1
|
Henton A, Zhao Y, Tzounopoulos T. A Role for KCNQ Channels on Cell Type-Specific Plasticity in Mouse Auditory Cortex after Peripheral Damage. J Neurosci 2023; 43:2277-2290. [PMID: 36813573 PMCID: PMC10072297 DOI: 10.1523/jneurosci.1070-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Damage to sensory organs triggers compensatory plasticity mechanisms in sensory cortices. These plasticity mechanisms result in restored cortical responses, despite reduced peripheral input, and contribute to the remarkable recovery of perceptual detection thresholds to sensory stimuli. Overall, peripheral damage is associated with a reduction of cortical GABAergic inhibition; however, less is known about changes in intrinsic properties and the underlying biophysical mechanisms. To study these mechanisms, we used a model of noise-induced peripheral damage in male and female mice. We uncovered a rapid, cell type-specific reduction in the intrinsic excitability of parvalbumin-expressing neurons (PVs) in layer (L) 2/3 of auditory cortex. No changes in the intrinsic excitability of either L2/3 somatostatin-expressing or L2/3 principal neurons (PNs) were observed. The decrease in L2/3 PV excitability was observed 1, but not 7, d after noise exposure, and was evidenced by a hyperpolarization of the resting membrane potential, depolarization of the action potential threshold, and reduction in firing frequency in response to depolarizing current. To uncover the underlying biophysical mechanisms, we recorded potassium currents. We found an increase in KCNQ potassium channel activity in L2/3 PVs of auditory cortex 1 d after noise exposure, associated with a hyperpolarizing shift in the minimal voltage activation of KCNQ channels. This increase contributes to the decreased intrinsic excitability of PVs. Our results highlight cell-type- and channel-specific mechanisms of plasticity after noise-induced hearing loss and will aid in understanding the pathologic processes involved in hearing loss and hearing loss-related disorders, such as tinnitus and hyperacusis.SIGNIFICANCE STATEMENT Noise-induced damage to the peripheral auditory system triggers central plasticity that compensates for the reduced peripheral input. The mechanisms of this plasticity are not fully understood. In the auditory cortex, this plasticity likely contributes to the recovery of sound-evoked responses and perceptual hearing thresholds. Importantly, other functional aspects of hearing do not recover, and peripheral damage may also lead to maladaptive plasticity-related disorders, such as tinnitus and hyperacusis. Here, after noise-induced peripheral damage, we highlight a rapid, transient, and cell type-specific reduction in the excitability of layer 2/3 parvalbumin-expressing neurons, which is due, at least in part, to increased KCNQ potassium channel activity. These studies may highlight novel strategies for enhancing perceptual recovery after hearing loss and mitigating hyperacusis and tinnitus.
Collapse
Affiliation(s)
- Amanda Henton
- Pittsburgh Hearing Research Center and Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Center for Neuroscience, University of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Yanjun Zhao
- Pittsburgh Hearing Research Center and Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Thanos Tzounopoulos
- Pittsburgh Hearing Research Center and Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
2
|
Newkirk GS, Guan D, Dembrow N, Armstrong WE, Foehring RC, Spain WJ. Kv2.1 Potassium Channels Regulate Repetitive Burst Firing in Extratelencephalic Neocortical Pyramidal Neurons. Cereb Cortex 2021; 32:1055-1076. [PMID: 34435615 DOI: 10.1093/cercor/bhab266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/14/2022] Open
Abstract
Coincidence detection and cortical rhythmicity are both greatly influenced by neurons' propensity to fire bursts of action potentials. In the neocortex, repetitive burst firing can also initiate abnormal neocortical rhythmicity (including epilepsy). Bursts are generated by inward currents that underlie a fast afterdepolarization (fADP) but less is known about outward currents that regulate bursting. We tested whether Kv2 channels regulate the fADP and burst firing in labeled layer 5 PNs from motor cortex of the Thy1-h mouse. Kv2 block with guangxitoxin-1E (GTx) converted single spike responses evoked by dendritic stimulation into multispike bursts riding on an enhanced fADP. Immunohistochemistry revealed that Thy1-h PNs expressed Kv2.1 (not Kv2.2) channels perisomatically (not in the dendrites). In somatic macropatches, GTx-sensitive current was the largest component of outward current with biophysical properties well-suited for regulating bursting. GTx drove ~40% of Thy1 PNs stimulated with noisy somatic current steps to repetitive burst firing and shifted the maximal frequency-dependent gain. A network model showed that reduction of Kv2-like conductance in a small subset of neurons resulted in repetitive bursting and entrainment of the circuit to seizure-like rhythmic activity. Kv2 channels play a dominant role in regulating onset bursts and preventing repetitive bursting in Thy1 PNs.
Collapse
Affiliation(s)
- Greg S Newkirk
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Dongxu Guan
- Department of Anatomy and Neurobiology, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Nikolai Dembrow
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.,Epilepsy Center of Excellence, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - William E Armstrong
- Department of Anatomy and Neurobiology, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Robert C Foehring
- Department of Anatomy and Neurobiology, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - William J Spain
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.,Epilepsy Center of Excellence, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| |
Collapse
|
3
|
Thompson CH, Ben-Shalom R, Bender KJ, George AL. Alternative splicing potentiates dysfunction of early-onset epileptic encephalopathy SCN2A variants. J Gen Physiol 2021; 152:133672. [PMID: 31995133 PMCID: PMC7054859 DOI: 10.1085/jgp.201912442] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/07/2020] [Indexed: 01/06/2023] Open
Abstract
Epileptic encephalopathies are severe forms of infantile-onset epilepsy often complicated by severe neurodevelopmental impairments. Some forms of early-onset epileptic encephalopathy (EOEE) have been associated with variants in SCN2A, which encodes the brain voltage-gated sodium channel NaV1.2. Many voltage-gated sodium channel genes, including SCN2A, undergo developmentally regulated mRNA splicing. The early onset of these disorders suggests that developmentally regulated alternative splicing of NaV1.2 may be an important consideration when elucidating the pathophysiological consequences of epilepsy-associated variants. We hypothesized that EOEE-associated NaV1.2 variants would exhibit greater dysfunction in a splice isoform that is prominently expressed during early development. We engineered five EOEE-associated NaV1.2 variants (T236S, E999K, S1336Y, T1623N, and R1882Q) into the adult and neonatal splice isoforms of NaV1.2 and performed whole-cell voltage clamp to elucidate their functional properties. All variants exhibited functional defects that could enhance neuronal excitability. Three of the five variants (T236S, E999K, and S1336Y) exhibited greater dysfunction in the neonatal isoform compared with those observed in the adult isoform. Computational modeling of a developing cortical pyramidal neuron indicated that T236S, E999K, S1336Y, and R1882Q showed hyperexcitability preferentially in immature neurons. These results suggest that both splice isoform and neuronal developmental stage influence how EOEE-associated NaV1.2 variants affect neuronal excitability.
Collapse
Affiliation(s)
- Christopher H Thompson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Roy Ben-Shalom
- Center for Integrative Neuroscience, Kavli Institute for Fundamental Neuroscience, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Kevin J Bender
- Center for Integrative Neuroscience, Kavli Institute for Fundamental Neuroscience, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
4
|
Shi Y, Sun L, Wang M, Liu J, Zhong S, Li R, Li P, Guo L, Fang A, Chen R, Ge WP, Wu Q, Wang X. Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLoS Biol 2020; 18:e3000705. [PMID: 32401820 PMCID: PMC7250475 DOI: 10.1371/journal.pbio.3000705] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 05/26/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
Modeling the processes of neuronal progenitor proliferation and differentiation to produce mature cortical neuron subtypes is essential for the study of human brain development and the search for potential cell therapies. We demonstrated a novel paradigm for the generation of vascularized organoids (vOrganoids) consisting of typical human cortical cell types and a vascular structure for over 200 days as a vascularized and functional brain organoid model. The observation of spontaneous excitatory postsynaptic currents (sEPSCs), spontaneous inhibitory postsynaptic currents (sIPSCs), and bidirectional electrical transmission indicated the presence of chemical and electrical synapses in vOrganoids. More importantly, single-cell RNA-sequencing analysis illustrated that vOrganoids exhibited robust neurogenesis and that cells of vOrganoids differentially expressed genes (DEGs) related to blood vessel morphogenesis. The transplantation of vOrganoids into the mouse S1 cortex resulted in the construction of functional human-mouse blood vessels in the grafts that promoted cell survival in the grafts. This vOrganoid culture method could not only serve as a model to study human cortical development and explore brain disease pathology but also provide potential prospects for new cell therapies for nervous system disorders and injury. This study establishes a method to generate vascularized cortical organoids. This shows that in addition to reducing hypoxia and cell death, the vascular system promotes neural development in organoids. When transplanting these organoids into host mice, a graft-host vascular system could be reconstructed.
