, peripheral auditory system
- bTBI, blast traumatic brain injury
Collapse
|
11
|
Paik CB, Pei M, Oghalai JS. Review of blast noise and the auditory system. Hear Res 2022; 425:108459. [PMID: 35181171 PMCID: PMC9357863 DOI: 10.1016/j.heares.2022.108459] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 11/22/2022]
Abstract
The auditory system is particularly vulnerable to blast injury due to the ear's role as a highly sensitive pressure transducer. Over the past several decades, studies have used a variety of animal models and experimental procedures to recreate blast-induced acoustic trauma. Given the developing nature of this field and our incomplete understanding of molecular mechanisms underlying blast-related auditory disturbances, an updated discussion about these studies is warranted. Here, we comprehensively review well-established blast-related auditory pathology including tympanic membrane perforation and hair cell loss. In addition, we discuss important mechanistic studies that aim to bridge gaps in our current understanding of the molecular and microstructural events underlying blast-induced cochlear, auditory nerve, brainstem, and central auditory system damage. Key findings from the recent literature include the association between endolymphatic hydrops and cochlear synaptic loss, blast-induced neuroinflammatory markers in the peripheral and central auditory system, and therapeutic approaches targeting biochemical markers of blast injury. We conclude that blast is an extreme form of noise exposure. Blast waves produce cochlear damage that appears similar to, but more extreme than, the standard noise exposure protocols used in auditory research. However, experimental variations in studies of blast-induced acoustic trauma make it challenging to compare and interpret data across studies.
Collapse
Affiliation(s)
- Connie B Paik
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA
| | - Michelle Pei
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA
| | - John S Oghalai
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA.
| |
Collapse
|
12
|
Jiang S, Welch P, Sanders S, Gan RZ. Mitigation of Hearing Damage After Repeated Blast Exposures in Animal Model of Chinchilla. J Assoc Res Otolaryngol 2022; 23:603-616. [PMID: 35906449 PMCID: PMC9613841 DOI: 10.1007/s10162-022-00862-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/12/2022] [Indexed: 10/16/2022] Open
Abstract
High-intensity sound or blast-induced hearing impairment is a common injury for Service members. Epidemiology studies revealed that the blast-induced hearing loss is associated with the traumatic brain injury (TBI), but the mechanisms of the formation and prevention of auditory injuries require further investigation. Liraglutide, a glucagon-like peptide-1 receptor (GLP-1R) agonist, has been reported as a potential treatment strategy for TBI-caused memory deficits; however, there is no study on therapeutics of GLP-1R for blast-induced hearing damage. This paper reports our current study on progressive hearing damage after repeated exposures to low-level blasts in the animal model of chinchilla and the mitigation of hearing damage using liraglutide. Chinchillas were divided into three groups (N = 7 each): blast control, pre-blast treatment, and post-blast treatment. All animals were exposed to six consecutive blasts at the level of 3-5 psi (21-35 kPa) on Day 1. The auditory brainstem response (ABR) was measured on Day 1 (pre- and post-blast) and Days 4, 7, and 14 after blast exposure. Upon the completion of the experiment on Day 14, the brain tissues of animals were harvested for immunofluorescence studies. Significant damage was revealed in blast-exposed chinchillas by increased ABR thresholds, decreased ABR wave I amplitudes, and cell apoptosis in the inferior colliculus in the blast control chinchillas. Treatment with liraglutide appeared to reduce the severity of blast-induced hearing injuries as observed from the drug-treated chinchillas comparing to the blast controls. This study bridges the gap between TBI and hearing impairment and suggests a possible intervention for blast-induced hearing loss for Service members.
Collapse
Affiliation(s)
- Shangyuan Jiang
- School of Aerospace and Mechanical Engineering, University of Oklahoma, 865 Asp Avenue, Room 200, Norman, OK, 73019, USA
| | - Paige Welch
- School of Aerospace and Mechanical Engineering, University of Oklahoma, 865 Asp Avenue, Room 200, Norman, OK, 73019, USA
| | - Sarah Sanders
- School of Aerospace and Mechanical Engineering, University of Oklahoma, 865 Asp Avenue, Room 200, Norman, OK, 73019, USA
| | - Rong Z Gan
- School of Aerospace and Mechanical Engineering, University of Oklahoma, 865 Asp Avenue, Room 200, Norman, OK, 73019, USA.
| |
Collapse
|
13
|
Kurioka T, Mizutari K, Satoh Y, Shiotani A. Correlation of blast-induced tympanic membrane perforation with peripheral cochlear synaptopathy. J Neurotrauma 2022; 39:999-1009. [PMID: 35243914 DOI: 10.1089/neu.2021.0487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The auditory organs, including the tympanic membrane, cochlea, and central auditory pathway, are the most fragile components of the human body when exposed to blast overpressure. Tympanic membrane perforation (TMP) is the most frequent symptom in blast-exposed patients. However, the impact of TMP on the inner ear and central auditory system is not fully understood. We aimed to analyze the effect of blast-induced TMP on the auditory pathophysiological changes in mice after blast exposure. Mice aged 7 weeks were exposed to blast overpressure to induce TMP and allowed to survive for 2 months. All TMP cases had spontaneously healed by week 3 following the blast exposure. Compared to controls, blast-exposed mice exhibited a significant elevation in hearing thresholds and an apparent disruption of stereocilia in the outer hair cells, regardless of the occurrence or absence of TMP. The reduction in synapses in the inner hair cells, which is known as the most frequent pathology in blast-exposed cochleae, was significantly more severe in mice without TMP. However, a decrease in the number of excitatory central synapses labeled by VGLUT-1 in the cochlear nucleus was observed regardless of the absence or presence of TMP. Our findings suggest that blast-induced TMP mitigates peripheral cochlear synaptic disruption but leaves the central auditory synapses unaffected, indicating that central synaptic disruption is independent of TMP and peripheral cochlear synaptic disruption. Synaptic deterioration in the peripheral and central auditory systems can contribute to the promotion of blast-induced hearing impairment, including abnormal auditory perception.
