1
|
Delucenay-Clarke R, Niérat MC, Frugière A, Similowski T, Cayetanot F, Bodineau L. Direct current stimulation as a non-invasive therapeutic alternative for treating autonomic or non-autonomic neurological disorders affecting breathing. Clin Auton Res 2024; 34:395-411. [PMID: 39133345 DOI: 10.1007/s10286-024-01055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
Direct current stimulation (DCS) is a non-invasive approach to stimulate the nervous system that is now considered a powerful tool for treating neurological diseases such as those affecting cognitive or locomotor functions. DCS, as applied clinically today, is an approach built on early uses in antiquity and knowledge gained over time. Its current use makes use of specific devices and takes into account knowledge of the mechanisms by which this approach modulates functioning of the nervous system at the cellular level. Over the last 20 years, although there are few studies, it has been shown that DCS can also modulate the breathing autonomic function. In this narrative review, after briefly providing the historical perspective and describing the principles and the main cellular and molecular effects, we summarize the currently available data regarding the modulation of ventilation, and propose that DCS could be used to treat autonomic or non-autonomic neurological disorders affecting breathing.
Collapse
Affiliation(s)
- Roman Delucenay-Clarke
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 75005, Paris, France
| | - Marie-Cécile Niérat
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 75005, Paris, France
| | - Alain Frugière
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 75005, Paris, France
| | - Thomas Similowski
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 75005, Paris, France
| | - Florence Cayetanot
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 75005, Paris, France
| | - Laurence Bodineau
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 75005, Paris, France.
| |
Collapse
|
2
|
Andrade SM, Cecília de Araújo Silvestre M, Tenório de França EÉ, Bezerra Sales Queiroz MH, de Jesus Santana K, Lima Holmes Madruga ML, Torres Teixeira Mendes CK, Araújo de Oliveira E, Bezerra JF, Barreto RG, Alves Fernandes da Silva SM, Alves de Sousa T, Medeiros de Sousa WC, Patrícia da Silva M, Cintra Ribeiro VM, Lucena P, Beltrammi D, Catharino RR, Caparelli-Dáquer E, Hampstead BM, Datta A, Teixeira AL, Fernández-Calvo B, Sato JR, Bikson M. Efficacy and safety of HD-tDCS and respiratory rehabilitation for critically ill patients with COVID-19 The HD-RECOVERY randomized clinical trial. Brain Stimul 2022; 15:780-788. [PMID: 35568312 PMCID: PMC9093082 DOI: 10.1016/j.brs.2022.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/19/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022] Open
Abstract
Background and purpose Acute Respiratory Distress Syndrome (ADRS) due to coronavirus disease 2019 (COVID-19) has been associated with muscle fatigue, corticospinal pathways dysfunction, and mortality. High-Definition transcranial Direct Current Stimulation (HD-tDCS) may be used to attenuate clinical impairment in these patients. The HD-RECOVERY randomized clinical trial was conducted to evaluate the efficacy and safety of HD-tDCS with respiratory rehabilitation in patients with moderate to severe ARDS due to COVID-19. Methods Fifty-six critically ill patients were randomized 1:1 to active (n = 28) or sham (n = 28) HD-tDCS (twice a day, 30-min, 3-mA) plus respiratory rehabilitation for up to 10 days or until intensive care unit discharge. The primary outcome was ventilator-free days during the first 28 days, defined as the number of days free from mechanical ventilation. Furthermore, secondary outcomes such as delirium, organ failure, hospital length of stay and adverse effects were investigated. Results Active HD-tDCS induced more ventilator-free days compared to sham HD-tDCS. Patients in the active group vs in the sham group experienced lower organ dysfunction, delirium, and length of stay rates over time. In addition, positive clinical response was higher in the active vs sham group. There was no significant difference in the prespecified secondary outcomes at 5 days. Adverse events were similar between groups. Conclusions Among patients with COVID-19 and moderate to severe ARDS, use of active HD-tDCS compared with sham HD-tDCS plus respiratory rehabilitation resulted in a statistically significant increase in the number of ventilator-free days over 28 days. HD-tDCS combined with concurrent rehabilitation therapy is a safe, feasible, potentially add-on intervention, and further trials should examine HD-tDCS efficacy in a larger sample of patients with COVID-19 and severe hypoxemia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Paulo Lucena
- Health Secretary, Government of Paraíba, João Pessoa, Brazil
| | | | - Rodrigo Ramos Catharino
- Thomson Mass Spectrometry Laboratory, Institute of Chemistry, State University of Campinas, UNICAMP, Campinas, SP, Brazil
| | - Egas Caparelli-Dáquer
- Nervous System Electric Stimulation Lab, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Benjamin M Hampstead
- Research Program on Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan & Mental Health Service, VA Ann Arbor Healthcare System, Ann Arbor, Ann Arbor, United States
| | - Abhishek Datta
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, United States
| | - Antonio Lucio Teixeira
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center, Houston, United States
| | - Bernardino Fernández-Calvo
- Department of Psychology, University of Cordoba, Cordoba, Spain; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - João Ricardo Sato
- Center of Mathematics, Computing and Cognition. Federal University of ABC, Santo André, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, United States