Collapse
Affiliation(s)
- Yingchao Shi
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Le Sun
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Jianwei Liu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Suijuan Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Rui Li
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Peng Li
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lijie Guo
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ai Fang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ruiguo Chen
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Woo-Ping Ge
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- * E-mail: (QW); (XW)
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- * E-mail: (QW); (XW)
| |
Collapse
|
5
|
Song C, Orlandi C, Sutton LP, Martemyanov KA. The signaling proteins GPR158 and RGS7 modulate excitability of L2/3 pyramidal neurons and control A-type potassium channel in the prelimbic cortex. J Biol Chem 2019; 294:13145-13157. [PMID: 31311860 DOI: 10.1074/jbc.ra119.007533] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 07/11/2019] [Indexed: 12/18/2022] Open
Abstract
Stress profoundly affects physiological properties of neurons across brain circuits and thereby increases the risk for depression. However, the molecular and cellular mechanisms mediating these effects are poorly understood. In this study, we report that chronic physical restraint stress in mice decreases excitability specifically in layer 2/3 of pyramidal neurons within the prelimbic subarea of the prefrontal cortex (PFC) accompanied by the induction of depressive-like behavioral states. We found that a complex between G protein-coupled receptor (GPCR) 158 (GPR158) and regulator of G protein signaling 7 (RGS7), a regulatory GPCR signaling node recently discovered to be a key modulator of affective behaviors, plays a key role in controlling stress-induced changes in excitability in this neuronal population. Deletion of GPR158 or RGS7 enhanced excitability of layer 2/3 PFC neurons and prevented the impact of stress. Investigation of the underlying molecular mechanisms revealed that the A-type potassium channel Kv4.2 subunit is a molecular target of the GPR158-RGS7 complex. We further report that GPR158 physically associates with Kv4.2 channel and promotes its function by suppressing inhibitory modulation by cAMP-protein kinase A (PKA)-mediated phosphorylation. Taken together, our observations reveal a critical mechanism that adjusts neuronal excitability in L2/3 pyramidal neurons of the PFC and may thereby modulate the effects of stress on depression.
Collapse
Affiliation(s)
- Chenghui Song
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458
| | - Cesare Orlandi
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458
| | - Laurie P Sutton
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458.
| |
Collapse
|
6
|
Postnatal Increases in Axonal Conduction Velocity of an Identified Drosophila Interneuron Require Fast Sodium, L-Type Calcium and Shaker Potassium Channels. eNeuro 2019; 6:ENEURO.0181-19.2019. [PMID: 31253715 PMCID: PMC6709211 DOI: 10.1523/eneuro.0181-19.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 11/21/2022] Open
Abstract
During early postnatal life, speed up of signal propagation through many central and peripheral neurons has been associated with an increase in axon diameter or/and myelination. Especially in unmyelinated axons postnatal adjustments of axonal membrane conductances is potentially a third mechanism but solid evidence is lacking. Here, we show that axonal action potential (AP) conduction velocity in the Drosophila giant fiber (GF) interneuron, which is required for fast long-distance signal conduction through the escape circuit, is increased by 80% during the first day of adult life. Genetic manipulations indicate that this postnatal increase in AP conduction velocity in the unmyelinated GF axon is likely owed to adjustments of ion channel expression or properties rather than axon diameter increases. Specifically, targeted RNAi knock-down of either Para fast voltage-gated sodium, Shaker potassium (Kv1 homologue), or surprisingly, L-type like calcium channels counteracts postnatal increases in GF axonal conduction velocity. By contrast, the calcium-dependent potassium channel Slowpoke (BK) is not essential for postnatal speeding, although it also significantly increases conduction velocity. Therefore, we identified multiple ion channels that function to support fast axonal AP conduction velocity, but only a subset of these are regulated during early postnatal life to maximize conduction velocity. Despite its large diameter (∼7 µm) and postnatal regulation of multiple ionic conductances, mature GF axonal conduction velocity is still 20-60 times slower than that of vertebrate Aβ sensory axons and α motoneurons, thus unraveling the limits of long-range information transfer speed through invertebrate circuits.
Collapse
|
7
|
Alfaro-Ruíz R, Aguado C, Martín-Belmonte A, Moreno-Martínez AE, Luján R. Expression, Cellular and Subcellular Localisation of Kv4.2 and Kv4.3 Channels in the Rodent Hippocampus. Int J Mol Sci 2019; 20:ijms20020246. [PMID: 30634540 PMCID: PMC6359635 DOI: 10.3390/ijms20020246] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/29/2018] [Accepted: 01/03/2019] [Indexed: 12/31/2022] Open
Abstract
The Kv4 family of voltage-gated K⁺ channels underlie the fast transient (A-type) outward K⁺ current. Although A-type currents are critical to determine somato-dendritic integration in central neurons, relatively little is known about the precise subcellular localisation of the underlying channels in hippocampal circuits. Using histoblot and immunoelectron microscopic techniques, we investigated the expression, regional distribution and subcellular localisation of Kv4.2 and Kv4.3 in the adult brain, as well as the ontogeny of their expression during postnatal development. Histoblot demonstrated that Kv4.2 and Kv4.3 proteins were widely expressed in the brain, with mostly non-overlapping patterns. During development, levels of Kv4.2 and Kv4.3 increased with age but showed marked region- and developmental stage-specific differences. Immunoelectron microscopy showed that labelling for Kv4.2 and Kv4.3 was differentially present in somato-dendritic domains of hippocampal principal cells and interneurons, including the synaptic specialisation. Quantitative analyses indicated that most immunoparticles for Kv4.2 and Kv4.3 were associated with the plasma membrane in dendritic spines and shafts, and that the two channels showed very similar distribution patterns in spines of principal cells and along the surface of granule cells. Our data shed new light on the subcellular localisation of Kv4 channels and provide evidence for their non-uniform distribution over the plasma membrane of hippocampal neurons.
Collapse
Affiliation(s)
- Rocío Alfaro-Ruíz
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Dept. Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02008 Albacete, Spain.
| | - Carolina Aguado
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Dept. Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02008 Albacete, Spain.
| | - Alejandro Martín-Belmonte
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Dept. Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02008 Albacete, Spain.
| | - Ana Esther Moreno-Martínez
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Dept. Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02008 Albacete, Spain.
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Dept. Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02008 Albacete, Spain.
| |
Collapse
|
8
|
Biró ÁA, Brémaud A, Falck J, Ruiz AJ. A-type K + channels impede supralinear summation of clustered glutamatergic inputs in layer 3 neocortical pyramidal neurons. Neuropharmacology 2018; 140:86-99. [PMID: 30009837 PMCID: PMC6137074 DOI: 10.1016/j.neuropharm.2018.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 06/15/2018] [Accepted: 07/04/2018] [Indexed: 02/05/2023]
Abstract
A-type K+ channels restrain the spread of incoming signals in tufted and apical dendrites of pyramidal neurons resulting in strong compartmentalization. However, the exact subunit composition and functional significance of K+ channels expressed in small diameter proximal dendrites remain poorly understood. We focus on A-type K+ channels expressed in basal and oblique dendrites of cortical layer 3 pyramidal neurons, in ex vivo brain slices from young adult mice. Blocking putative Kv4 subunits with phrixotoxin-2 enhances depolarizing potentials elicited by uncaging RuBi-glutamate at single dendritic spines. A concentration of 4-aminopyridine reported to block Kv1 has no effect on such responses. 4-aminopyridine and phrixotoxin-2 increase supralinear summation of glutamatergic potentials evoked by synchronous activation of clustered spines. The effect of 4-aminopyridine on glutamate responses is simulated in a computational model where the dendritic A-type conductance is distributed homogeneously or in a linear density gradient. Thus, putative Kv4-containing channels depress excitatory inputs at single synapses. The additional recruitment of Kv1 subunits might require the synchronous activation of multiple inputs to regulate the gain of signal integration. We focus on A-type K+ channels expressed in oblique and basal dendrites. Putative Kv4 subunits depress excitatory signals generated by single spine excitation. Kv4 and Kv1 regulate supralinear signal integration at clustered dendritic spines. A computational model simulates Kv-mediated modulation of dendritic integration.