Collapse
Affiliation(s)
- Takaomi Kurioka
- Department of Otolaryngology, Head and Neck Surgery and National Defense Medical College, Saitama, Japan
| | - Kunio Mizutari
- Department of Otolaryngology, Head and Neck Surgery and National Defense Medical College, Saitama, Japan
| | - Yasushi Satoh
- Department of Biochemistry, National Defense Medical College, Saitama, Japan
| | - Akihiro Shiotani
- Department of Otolaryngology, Head and Neck Surgery and National Defense Medical College, Saitama, Japan
| |
Collapse
|
14
|
A Retrospective Study of the Effects of Traumatic Brain Injury on Auditory Function: From a Clinical Perspective. NEUROSCI 2022. [DOI: 10.3390/neurosci3010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Purpose: The main purpose of this retrospective study was to identify auditory dysfunctions related to traumatic brain injury (TBI) in individuals evaluated in an Audiology clinic. Method: Peripheral and central auditory evaluations were performed from March 2014 to June 2018 in 26 patients (14 males) with TBI. The age of the participants ranged from 9 to 59 years old (34.24 ± 15.21). Six participants had blast-related TBI and 20 had blunt force TBI. Sixteen experienced a single TBI event whereas ten experienced several. Correlation analyses were performed to verify the relationship, if any, between the number of auditory tests failed and the number, type, and severity of TBIs. Result: All participants failed at least one auditory test. Nearly 60% had abnormal results on degraded speech tests (compressed and echoed, filtered or in background noise) and 25% had a high frequency hearing loss. There was no statistically significant correlation between the number of auditory tests failed and the number, type, and severity of TBIs. Conclusion: Results indicated negative and heterogenous effects of TBI on peripheral and central auditory function and highlighted the need for a more extensive auditory assessment in individuals with TBI.
Collapse
|
15
|
Estimated Prevalence of Functional Hearing Difficulties in Blast-Exposed Service Members With Normal to Near-Normal-Hearing Thresholds. Ear Hear 2021; 42:1615-1626. [PMID: 34108398 DOI: 10.1097/aud.0000000000001067] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Over the past decade, U.S. Department of Defense and Veterans Affairs audiologists have reported large numbers of relatively young adult patients who have normal to near-normal audiometric thresholds but who report difficulty understanding speech in noisy environments. Many of these service members also reported having experienced exposure to explosive blasts as part of their military service. Recent studies suggest that some blast-exposed patients with normal to near-normal-hearing thresholds not only have an awareness of increased hearing difficulties, but also poor performance on various auditory tasks (sound source localization, speech recognition in noise, binaural integration, gap detection in noise, etc.). The purpose of this study was to determine the prevalence of functional hearing and communication deficits (FHCD) among healthy Active-Duty service men and women with normal to near-normal audiometric thresholds. DESIGN To estimate the prevalence of such FHCD in the overall military population, performance of roughly 3400 Active-Duty service members with hearing thresholds mostly within the normal range were measured on 4 hearing tests and a brief 6-question survey to assess FHCD. Subjects were subdivided into 6 groups depending on the severity of the blast exposure (3 levels: none, far away, or close enough to feel heat or pressure) and hearing thresholds (2 levels: audiometric thresholds of 20 dB HL or better, slight elevation in 1 or more thresholds between 500 and 4000 Hz in either ear). RESULTS While the probability of having hearing difficulty was low (≈4.2%) for the overall population tested, that probability increased by 2 to 3 times if the service member was blast-exposed from a close distance or had slightly elevated hearing thresholds (>20 dB HL). Service members having both blast exposure and mildly elevated hearing thresholds exhibited up to 4 times higher risk for performing abnormally on auditory tasks and more than 5 times higher risk for reporting abnormally low ratings on the subjective questionnaire, compared with service members with no history of blast exposure and audiometric thresholds ≤20 dB HL. Blast-exposed listeners were roughly 2.5 times more likely to experience subjective or objective hearing deficits than those with no-blast history. CONCLUSIONS These elevated rates of abnormal performance suggest that roughly 33.6% of Active-Duty service members (or approximately 423,000) with normal to near-normal-hearing thresholds (i.e., H1 profile) are at some risk for FHCD, and about 5.7% (approximately 72,000) are at high risk, but are currently untested and undetected within the current fitness-for-duty standards. Service members identified as "at risk" for FHCD according to the metrics used in the present study, in spite of their excellent hearing thresholds, require further testing to determine whether they have sustained damage to peripheral and early-stage auditory processing (bottom-up processing), damage to cognitive processes for speech (top-down processing), or both. Understanding the extent of damage due to noise and blast exposures and the balance between bottom-up processing deficits and top-down deficits will likely lead to better therapeutic strategies.