| |
Collapse
|
4
|
Baptista AF, Baltar A, Okano AH, Moreira A, Campos ACP, Fernandes AM, Brunoni AR, Badran BW, Tanaka C, de Andrade DC, da Silva Machado DG, Morya E, Trujillo E, Swami JK, Camprodon JA, Monte-Silva K, Sá KN, Nunes I, Goulardins JB, Bikson M, Sudbrack-Oliveira P, de Carvalho P, Duarte-Moreira RJ, Pagano RL, Shinjo SK, Zana Y. Applications of Non-invasive Neuromodulation for the Management of Disorders Related to COVID-19. Front Neurol 2020; 11:573718. [PMID: 33324324 PMCID: PMC7724108 DOI: 10.3389/fneur.2020.573718] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Novel coronavirus disease (COVID-19) morbidity is not restricted to the respiratory system, but also affects the nervous system. Non-invasive neuromodulation may be useful in the treatment of the disorders associated with COVID-19. Objective: To describe the rationale and empirical basis of the use of non-invasive neuromodulation in the management of patients with COVID-10 and related disorders. Methods: We summarize COVID-19 pathophysiology with emphasis of direct neuroinvasiveness, neuroimmune response and inflammation, autonomic balance and neurological, musculoskeletal and neuropsychiatric sequela. This supports the development of a framework for advancing applications of non-invasive neuromodulation in the management COVID-19 and related disorders. Results: Non-invasive neuromodulation may manage disorders associated with COVID-19 through four pathways: (1) Direct infection mitigation through the stimulation of regions involved in the regulation of systemic anti-inflammatory responses and/or autonomic responses and prevention of neuroinflammation and recovery of respiration; (2) Amelioration of COVID-19 symptoms of musculoskeletal pain and systemic fatigue; (3) Augmenting cognitive and physical rehabilitation following critical illness; and (4) Treating outbreak-related mental distress including neurological and psychiatric disorders exacerbated by surrounding psychosocial stressors related to COVID-19. The selection of the appropriate techniques will depend on the identified target treatment pathway. Conclusion: COVID-19 infection results in a myriad of acute and chronic symptoms, both directly associated with respiratory distress (e.g., rehabilitation) or of yet-to-be-determined etiology (e.g., fatigue). Non-invasive neuromodulation is a toolbox of techniques that based on targeted pathways and empirical evidence (largely in non-COVID-19 patients) can be investigated in the management of patients with COVID-19.
Collapse
Affiliation(s)
- Abrahão Fontes Baptista
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Brazilian Institute of Neuroscience and Neurotechnology Centros de Pesquisa, Investigação e Difusão - Fundação de Amparo à Pesquisa do Estado de São Paulo (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, Brazil
- Laboratory of Medical Investigations 54 (LIM-54), São Paulo University, São Paulo, Brazil
| | - Adriana Baltar
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Specialized Neuromodulation Center—Neuromod, Recife, Brazil
| | - Alexandre Hideki Okano
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Brazilian Institute of Neuroscience and Neurotechnology Centros de Pesquisa, Investigação e Difusão - Fundação de Amparo à Pesquisa do Estado de São Paulo (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, Brazil
- Graduate Program in Physical Education, State University of Londrina, Londrina, Brazil
| | - Alexandre Moreira
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | | - Ana Mércia Fernandes
- Centro de Dor, LIM-62, Departamento de Neurologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - André Russowsky Brunoni
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Instituto Nacional de Biomarcadores em Neuropsiquiatria, São Paulo, Brazil
- Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Bashar W. Badran
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Clarice Tanaka
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Laboratory of Medical Investigations 54 (LIM-54), São Paulo University, São Paulo, Brazil
- Instituto Central, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Daniel Ciampi de Andrade
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Centro de Dor, LIM-62, Departamento de Neurologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | | | - Edgard Morya
- Edmond and Lily Safra International Neuroscience Institute, Santos Dumont Institute, Macaiba, Brazil
| | - Eduardo Trujillo
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
| | - Jaiti K. Swami
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, United States
| | - Joan A. Camprodon
- Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Katia Monte-Silva
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Applied Neuroscience Laboratory, Universidade Federal de Pernambuco, Recife, Brazil
| | - Katia Nunes Sá
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
| | - Isadora Nunes
- Department of Physiotherapy, Pontifícia Universidade Católica de Minas Gerais, Betim, Brazil
| | - Juliana Barbosa Goulardins
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Laboratory of Medical Investigations 54 (LIM-54), São Paulo University, São Paulo, Brazil
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
- Universidade Cruzeiro do Sul (UNICSUL), São Paulo, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, United States
| | | | - Priscila de Carvalho
- Instituto Central, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Jardim Duarte-Moreira
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
| | | | - Samuel Katsuyuki Shinjo
- Division of Rheumatology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Yossi Zana
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
| |
Collapse
|