Collapse
Affiliation(s)
- Ágota A Biró
- UCL School of Pharmacy, Brunswick Square, London WC1N 1AX, United Kingdom
| | - Antoine Brémaud
- UCL School of Pharmacy, Brunswick Square, London WC1N 1AX, United Kingdom
| | - Joanne Falck
- UCL School of Pharmacy, Brunswick Square, London WC1N 1AX, United Kingdom
| | - Arnaud J Ruiz
- UCL School of Pharmacy, Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|
9
|
Rapid Disinhibition by Adjustment of PV Intrinsic Excitability during Whisker Map Plasticity in Mouse S1. J Neurosci 2018; 38:4749-4761. [PMID: 29678876 DOI: 10.1523/jneurosci.3628-17.2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/27/2018] [Accepted: 04/10/2018] [Indexed: 01/11/2023] Open
Abstract
Rapid plasticity of layer (L) 2/3 inhibitory circuits is an early step in sensory cortical map plasticity, but its cellular basis is unclear. We show that, in mice of either sex, 1 d whisker deprivation drives the rapid loss of L4-evoked feedforward inhibition and more modest loss of feedforward excitation in L2/3 pyramidal (PYR) cells, increasing the excitation-inhibition conductance ratio. Rapid disinhibition was due to reduced L4-evoked spiking by L2/3 parvalbumin (PV) interneurons, caused by reduced PV intrinsic excitability. This included elevated PV spike threshold, which is associated with an increase in low-threshold, voltage-activated delayed rectifier (presumed Kv1) and A-type potassium currents. Excitatory synaptic input and unitary inhibitory output of PV cells were unaffected. Functionally, the loss of feedforward inhibition and excitation was precisely coordinated in L2/3 PYR cells, so that peak feedforward synaptic depolarization remained stable. Thus, the rapid plasticity of PV intrinsic excitability offsets early weakening of excitatory circuits to homeostatically stabilize synaptic potentials in PYR cells of sensory cortex.SIGNIFICANCE STATEMENT Inhibitory circuits in cerebral cortex are highly plastic, but the cellular mechanisms and functional importance of this plasticity are incompletely understood. We show that brief (1 d) sensory deprivation rapidly weakens parvalbumin (PV) inhibitory circuits by reducing the intrinsic excitability of PV neurons. This involved a rapid increase in voltage-gated potassium conductances that control near-threshold spiking excitability. Functionally, the loss of PV-mediated feedforward inhibition in L2/3 pyramidal cells was precisely balanced with the separate loss of feedforward excitation, resulting in a net homeostatic stabilization of synaptic potentials. Thus, rapid plasticity of PV intrinsic excitability implements network-level homeostasis to stabilize synaptic potentials in sensory cortex.
Collapse
|
10
|
Guan D, Pathak D, Foehring RC. Functional roles of Kv1-mediated currents in genetically identified subtypes of pyramidal neurons in layer 5 of mouse somatosensory cortex. J Neurophysiol 2018; 120:394-408. [PMID: 29641306 DOI: 10.1152/jn.00691.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We used voltage-clamp recordings from somatic outside-out macropatches to determine the amplitude and biophysical properties of putative Kv1-mediated currents in layer 5 pyramidal neurons (PNs) from mice expressing EGFP under the control of promoters for etv1 or glt. We then used whole cell current-clamp recordings and Kv1-specific peptide blockers to test the hypothesis that Kv1 channels differentially regulate action potential (AP) voltage threshold, repolarization rate, and width as well as rheobase and repetitive firing in these two PN types. We found that Kv1-mediated currents make up a similar percentage of whole cell K+ current in both cell types, and only minor biophysical differences were observed between PN types or between currents sensitive to different Kv1 blockers. Putative Kv1 currents contributed to AP voltage threshold in both PN types, but AP width and rate of repolarization were only affected in etv1 PNs. Kv1 currents regulate rheobase, delay to the first AP, and firing rate similarly in both cell types, but the frequency-current slope was much more sensitive to Kv1 block in etv1 PNs. In both cell types, Kv1 block shifted the current required to elicit an onset doublet of action potentials to lower currents. Spike frequency adaptation was also affected differently by Kv1 block in the two PN types. Thus, despite similar expression levels and minimal differences in biophysical properties, Kv1 channels differentially regulate APs and repetitive firing in etv1 and glt PNs. This may reflect differences in subcellular localization of channel subtypes or differences in the other K+ channels expressed. NEW & NOTEWORTHY In two types of genetically identified layer 5 pyramidal neurons, α-dendrotoxin blocked approximately all of the putative Kv1 current (on average). We used outside-out macropatches and whole cell recordings at 33°C to show that despite similar expression levels and minimal differences in biophysical properties, Kv1 channels differentially regulate action potentials and repetitive firing in etv1 and glt pyramidal neurons. This may reflect differences in subcellular localization of channel subtypes or differences in the other K+ channels expressed.
Collapse
Affiliation(s)
- Dongxu Guan
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Dhruba Pathak
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Robert C Foehring
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center , Memphis, Tennessee
| |
Collapse
|
11
|
Beining M, Mongiat LA, Schwarzacher SW, Cuntz H, Jedlicka P. T2N as a new tool for robust electrophysiological modeling demonstrated for mature and adult-born dentate granule cells. eLife 2017; 6:e26517. [PMID: 29165247 PMCID: PMC5737656 DOI: 10.7554/elife.26517] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 11/21/2017] [Indexed: 12/18/2022] Open
Abstract
Compartmental models are the theoretical tool of choice for understanding single neuron computations. However, many models are incomplete, built ad hoc and require tuning for each novel condition rendering them of limited usability. Here, we present T2N, a powerful interface to control NEURON with Matlab and TREES toolbox, which supports generating models stable over a broad range of reconstructed and synthetic morphologies. We illustrate this for a novel, highly detailed active model of dentate granule cells (GCs) replicating a wide palette of experiments from various labs. By implementing known differences in ion channel composition and morphology, our model reproduces data from mouse or rat, mature or adult-born GCs as well as pharmacological interventions and epileptic conditions. This work sets a new benchmark for detailed compartmental modeling. T2N is suitable for creating robust models useful for large-scale networks that could lead to novel predictions. We discuss possible T2N application in degeneracy studies.
Collapse
Affiliation(s)
- Marcel Beining
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
- Frankfurt Institute for Advanced StudiesFrankfurtGermany
- Institute of Clinical Neuroanatomy, Neuroscience CenterGoethe UniversityFrankfurtGermany
- Faculty of BiosciencesGoethe UniversityFrankfurtGermany
| | - Lucas Alberto Mongiat
- Instituto de Investigación en Biodiversidad y MedioambienteUniversidad Nacional del Comahue-CONICETSan Carlos de BarilocheArgentina
| | | | - Hermann Cuntz
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
- Frankfurt Institute for Advanced StudiesFrankfurtGermany
| | - Peter Jedlicka
- Institute of Clinical Neuroanatomy, Neuroscience CenterGoethe UniversityFrankfurtGermany
| |
Collapse
|
12
|
Lindsly C, Gonzalez-Islas C, Wenner P. Elevated intracellular Na + concentrations in developing spinal neurons. J Neurochem 2017; 140:755-765. [PMID: 28027400 DOI: 10.1111/jnc.13936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 11/09/2016] [Accepted: 12/05/2016] [Indexed: 11/30/2022]
Abstract
Over 25 years ago it was first reported that intracellular chloride levels (Cl-in ) were higher in developing neurons than in maturity. This finding has had significant implications for understanding the excitability of developing networks and recognizing the underlying causes of hyperexcitability associated with disease and neural injury. While there is some evidence that intracellular sodium levels (Na+in ) change during the development of non-neural cells, it has largely been assumed that Na+in is the same in developing and mature neurons. Here, using the sodium indicator SBFI, we test this idea and find that Na+in is significantly higher in embryonic spinal motoneurons and interneurons than in maturity. We find that Na+in reaches ~ 60 mM in mid-embryonic development and is then reduced to ~ 30 mM in late embryonic development. By retrogradely labeling motoneurons with SBFI we can reliably follow Na+in levels in vitro for hours. Bursts of spiking activity, and blocking voltage-gated sodium channels did not influence observed motoneuron sodium levels. On the other hand, Na+in was reduced by blocking the Na+ -K+ -2Cl- cotransporter NKCC1, and was highly sensitive to changes in external Na+ and a blocker of the Na+ /K+ ATPase. Our findings suggest that the Na+ gradient is weaker in embryonic neuronal development and strengthens in maturity in a manner similar to that of Cl- .