Collapse
|
16
|
Kaliyappan K, Nakuci J, Preda M, Schweser F, Muldoon S, Krishnan Muthaiah VP. Correlation of Histomorphometric Changes with Diffusion Tensor Imaging for Evaluation of Blast-Induced Auditory Neurodegeneration in Chinchilla. J Neurotrauma 2021; 38:3248-3259. [PMID: 34605670 DOI: 10.1089/neu.2020.7556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the present study, we have evaluated the blast-induced auditory neurodegeneration in chinchilla by correlating the histomorphometric changes with diffusion tensor imaging. The chinchillas were exposed to single unilateral blast-overpressure (BOP) at ∼172dB peak sound pressure level (SPL) and the pathological changes were compared at 1 week and 1 month after BOP. The functional integrity of the auditory system was assessed by auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE). The axonal integrity was assessed using diffusion tensor imaging at regions of interests (ROIs) of the central auditory neuraxis (CAN) including the cochlear nucleus (CN), inferior colliculus (IC), and auditory cortex (AC). Post-BOP, cyto-architecture metrics such as viable cells, degenerating neurons, and apoptotic cells were quantified at the CAN ROIs using light microscopic studies using cresyl fast violet, hematoxylin and eosin, and modified Crossmon's trichrome stains. We observed mean ABR threshold shifts of 30- and 10-dB SPL at 1 week and 1 month after BOP, respectively. A similar pattern was observed in DPAOE amplitudes shift. In the CAN ROIs, diffusion tensor imaging studies showed a decreased axial diffusivity in CN 1 month after BOP and a decreased mean diffusivity and radial diffusivity at 1 week after BOP. However, morphometric measures such as decreased viable cells and increased degenerating neurons and apoptotic cells were observed at CN, IC, and AC. Specifically, increased degenerating neurons and reduced viable cells were high on the ipsilateral side when compared with the contralateral side. These results indicate that a single blast significantly damages structural and functional integrity at all levels of CAN ROIs.
Collapse
Affiliation(s)
- Kathiravan Kaliyappan
- Department of Rehabilitation Sciences, School of Public Health and Health Professions, College of Arts and Sciences, University at Buffalo, Buffalo, New York, USA
| | - Johan Nakuci
- Neuroscience Program, College of Arts and Sciences, University at Buffalo, Buffalo, New York, USA
| | - Marilena Preda
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, College of Arts and Sciences, University at Buffalo, Buffalo, New York, USA.,Center for Biomedical Imaging, Clinical and Translational Science Institute, College of Arts and Sciences, University at Buffalo, Buffalo, New York, USA
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, College of Arts and Sciences, University at Buffalo, Buffalo, New York, USA.,Center for Biomedical Imaging, Clinical and Translational Science Institute, College of Arts and Sciences, University at Buffalo, Buffalo, New York, USA
| | - Sarah Muldoon
- Department of Mathematics, College of Arts and Sciences, University at Buffalo, Buffalo, New York, USA
| | - Vijaya Prakash Krishnan Muthaiah
- Department of Rehabilitation Sciences, School of Public Health and Health Professions, College of Arts and Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
17
|
Han EX, Fernandez JM, Swanberg C, Shi R, Bartlett EL. Longitudinal auditory pathophysiology following mild blast-induced trauma. J Neurophysiol 2021; 126:1172-1189. [PMID: 34469703 DOI: 10.1152/jn.00039.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Blast-induced hearing difficulties affect thousands of veterans and civilians. The long-term impact of even a mild blast exposure on the central auditory system is hypothesized to contribute to lasting behavioral complaints associated with mild blast traumatic brain injury (bTBI). Although recovery from mild blast has been studied separately over brief or long time windows, few, if any, studies have investigated recovery longitudinally over short-term and longer-term (months) time windows. Specifically, many peripheral measures of auditory function either recover or exhibit subclinical deficits, masking deficits in processing complex, real-world stimuli that may recover differently. Thus, examining the acute time course and pattern of neurophysiological impairment using appropriate stimuli is critical to better understanding and intervening in bTBI-induced auditory system impairments. Here, we compared auditory brainstem response, middle-latency auditory-evoked potentials, and envelope following responses. Stimuli were clicks, tone pips, amplitude-modulated tones in quiet and in noise, and speech-like stimuli (iterated rippled noise pitch contours) in adult male rats subjected to mild blast and sham exposure over the course of 2 mo. We found that blast animals demonstrated drastic threshold increases and auditory transmission deficits immediately after blast exposure, followed by substantial recovery during the window of 7-14 days postblast, although with some deficits remaining even after 2 mo. Challenging conditions and speech-like stimuli can better elucidate mild bTBI-induced auditory deficit during this period. Our results suggest multiphasic recovery and therefore potentially different time windows for treatment, and deficits can be best observed using a small battery of sound stimuli.NEW & NOTEWORTHY Few studies on blast-induced hearing deficits go beyond simple sounds and sparsely track postexposure. Therefore, the recovery arc for potential therapies and real-world listening is poorly understood. Evidence suggested multiple recovery phases over 2 mo postexposure. Hearing thresholds largely recovered within 14 days and partially explained recovery. However, midlatency responses, responses to amplitude modulation in noise, and speech-like pitch sweeps exhibited extended changes, implying persistent central auditory deficits and the importance of subclinical threshold shifts.