Collapse
Affiliation(s)
- Casie Lindsly
- Physiology Department, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Carlos Gonzalez-Islas
- Physiology Department, Emory University, School of Medicine, Atlanta, Georgia, USA.,Doctorado en Ciencias Biológicas Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Peter Wenner
- Physiology Department, Emory University, School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Meadows JP, Guzman-Karlsson MC, Phillips S, Brown JA, Strange SK, Sweatt JD, Hablitz JJ. Dynamic DNA methylation regulates neuronal intrinsic membrane excitability. Sci Signal 2016; 9:ra83. [PMID: 27555660 DOI: 10.1126/scisignal.aaf5642] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epigenetic modifications, such as DNA cytosine methylation, contribute to the mechanisms underlying learning and memory by coordinating adaptive gene expression and neuronal plasticity. Transcription-dependent plasticity regulated by DNA methylation includes synaptic plasticity and homeostatic synaptic scaling. Memory-related plasticity also includes alterations in intrinsic membrane excitability mediated by changes in the abundance or activity of ion channels in the plasma membrane, which sets the threshold for action potential generation. We found that prolonged inhibition of DNA methyltransferase (DNMT) activity increased intrinsic membrane excitability of cultured cortical pyramidal neurons. Knockdown of the cytosine demethylase TET1 or inhibition of RNA polymerase blocked the increased membrane excitability caused by DNMT inhibition, suggesting that this effect was mediated by subsequent cytosine demethylation and de novo transcription. Prolonged DNMT inhibition blunted the medium component of the after-hyperpolarization potential, an effect that would increase neuronal excitability, and was associated with reduced expression of the genes encoding small-conductance Ca(2+)-activated K(+) (SK) channels. Furthermore, the specific SK channel blocker apamin increased neuronal excitability but was ineffective after DNMT inhibition. Our results suggested that DNMT inhibition enables transcriptional changes that culminate in decreased expression of SK channel-encoding genes and decreased activity of SK channels, thus providing a mechanism for the regulation of neuronal intrinsic membrane excitability by dynamic DNA cytosine methylation. This study has implications for human neurological and psychiatric diseases associated with dysregulated intrinsic excitability.
Collapse
Affiliation(s)
- Jarrod P Meadows
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mikael C Guzman-Karlsson
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Scott Phillips
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jordan A Brown
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sarah K Strange
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - J David Sweatt
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA. Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John J Hablitz
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
14
|
Regnier G, Bocksteins E, Van de Vijver G, Snyders DJ, van Bogaert PP. The contribution of Kv2.2-mediated currents decreases during the postnatal development of mouse dorsal root ganglion neurons. Physiol Rep 2016; 4:4/6/e12731. [PMID: 27033450 PMCID: PMC4814888 DOI: 10.14814/phy2.12731] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/12/2016] [Indexed: 11/24/2022] Open
Abstract
Delayed rectifier voltage-gated K(+)(Kv) channels play an important role in the regulation of the electrophysiological properties of neurons. In mouse dorsal root ganglion (DRG) neurons, a large fraction of the delayed rectifier current is carried by both homotetrameric Kv2 channels and heterotetrameric channels consisting of Kv2 and silent Kv (KvS) subunits (i.e., Kv5-Kv6 and Kv8-Kv9). However, little is known about the contribution of Kv2-mediated currents during the postnatal development ofDRGneurons. Here, we report that the Stromatoxin-1 (ScTx)-sensitive fraction of the total outward K(+)current (IK) from mouseDRGneurons gradually decreased (~13%,P < 0.05) during the first month of postnatal development. Because ScTx inhibits both Kv2.1- and Kv2.2-mediated currents, this gradual decrease may reflect a decrease in currents containing either subunit. However, the fraction of Kv2.1 antibody-sensitive current that only reflects the Kv2.1-mediated currents remained constant during that same period. These results suggested that the fractional contribution of Kv2.2-mediated currents relative toIKdecreased with postnatal age. SemiquantitativeRT-PCRanalysis indicated that this decrease can be attributed to developmental changes in Kv2.2 expression as themRNAlevels of the Kv2.2 subunit decreased gradually between 1 and 4 weeks of age. In addition, we observed age-dependent fluctuations in themRNAlevels of the Kv6.3, Kv8.1, Kv9.1, and Kv9.3 subunits. These results support an important role of both Kv2 and KvS subunits in the postnatal maturation ofDRGneurons.
Collapse
Affiliation(s)
- Glenn Regnier
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, CDE, Antwerpen, Belgium
| | - Elke Bocksteins
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, CDE, Antwerpen, Belgium
| | - Gerda Van de Vijver
- Laboratory for Cardiovascular Research, Institute Born-Bunge University of Antwerp, CDE, Antwerpen, Belgium
| | - Dirk J Snyders
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, CDE, Antwerpen, Belgium
| | - Pierre-Paul van Bogaert
- Laboratory for Cardiovascular Research, Institute Born-Bunge University of Antwerp, CDE, Antwerpen, Belgium
| |
Collapse
|
15
|
Heine M, Ciuraszkiewicz A, Voigt A, Heck J, Bikbaev A. Surface dynamics of voltage-gated ion channels. Channels (Austin) 2016; 10:267-81. [PMID: 26891382 DOI: 10.1080/19336950.2016.1153210] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neurons encode information in fast changes of the membrane potential, and thus electrical membrane properties are critically important for the integration and processing of synaptic inputs by a neuron. These electrical properties are largely determined by ion channels embedded in the membrane. The distribution of most ion channels in the membrane is not spatially uniform: they undergo activity-driven changes in the range of minutes to days. Even in the range of milliseconds, the composition and topology of ion channels are not static but engage in highly dynamic processes including stochastic or activity-dependent transient association of the pore-forming and auxiliary subunits, lateral diffusion, as well as clustering of different channels. In this review we briefly discuss the potential impact of mobile sodium, calcium and potassium ion channels and the functional significance of this for individual neurons and neuronal networks.
Collapse
Affiliation(s)
- Martin Heine
- a RG Molecular Physiology, Leibniz Institute for Neurobiology, Center for Behavioral Brain Science, Otto-von-Guericke-University of Magdeburg , Magdeburg , Germany
| | - Anna Ciuraszkiewicz
- a RG Molecular Physiology, Leibniz Institute for Neurobiology, Center for Behavioral Brain Science, Otto-von-Guericke-University of Magdeburg , Magdeburg , Germany
| | - Andreas Voigt
- b Lehrstuhl Systemverfahrenstechnik, Otto-von-Guericke-University of Magdeburg , Magdeburg , Germany
| | - Jennifer Heck
- a RG Molecular Physiology, Leibniz Institute for Neurobiology, Center for Behavioral Brain Science, Otto-von-Guericke-University of Magdeburg , Magdeburg , Germany
| | - Arthur Bikbaev
- a RG Molecular Physiology, Leibniz Institute for Neurobiology, Center for Behavioral Brain Science, Otto-von-Guericke-University of Magdeburg , Magdeburg , Germany
| |
Collapse
|
16
|
Pathak D, Guan D, Foehring RC. Roles of specific Kv channel types in repolarization of the action potential in genetically identified subclasses of pyramidal neurons in mouse neocortex. J Neurophysiol 2016; 115:2317-29. [PMID: 26864770 DOI: 10.1152/jn.01028.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/09/2016] [Indexed: 01/07/2023] Open
Abstract
The action potential (AP) is a fundamental feature of excitable cells that serves as the basis for long-distance signaling in the nervous system. There is considerable diversity in the appearance of APs and the underlying repolarization mechanisms in different neuronal types (reviewed in Bean BP. Nat Rev Neurosci 8: 451-465, 2007), including among pyramidal cell subtypes. In the present work, we used specific pharmacological blockers to test for contributions of Kv1, Kv2, or Kv4 channels to repolarization of single APs in two genetically defined subpopulations of pyramidal cells in layer 5 of mouse somatosensory cortex (etv1 and glt) as well as pyramidal cells from layer 2/3. These three subtypes differ in AP properties (Groh A, Meyer HS, Schmidt EF, Heintz N, Sakmann B, Krieger P. Cereb Cortex 20: 826-836, 2010; Guan D, Armstrong WE, Foehring RC. J Neurophysiol 113: 2014-2032, 2015) as well as laminar position, morphology, and projection targets. We asked what the roles of Kv1, Kv2, and Kv4 channels are in AP repolarization and whether the underlying mechanisms are pyramidal cell subtype dependent. We found that Kv4 channels are critically involved in repolarizing neocortical pyramidal cells. There are also pyramidal cell subtype-specific differences in the role for Kv1 channels. Only Kv4 channels were involved in repolarizing the narrow APs of glt cells. In contrast, in etv1 cells and layer 2/3 cells, the broader APs are partially repolarized by Kv1 channels in addition to Kv4 channels. Consistent with their activation in the subthreshold range, Kv1 channels also regulate AP voltage threshold in all pyramidal cell subtypes.
Collapse
Affiliation(s)
- Dhruba Pathak
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Dongxu Guan
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Robert C Foehring
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
17
|
Valiullina F, Akhmetshina D, Nasretdinov A, Mukhtarov M, Valeeva G, Khazipov R, Rozov A. Developmental Changes in Electrophysiological Properties and a Transition from Electrical to Chemical Coupling between Excitatory Layer 4 Neurons in the Rat Barrel Cortex. Front Neural Circuits 2016; 10:1. [PMID: 26834567 PMCID: PMC4720737 DOI: 10.3389/fncir.2016.00001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/02/2016] [Indexed: 11/22/2022] Open
Abstract
During development, sensory systems switch from an immature to an adult mode of function along with the emergence of the active cortical states. Here, we used patch-clamp recordings from neocortical slices in vitro to characterize the developmental changes in the basic electrophysiological properties of excitatory L4 neurons and their connectivity before and after the developmental switch, which occurs in the rat barrel cortex in vivo at postnatal day P8. Prior to the switch, L4 neurons had higher resting membrane potentials, higher input resistance, lower membrane capacity, as well as action potentials (APs) with smaller amplitudes, longer durations and higher AP thresholds compared to the neurons after the switch. A sustained firing pattern also emerged around the switch. Dual patch-clamp recordings from L4 neurons revealed that recurrent connections between L4 excitatory cells do not exist before and develop rapidly across the switch. In contrast, electrical coupling between these neurons waned around the switch. We suggest that maturation of electrophysiological features, particularly acquisition of a sustained firing pattern, and a transition from the immature electrical to mature chemical synaptic coupling between excitatory L4 neurons, contributes to the developmental switch in the cortical mode of function.
Collapse
Affiliation(s)
- Fliza Valiullina
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University Kazan, Russia
| | - Dinara Akhmetshina
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University Kazan, Russia
| | - Azat Nasretdinov
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University Kazan, Russia
| | - Marat Mukhtarov
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University Kazan, Russia
| | - Guzel Valeeva
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University Kazan, Russia
| | - Roustem Khazipov
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia; Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale UMR901Marseille, France; Aix-Marseille UniversityMarseille, France
| | - Andrei Rozov
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia; Department of Physiology and Pathophysiology, University of HeidelbergHeidelberg, Germany
| |
Collapse
|
18
|
Rodríguez-Tornos FM, Briz CG, Weiss LA, Sebastián-Serrano A, Ares S, Navarrete M, Frangeul L, Galazo M, Jabaudon D, Esteban JA, Nieto M. Cux1 Enables Interhemispheric Connections of Layer II/III Neurons by Regulating Kv1-Dependent Firing. Neuron 2016; 89:494-506. [PMID: 26804994 DOI: 10.1016/j.neuron.2015.12.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/23/2015] [Accepted: 12/01/2015] [Indexed: 01/19/2023]
Abstract
Neuronal subtype-specific transcription factors (TFs) instruct key features of neuronal function and connectivity. Activity-dependent mechanisms also contribute to wiring and circuit assembly, but whether and how they relate to TF-directed neuronal differentiation is poorly investigated. Here we demonstrate that the TF Cux1 controls the formation of the layer II/III corpus callosum (CC) projections through the developmental transcriptional regulation of Kv1 voltage-dependent potassium channels and the resulting postnatal switch to a Kv1-dependent firing mode. Loss of Cux1 function led to a decrease in the expression of Kv1 transcripts, aberrant firing responses, and selective loss of CC contralateral innervation. Firing and innervation were rescued by re-expression of Kv1 or postnatal reactivation of Cux1. Knocking down Kv1 mimicked Cux1-mediated CC axonal loss. These findings reveal that activity-dependent processes are central bona fide components of neuronal TF-differentiation programs and establish the importance of intrinsic firing modes in circuit assembly within the neocortex.
Collapse
Affiliation(s)
| | - Carlos G Briz
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Linnea A Weiss
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Alvaro Sebastián-Serrano
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Saúl Ares
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain; Departamento de Matemáticas Universidad Carlos III de Madrid, Grupo Interdisciplinar de Sistemas Complejos (GISC), 28911 Leganés, Madrid, Spain
| | - Marta Navarrete
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas (CSIC-UAM), 28049 Madrid, Spain
| | - Laura Frangeul
- Department of Basic Neurosciences, University of Geneva, 1211 Geneva 4, Switzerland
| | - Maria Galazo
- HSCRB Harvard University, Cambridge, MA 02138, USA
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, 1211 Geneva 4, Switzerland
| | - José A Esteban
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas (CSIC-UAM), 28049 Madrid, Spain
| | - Marta Nieto
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
19
|
Torkamani A, Bersell K, Jorge BS, Bjork RL, Friedman JR, Bloss CS, Cohen J, Gupta S, Naidu S, Vanoye CG, George AL, Kearney JA. De novo KCNB1 mutations in epileptic encephalopathy. Ann Neurol 2014; 76:529-540. [PMID: 25164438 DOI: 10.1002/ana.24263] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Numerous studies have demonstrated increased load of de novo copy number variants or single nucleotide variants in individuals with neurodevelopmental disorders, including epileptic encephalopathies, intellectual disability, and autism. METHODS We searched for de novo mutations in a family quartet with a sporadic case of epileptic encephalopathy with no known etiology to determine the underlying cause using high-coverage whole exome sequencing (WES) and lower-coverage whole genome sequencing. Mutations in additional patients were identified by WES. The effect of mutations on protein function was assessed in a heterologous expression system. RESULTS We identified a de novo missense mutation in KCNB1 that encodes the KV 2.1 voltage-gated potassium channel. Functional studies demonstrated a deleterious effect of the mutation on KV 2.1 function leading to a loss of ion selectivity and gain of a depolarizing inward cation conductance. Subsequently, we identified 2 additional patients with epileptic encephalopathy and de novo KCNB1 missense mutations that cause a similar pattern of KV 2.1 dysfunction. INTERPRETATION Our genetic and functional evidence demonstrate that KCNB1 mutation can result in early onset epileptic encephalopathy. This expands the locus heterogeneity associated with epileptic encephalopathies and suggests that clinical WES may be useful for diagnosis of epileptic encephalopathies of unknown etiology.
Collapse
Affiliation(s)
- Ali Torkamani
- The Scripps Translational Science Institute, Scripps Health and The Scripps Research Institute, San Diego, CA 92037
| | - Kevin Bersell
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Benjamin S Jorge
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Robert L Bjork
- Pediatrics, Scripps Health, San Diego, CA 92037, USA.,Sea Breeze Pediatrics, APC, San Diego, CA
| | - Jennifer R Friedman
- Departments of Neurosciences and Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | - Cinnamon S Bloss
- The Scripps Translational Science Institute, Scripps Health and The Scripps Research Institute, San Diego, CA 92037
| | - Julie Cohen
- Kennedy Krieger Institute, Baltimore, MD 21205
| | - Siddharth Gupta
- Kennedy Krieger Institute, Baltimore, MD 21205.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Sakkubai Naidu
- Kennedy Krieger Institute, Baltimore, MD 21205.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Carlos G Vanoye
- Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA.,Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Alfred L George
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA.,Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Jennifer A Kearney
- Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA.,Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
20
|
Kv2 channel regulation of action potential repolarization and firing patterns in superior cervical ganglion neurons and hippocampal CA1 pyramidal neurons. J Neurosci 2014; 34:4991-5002. [PMID: 24695716 DOI: 10.1523/jneurosci.1925-13.2014] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Kv2 family "delayed-rectifier" potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and action potentials. In both rat superior cervical ganglion (SCG) neurons and mouse hippocampal CA1 pyramidal neurons, 100 nm GxTX-1E produced near-saturating block of a component of current typically constituting ∼60-80% of the total delayed-rectifier current. GxTX-1E also reduced A-type potassium current (IA), but much more weakly. In SCG neurons, 100 nm GxTX-1E broadened spikes and voltage clamp experiments using action potential waveforms showed that Kv2 channels carry ∼55% of the total outward current during action potential repolarization despite activating relatively late in the spike. In CA1 neurons, 100 nm GxTX-1E broadened spikes evoked from -70 mV, but not -80 mV, likely reflecting a greater role of Kv2 when other potassium channels were partially inactivated at -70 mV. In both CA1 and SCG neurons, inhibition of Kv2 channels produced dramatic depolarization of interspike voltages during repetitive firing. In CA1 neurons and some SCG neurons, this was associated with increased initial firing frequency. In all neurons, inhibition of Kv2 channels depressed maintained firing because neurons entered depolarization block more readily. Therefore, Kv2 channels can either decrease or increase neuronal excitability depending on the time scale of excitation.