Collapse
Affiliation(s)
- Emily X Han
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Joseph M Fernandez
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.,Department Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana
| | - Caitlin Swanberg
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Riyi Shi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.,Department Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana
| | - Edward L Bartlett
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| |
Collapse
|
18
|
Race NS, Andrews KD, Lungwitz EA, Vega Alvarez SM, Warner TR, Acosta G, Cao J, Lu KH, Liu Z, Dietrich AD, Majumdar S, Shekhar A, Truitt WA, Shi R. Psychosocial impairment following mild blast-induced traumatic brain injury in rats. Behav Brain Res 2021; 412:113405. [PMID: 34097900 PMCID: PMC9284795 DOI: 10.1016/j.bbr.2021.113405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 01/30/2023]
Abstract
Traumatic brain injury (TBI) is associated with increased risk for mental health disorders, impacting post-injury quality of life and societal reintegration. TBI is also associated with deficits in psychosocial processing, defined as the cognitive integration of social and emotional behaviors, however little is known about how these deficits manifest and their contributions to post-TBI mental health. In this pre-clinical investigation using rats, a single mild blast TBI (mbTBI) induced impairment of psychosocial processing in the absence of confounding physical polytrauma, post-injury motor deficits, affective abnormalities, or deficits in non-social behavior. Impairment severity correlated with acute upregulations of a known oxidative stress metabolite, 3-hydroxypropylmercapturic acid (3-HPMA), in urine. Resting state fMRI alterations in the acute post-injury period implicated key brain regions known to regulate psychosocial behavior, including orbitofrontal cortex (OFC), which is congruent with our previous report of elevated acrolein, a marker of neurotrauma and 3-HPMA precursor, in this region following mbTBI. OFC of mbTBI-exposed rats demonstrated elevated mRNA expression of metabotropic glutamate receptors 1 and 5 (mGluR1/5) and injection of mGluR1/5-selective agonist in OFC of uninjured rats approximated mbTBI-induced psychosocial processing impairment, demonstrating a novel role for OFC in this psychosocial behavior. Furthermore, OFC may serve as a hotspot for TBI-induced disruption of psychosocial processing and subsequent mental health disorders.
Collapse
Affiliation(s)
- Nicholas S Race
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Katharine D Andrews
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, USA; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Program in Medical Neuroscience, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elizabeth A Lungwitz
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Program in Medical Neuroscience, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sasha M Vega Alvarez
- PULSe Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA
| | - Timothy R Warner
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cellular Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Glen Acosta
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Jiayue Cao
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Kun-Han Lu
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA; School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Zhongming Liu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA; School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Amy D Dietrich
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cellular Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sreeparna Majumdar
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Program in Medical Neuroscience, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anantha Shekhar
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - William A Truitt
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cellular Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Riyi Shi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; PULSe Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA; Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA; Center for Paralysis Research, West Lafayette, IN, USA.
| |
Collapse
|
19
|
Shao N, Jiang S, Younger D, Chen T, Brown M, Rao KVR, Skotak M, Gan RZ, Chandra N. Central and peripheral auditory abnormalities in chinchilla animal model of blast-injury. Hear Res 2021; 407:108273. [PMID: 34139381 DOI: 10.1016/j.heares.2021.108273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/25/2022]
Abstract
Exposure to blast overpressure or high-intensity sound can cause injuries to the auditory system, which leads to hearing loss or tinnitus. In this study, we examined the involvement of peripheral auditory system (PAS), and central auditory system (CAS) changes after exposure to blast overpressure (15-25 psi) on Day 1 and additionally during 7 days of post blast time period in chinchillas. Auditory brainstem response (ABR), distortion product otoacoustic emission (DPOAE), and cochlear hair cell changes were measured or identified in post-blast period within 7 days to detect injuries in the PAS. In the CAS, changes in NMDAR1 (excitatory receptor) and GABAA (inhibitory receptor) as well as changes in serotonin (5-HT2A) and acetylcholine (AChR) receptors were examined in different brain regions: auditory cortex (AC), geniculate body (GB), inferior colliculus (IC) and amygdala by immunofluorescence staining. We observed the PAS abnormalities of increased ABR threshold and decreased DPOAE response in animals after blast exposure with hearing protection devices (e.g., earplug). Blast exposure also caused a reduction in both NMDAR1 and GABAA receptor levels in acute condition (post-blast or Day 1) in AC and IC, while serotonin and acetylcholine receptor levels displayed a biphasic response at Day 1 and Day 7 post-exposure. Results demonstrate that the earplug can protect the tympanic membrane and middle ear against structural damage, but the hearing level, cochlear outer hair cell, and the central auditory system (levels of excitatory and inhibitory neurotransmitter receptors) were only partially protected at the tested blast overpressure level. The findings in this study indicate that blast exposure can cause both peripheral and central auditory dysfunctions, and the central auditory response is independent of peripheral auditory damage. The CAS dysfunction is likely mediated by direct transmission of shockwaves in all the regions of central nervous system (CNS), including nerves and surrounding tissues along the auditory pathways. Hence, targeting central auditory neurotransmitter abnormalities may have a therapeutic benefit to attenuate blast-induced hearing loss and tinnitus.