Collapse
|
21
|
Groen MR, Paulsen O, Pérez-Garci E, Nevian T, Wortel J, Dekker MP, Mansvelder HD, van Ooyen A, Meredith RM. Development of dendritic tonic GABAergic inhibition regulates excitability and plasticity in CA1 pyramidal neurons. J Neurophysiol 2014; 112:287-99. [PMID: 24760781 DOI: 10.1152/jn.00066.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Synaptic plasticity rules change during development: while hippocampal synapses can be potentiated by a single action potential pairing protocol in young neurons, mature neurons require burst firing to induce synaptic potentiation. An essential component for spike timing-dependent plasticity is the backpropagating action potential (BAP). BAP along the dendrites can be modulated by morphology and ion channel composition, both of which change during late postnatal development. However, it is unclear whether these dendritic changes can explain the developmental changes in synaptic plasticity induction rules. Here, we show that tonic GABAergic inhibition regulates dendritic action potential backpropagation in adolescent, but not preadolescent, CA1 pyramidal neurons. These developmental changes in tonic inhibition also altered the induction threshold for spike timing-dependent plasticity in adolescent neurons. This GABAergic regulatory effect on backpropagation is restricted to distal regions of apical dendrites (>200 μm) and mediated by α5-containing GABA(A) receptors. Direct dendritic recordings demonstrate α5-mediated tonic GABA(A) currents in adolescent neurons which can modulate BAPs. These developmental modulations in dendritic excitability could not be explained by concurrent changes in dendritic morphology. To explain our data, model simulations propose a distally increasing or localized distal expression of dendritic α5 tonic inhibition in mature neurons. Overall, our results demonstrate that dendritic integration and plasticity in more mature dendrites are significantly altered by tonic α5 inhibition in a dendritic region-specific and developmentally regulated manner.
Collapse
Affiliation(s)
- Martine R Groen
- Center for Neurogenomics & Cognitive Research, Department of Integrative Neurophysiology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | | | - Thomas Nevian
- Department of Physiology, University of Berne, Berne, Switzerland; and
| | - J Wortel
- Center for Neurogenomics & Cognitive Research, Department of Functional Genomics, VU University Amsterdam, Amsterdam, The Netherlands
| | - Marinus P Dekker
- Center for Neurogenomics & Cognitive Research, Department of Functional Genomics, VU University Amsterdam, Amsterdam, The Netherlands
| | - Huibert D Mansvelder
- Center for Neurogenomics & Cognitive Research, Department of Integrative Neurophysiology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Arjen van Ooyen
- Center for Neurogenomics & Cognitive Research, Department of Integrative Neurophysiology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rhiannon M Meredith
- Center for Neurogenomics & Cognitive Research, Department of Integrative Neurophysiology, VU University Amsterdam, Amsterdam, The Netherlands;
| |
Collapse
|
22
|
Dufour MA, Woodhouse A, Goaillard JM. Somatodendritic ion channel expression in substantia nigra pars compacta dopaminergic neurons across postnatal development. J Neurosci Res 2014; 92:981-99. [PMID: 24723263 DOI: 10.1002/jnr.23382] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/14/2014] [Accepted: 02/14/2014] [Indexed: 01/12/2023]
Abstract
Dopaminergic neurons of the substantia nigra pars compacta (SNc) are involved in the control of movement, sleep, reward, learning, and nervous system disorders and disease. To date, a thorough characterization of the ion channel phenotype of this important neuronal population is lacking. Using immunohistochemistry, we analyzed the somatodendritic expression of voltage-gated ion channel subunits that are involved in pacemaking activity in SNc dopaminergic neurons in 6-, 21-, and 40-day-old rats. Our results demonstrate that the same complement of somatodendritic ion channels is present in SNc dopaminergic neurons from P6 to P40. The major developmental changes were an increase in the dendritic range of the immunolabeling for the HCN, T-type calcium, Kv4.3, delayed rectifier, and SK channels. Our study sheds light on the ion channel subunits that contribute to the somatodendritic delayed rectifier (Kv1.3, Kv2.1, Kv3.2, Kv3.3), A-type (Kv4.3) and calcium-activated SK (SK1, SK2, SK3) potassium currents, IH (mainly HCN2, HCN4), and the L- (Cav1.2, Cav1.3) and T-type (mainly Cav3.1, Cav3.3) calcium currents in SNc dopaminergic neurons. Finally, no robust differences in voltage-gated ion channel immunolabeling were observed across the population of SNc dopaminergic neurons for each age examined, suggesting that differing levels of individual ion channels are unlikely to distinguish between specific subpopulations of SNc dopaminergic neurons. This is significant in light of previous studies suggesting that age- or region-associated variations in the expression profile of voltage-gated ion channels in SNc dopaminergic neurons may underlie their vulnerability to dysfunction and disease.
Collapse
Affiliation(s)
- Martial A Dufour
- INSERM, UMR_S 1072, 13015, Marseille, France; Aix-Marseille Université, UNIS, 13015, Marseille, France
| | | | | |
Collapse
|
23
|
Książek A, Ladno W, Szulczyk B, Grzelka K, Szulczyk P. Properties of BK-type Ca(+) (+)-dependent K(+) channel currents in medial prefrontal cortex pyramidal neurons in rats of different ages. Front Cell Neurosci 2013; 7:185. [PMID: 24312002 PMCID: PMC3836005 DOI: 10.3389/fncel.2013.00185] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/02/2013] [Indexed: 11/13/2022] Open
Abstract
The medial prefrontal cortex (PFC) is involved in cognitive functions, which undergo profound changes during adolescence. This alteration of the PFC function derives from neuron activity, which, in turn, may depend on age-dependent properties and the expression of neuronal ion channels. BK-type channels are involved in controlling both the Ca(+) (+) ion concentration in the cell interior and cell excitability. The purpose of this study was to test the properties of BK currents in the medial PFC pyramidal neurons of young (18- to 22-day-old), adolescent (38- to 42-day-old), and adult (60- to 65-day-old) rats. Whole-cell currents evoked by depolarizing voltage steps were recorded from dispersed medial PFC pyramidal neurons. A selective BK channel blocker - paxilline (10 μM) - irreversibly decreased the non-inactivating K(+) current in neurons that were isolated from the young and adult rats. This current was not significantly affected by paxilline in the neurons obtained from adolescent rats. The properties of single-channel K(+) currents were recorded from the soma of dispersed medial PFC pyramidal neurons in the cell-attached configuration. Of the K(+) channel currents that were recorded, ~90% were BK and leak channel currents. The BK-type channel currents were dependent on the Ca(+) (+) concentration and the voltage and were inhibited by paxilline. The biophysical properties of the BK channel currents did not differ among the pyramidal neurons isolated from young, adolescent, and adult rats. Among all of the recorded K(+) channel currents, 38.9, 12.7, and 21.1% were BK-type channel currents in the neurons isolated from the young, adolescent, and adult rats, respectively. Furthermore, application of paxilline effectively prolonged the half-width of the action potential in pyramidal neurons in slices isolated from young and adult rats but not in neurons isolated from adolescent rats. We conclude that the availability of BK channel currents decreases in medial PFC pyramidal neurons of adolescent rats compared with those in the neurons of young and adult rats while their properties did not change across ages.
Collapse
Affiliation(s)
- Aneta Książek
- Department of Physiology and Pathophysiology, Medical University of Warsaw Warsaw, Poland
| | | | | | | | | |
Collapse
|
24
|
Giglio AM, Storm JF. Postnatal development of temporal integration, spike timing and spike threshold regulation by a dendrotoxin-sensitive K+current in rat CA1 hippocampal cells. Eur J Neurosci 2013; 39:12-23. [DOI: 10.1111/ejn.12385] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 08/30/2013] [Accepted: 09/10/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Anna M. Giglio
- Institute of Basal Medicine; Department of Physiology and Centre of Molecular Biology and Neuroscience; University of Oslo; PB 1104 Blindern, 0317 Oslo Norway
| | - Johan F. Storm
- Institute of Basal Medicine; Department of Physiology and Centre of Molecular Biology and Neuroscience; University of Oslo; PB 1104 Blindern, 0317 Oslo Norway
| |
Collapse
|
25
|
Guan D, Armstrong WE, Foehring RC. Kv2 channels regulate firing rate in pyramidal neurons from rat sensorimotor cortex. J Physiol 2013; 591:4807-25. [PMID: 23878373 DOI: 10.1113/jphysiol.2013.257253] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The largest outward potassium current in the soma of neocortical pyramidal neurons is due to channels containing Kv2.1 α subunits. These channels have been implicated in cellular responses to seizures and ischaemia, mechanisms for intrinsic plasticity and cell death, and responsiveness to anaesthetic agents. Despite their abundance, knowledge of the function of these delayed rectifier channels has been limited by the lack of specific pharmacological agents. To test for functional roles of Kv2 channels in pyramidal cells from somatosensory or motor cortex of rats (layers 2/3 or 5), we transfected cortical neurons with DNA for a Kv2.1 pore mutant (Kv2.1W365C/Y380T: Kv2.1 DN) in an organotypic culture model to manipulate channel expression. Slices were obtained from rats at postnatal days (P7-P14) and maintained in organotypic culture. We used biolistic methods to transfect neurons with gold 'bullets' coated with DNA for the Kv2.1 DN and green fluorescent protein (GFP), GFP alone, or wild type (WT) Kv2.1 plus GFP. Cells that fluoresced green, contained a bullet and responded to positive or negative pressure from the recording pipette were considered to be transfected cells. In each slice, we recorded from a transfected cell and a control non-transfected cell from the same layer and area. Whole-cell voltage-clamp recordings obtained after 3-7 days in culture showed that cells transfected with the Kv2.1 DN had a significant reduction in outward current (∼45% decrease in the total current density measured 200 ms after onset of a voltage step from -78 to -2 mV). Transfection with GFP alone did not affect current amplitude and overexpression of the Kv2.1 WT resulted in greatly increased currents. Current-clamp experiments were used to assess the functional consequences of manipulation of Kv2.1 expression. The results suggest roles for Kv2 channels in controlling membrane potential during the interspike interval (ISI), firing rate, spike frequency adaptation (SFA) and the steady-state gain of firing. Specifically, firing rate and gain were reduced in the Kv2.1 DN cells. The most parsimonious explanation for the effects on firing is that in the absence of Kv2 channels, the membrane remains depolarized during the ISIs, preventing recovery of Na(+) channels from inactivation. Depolarization and the number of inactivated Na(+) channels would build with successive spikes, resulting in slower firing and enhanced spike frequency adaptation in the Kv2.1 DN cells.
Collapse
Affiliation(s)
- Dongxu Guan
- R. C. Foehring: Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, 855 Monroe Avenue, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
26
|
Abstract
The Kv2.1 voltage-gated K(+) channel is found both freely diffusing over the plasma membrane and concentrated in micron-sized clusters localized to the soma, proximal dendrites, and axon initial segment of hippocampal neurons. In transfected HEK cells, Kv2.1 channels within cluster microdomains are nonconducting. Using total internal reflection fluorescence microscopy, the number of GFP-tagged Kv2.1 channels on the HEK cell surface was compared with K(+) channel conductance measured by whole-cell voltage clamp of the same cell. This approach indicated that, as channel density increases, nonclustered channels cease conducting. At the highest density observed, only 4% of all channels were conducting. Mutant Kv2.1 channels that fail to cluster also possessed the nonconducting state with 17% conducting K(+) at higher surface densities. The nonconducting state was specific to Kv2.1 as Kv1.4 was always conducting regardless of the cell-surface expression level. Anti-Kv2.1 immunofluorescence intensity, standardized to Kv2.1 surface density in transfected HEK cells, was used to determine the expression levels of endogenous Kv2.1 in cultured rat hippocampal neurons. Endogenous Kv2.1 levels were compared with the number of conducting channels determined by whole-cell voltage clamp. Only 13 and 27% of the endogenous Kv2.1 was conducting in neurons cultured for 14 and 20 d, respectively. Together, these data indicate that the nonconducting state depends primarily on surface density as opposed to cluster location and that this nonconducting state also exists for native Kv2.1 found in cultured hippocampal neurons. This excess of Kv2.1 protein relative to K(+) conductance further supports a nonconducting role for Kv2.1 in excitable tissues.
Collapse
|
27
|
Abstract
Cortical circuits encode sensory stimuli through the firing of neuronal ensembles, and also produce spontaneous population patterns in the absence of sensory drive. This population activity is often characterized experimentally by the distribution of multineuron "words" (binary firing vectors), and a match between spontaneous and evoked word distributions has been suggested to reflect learning of a probabilistic model of the sensory world. We analyzed multineuron word distributions in sensory cortex of anesthetized rats and cats, and found that they are dominated by fluctuations in population firing rate rather than precise interactions between individual units. Furthermore, cortical word distributions change when brain state shifts, and similar behavior is seen in simulated networks with fixed, random connectivity. Our results suggest that similarity or dissimilarity in multineuron word distributions could primarily reflect similarity or dissimilarity in population firing rate dynamics, and not necessarily the precise interactions between neurons that would indicate learning of sensory features.
Collapse
|
28
|
Song M, Mohamad O, Chen D, Yu SP. Coordinated development of voltage-gated Na+ and K+ currents regulates functional maturation of forebrain neurons derived from human induced pluripotent stem cells. Stem Cells Dev 2013; 22:1551-63. [PMID: 23259973 DOI: 10.1089/scd.2012.0556] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Like embryonic stem (ES) cells, human induced pluripotent stem (hiPS) cells can differentiate into neuronal cells. However, it is unclear how their exquisite neuronal function is electrophysiologically coordinated during differentiation and whether they are functionally identical to human ES cell-derived neurons. In this study, we differentiated hiPS and ES cells into pyramidal-like neurons and conducted electrophysiological characterization over the 4-week terminal differentiation period. The human neuron-like cells express forebrain pyramidal cell markers NeuN, neurofilament, the microtubule-associated protein 2 (MAP2), the paired box protein Pax-6 (PAX6), Tuj1, and the forkhead box protein G1 (FoxG1). The size of developing neurons increased continuously during the 4-week culture, and cell-resting membrane potentials (RMPs) underwent a negative shift from -40 to -70 mV. Expression of the muscarinic receptor-modulated K(+) currents (IM) participated in the development of cell RMPs and controlled excitability. Immature neurons at week 1 could only fire abortive action potentials (APs) and the frequency of AP firing progressively increased with neuronal maturation. Interestingly, the developmental change of voltage-gated Na(+) current (INa) did not correlate with the change in the AP firing frequency. On the other hand, the transient outward K(+) current (IA), but not the delayed rectifier current (IK) contributed to the high frequency firing of APs. Synaptic activities were observed throughout the 4-week development. These morphological and electrophysiological features were almost identical between iPS and ES cell-derived neurons. This is the first systematic investigation showing functional evidence that hiPS cell-derived neurons possess similar neuronal activities as ES cell-derived neurons. These data support that iPS cell-derived neural progenitor cells have the potential for replacing lost neurons in cell-based therapy.
Collapse
Affiliation(s)
- Mingke Song
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
29
|
Ih channels prevent overexcitability of early developmental CA1 neurons showing high input resistance in rats. Brain Res Bull 2013; 91:14-20. [DOI: 10.1016/j.brainresbull.2012.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 11/23/2012] [Accepted: 11/24/2012] [Indexed: 11/21/2022]
|
30
|
Size of cell-surface Kv2.1 domains is governed by growth fluctuations. Biophys J 2012; 103:1727-34. [PMID: 23083716 DOI: 10.1016/j.bpj.2012.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 09/07/2012] [Accepted: 09/13/2012] [Indexed: 11/21/2022] Open
Abstract
The Kv2.1 voltage-gated potassium channel forms stable clusters on the surface of different mammalian cells. Even though these cell-surface structures have been observed for almost a decade, little is known about the mechanism by which cells maintain them. We measure the distribution of domain sizes to study the kinetics of their growth. Using a Fokker-Planck formalism, we find no evidence for a feedback mechanism present to maintain specific domain radii. Instead, the size of Kv2.1 clusters is consistent with a model where domain size is established by fluctuations in the trafficking machinery. These results are further validated using likelihood and Akaike weights to select the best model for the kinetics of domain growth consistent with our experimental data.