Collapse
Affiliation(s)
- Ningning Shao
- Center for Injury Biomechanics, Materials, and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States.
| | - Shangyuan Jiang
- School of Aerospace & Mechanical Engineering, University of Oklahoma, Norman, OK, United States.
| | - Daniel Younger
- Center for Injury Biomechanics, Materials, and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States.
| | - Tao Chen
- School of Aerospace & Mechanical Engineering, University of Oklahoma, Norman, OK, United States.
| | - Marcus Brown
- School of Aerospace & Mechanical Engineering, University of Oklahoma, Norman, OK, United States.
| | - Kakulavarapu V Rama Rao
- Center for Injury Biomechanics, Materials, and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States.
| | - Maciej Skotak
- Center for Injury Biomechanics, Materials, and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States.
| | - Rong Z Gan
- School of Aerospace & Mechanical Engineering, University of Oklahoma, Norman, OK, United States.
| | - Namas Chandra
- Center for Injury Biomechanics, Materials, and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States; Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States.
| |
Collapse
|
20
|
Jiang S, Gannon AN, Smith KD, Brown M, Liang J, Gan RZ. Prevention of Blast-induced Auditory Injury Using 3D Printed Helmet and Hearing Protection Device - A Preliminary Study on Biomechanical Modeling and Animal. Mil Med 2021; 186:537-545. [PMID: 33499488 DOI: 10.1093/milmed/usaa317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/11/2020] [Accepted: 09/01/2020] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Repeated blast exposures result in structural damage to the peripheral auditory system (PAS) and the central auditory system (CAS). However, it is difficult to differentiate injuries between two distinct pathways: the mechanical damage in the PAS caused by blast pressure waves transmitted through the ear and the damage in the CAS caused by blast wave impacts on the head or traumatic brain injury. This article reports a preliminary study using a 3D printed chinchilla "helmet" as a head protection device associated with the hearing protection devices (e.g., earplugs) to isolate the CAS damage from the PAS injuries under repeated blast exposures. MATERIALS AND METHODS A finite element (FE) model of the chinchilla helmet was created based on micro-computed tomography images of a chinchilla skull and inputted into ANSYS for FE analysis on the helmet's protection against blast over pressure. The helmet was then 3D printed and used for animal experiments. Chinchillas were divided into four cases (ears open, with earplug only, with both earplug and helmet, and with helmet only) and exposed to three blasts at blast over pressure of 15 to 20 psi. Hearing function tests (e.g., auditory brainstem response) were performed before and after blast on Day 1 and Days 4 and 7 after blasts. RESULTS The FE model simulation showed a significant reduction in intracranial stress with the helmet, and the animal results indicated that both earplug and helmet reduced the severity of blast-induced auditory injuries by approximately 20 dB but with different mechanisms. CONCLUSIONS The biomechanical modeling and animal experiments demonstrated that this four-case study in chinchillas with helmet and hearing protection devices provides a novel methodology to investigate the blast-induced damage in the PAS and CAS.
Collapse
Affiliation(s)
- Shangyuan Jiang
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Ariana N Gannon
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Kyle D Smith
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Marcus Brown
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Junfeng Liang
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Rong Z Gan
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
21
|
Wang Y, Urioste RT, Wei Y, Wilder DM, Arun P, Sajja V, Gist ID, Fitzgerald TS, Chang W, Kelley MW, Long JB. Blast-induced hearing impairment in rats is associated with structural and molecular changes of the inner ear. Sci Rep 2020; 10:10652. [PMID: 32606369 PMCID: PMC7327022 DOI: 10.1038/s41598-020-67389-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/29/2020] [Indexed: 02/08/2023] Open
Abstract
Auditory dysfunction is the most prevalent injury associated with blast overpressure exposure (BOP) in Warfighters and civilians, yet little is known about the underlying pathophysiological mechanisms. To gain insights into these injuries, an advanced blast simulator was used to expose rats to BOP and assessments were made to identify structural and molecular changes in the middle/inner ears utilizing otoscopy, RNA sequencing (RNA-seq), and histopathological analysis. Deficits persisting up to 1 month after blast exposure were observed in the distortion product otoacoustic emissions (DPOAEs) and the auditory brainstem responses (ABRs) across the entire range of tested frequencies (4–40 kHz). During the recovery phase at sub-acute time points, low frequency (e.g. 4–8 kHz) hearing improved relatively earlier than for high frequency (e.g. 32–40 kHz). Perforation of tympanic membranes and middle ear hemorrhage were observed at 1 and 7 days, and were restored by day 28 post-blast. A total of 1,158 differentially expressed genes (DEGs) were significantly altered in the cochlea on day 1 (40% up-regulated and 60% down-regulated), whereas only 49 DEGs were identified on day 28 (63% up-regulated and 37% down-regulated). Seven common DEGs were identified at both days 1 and 28 following blast, and are associated with inner ear mechanotransduction, cytoskeletal reorganization, myelin development and axon survival. Further studies on altered gene expression in the blast-injured rat cochlea may provide insights into new therapeutic targets and approaches to prevent or treat similar cases of blast-induced auditory damage in human subjects.