Collapse
|
31
|
Deutsch E, Weigel AV, Akin EJ, Fox P, Hansen G, Haberkorn CJ, Loftus R, Krapf D, Tamkun MM. Kv2.1 cell surface clusters are insertion platforms for ion channel delivery to the plasma membrane. Mol Biol Cell 2012; 23:2917-29. [PMID: 22648171 PMCID: PMC3408418 DOI: 10.1091/mbc.e12-01-0047] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Voltage-gated K+ (Kv) channels regulate membrane potential in many cell types. Although the channel surface density and location must be well controlled, little is known about Kv channel delivery and retrieval on the cell surface. The Kv2.1 channel localizes to micron-sized clusters in neurons and transfected human embryonic kidney (HEK) cells, where it is nonconducting. Because Kv2.1 is postulated to be involved in soluble N-ethylmaleimide–sensitive factor attachment protein receptor–mediated membrane fusion, we examined the hypothesis that these surface clusters are specialized platforms involved in membrane protein trafficking. Total internal reflection–based fluorescence recovery after photobleaching studies and quantum dot imaging of single Kv2.1 channels revealed that Kv2.1-containing vesicles deliver cargo at the Kv2.1 surface clusters in both transfected HEK cells and hippocampal neurons. More than 85% of cytoplasmic and recycling Kv2.1 channels was delivered to the cell surface at the cluster perimeter in both cell types. At least 85% of recycling Kv1.4, which, unlike Kv2.1, has a homogeneous surface distribution, is also delivered here. Actin depolymerization resulted in Kv2.1 exocytosis at cluster-free surface membrane. These results indicate that one nonconducting function of Kv2.1 is to form microdomains involved in membrane protein trafficking. This study is the first to identify stable cell surface platforms involved in ion channel trafficking.
Collapse
Affiliation(s)
- Emily Deutsch
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Aubrey V. Weigel
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523
| | - Elizabeth J. Akin
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Phil Fox
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Gentry Hansen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | | | - Rob Loftus
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Diego Krapf
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523
| | - Michael M. Tamkun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
32
|
Towards therapeutic applications of arthropod venom k(+)-channel blockers in CNS neurologic diseases involving memory acquisition and storage. J Toxicol 2012; 2012:756358. [PMID: 22701481 PMCID: PMC3373146 DOI: 10.1155/2012/756358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 02/08/2012] [Indexed: 12/31/2022] Open
Abstract
Potassium channels are the most heterogeneous and widely distributed group of ion channels and play important functions in all cells, in both normal and pathological mechanisms, including learning and memory processes. Being fundamental for many diverse physiological processes, K+-channels are recognized as potential therapeutic targets in the treatment of several Central Nervous System (CNS) diseases, such as multiple sclerosis, Parkinson's and Alzheimer's diseases, schizophrenia, HIV-1-associated dementia, and epilepsy. Blockers of these channels are therefore potential candidates for the symptomatic treatment of these neuropathies, through their neurological effects. Venomous animals have evolved a wide set of toxins for prey capture and defense. These compounds, mainly peptides, act on various pharmacological targets, making them an innumerable source of ligands for answering experimental paradigms, as well as for therapeutic application. This paper provides an overview of CNS K+-channels involved in memory acquisition and storage and aims at evaluating the use of highly selective K+-channel blockers derived from arthropod venoms as potential therapeutic agents for CNS diseases involving learning and memory mechanisms.
Collapse
|
33
|
Kinnischtzke AK, Sewall AM, Berkepile JM, Fanselow EE. Postnatal maturation of somatostatin-expressing inhibitory cells in the somatosensory cortex of GIN mice. Front Neural Circuits 2012; 6:33. [PMID: 22666189 PMCID: PMC3364579 DOI: 10.3389/fncir.2012.00033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/14/2012] [Indexed: 11/29/2022] Open
Abstract
Postnatal inhibitory neuron development affects mammalian brain function, and failure of this maturation process may underlie pathological conditions such as epilepsy, schizophrenia, and depression. Furthermore, understanding how physiological properties of inhibitory neurons change throughout development is critical to understanding the role(s) these cells play in cortical processing. One subset of inhibitory neurons that may be affected during postnatal development is somatostatin-expressing (SOM) cells. A subset of these cells is labeled with green-fluorescent protein (GFP) in a line of mice known as the GFP-positive inhibitory neurons (GIN) line. Here, we studied how intrinsic electrophysiological properties of these cells changed in the somatosensory cortex of GIN mice between postnatal ages P11 and P32+. GIN cells were targeted for whole-cell current-clamp recordings and ranges of positive and negative current steps were presented to each cell. The results showed that as the neocortical circuitry matured during this critical time period multiple intrinsic and firing properties of GIN inhibitory neurons, as well as those of excitatory (regular-spiking [RS]) cells, were altered. Furthermore, these changes were such that the output of GIN cells, but not RS cells, increased over this developmental period. We quantified changes in excitability by examining the input–output relationship of both GIN and RS cells. We found that the firing frequency of GIN cells increased with age, while the rheobase current remained constant across development. This created a multiplicative increase in the input–output relationship of the GIN cells, leading to increases in gain with age. The input–output relationship of the RS cells, on the other hand, showed primarily a subtractive shift with age, but no substantial change in gain. These results suggest that as the neocortex matures, inhibition coming from GIN cells may become more influential in the circuit and play a greater role in the modulation of neocortical activity.
Collapse
Affiliation(s)
- Amanda K Kinnischtzke
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA
| | | | | | | |
Collapse
|
34
|
Gu Y, Barry J, McDougel R, Terman D, Gu C. Alternative splicing regulates kv3.1 polarized targeting to adjust maximal spiking frequency. J Biol Chem 2011; 287:1755-69. [PMID: 22105078 DOI: 10.1074/jbc.m111.299305] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Synaptic inputs received at dendrites are converted into digital outputs encoded by action potentials generated at the axon initial segment in most neurons. Here, we report that alternative splicing regulates polarized targeting of Kv3.1 voltage-gated potassium (Kv) channels to adjust the input-output relationship. The spiking frequency of cultured hippocampal neurons correlated with the level of endogenous Kv3 channels. Expression of axonal Kv3.1b, the longer form of Kv3.1 splice variants, effectively converted slow-spiking young neurons to fast-spiking ones; this was not the case for Kv1.2 or Kv4.2 channel constructs. Despite having identical biophysical properties as Kv3.1b, dendritic Kv3.1a was significantly less effective at increasing the maximal firing frequency. This suggests a possible role of channel targeting in regulating spiking frequency. Mutagenesis studies suggest the electrostatic repulsion between the Kv3.1b N/C termini, created by its C-terminal splice domain, unmasks the Kv3.1b axonal targeting motif. Kv3.1b axonal targeting increased the maximal spiking frequency in response to prolonged depolarization. This finding was further supported by the results of local application of channel blockers and computer simulations. Taken together, our studies have demonstrated that alternative splicing controls neuronal firing rates by regulating the polarized targeting of Kv3.1 channels.
Collapse
Affiliation(s)
- Yuanzheng Gu
- Department of Neuroscience and Center for Molecular Neurobiology, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | | | |
Collapse
|
35
|
Liao CC, Lee LJ. Evidence for structural and functional changes of subplate neurons in developing rat barrel cortex. Brain Struct Funct 2011; 217:275-92. [PMID: 22002739 DOI: 10.1007/s00429-011-0354-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 09/26/2011] [Indexed: 01/24/2023]
Abstract
In the developing sensory cortex, the subplate could serve as a transient relay station between the thalamus and cortical plate and assists the formation of thalamocortical projection. While the thalamus-layer IV connection is formed, the thalamic activation of subplate is diminished. In the present study, we aimed to explore the mechanism which may attribute to the decline of subplate activity. To resolve this issue, the developmental changes of subplate neurons (SPns) in rat somatosensory cortex were examined during the first two postnatal weeks which covers the stages prior and subsequent to the establishment of thalamocortical connection. During development, more SPns exhibited regular-spiking firing pattern and the membrane properties of SPns displayed a continual trend of maturation. In the meantime, the excitability of SPns decreased as revealed by increasing rheobase and rightwardly shifted frequency-current curves. On the other hand, increasing paired-pulse ratio and slowing MK-801 blocking rate were noted during development, implying the reduction of presynaptic transmitter release. Morphologically, the size of SPn soma increased with age while the shape became flat. The total length, branching nodes and segments of dendrites increased significantly during the first week. However, after peaking around day 10, these values decreased, implying a pruning process. Our findings here propose that the reduction of neuronal excitability, synaptic transmission and dendritic complexity may attribute to the decline of functional connectivity between thalamus and subplate and reduction of subplate activity while the thalamocortical pathway is established.
Collapse
Affiliation(s)
- Chun-Chieh Liao
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Ren-Ai Rd, Section 1, Taipei, 100, Taiwan
| | | |
Collapse
|