Collapse
Affiliation(s)
- Ying Wang
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Bethesda, MD, USA.
| | - Rodrigo T Urioste
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Yanling Wei
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Donna M Wilder
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Peethambaran Arun
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Venkatasivasaisujith Sajja
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Irene D Gist
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Bethesda, MD, USA
| | | | - Weise Chang
- Section on Developmental Neuroscience, National Institute on Deafness and Other Communication Disorders (NIDCD), Bethesda, MD, USA
| | - Matthew W Kelley
- Section on Developmental Neuroscience, National Institute on Deafness and Other Communication Disorders (NIDCD), Bethesda, MD, USA
| | - Joseph B Long
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Bethesda, MD, USA.
| |
Collapse
|
22
|
Smith KD, Chen T, Gan RZ. Hearing Damage Induced by Blast Overpressure at Mild TBI Level in a Chinchilla Model. Mil Med 2020; 185:248-255. [DOI: 10.1093/milmed/usz309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Abstract
Introduction
The peripheral auditory system and various structures within the central auditory system are vulnerable to blast injuries, and even blast overpressure is at relatively mild traumatic brain injury (TBI) level. However, the extent of hearing loss in relation to blast number and time course of post-blast is not well understood. This study reports the progressive hearing damage measured in chinchillas after multiple blast exposures at mild TBI levels (103–138 kPa or 15–20 psi).
Materials and Methods
Sixteen animals (two controls) were exposed to two blasts and three blasts, respectively, in two groups with both ears plugged with foam earplugs to prevent the eardrum from rupturing. Auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) were measured in pre- and post-blasts. Immunohistochemical study of chinchilla brains were performed at the end of experiment.
Results
Results show that the ABR threshold and DPOAE level shifts in 2-blast animals were recovered after 7 days. In 3-blast animals, the ABR and DPOAE shifts remained at 26 and 23 dB, respectively after 14 days. Variation of auditory cortex damage between 2-blast and 3-blast was also observed in immunofluorescence images.
Conclusions
This study demonstrates that the number of blasts causing mild TBI critically affects hearing damage.
Collapse
Affiliation(s)
- Kyle D Smith
- School of Aerospace and Mechanical Engineering, University of Oklahoma, 865 Asp Avenue, Norman, OK 73019
| | - Tao Chen
- School of Aerospace and Mechanical Engineering, University of Oklahoma, 865 Asp Avenue, Norman, OK 73019
| | - Rong Z Gan
- School of Aerospace and Mechanical Engineering, University of Oklahoma, 865 Asp Avenue, Norman, OK 73019
| |
Collapse
|
23
|
Zhang J. Blast-induced tinnitus: Animal models. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3811. [PMID: 31795642 DOI: 10.1121/1.5132551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Blast-induced tinnitus is a prevalent problem among military personnel and veterans, as blast-related trauma damages the vulnerable microstructures within the cochlea, impacts auditory and non-auditory brain structures, and causes tinnitus and other disorders. Thus far, there is no effective treatment of blast-induced tinnitus due to an incomplete understanding of its underlying mechanisms, necessitating development of reliable animal models. This article focuses on recent animal studies using behavioral, electrophysiological, imaging, and pharmacological tools. The mechanisms underlying blast-induced tinnitus are largely similar to those underlying noise-induced tinnitus: increased spontaneous firing rates, bursting, and neurosynchrony, Mn++ accumulation, and elevated excitatory synaptic transmission. The differences mainly lie in the data variability and time course. Noise trauma-induced tinnitus mainly originates from direct peripheral deafferentation at the cochlea, and its etiology subsequently develops along the ascending auditory pathways. Blast trauma-induced tinnitus, on the other hand, results from simultaneous impact on both the peripheral and central auditory systems, and the resultant maladaptive neuroplasticity may also be related to the additional traumatic brain injury. Consequently, the neural correlates of blast-induced tinnitus have different time courses and less uniform manifestations of its neural correlates.
Collapse
Affiliation(s)
- Jinsheng Zhang
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, 4201 Saint Antoine, Detroit, Michigan 48201, USA
| |
Collapse
|
24
|
Escabi CD, Frye MD, Trevino M, Lobarinas E. The rat animal model for noise-induced hearing loss. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3692. [PMID: 31795685 PMCID: PMC7480078 DOI: 10.1121/1.5132553] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Rats make excellent models for the study of medical, biological, genetic, and behavioral phenomena given their adaptability, robustness, survivability, and intelligence. The rat's general anatomy and physiology of the auditory system is similar to that observed in humans, and this has led to their use for investigating the effect of noise overexposure on the mammalian auditory system. The current paper provides a review of the rat model for studying noise-induced hearing loss and highlights advancements that have been made using the rat, particularly as these pertain to noise dose and the hazardous effects of different experimental noise types. In addition to the traditional loss of auditory function following acoustic trauma, recent findings have indicated the rat as a useful model in observing alterations in neuronal processing within the central nervous system following noise injury. Furthermore, the rat provides a second animal model when investigating noise-induced cochlear synaptopathy, as studies examining this in the rat model resemble the general patterns observed in mice. Together, these findings demonstrate the relevance of this animal model for furthering the authors' understanding of the effects of noise on structural, anatomical, physiological, and perceptual aspects of hearing.
Collapse
Affiliation(s)
- Celia D Escabi
- Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| | - Mitchell D Frye
- Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| | - Monica Trevino
- Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| | - Edward Lobarinas
- Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| |
Collapse
|
25
|
Jaiswal S, Knutsen AK, Wilson CM, Fu AH, Tucker LB, Kim Y, Bittner KC, Whiting MD, McCabe JT, Dardzinski BJ. Mild traumatic brain injury induced by primary blast overpressure produces dynamic regional changes in [18F]FDG uptake. Brain Res 2019; 1723:146400. [DOI: 10.1016/j.brainres.2019.146400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/18/2019] [Accepted: 08/20/2019] [Indexed: 10/26/2022]
|
26
|
Gan RZ, Jiang S. Surface Motion Changes of Tympanic Membrane Damaged by Blast Waves. J Biomech Eng 2019; 141:2736913. [DOI: 10.1115/1.4044052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Indexed: 11/08/2022]
Abstract
Eardrum or tympanic membrane (TM) is a multilayer soft tissue membrane located at the end of the ear canal to receive sound pressure and transport the sound into the middle ear and cochlea. Recent studies reported that the TM microstructure and mechanical properties varied after the ear was exposed to blast overpressure. However, the impact of such biomechanical changes of the TM on its movement for sound transmission has not been investigated. This paper reports the full-field surface motion of the human TM using the scanning laser Doppler vibrometry in human temporal bones under normal and postblast conditions. An increase of the TM displacement after blast exposure was observed in the posterior region of the TM in four temporal bone samples at the frequencies between 3 and 4 kHz. A finite element model of human TM with multilayer microstructure and orthogonal fiber network was created to simulate the TM damaged by blast waves. The consistency between the experimental data and the model-derived TM surface motion suggests that the tissue injuries were resulted from a combination of mechanical property change and regional discontinuity of collagen fibers. This study provides the evidences of surface motion changes of the TM damaged by blast waves and possible fiber damage locations.
Collapse
Affiliation(s)
- Rong Z. Gan
- Biomedical Engineering Laboratory, School of Aerospace and Mechanical Engineering, University of Oklahoma, 865 Asp Avenue, Norman, OK 73019 e-mail:
| | - Shangyuan Jiang
- Biomedical Engineering Laboratory, School of Aerospace and Mechanical Engineering, University of Oklahoma, 865 Asp Avenue, Norman, OK 73019
| |
Collapse
|
27
|
Chen T, Smith K, Jiang S, Zhang T, Gan RZ. Progressive hearing damage after exposure to repeated low-intensity blasts in chinchillas. Hear Res 2019; 378:33-42. [DOI: 10.1016/j.heares.2019.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 12/31/2022]
|
28
|
Knoll RM, Herman SD, Lubner RJ, Babu AN, Wong K, Sethi RKV, Chen JX, Rauch SD, Remenschneider AK, Jung DH, Kozin ED. Patient‐reported auditory handicap measures following mild traumatic brain injury. Laryngoscope 2019; 130:761-767. [DOI: 10.1002/lary.28034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/28/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Renata M. Knoll
- Department of OtolaryngologyMassachusetts Eye and Ear Boston Massachusetts
- Department of OtolaryngologyHarvard Medical School Boston Massachusetts
| | - Seth D. Herman
- Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Boston Massachusetts
| | - Rory J. Lubner
- Department of OtolaryngologyMassachusetts Eye and Ear Boston Massachusetts
- Department of OtolaryngologyHarvard Medical School Boston Massachusetts
- Warren Alpert Medical School of Brown University Providence Rhode Island
| | - Ashwin N. Babu
- Department of Sports MedicineMassachusetts General Hospital Boston Massachusetts
| | - Kevin Wong
- Department of Otolaryngology, Mount Sinai Medical Center New York New York
| | - Rosh K. V. Sethi
- Department of OtolaryngologyMassachusetts Eye and Ear Boston Massachusetts
- Department of OtolaryngologyHarvard Medical School Boston Massachusetts
| | - Jenny X. Chen
- Department of OtolaryngologyMassachusetts Eye and Ear Boston Massachusetts
- Department of OtolaryngologyHarvard Medical School Boston Massachusetts
| | - Steven D. Rauch
- Department of OtolaryngologyMassachusetts Eye and Ear Boston Massachusetts
- Department of OtolaryngologyHarvard Medical School Boston Massachusetts
| | - Aaron K. Remenschneider
- Department of OtolaryngologyMassachusetts Eye and Ear Boston Massachusetts
- Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Boston Massachusetts
- Department of OtolaryngologyUniversity of Massachusetts Medical Center Worcester Massachusetts U.S.A
| | - David H. Jung
- Department of OtolaryngologyMassachusetts Eye and Ear Boston Massachusetts
- Department of OtolaryngologyHarvard Medical School Boston Massachusetts
| | - Elliott D. Kozin
- Department of OtolaryngologyMassachusetts Eye and Ear Boston Massachusetts
- Department of OtolaryngologyHarvard Medical School Boston Massachusetts
| |
Collapse
|
29
|
Peacock J, Al Hussaini M, Greene NT, Tollin DJ. Intracochlear pressure in response to high intensity, low frequency sounds in chinchilla. Hear Res 2018; 367:213-222. [DOI: 10.1016/j.heares.2018.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/08/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022]
|
30
|
Garcia-Gonzalez D, Race NS, Voets NL, Jenkins DR, Sotiropoulos SN, Acosta G, Cruz-Haces M, Tang J, Shi R, Jérusalem A. Cognition based bTBI mechanistic criteria; a tool for preventive and therapeutic innovations. Sci Rep 2018; 8:10273. [PMID: 29980750 PMCID: PMC6035210 DOI: 10.1038/s41598-018-28271-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023] Open
Abstract
Blast-induced traumatic brain injury has been associated with neurodegenerative and neuropsychiatric disorders. To date, although damage due to oxidative stress appears to be important, the specific mechanistic causes of such disorders remain elusive. Here, to determine the mechanical variables governing the tissue damage eventually cascading into cognitive deficits, we performed a study on the mechanics of rat brain under blast conditions. To this end, experiments were carried out to analyse and correlate post-injury oxidative stress distribution with cognitive deficits on a live rat exposed to blast. A computational model of the rat head was developed from imaging data and validated against in vivo brain displacement measurements. The blast event was reconstructed in silico to provide mechanistic thresholds that best correlate with cognitive damage at the regional neuronal tissue level, irrespectively of the shape or size of the brain tissue types. This approach was leveraged on a human head model where the prediction of cognitive deficits was shown to correlate with literature findings. The mechanistic insights from this work were finally used to propose a novel protective device design roadmap and potential avenues for therapeutic innovations against blast traumatic brain injury.
Collapse
Affiliation(s)
- Daniel Garcia-Gonzalez
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Nicholas S Race
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Natalie L Voets
- Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Damian R Jenkins
- Army Registrar in Neurology and Lecturer in Medicine and Physiology, St Hugh's College, St Margaret's Rd, Oxford, OX2 6LE, United Kingdom
| | - Stamatios N Sotiropoulos
- Centre for Functional MRI of the Brain, University of Oxford, Oxford, UK
- Sir Peter Mansfield Imaging Centre, School of Medicine, and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Glen Acosta
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Marcela Cruz-Haces
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jonathan Tang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Riyi Shi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.
- PULSe Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA.
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA.
| | - Antoine Jérusalem
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.
| |
Collapse
|
31
|
Hauser SN, Burton JA, Mercer ET, Ramachandran R. Effects of noise overexposure on tone detection in noise in nonhuman primates. Hear Res 2018; 357:33-45. [PMID: 29175767 PMCID: PMC5743633 DOI: 10.1016/j.heares.2017.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
This report explores the consequences of acoustic overexposures on hearing in noisy environments for two macaque monkeys trained to perform a reaction time detection task using a Go/No-Go lever release paradigm. Behavioral and non-invasive physiological assessments were obtained before and after narrowband noise exposure. Physiological measurements showed elevated auditory brainstem response (ABR) thresholds and absent distortion product otoacoustic emissions (DPOAEs) post-exposure relative to pre-exposure. Audiograms revealed frequency specific increases in tone detection thresholds, with the greatest increases at the exposure band frequency and higher. Masked detection was affected in a similar frequency specific manner: threshold shift rates (change of masked threshold per dB increase in noise level) were lower than pre-exposure values at frequencies higher than the exposure band. Detection thresholds in sinusoidally amplitude modulated (SAM) noise post-exposure showed no difference from those in unmodulated noise, whereas pre-exposure masked detection thresholds were lower in the presence of SAM noise compared to unmodulated noise. These frequency-dependent results were correlated with cochlear histopathological changes in monkeys that underwent similar noise exposure. These results reveal that behavioral and physiological effects of noise exposure in macaques are similar to those seen in humans and provide preliminary information on the relationship between noise exposure, cochlear pathology and perceptual changes in hearing within individual subjects.
Collapse
Affiliation(s)
- Samantha N Hauser
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Jane A Burton
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Evan T Mercer
- Vanderbilt University Interdisciplinary Program in Neuroscience for Undergraduates, Vanderbilt University, Nashville, TN 37212, USA.
| | - Ramnarayan Ramachandran
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
32
|
Lai J, Sommer AL, Bartlett EL. Age-related changes in envelope-following responses at equalized peripheral or central activation. Neurobiol Aging 2017; 58:191-200. [PMID: 28753474 PMCID: PMC5581704 DOI: 10.1016/j.neurobiolaging.2017.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 06/18/2017] [Accepted: 06/18/2017] [Indexed: 11/20/2022]
Abstract
Previous work has debated about the comparisons of hearing abilities faced with alterations in hearing thresholds and evoked potentials between groups following acoustic trauma- or age-related changes. This study compares envelope-following responses (EFRs) of young and aged rats when sound levels were matched according to (1) wave I amplitudes of auditory brainstem responses (ABRs) elicited by 8-kHz tones or (2) EFR amplitudes evoked by sinusoidally amplitude-modulated (SAM) tones at 100% depth. Matched wave I amplitudes across age corresponded to approximately 20-dB sound level differences. For matched wave I, no age-related differences were observed in wave V amplitudes. However, EFRs recorded in silence were enhanced with aging at 100% but not at 25% depth, consistent with enhanced central gain in aging. For matched EFRs, there were no age-related differences in EFRs of amplitude modulation (AM) depth and AM frequency processing. These results suggest novel, objective measures beyond threshold to compensate for differences in auditory nerve activation and to differentiate peripheral and central contributions of EFRs.
Collapse
Affiliation(s)
- Jesyin Lai
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Alexandra L Sommer
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Edward L Bartlett
- Department of Biological Sciences and the Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|